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We address the issue of criticality that is attracting the attention of an increasing num-
ber of neurophysiologists. Our main purpose is to establish the specific nature of some
dynamical processes that although physically different, are usually termed as “critical,”
and we focus on those characterized by the cooperative interaction of many units. We
notice that the term “criticality” has been adopted to denote both noise-induced phase
transitions and Self-Organized Criticality (SOC) with no clear connection with the traditional
phase transitions, namely the transformation of a thermodynamic system from one state
of matter to another. We notice the recent attractive proposal of extended criticality advo-
cated by Bailly and Longo, which is realized through a wide set of critical points rather
than emerging as a singularity from a unique value of the control parameter. We study a
set of cooperatively firing neurons and we show that for an extended set of interaction
couplings the system exhibits a form of temporal complexity similar to that emerging at
criticality from ordinary phase transitions. This extended criticality regime is characterized
by three main properties: (i) In the ideal limiting case of infinitely large time period, temporal
complexity corresponds to Mittag-Leffler complexity; (ii) For large values of the interaction
coupling the periodic nature of the process becomes predominant while maintaining to
some extent, in the intermediate time asymptotic region, the signature of complexity; (iii)
Focusing our attention on firing neuron avalanches, we find two of the popular SOC proper-
ties, namely the power indexes 2 and 1.5 respectively for time length and for the intensity
of the avalanches. We derive the main conclusion that SOC emerges from extended crit-
icality, thereby explaining the experimental observation of Plenz and Beggs: avalanches
occur in time with surprisingly regularity, in apparent conflict with the temporal complexity
of physical critical points.

Keywords: SOC, extended criticality, neural networks, cooperation

1. INTRODUCTION
Bridging psychology and neurophysiology is a challenging issue
of the twenty-first century whose origin traces back to the mid-
dle nineteenth century. In fact, as pointed out by Kinouchi and
Copelli (2006) the work of Weber and Fechner in the middle of
the nineteenth century, on how physical stimuli turn into psy-
chological sensation is a fundamental mind-brain problem, which
has influenced the foundation of psychology by James (Hawkins,
2011). Kinouchi and Copelli (2006) show that synchronization
and global oscillations allow the coding of information spanning
several orders of magnitude and claim that this mechanism could
provide a microscopic neural basis for psychophysical laws. The
basic idea behind the work of Kinouchi and Copelli (2006) is that
in biological complex systems the optimal information processing
is found near phase transitions, and that the efficiency of biolog-
ically relevant processes is optimized at criticality. Criticality of
phase transition is one of the most important achievements of
the twentieth century physics, thereby implying a transition from
the middle nineteenth century to the second half of the twentieth
century.

Chialvo (2010) points out that, although understanding the
brain is still certainly a challenge (Chialvo, 2010), there are spa-
tiotemporal brain data with which to confront theories, provided
that criticality is taken into due account. Criticality is a concept
that is attracting a fastly increasing number of researchers in the
field of Complexity, with applications ranging from neurophys-
iology (Levina et al., 2009) to stock-price fluctuations (Kiyono
et al., 2006). The term criticality, however, remains not quite
clearly defined. In addition to the classical second-order phase
transition, where temperature is the control parameter, the term
criticality has been used to denote processes as different as noise-
induced phase transitions (Van den Broeck et al., 1994) and
Self-Organized Criticality (SOC), whereas the identification of the
occurrence of criticality through the observation of time series is
considered to be a challenging task requiring special techniques
(Varotsos et al., 2011) holding true for both the 2D Ising model
and SOC.

More recently, it has been pointed out (Bailly and Longo, 2011)
that moving from physical to biological systems may require an
extension of the concept of criticality, namely, the adoption of
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Extended Criticality (EC). These authors point out that in physics
phase transitions are treated as “singular events,” corresponding to
a specific well-defined value of the control parameter. When this
singular event occurs, the fluctuations are enhanced and their cor-
relation length becomes as large as the system’s size (Stanley, 1999).
In biology, these “coherent critical structures” are “extended” and
organized in such a way that they persist in space and time. Living
matter organizes itself in a sequence of phase transitions, beyond
the punctual edge of chaos that seems to be shared by all forms of
phase transitions in physics, from noise-induced to self-organized
criticality.

Where does the transition from physical to extended critical-
ity occur? Is it possible that complex physical systems may show
signs of EC? In the last few years the researchers of the Pisa lab
of professor Leone Fronzoni (Fronzoni and Allegrini, 2009; Sil-
vestri et al., 2009; Allegrini et al., 2010) have studied the weak
turbulence on liquid crystals and have found that as an effect of
the cooperative interaction between defects, annihilation, and cre-
ation of coherent structures take place through the occurrence
of crucial events, namely, the distance between two consecutive
events, denoted by the symbol τ , does not have memory of the ear-
lier distances and has a distribution density ψ(τ ) with the form
ψ(τ ) ∝ 1/τμ and 1<μ< 3. These authors defined the control
parameter ε=V /V 0 − 1, where V 0 is a threshold voltage at which
convective instability emerges, and found that the phase transition
to temporal complexity, rather than being restricted to a single
value of ε is extended to a wide interval of values of ε.

In this article we study the statistical properties of a model for
neuron dynamics recently proposed by Geneston and Grigolini
(2011). We shall show that this model generates experimental
avalanches of the same kind as those revealed by the experimen-
tal work of Beggs and Plenz (2003, 2004), interpreted by Chialvo
(2010) as a SOC property, thereby suggesting that this model may
produce SOC criticality.

The time distance between two consecutive avalanches is
described by a waiting time distribution density ψ(τ ) that has to
be compared to the distribution density of time distances between
two consecutive liquid crystal crucial events. We shall focus our
attention on the function �(τ ) defined by

� (τ) ≡
∫ ∞

τ

dsψ (s) , (1)

namely, the probability that no new avalanche occurs up to a time
distance τ from an earlier avalanche.

We shall find properties similar to those experimentally
observed through the liquid crystals of the lab of professor Fron-
zoni. The neurons of the model interact through a cooperation
parameter K generating different values of a complexity para-
meter α, which is related to the temporal complexity of the liquid
crystals throughμ= 1 +α. The parameterα is frequently adopted
to denote the Mittag-Leffler (ML) relaxation process. As pointed
out by Metzler and Klafter (2002), the important property of the
ML function is the establishment of a bridge between stretched
exponential and inverse-power law relaxation. To point out the
importance of ML complexity, let us notice that the temporal
complexity of liquid crystals is described by a distribution density

of inter-event times

ψ (τ) = (μ− 1)
Tμ−1

(τ + T )μ
, (2)

and by the corresponding survival probability

�(τ) =
(

T

τ + T

)μ−1

. (3)

In equation 2 the parameter T is introduced for the main pur-
pose of eliminating the unphysical short-time divergencies and
ensuring the proper normalization condition, thereby making it
possible for us to focus on the long-time regime. Thus, the short-
time regime remains essentially unknown and T only plays the
limited role of effective parameter. In other words, T defines the
time scale of the microscopic regime where the collective prop-
erties generated by the interaction between the system’s units do
not appear yet. In the case of ML complexity, on the contrary,
the short-time relaxation is described by the stretched exponen-
tial exp(−(λt )α), with α < 1. The term short-time scale is not
appropriate to describe the stretched exponential portion of the
ML relaxation. In fact, the deviation from the ordinary exponen-
tial relaxation mirrors collective properties, closely related to the
temporal complexity emerging at later times, which is the inverse-
power law 1/τα . The term of intermediate asymptotics coined by
Barenblatt (1996) is more appropriate to denote the time scale of
the stretched exponential relaxation. At the intermediate asymp-
totics level scaling already appears, in a form that is not yet affected
by physical limitations such as boundary conditions. In the case of
the model discussed in this article the emergence of the inverse-
power law 1/τα is accompanied by the first signs of periodicity that
for large values of the cooperation parameter K yields an abrupt
truncation of the inverse-power law regime.

The ML complexity settles the controversy between the advo-
cates of complexity as being characterized by relaxation departing
from the usual exponential form through a stretched exponential
structure and the advocates of inverse-power laws as the most sig-
nificant signature of complexity. In fact, the long-time regime of
the ML relaxation is described by a power law with indexα=μ− 1
that makes the far asymptotic time regime of the ML relaxation
identical to that of the survival probability of equation 3. Thus,
even if statistical inaccuracy, time series finiteness, and other pos-
sible reasons may make it difficult to reveal the inverse-power law
nature of the long-time regime, the temporal complexity of the
ML relaxation is of the same nature as the temporal complexity of
the form of equation 3.

These interesting properties generate the question of which is
the form of criticality emerging from the neuron cooperation. We
shall come back to this interesting problems in the last Section of
this article.

2. MATERIALS AND METHODS
2.1. MITTAG-LEFFLER TEMPORAL COMPLEXITY
As mentioned in the Introduction, the temporal complexity
emerging from the extended criticality of our model of interacting
neurons is given by the Mittag-Leffler (ML) function. A convenient
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way to illustrate this form of temporal complexity rests on the use
of Laplace representation. In this article we adopt for the Laplace
transform of the function f(τ ) the notation

f̂ (u) ≡
∫ ∞

0
dτ f (τ )exp (−uτ) . (4)

Using this notation, if we assign to �(τ ) the ML form, we have

�̂ (u) = 1

u + λαu1−α . (5)

Via inverse Laplace transformation we get

� (t ) = Eα
(−(λt )α

)
, (6)

where Eα(z) is the ML function expressed with respect to time.
The series expansion of Eα(z) is

Eα(z) =
∞∑

n=0

(−z)n

�(1 + αn)
. (7)

It is known that for α > 1, this function can become oscillatory.
We shall restrict our use of the form of temporal complex-
ity to 0<α≤ 1, where the ML function is positive and strictly
monotonically decreasing.

It is important to stress, as already mentioned in the Introduc-
tion, that in the short-time regime τ < 1/λ the ML function has
the form of the stretched exponential function

� (τ) = exp
(−(λτ)α) (8)

It is important to reiterate an observation made in the earlier
work by Geneston and Grigolini (2011). This has to do with the
long-time truncation of the ML survival probability. Usually, the
long-time truncation of inverse-power laws is thought to be a con-
sequence of the statistical inaccuracy due to the finite sizes of the
systems under study. For instance, Failla et al. (2004) and Bianco
et al. (2007) adopted the form

�̂ (u) = 1

u + λα(u + �t )
1−α , (9)

with α < 1. In the case �t = 0 this is the Laplace transform of the
ML function of equation 5. However, the experimental observa-
tion has forced these authors to introduce the parameter �t> 0.
The experimental results are explained by setting 1/�t of the order
of 1/λ and both much larger than the unit time step: in this case
equation 5 generates a function �(t ) indistinguishable from a
stretched exponential function. In conclusion, in the earlier work
the ML complexity is violated in the large time limit by environ-
mental fluctuations that make the system fall in the exponential
regime. In the case of this article, on the contrary, as already
pointed out by Geneston and Grigolini (2011), the breakdown
of the ML condition is due to the same cooperative effect as that
making the ML function emerge in the first place.

In this article we observe quakes, namely events correspond-
ing to one or more neurons firing. The physical meaning of the

survival probability �(τ ) is defined by referring ourselves to the
occurrence of a quake as time origin. Given that a quake occurs at
the time origin, what is the probability that no new quake occurs
up to time τ ? The probability of no quake occurrence is the survival
probability �(τ ). In the absence of cooperation

� (τ) = exp (−Gτ) . (10)

In this case α= 1 and λ= G. The quantity corresponding to the
magnetization of the Ising model is

m = λα − G. (11)

At criticality λα = G begins departing from the vanishing value.
In practice, we observe numerically the quantity

g (K ) = λ(K )α(K ), (12)

and we use it to establish the critical value of K at which
phase-transition occurs.

2.2. STOCHASTIC VERSION OF THE MODEL OF MIROLLO AND
STROGATZ

This is a model originally proposed by Mirollo and Strogatz (1990)
that Geneston and Grigolini (2011) generalized by adding a sto-
chastic fluctuation. Therefore we shall refer to it as Stochastic
Mirollo and Strogatz (SMS) model.

The SMS model is based on the dynamics of Ntot neurons.
In the absence of cooperation, the dynamics of each neuron are
described by the simplest model of a leaky integration-and-fire
neuron:

x (t + 1) = (1 − γ ) x (t )+ S + σξ (t ) , (13)

where the natural number t denotes the discrete time, and the
leakage factor γ is taken γ � 1 so as to make the integer time
virtually continuous when γ t ≈ 1. The variable x moves from
the initial condition x = 0, therefore the term S> 0, favoring its
motion toward threshold x = 1 describes the average neural activ-
ity of afferent connections (coming from outside the system of
interest); ξ(t ) is a random variable getting either the value of 1 or
−1, with equal probability, with no memory of the earlier values,
and the quantity σ is the noise intensity. The role of the term σξ

is that of describing the fluctuations of the afferent neural activ-
ity. At the threshold, the neuron fires and resets back to the initial
value x = 0.

When σ = 0, it is straightforward to prove that the time
necessary for the neuron to reach the threshold is given by

TMS = 1

γ
ln

(
1

1 − γ
S

)
. (14)

We assume, with Mirollo and Strogatz (1990), that the neurons
cooperate, namely, that when one neuron fires all the other neu-
rons make a step ahead by the quantity K< 1 which is the coop-
eration strength. This condition is equivalent to assume that each
neuron interacts with all the other neurons, and it will be referred
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to as All-To-All coupling condition. This model is very close to
the one used by Levina et al. (2010). These authors consider both
inhibition and excitation links between neurons. The model of this
paper can be derived from that of Levina et al. (2010) by eliminat-
ing the inhibition links. Notice that All-To-All condition (or almost
All-To-All) and the absence of inhibitory control are here consid-
ered as a simplifying approximation. However, they may also be
of importance in describing specific pathological conditions, like
the Morvan’s syndrome (Liguori et al., 2001).

Mirollo and Strogatz (1990) found the exact solution of this
problem when σ = 0 and proved that, after a transient, all the
neurons fire at the same time, with time period TMS of equation
14, the MS time.

As an effect of noise, it may take a time either shorter or longer
than TMS for a neuron to fire. Furthermore, the time distance
between two consecutive firings may be much shorter than TMS.
When K = 0, even if we assign to all the neurons the same initial
condition, x = 0, due to stochastic fluctuations the neurons fire at
different times so that the system eventually reaches a steady state
with a constant firing rate G given by

G = Ntot

〈τ 〉 , (15)

where 〈τ 〉 denotes the mean time between two consecutive firings
of the single neuron. For σ � 1, 〈τ 〉 ≈ TMS. From the condition
of constant rate G we immediately derive the Poisson survival
probability

� (τ) = exp (−Gτ) . (16)

We shall see hereby that this heuristic argument agrees very well
with numerical results. For the numerical simulation we select the
condition

G � 1 � Ntot � TMS , (17)

yielding

1

G
≈ TMS

Ntot
� TMS , (18)

thereby realizing the time scale of interest for this paper, which is
much shorter than the MS time. It is evident that the condition of
non-interacting neurons fits equation 5 with α= 1 and

λ (K = 0) = G. (19)

For our numerical calculations we adopt the values σ = 0.001,
Ntot = 100, γ = 0.0001, and S = 0.00019. We have assessed numer-
ically that 〈τ 〉 = 7431 thereby yielding, thanks to equation 15,
G = 0.0135, and TMS = 7472.14. Throughout the paper the time
units are expressed in terms of the number of the discrete time
steps of the numerical model. The connection with physical times
can in principle be established via the connection of TMS with the
periodic rhythm under study. However, the scope of the paper is to
explore at a theoretical level a possible interplay between criticality

and periodicity in cooperative systems. We therefore believe it is
premature to adopt at this stage the usage of physical units (e.g.,
seconds).

Finally, it is important to point out that for larger values of Ntot

the same properties are observed as long as the condition (17) is
applied.

3. RESULTS
We begin the illustration of the numerical results with Figure 1,
which shows the number of firing per unit of time moving from
an initial condition where all the neurons are assigned a random
value x in the interval (0, 1).

We see that for small values of K the number of firings is almost
constant in time. Increasing K has the effect of generating a more
complex time structure, which in the limiting case of very large
values of K is expected to fit the periodicity of the original model
of Mirollo and Strogatz.

We are in the presence of a situation more complex than that
corresponding to the ordinary renewal condition (Turalska et al.,
2011). When the ordinary criticality condition applies, namely
the phase-transition generated by a single value of the control
parameter is realized, organizational collapses occur (Vanni et al.,
2011), and they are proved to be renewal events (Turalska et al.,
2011). In the case of the SMS model, as already suggested by
Figure 1, the emergence of criticality is accompanied by signs of
periodicity that become predominant at large values of the control
parameter K.
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FIGURE 1 |This figure shows the number of firings moving from initial

conditions xi taken randomly in the interval (0,1). A very large time (one
million time steps) is waited so that memory of initial conditions is
completely lost. Different panels refer to different values of the cooperation
parameter K. We observe a change in behavior from no coupling (K = 0,
upper panel) to larger values of K. For K = 0, for each time, only one or,
rarely, two neurons are firing, and the firing times are homogeneous,
following a Poisson statistics. For K = 0.002 (second panel) we see some
sporadic events with three neurons firing, tending to take place in periodical
patterns; non-Poisson “holes” of silence, with large duration variability,
emerge in between. For K = 0.005 (third panel) we see events with higher
numbers of neurons concurrently firing, and longer silence durations. For
K = 0.01 (lower panel) the system is almost periodic, and silence durations
can be as long as the distance between major peaks.
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Let us now move to discuss the statistical properties of firing
avalanches. First of all we study the time distance between two
consecutive avalanches. We are interested in the time asymptotic
properties of the survival probability �(τ ). For this reason we do
not have to define the minimal distance between two consecutive
avalanches, as we shall have to do to study the avalanche time dura-
tion. We limit ourselves to record the time distance between two
consecutive firings, regardless of the number of neurons contribut-
ing to them. This allows us to defineψ(τ ). Then, using equation 1
we determine the survival probability�(τ ), illustrated in Figure 2.
Figure 2 is helpful to evaluate with theoretical arguments the sur-
prising mixture of time complexity and time periodicity that is
suggested by Figure 1. We see, in fact, that increasing K has the
effect of turning the Poisson statistics of the condition with no
cooperation (see the insert) into a form of exact periodicity, as
shown by the fifth curve (the upper one, denoted by K = 0.1) of
this Figure, where the abrupt jump to 0 of the survival probability
corresponds to all the neurons firing together with the time period
of equation 14.

Figure 3 illustrates the fitting procedure adopted to prove the
emergence of the cooperation-induced ML complexity. At vari-
ance with the earlier analysis of Geneston and Grigolini (2011),
we fitted directly the numerical Laplace transforms of the exper-
imental survival probabilities with the Mittag-Leffler function in
the Laplace representation, given by equations 6 and 7. For this
purpose we selected a suitable interval for u. From the parameters
α and λ obtained via the fitting procedure, the stretched exponen-
tial (8) has been visually superimposed to the survival probability
data in the time representation, in the early regime, and a slope
α+ 1 has been superimposed to an intermediate regime, before
the cutoff, as shown in the inset of Figure 3. As a result, the quality
of fit has been excellent for all values of coupling parameter K,
with very slight deviations only at the critical value K = 0.002.
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FIGURE 2 | Survival probability for different values of K. As we move
from K = 0 (lower curve) to higher values of K we see the passage from
Poisson behavior (shown in the insert as a straight line in semi-log scale) to
a step-like function at the highest vale of K (K = 0.1) here reported, signaling
complete periodicity. For intermediate values complex non-Poisson decays
are visible, followed by abrupt cutoffs, due to periodicity.

It is possible to see the emergence of a clear trend, illustrated in
Figure 4. The temporal complexity parameter α at K = 0 has the
value α= 1, corresponding to μ= 2, which is, in fact, the bound-
ary with the ergodic regime. The inverse-power law component
drops to zero, and the stretched exponential function becomes an
ordinary exponential function. As soon as we switch on the coop-
eration parameter, temporal complexity emerges with α < 1 and
μ< 2. While for K < 0.002 α slowly decreases with increasing K,
at K ≈ 0.002 it undergoes a fast drop and remains close to α≈ 0.6
for an extended range. The parameter λ shows a steep increase at
K = 0.002, reaches a maximum around k = 0.00275 and decreases
for larger values of K. The complexity indicator λα increases slowly
from the value of G at K = 0 to larger values at about K = 0.002
where it undergoes a faster increase that Geneston and Grigolini
(2011) interpreted as a form of ordinary transition rounded by
finite size effects. Actually this parameter does not saturate for
increasing values of K, since for values larger than K ≈ 0.0035 it
tends to slowly decrease. On the basis of the fitting procedure of
this article we are inclined to interpret all this as a form of extended
criticality rather than an ordinary criticality corresponding to the
single value K ≈ 0.002.

Finally, Figures 5–7 refer to the neural avalanches that have
been the focus of the research work of Beggs and Plenz (2004).
Chialvo (2010) considers the avalanches experimentally revealed
by Beggs and Plenz to be a striking manifestation of SOC (Zapperi
et al., 1995; De Arcangelis et al., 2006). Figure 5 shows the inten-
sity of avalanches as a function of the cooperation parameter K.
Some caution has to be exerted in defining the avalanche: Due to
finite statistics and discrete time, it happens that actual avalanches
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FIGURE 3 | Illustration of the fitting procedure adopted to prove the

cooperation-induced emergence of the ML complexity. In the main
figure the numerical Laplace transform of the Survival probability is plotted,
for K = 0.00475 (squares). The solid line represent the fitted ML function, in
the Laplace representation. The resulting fitting parameters are in this
example α= 0.62 and λ= 0.023. In the insert we plot the same survival
probability, but this time in the time domain. A stretched exponential
exp[ − (λt )α ] is superimposed in the shorter time regime, called
intermediate asymptotic regime; an inverse-power law constant/t α is
superimposed in the far asymptotic regime. We notice the good agreement
in both the Laplace and the time representation.
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may present “holes,” namely times within the avalanche where
no neuron is firing. This makes it difficult to operatively define
an avalanche starting from the data. As in the original work of
Beggs and Plenz (2004) we defined a tolerance time�t : Avalanches
are thus defined as patterns of neuron firing separated from one
another of at least �t time steps. In other words, the starting of
an avalanche is the first time step following a silence period lasting
at least �t time steps. Results not herein reported show that the
analysis of avalanche size, duration, and mean shape depend on
the choice of �t. We choose �t = 5 time steps, because we saw
that numerically the inverse-power law indexes of the probability
densities for avalanche size and duration would not change with
further increasing that value, for all values of K herein reported.

We see that in the case of no coupling the avalanche’s inten-
sity falls down exponentially upon increasing their intensity. With
increasing the cooperation parameter K there is an accumula-
tion of curves around an inverse-power law with index ζ = 1.5
as K overcomes the critical value. With further increase of K the
inverse-power law does not change, but a peak becomes predom-
inant at large times. This is a manifestation of the tendency for
the system to recover the periodicity of the model of Mirollo and
Strogatz.
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The analysis of the distribution of time duration of the
avalanches generates, as shown in Figure 6, results similar to
those concerning the intensity distribution, thereby suggesting a
correspondence between intensity and duration.

It is interesting to notice that the theoretical value of ζ = 1.5
for avalanche sizes and ν= 2 for avalanche durations experimen-
tally observed by Beggs and Plenz (2003) are realized in our
model, even in a region that is strongly influenced by periodicity.
We remind that although these SOC critical signatures are con-
served in this broad region, the fractal statistics of inter-avalanche
times, corresponding to Figure 4, change. In particular, the fractal
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index α continuously varies from the value α= 1, for indepen-
dent neurons, to smaller values, of the order of 1/2 for large
choices of cooperation parameter K. All this thereby suggests a
significant departure from the condition of temporal complex-
ity corresponding to the conventional criticality (Turalska et al.,
2011), corresponding in turn to a single value of the control
parameter.

We have also adopted the procedure of Levina et al. (2007) to
determine the avalanche’s shape. This is described by Figure 7.
We have considered the times at which avalanches begin as the
time origin. Then, for any time larger than �t we have evalu-
ated the mean number of firing neurons, as an average over all
the avalanches. We have recovered an interesting effect found by
Levina et al. (2007). In the correspondence of a cooperation para-
meter so large as to make periodicity predominant, K = 0.007, we
see that the decay of the avalanche’s shape is not monotonic, and
that the avalanche’s intensity increases, reaches a maximum, and it
decays again. This is a consequence of the avalanche’s periodicity
(Beggs and Plenz, 2004). Adopting a Gibbs’ ensemble representa-
tion, we can state that in this regime the events signaling that an
avalanche begins can be interpreted as precursors of big avalanches
occurring later.

4. DISCUSSION
4.1. CRITICALITY OF NEURAL NETWORKS
The SMS model generates neural avalanches: for many values of
K it yields the value of ζ = 1.5 for avalanche size and ν= 2 for
avalanche durations, in accordance with the experimental observa-
tions by Beggs and Plenz (2003). According to Chialvo (2010) these
are typical SOC signatures, thereby generating the impression that
the SMS model may be a form of SOC. However, Aschwanden
(2011) has recently pointed out that there are “three necessary
and (perhaps) sufficient criteria” to establish if a system is a SOC
system. These are: Statistical Independence, Non-linear Coherent
Growth, and Random Duration of Rise Time. We think that none
of these properties is obeyed by the SMS model of this paper.
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Therefore we are inclined to believe that its criticality is not a
SOC. This makes us conclude that the SOC theoretical frame-
work is not the only one explaining the main properties of neural
avalanches.

The next question to answer is as to whether the cooperation-
induced temporal complexity is of the same kind as that pro-
duced by the phase-transition processes. Interesting examples of
this form of criticality are given by the recent papers of Tural-
ska et al. (2011) and Vanni et al. (2011). These authors show
that at phase transition a metastable consensus condition occurs,
with abrupt organizational collapses. The survival probability,
namely the probability that no organizational collapse occurs,
has the inverse-power law structure of equation 3. This prop-
erty is limited to a singular value of the cooperation parameter
K. With the SMS model, as clearly shown by Figure 4, chang-
ing K has the effect of changing temporal complexity. We are
therefore inclined to believe that the SMS model is a form of
extended criticality, whose temporal complexity in the intermedi-
ate asymptotic condition is characterized by stretched exponential
relaxation.

In the far asymptotic regime the fat tail of the survival probabil-
ity �(τ ) is truncated by a periodicity-induced fast drop, thereby
breaking the renewal ML complexity (Metzler and Klafter, 2002).
Is this a biological property compatible with the concept of EC?
According to Bailly and Longo, EC signals the transition from
physics to biology, and the SMS model is a model introduced for
the specific purpose of interpreting neural dynamics. Although it
may be questionable as all models that are currently proposed to
shed light into complexity, the SMS model generates a form of
periodicity that agrees qualitatively with the experimental obser-
vation (Beggs and Plenz, 2004). Furthermore, we have to keep
in mind the natural periodicity of biological systems, evident in
the concept itself of the ubiquitous “biological clock” (Winfree,
2000), and this does in fact support the view that periodicity
reinforces rather than weakens the biological nature of a model.
These arguments strengthen our conviction that the SMS model is
compatible with the concept of extended criticality of Bailey and
Longo.

We note that the theoretical interpretation of the experimental
results on liquid crystals (Silvestri et al., 2009; Allegrini et al., 2010),
although sharing with EC the condition that the control parame-
ter is not a singular value, is based on the concept of renewal aging
that implies the occurrence of quakes or organizational collapses
(Vanni et al., 2011). These organizational collapses reset to zero
the system’s memory, thereby creating a condition incompatible
with the temporal precision of activity patterns (Beggs and Plenz,
2004). We therefore expect that the SMS model of this paper should
stimulate theoretical progress to extend the concept of temporal
criticality so as to make it compatible with the complexity of the
far asymptotics.

4.2. CRITICALITY AND THE BRAIN
The intriguing issue as to which form of criticality is obeyed by
the brain has been debated in the earlier work by Allegrini et al.
(2010). These authors found that the index ζ of the distribu-
tion of avalanches intensity is 1.92, and thus significantly different
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from the SOC prediction ζ = 1.5. On the other hand, the statisti-
cal analysis made by Allegrini and co-workers seems to be more
compatible with the standard concept of phase-transition induced
criticality. These authors find that the temporal complexity of the
events corresponding to the simultaneous occurrence of bursts in
different channels is different from the temporal complexity of
the single channels. The analysis of the single channels (Ignaccolo
et al., 2010) discloses the emergence of a coherent behavior that
may be related to the time periodicity addressed in this article,
thereby leading to the conclusion that the global behavior of the
brain may correspond to the phase-transition induced criticality,
triggered by the cooperation among different brain components,
while the dynamics of the single channels may correspond to a
different kind of criticality, compatible with coherent dynamics.
This form of criticality might be the extended criticality of Bailly
and Longo (2011).

It is important to keep in mind that there is a deep difference
between the brain, thought of as network of networks, and the
dynamics of its components, namely neural networks that may be
adequately described by the SMS model of this paper. The recent
model proposed by Kello et al. (2011) is an attempt at understand-
ing the global properties of the brain and the 1/f scaling of this
model fits the observation of Allegrini et al. (2009b) who interpret
the brain as a source of ideal 1/f noise.

4.3. COMPLEXITY MANAGEMENT: A CHALLENGE
A further issue generated by the result of this article is the exten-
sion of the Fluctuation Dissipation Theorem of first kind (Allegrini
et al., 2009a) and of the Complexity Management (Aquino et al.,
2010, 2011). To understand the conceptual difficulty of this impor-
tant issue, we must recall that Fluctuation Dissipation Theorem in
statistical physics has a long history, ranging from the 1905 Einstein
paper on Brownian motion and Onsagers regression hypothe-
sis to the more recent work of Kubo et al. (1985), whose linear
response theory (LRT) is in fact considered by Lee (2007) to be
the basic theoretical tool for the ergodic condition produced by
Hamiltonian systems. In the case of the dynamics of the brain this
traditional approach cannot be adopted, because of the lack of
ergodicity condition, not to speak about the lack (or the impos-
sibility) of a Hamiltonian treatment. The dynamical Fluctuation
Dissipation Theorem proposed by Allegrini et al. (2007) is the
first attempt at establishing a LRT for a system driven by renewal
events violating the ergodic condition. The Complexity Manage-
ment (or Complexity Matching) proposed by Aquino et al. (2011)
rests on the surprising discovery that information can be trans-
mitted by a complex network to another via an extremely weak
coupling provided that a form of resonance exists between the
complexity of the perturbed system and the complexity of the
perturbing one.

The coexistence of temporal complexity and periodicity raises
the question of whether the Fluctuation Dissipation Theorem and
the related complexity management can be extended so as to deal
with this more complex condition.

4.4. CONJECTURES AND PLAN FOR FUTURE RESEARCH WORK
One of the most important issues concerning the brain function
is as to whether the brain does or does not compute. Werner

made a strong warning against the adoption of the computer
paradigm to explain the brain function (Werner, 2011). Neu-
rons do not compute and function at meso- and macroscopic
levels through a process of self-organization that makes signif-
icant their collective dynamics and irrelevant the behavior of
single neurons as computational units. According to Werner the
role of computer simulation is that of affording an epistemic
access to their ontological states. This is an important warn-
ing that must be taken into a proper account. It seems to us
that this warning may fit Varela’s principles (Varela, 1979), in
the form recently advocated by Mira and Delgado García (2007).
These authors developed an “extended computation paradigm”
whose main aim is to avoid contamination between the “External
Observer Domain” and the “Own Domain.” We freely interpret
the External Observer Domain and the Own Domain of Mira and
Delgado as the epistemic level and ontological levels of Werner,
respectively.

We notice that the role of the neuron cooperation is also recog-
nized by Soares et al. (2011) who propose the creation of coupled
networks to make a significant progress toward the creation of
intelligent systems.

The interaction between different neuron networks may
account for the apparent conflict between the observation of
coherence (Ignaccolo et al., 2010) and the observation of ordinary
criticality at the level of global behavior of the brain (Allegrini et al.,
2009b). A theoretical result based on the interaction between dif-
ferent neural networks would reinforce the perspective that to shed
light into consciousness it is necessary to move from the action of
the single neurons or group of neurons to the interaction and
probably cooperative behavior of neural networks interpreted as
complex systems by their own.

Research work in this direction is possible thanks to sig-
nificant technological advances with neuron cultures done in
the last 30 years (Gross et al., 1982). It is interesting to notice
that there exists a gap between these experimental advances
and the theoretical understanding. The results of this arti-
cle suggest research directions that should fill this gap. We
should move from the All-To-All condition to the adoption of
a more proper topology. This is closely connected to the issue
of how “information” is transferred from one to another net-
work. As earlier stated, this requires the extension of Complex-
ity Management to the case where temporal complexity and
time periodicity coexist. Furthermore, although the assump-
tion of extremely weak stimuli makes it possible the adop-
tion of analytical treatments, it is necessary to go beyond it
while maintaining the extremely useful suggestion that com-
plexity matching may be the crucial ingredient for information
transmission.

Finally, we want to stress that if the kind of criticality operating
at the level of the model adopted in this article, is really a form of
EC (Bailly and Longo, 2011) the arguments of these authors can
be adopted to support our conviction that we are operating at a
genuinely biological level.
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