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Abstract

Calibration, more generally referred to as inverse estimation, is an important and

controversial topic in statistics. In this work, both semiparametric calibration and

the application of calibration to grouped data is considered, both of which may be

addressed through the use of the linear mixed-effects model. A method is proposed for

obtaining calibration intervals that has good coverage probability when the calibration

curve has been estimated semiparametrically and is biased. The traditional Bayesian

approach to calibration is also expanded by allowing for a semiparametric estimate of

the calibration curve. The usual methods for linear calibration are then extended to

the case of grouped data, that is, where observations can be categorized into a finite

set of homogeneous clusters. Observations belonging to the same cluster are often

similar and cannot be considered as independent; hence, we must account for within-

subject correlation when making inference. Estimation techniques begin by extending

the familiar Wald-based and inversion methods using the linear mixed-effects model.

Then, a simple parametric bootstrap algorithm is proposed that can be used to either

obtain calibration intervals directly, or to improve the inversion interval by relaxing

the normality constraint on the approximate predictive pivot. Many of these methods

have been incorporated into the R package, investr, which has been developed for

analyzing calibration data.
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TOPICS IN STATISTICAL CALIBRATION

I. Introduction

An important part of statistics is building mathematical models to help describe

the relationship between variables. Often, we have a dependent variable Y , called

the response, and an independent variable X , called the predictor. The researcher

designs an experiment and procures n observed pairs (x1, y1), . . . , (xn, yn) that are

then used to fit a regression model. The fitted regression model is often used to make

predictions. In particular,

• predict an individual response for a given value of the predictor;

• estimate the mean response for a given value of the predictor.

Sometimes, however, the researcher is interested in the reverse problem. That is,

there is a need to estimate the predictor value from an observed value of the response

(calibration) or a specified value of the mean response (regulation). Both are referred

to more generally as inverse estimation. Calibration has also been referred to in

the literature as inverse prediction, inverse regression, and discrimination. In this

paper, we discuss calibration, in particular, univariate calibration. For an overview

on topics in multivariate calibration, see Brown (1982), Brown and Sundberg (1987),

and Brown (1993). Point estimation is reviewed in Section 3.2, interval estimation in

Section 3.3, and Bayesian calibration in Section 3.4.

A calibration experiment typically consists of two stages. In the first stage, n

observations (xi, yi) are collected (henceforth referred to as the standards) and used

to fit a regression model E {Y|x} = µ. The fitted model, denoted µ̂, is often referred

1



to as the calibration curve or standards curve. In the second stage, m (m ≥ 1) values

of the response are observed with unknown predictor value x0 (henceforth referred

to as the unknowns). The goal is to use the calibration curve µ̂ to estimate x0. The

following example will help to clarify the basic idea.

Suppose a new procedure has been developed for measuring the concentration (in

µg/ml) of arsenic in water samples that is cheaper, but less accurate than the existing

method. An investigator has procured 32 water samples containing preselected

amounts of arsenic xi and subjected them to the new method producing measured

concentrations yi. The standards, taken from Graybill and Iyer (1994), are plotted in

Figure 1.1. A new water sample is then obtained with unknown arsenic concentration

x0 and subjected to the new method, producing a measured concentration of 3.0

µg/ml. It is desired to estimate the true concentration of arsenic in the newly obtained

water sample.

The goal of this work is to extend the methods of calibration to more complicated

settings. In Chapter 4, we introduce semiparametric calibration. Here we use

semiparametric regression methods to estimate the calibration curve and make

inference on the unknown x0. The benefit of this approach is that we do not have

to specify the exact form of the calibration curve. The downside to this approach is

that the estimated calibration curve will be biased, hence, our inference about the

unknown x0 will also be biased. We correct for this bias by taking the mixed model

approach to smoothing described in, for example, Ruppert and Wand (2003). A

small Monte Carlo study shows that this correction is necessary to obtain calibration

intervals with coverage probability near the nominal 1 − α level. We also extend

the method of Bayesian linear calibration put forth by Hoadley (1970) by allowing

for the calibration curve to be estimated semiparametrically as in Crainiceanu et al.

(2005). In Chapter 5, we extend the classical methods of calibration to work with

2
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Figure 1.1: Scatterplot of the arsenic data.

linear mixed-effects models. We also propose a new parametric bootstrap algorithm

that can be used to obtain an estimate of the entire sampling distribution of the

estimate of x0. We further show how this algorithm can also be used to improve upon

the classical methods by removing normality assumptions that may not be satisfied

in practice. We use several real datasets to demonstrate and compare our methods.
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II. Statistical Background

This chapter provides an overview of some of the statistical concepts related to

inverse estimation. In Section 2.1, we discuss the basic notational conventions used

throughout this dissertation. Section 2.2 introduces the linear regression model. The

extension to nonlinear regression models is given in Section 2.3. Section 2.4 is devoted

to penalized regression splines, a type of semiparametric regression model where only

part of the model is specified. Finally, in Section 2.5, we introduce the linear mixed-

effects models, an extension of the linear model (LM) that allows for some of the

regression coefficients to vary randomly.

2.1 Notation

For the most part, random variables will be denoted by capital letters in a

calligraphic font (e.g., Y). Vectors will be denoted by bold, lowercase letters and

matrices will be denoted by bold, uppercase letters. When convenient, we will use

the following notation to denote row, column, and diagonal vectors/matrices:

{
col
xi

}n
i=1

= (x1, . . . , xn)′{
row

xi

}n
i=1

= (x1, . . . , xn){
diag

xi

}n
i=1

= diag {x1, . . . , xn} .

If X is a random variable, then X ∼ (µ, σ2) simply means that X has some

distribution with mean E {X} = µ and variance Var {X} = σ2. Estimators and

estimates will typically be denoted by the same Greek letter with a hat symbol. For

example, depending on the context, β̂ may represent a vector of estimators or their

corresponding estimates.

4



2.2 Linear models

The linear regression model has been a mainstay of statistics for many years. It

has the simple form

(2.1) Yi = X ′iβ + εi, i = 1, . . . , n,

where Xi = (xi1, . . . , xip)
′ is a p × 1 vector of predictor variables for the i-th

observation, β = (β1, . . . , βp)
′ is a p × 1 vector of fixed (but unknown) regression

coefficients, and εi
iid∼ (0, σ2

ε ). Thus, an alternative formulation is to specify the mean

response

E {Yi|X} = X ′iβ = µi.

Unless stated otherwise, xi1 ≡ 1 (i.e., the model contains an intercept). It is often

convenient to work with the matrix form of (2.1), which is

(2.2) Y = Xβ + ε, ε ∼ (0, σ2
εIn),

where Y = (Y1, . . . ,Yn)′ is an n× 1 vector of response variables, X = (X1, . . . ,Xp)
′

is an n×p matrix of predictor variables called the design matrix, and ε = (ε1, . . . , εn)′

is an n× 1 vector of random errors. Equation (2.1) is special in that the response Y

is a linear function of the regression parameters β.

A special case of (2.1) arises when p = 2 and the distribution for the errors is

normal. That is,

(2.3) Yi = β0 + β1xi + εi, i = 1, . . . , n,

where β0 and β1 are the intercept and slope of the regression line, respectively, and

εi
iid∼ N (0, σ2

ε ). This is called the simple linear regression model and is often used for

analyzing calibration data.

Another special case of the linear model (2.1) is when xij = gj(xi), j = 1, . . . , p,

where each gj(·) is a continuous function such as
√
· or log(·). For example, a

5



polynomial model of degree p has the form

Yi = β0 + β1xi + β2x
2
i + . . .+ βpx

p
i + εi, i = 1, . . . , n.

Notice that a polynomial model is linear in the parameters even though it is nonlinear

in the predictor variable; hence, it is a linear model.

2.2.1 Estimating the model parameters.

Estimation of β in the linear model (2.1) can be carried out via least squares (LS).

The ordinary LS estimator of β minimizes the residual sum of squares,

(2.4) β̂ = argmin
β

‖Y −Xβ‖2 = (X ′X)
−1
X ′Y .

If we make the additional assumption that the errors are normally distributed, then

estimation can also be carried out by the method of maximum likelihood (ML). This

has the benefit of simultaneously providing an estimator for both β and σ2
ε . To

proceed, we need to maximize the likelihood

L
(
β, σ2

ε |Y
)

=
(
2πσ2

ε

)−n/2
exp

{
− 1

2σ2
ε

‖Y −Xβ‖2

}
,

or equivalently, maximize the log-likelihood

L
(
β, σ2

ε |Y
)

= −n
2

log (2π)− n

2
log
(
σ2
ε

)
− 1

2σ2
ε

‖Y −Xβ‖2 .

The derivatives of L (β, σ2
ε |Y) with respect to the parameters (β, σ2

ε ) are

∂L

∂β
=
X ′(Y −Xβ)

σ2
ε

∂L

∂σ2
ε

=
‖Y −Xβ‖2

2σ2
ε

− N

2σ2
ε

,

which, upon setting equal to zero and solving yields the ML estimators

β̂ = (X ′X)−1X ′Y

σ̂2
ε =

∥∥∥Y −Xβ̂∥∥∥2

/n

6



Fortunately, for the linear model (2.1) with normal errors, the ML estimator of β is

the same as the LS estimator. It is customary to adjust the ML estimator of σ2
ε for

bias by replacing it with σ̂2
ε =

∥∥∥Y −Xβ̂∥∥∥2

/(n− p− 1).

2.2.2 Predictions.

A common use of the fitted regression equation is to make predictions. There

are two types of predictions we distinguish:

(1) estimate the mean response when X = X0;

(2) predict a future observation corresponding to X0.

Let µ0 and Y0 be the mean response and future observation of interest, respectively.

We will see that the point estimators of µ0 and Y0 are the same, namely the fitted

value µ̂(x). Intuitively, the former should have a smaller standard error since there is

less variability in estimating a fixed population parameter than in predicting a future

value of a random variable. Consequently, a 100(1−α)% confidence interval for µ0 at

X0 will always be smaller than a 100(1−α)% prediction interval for Y0 corresponding

to X0.

Let X0 be an arbitrary value of X. Suppose we are interested in estimating the

mean of Y given X0, E {Y|X0} = µ0. For the linear model (2.1), the best linear

unbiased estimator (BLUE) of µ0 is the fitted value µ̂0 = X ′0β̂. Furthermore, it is

easy to show that

E {µ̂0} = X ′0β = µ0

and

Var {µ̂0} = σ2
ε

[
X ′0 (X ′X)

−1
X0

]
= S2.

Assuming normal errors, it follows that

µ̂0 − µ0

σ̂ε

√[
X ′0 (X ′X)−1X0

] ∼ T (n− p) .

7



Hence, a 100(1− α)% confidence interval for the mean response µ0 is given by

(2.5) X ′0β̂ ± t1−α/2,n−p · Ŝ.

Let Y0 denote an individual or future observation at the given point X0. We

assume that Y0 = X ′0β + ε0, where ε0 ∼ N (0, σ2
ε ) and is independent of ε. The best

predictor of Y0 is ŷ0 = X ′0β̂, the same as µ̂0, however, the variance of Ŷ0 is wider:

Var
{
Ŷ0

}
= σ2

ε + Var {µ̂0}. This is intuitive since there is greater uncertainty in

predicting the outcome of a continuous random variable than in estimating a fixed

(population) parameter, such as its mean. Under the assumption of normal errors,

we have that

ŷ0 − Y0

σ̂ε

√[
1 +X ′0 (X ′X)−1X0

] ∼ T (n− p) ,

therefore, a 100(1− α)% prediction interval for Y0 is simply

(2.6) X ′0β̂ ± t1−α/2,n−p
√
σ̂2
ε + Ŝ2.

We call (2.6) a prediction interval, as opposed to a confidence interval, since ŷ0 is a

prediction for the outcome of the random variable Y0.

2.3 Nonlinear models

Often in practice there is an underlying theoretical model relating the response to

the predictors, and this model may be nonlinear in the parameters, β. Such nonlinear

relationships lead us to the nonlinear regression model. For a single predictor variable,

this model is

(2.7) Yi = µ(xi;β) + εi,

where µ(·) is a known expectation function that is nonlinear in at least one of the

parameters in β, and εi
iid∼ N (0, σ2

ε ).

8



2.3.1 Estimating the model parameters.

Borrowing from the notation in Seber and Wilde (2003), let µi(β) = µ(xi;β),

µ(β) = (µ1(β), . . . , µN(β))′ ,

and

D(β) =
∂µ(β)

∂β′
=

{
row

{
col

∂µi(β)

∂βj

}n
i=1

}p

j=1

.

For convenience, let D̂ = D(β̂).

The approach to estimating β in the nonlinear model (2.7) is similar to the

approach in the linear model (2.1). That is, we choose the value of β that minimizes

the residual sum of squares, RSS(β), defined by

(2.8) RSS(β) = ‖Y − µ(β)‖2 .

However, since µ(·) is nonlinear in the parameters β, minimizing Equation (2.8)

requires iterative techniques such as methods of steepest descent or the Gauss-Newton

algorithm, which we describe below.

Given a starting value or current guess β(0) of the value of β that minimizes

(2.8), we can approximate µ(xi;β) with a Taylor-series approximation around β(0).

From a first-order Taylor series expansion, we get

(2.9) µ(β) ≈ µ(β(0)) +D(β(0))′(β − β(0)),

The derivative matrix D(β) plays the same role as the design matrix X in the linear

model (2.1), except that D(β) may depend on the unknown regression parameters

β. Substituting (2.9) into Equation (2.8), we get

RSS(β) ≈
∥∥Y − µ(β(0))−D(β(0))(β − β(0))

∥∥2
(2.10)

=
∥∥∥Y (0) −X(0)(β − β(0))

∥∥∥2

,(2.11)
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where Y (0) = Y −µ(β(0)), and X(0) = D(β(0)). Equation (2.10) is of the same form

as the sum of squares for the linear model. Based on this approximation, the LS

estimate of β is then

β̂ = β(0) +
[
X(0)′X(0)

]−1

X(0)′Y (0).

Hence, given a current approximation β(k) of β, the updated approximation is

β(k+1) = β(k) +
[
X(k)′X(k)

]−1

X(k)′Y (k).

This process is iterated until a suitable convergence criterion is met. Just as for the

linear model, if we assume the errors are normally distributed, then the ML estimate

of β is the same as the LS solution.

2.3.2 Predictions.

Let x0 be a known value of the predictor x0. The estimate of the mean response

{Y|x0} = µ(x0;β) is µ̂0 = µ(x0; β̂). Furthermore, assuming normal errors, an

approximate 100(1−α)% confidence interval for the mean response µ0 can be obtained

as in Equation (2.5) but with Ŝ2 computed as

Ŝ2 = σ̂2
εd
′
0

(
D̂′D̂

)−1

d0,

where

d0 =

{
row

∂µ (x0;β)

∂βi

}p
i=1

∣∣∣∣
β=β̂

.

An approximate 100(1 − α)% prediction interval for a future observation is

similarly obtained. These intervals, however, rely on the same linear approximation

used to compute β̂. For large samples, these intervals are often reliable. When

the sample size is small or there is a lot of curvature, these intervals can be highly

inaccurate. The bootstrap (Efron, 1979) provides an alternative method of inference

under these circumstances.
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2.4 Smoothing

Let x = (x1, . . . , xn)′ be a vector of predictor values and Y = (Y1, . . . ,Yn)′ be a

vector of response variables. We assume that X and Y are related by the regression

model

Y = µ(x) + ε, ε ∼ N (0, σ2
εI),

where µ(·) is an unknown smooth function. In this section, we discuss a technique

for estimating µ(·) nonparametrically, often referred to as scatterplot smoothing, or

just smoothing. In particular, we will focus on an important class of smoothers called

linear smoothers. For linear smoothers, the prediction at any point x, is a linear

combination of the response values: µ̂(x) = ω′Y , where ω is a constant that does not

depend on the response vector Y . The vector of fitted values µ̂ = (µ(x1), . . . , µ(xn))′

can be written in matrix form as SY , where S is an n×n smoother matrix. Examples

of linear smoothers include:

• running-mean, running-line, and running-polynomial smoothers;

• locally-weighted polynomial smoothers (i.e., LOESS);

• spline-based smoothers;

• kernel smoothers.

The remainder of this section discusses spline smoothing, specifically, the penalized

regression spline (P-spline).

Regression splines represent the mean response µ(x) as a piecewise polynomial

of degree p. The regions that define each piece are separated by special breakpoints

ξ1 < . . . < ξK called knots. By increasing p or the number of knots, the family of

curves becomes more flexible; thus, as shown in Figure 2.1, we can easily handle any

level of complexity.
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Figure 2.1: Unnormalized sinc function example. Scatterplot of 100 observations
generated from a regression model with mean response µ(x) = sin(x)/x (green line)
and i.i.d. N (0, 0.052) errors. The solid line shows a quadratic P-spline fit with
smoothing parameter λ = 0.9986. The dotted lines indicate the position of the knots
ξk.

A p-th degree spline function has the form

(2.12) µ(x) = β0 + β1x+ . . .+ βpx
p +

K∑
k=1

αk(x− ξk)p+,

where the notation a+ denotes the positive part of a, that is, a+ = a · I(a ≥ 0). Many

methods for choosing the number and location of the knots are given in the literature

(see, for example, Ruppert (2002) and the references therein). Let nx be the number

of unique xi. A reasonable choice for the number of knots (Ruppert and Wand, 2003,

pg. 126) is K = min(nx/4, 35) with knot locations

ξk =

(
k + 1

K + 2

)
-th sample quantile of the unique xi, k = 1, . . . , K.

The idea is to choose enough knots to capture the structure of µ(x). If both p and

K are too large, we run the risk of overfitting (i.e., low bias and high variance). If K

is too small then the resulting fit may be too restrictive (i.e., low variance but high

12



bias). There is rarely the need to go beyond a cubic polynomial model and so typical

choices for p are 1, 2, or 3.

In matrix form, the polynomial spline model is

(2.13) Y = Xβ + ε, ε ∼ (0, σ2
εI),

where

X =


1 x1 · · · xp1 (x1 − ξ1)p+ . . . (x1 − ξK)p+
...

...
. . .

...
...

. . .
...

1 xn · · · xpn (xn − ξ1)p+ . . . (xn − ξK)p+

 .
Equation (2.13) has the same form as the linear model (2.2). The ordinary least

squares fit, however, will be too “wiggly.” The idea behind penalized spline regression

is to shrink the coefficients αk by imposing a penalty on their size, thereby limiting

their impact on the estimated response curve. The estimated coefficients minimize

the penalized residual sum of squares

(2.14) PSS = ‖Y −Xβ‖2 + λ2pβ′Dβ,

where D = diag
{
0(p+1)×(p+1), IK×K

}
. The penalized least squares solution is then

(2.15) β̂λ = argmin
β

‖Y −Xβ‖2 + λ2pβ′Dβ =
(
X ′X + λ2pD

)−1
X ′Y .

Here λ ≥ 0 is a smoothing parameter that controls the wiggliness of the fit. Small

values of λ produce wiggly curves while larger values produce smoother curves. The

term λ2pβ′Dβ is called the roughness penalty. If D = I, then the penalized least

squares solution (2.15) is equivalent to the ridge regression estimate of β. The

roughness penalty can also be written as λ2p ‖α‖2, where α = (α1, . . . , αK)′ is

the vector of coefficients for the spline basis functions. Hence, P-splines enforce a

penalty on the `2-norm of α, so none of the polynomial coefficients are penalized (See

Figure 2.2)!
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Figure 2.2: Profiles of spline coefficients as the smoothing parameter λ is varied.
Coefficients are plotted versus λ. A vertical line is drawn at λ = 0.9986.

The fitted values are given by µ̂ = SλY , where Sλ = X (X ′X + λ2pD)
−1
X ′.

From this point forward, we will drop the subscript λ on the smoother matrix and

just write S. The smoothing parameter λ is unknown but can be specified a priori.

However, it is often beneficial to let the data determine the appropriate amount of

smoothness. To this end, cross-validation techniques are often used to estimate λ

from the given data. In Chapter 5, we discuss an alternative approach to P-splines

that automatically selects an appropriate amount of smoothness.

2.4.1 Inference for linear smoothers.

Consider the general heteroscedastic error model

Yi = µ(xi) + εi, εi
iid∼ (0, σ2

ε ), i = 1, . . . n,

where µ(·) is an unknown smooth function. Let µ̂(x) be an estimate of µ(·) based on

a linear smoother. The covariance matrix of the vector of fitted values µ̂ = SY is

(2.16) Var {µ̂} = S
(
σ2
εI
)
S′ = σ2

εSS
′.
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For a single point, the quantity Q = [µ̂(x)− µ(x)] / se {µ̂(x)} is approximately

pivotal—the distribution is free of unknown parameters, at least for sufficiently

large sample size n. Therefore, assuming ε ∼ N (0, σ2
εI), Equation (2.16) can be

used to form confidence intervals and prediction intervals. Note, however, that

E {µ̂} = X (X ′X + λ2pD)
−1
X ′XY ; hence, µ̂(x) is a biased estimator of µ(x).

Unless the bias is negligible, the confidence intervals discussed here only cover

E {µ̂(x)} with 100(1 − α)% confidence. This problem is remedied for P-splines in

Chapter 4 where we discuss an alternative approach using mixed model methodology.

Let x be an arbitrary value of the explanatory variable. Recall that, for linear

smoothers, the fitted value µ̂(x) can be written as ω′Y , a linear combination of the

response variables. The variance of µ̂(x) is just Var {ω′Y} = σ2
εω
′ω. Given an

estimate σ̂2
ε of σ2

ε , an approximate 100(1 − α)% confidence interval for µ(x) is given

by

µ̂(x)± t1−α/2,df σ̂ε
√
ω′ω,

where df = n− 2 tr (S) + tr (SS′). For sufficiently large sample size n, the quantity

t1−α/2,df can be replaced with z1−α/2, the 1 − α/2 quantile of a standard normal

distribution. Similarly, A 100(1− α)% prediction interval for a new observation is

µ̂(x)± t1−α/2,df σ̂ε
√

1 + ω′ω.

2.5 Linear mixed effects models

Mixed effects models (henceforth referred to as just mixed models) represent

a large and growing area of statistics. In this section, we only summarize the

key aspects of a special kind of mixed model called the linear mixed-effects model

(LMM). The extension to nonlinear mixed effects models and generalized linear

mixed effects models is discussed in Pinheiro and Bates (2009) and McCulloch et al.

(2008), respectively. Mixed models are useful for describing grouped data where

observations belonging to the same group are correlated. One way of accounting
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for such correlation is by introducing random effects into the model which induces

a particular correlation structure on the response vector. Different random effects

structures induce different correlation structures on the response.

The LMM extends the basic LM (Equation (2.2)) to

(2.17) Y = Xβ +Zα+ ε,

where X and Z are known design matrices, β is a vector of fixed effects, α is a

vector of random effects distributed as α ∼ N (0,G), and ε is a vector of random

errors distributed as ε ∼ N (0,R). Further, it is assumed that the random effects

and errors are mutually independent, that is, α ⊥⊥ ε.

Estimating the fixed effects β is rather straightforward and does not require

normality. Note that Y = Xβ+E , where E {E} = 0 and Var {E} = ZGZ ′+R = V .

Assuming normality, the log-likelihood (ignoring constants) is given by

(2.18) L (β,θ) = −1

2
log |V | − 1

2
(Y −Xβ)′ V −1 (Y −Xβ) ,

where θ is a vector containing the unique elements of V . Equating the partial

derivative of L (β,θ), with respect to the parameter β, yields the so-called

generalized least squares (GLS) estimator

(2.19) β̃ =
(
X ′V −1X

)−1
X ′V −1Y .

Notice, however, that the GLS estimator—which happens to be the BLUE of β—

depends on the variance-covariance matrix V . Since this is rarely available in practice,

the usual procedure is to estimate V and then plug this into Equation (2.19). In other

words, if V̂ is an estimate of V , then the estimated (or empirical) best linear unbiased

estimator (EBLUE) of β is

(2.20) β̂ =
(
X ′V̂ −1X

)−1

X ′V̂ −1Y .
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This causes some difficulties, mostly in terms of finite-sample inference, since there

is no simple way to account for the variability of V̂ when calculating Var
{
β̂
}

. See,

for example, McCulloch et al. (2008, pp. 165-167).

A technique known as best linear unbiased prediction is commonly used to

estimate the random effects α. It can be shown (Henderson, 1973) that the BLUE of

β and the best linear unbiased predictor (BLUP) of α, denoted α̃, can be determined

simultaneously as the solutions to a penalized least squares problem,β̃
α̃

 = argmin
β,α

(Y −Xβ −Zα)′R−1(Y −Xβ −Zα) +α′G−1α(2.21)

= Ω(Ω′R−1Ω +D)Ω′R−1Y ,

where β̃ is as in (2.19), α̃ = GZ ′V −1
(
Y −Xβ̃

)
, Ω = (X;Z), and D =

diag {0p×p,G−1}. For the special case R = σ2
εI and G = σ2

αI, the penalized sum of

squares (PSS)—the minimand in Equation (2.21)— reduces to

(2.22)
1

σ2
ε

‖Y −Xβ −Zα‖2 +
1

σ2
α

‖α‖2 .

Similar to the EBLUE of β, the estimated (or empirical) best linear unbiased

predictor (EBLUP) of α is just the BLUP α̃ with G and V replaced with their

respective estimates, Ĝ and V̂ :

(2.23) α̂ = ĜZ ′V̂ −1
(
Y −Xβ̂

)
.

In a similar fashion, the BLUP and EBLUP of the mean response are given,

respectively, by the equations

µ̃ = Xβ̃ +Zα̃,(2.24)

µ̂ = Xβ̂ +Zα̂.(2.25)

Note that the EBLUP µ̂ is just the fitted values.
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Obviously, estimating β̃ and α̃, requires knowledge of the variance-covariance

matrices G and R, which are generally unknown. In practice, we often restrict these

matrices to have a simple form, usually involving only a few unknown parameters,

earlier denoted by θ. These parameters can be estimated via ML estimation. ML

estimators of the variance components θ, however, tend to become badly biased as the

number of fixed effects in the model increases. A more effective approach, known as

restricted (or residual) maximum likelihood (REML) estimation, is often used instead

(see, for example, McCulloch et al. (2008, chap. 6)).
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III. Overview of Statistical Calibration

In this chapter, we present a thorough overview of calibration as it pertains to our

goals for this dissertation. Although we cannot cover every aspect of calibration in this

chapter, we have attempted to provide an extensive bibliography for the interested

reader. The main themes of this chapter are going to be point estimation and interval

estimation.

3.1 Controlled Calibration vs. Natural Calibration

Calibration experiments can be classified as one of two types: controlled

calibration experiments and natural calibration experiments. In controlled calibration,

the predictor values are held fixed by the experimenter (i.e., x is not considered

a random variable). In this case, the predictor values are chosen to cover the

experimental range of interest and the response is often replicated a number of times

at each design point (see, for example, the arsenic data plotted in Figure 1.1). In

contrast, the n observations (xi, yi) in a natural calibration experiment are considered

a random sample from some bivariate distribution: (X ,Y) ∼ g(x, y), where g is

typically assumed to be a bivariate normal distribution. In summary, the values of the

independent variable are either preselected or held fixed in controlled calibration and

randomly sampled from a population of values in natural calibration. Distinguishing

between these two types of calibration experiments is important, especially from an

inferential standpoint, as emphasized in the papers by Brown (1982) and Brown

(1993).

3.2 Point estimation

Here, we discuss point estimation of x0 for the linear calibration problem, that

is, when the calibration curve has the form of the simple linear regression model.
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The two most popular estimators of x0 are the classical estimator and the inverse

estimator. The classical estimator, which dates back to Eisenhart (1939), is based

on inverting the calibration curve at y0 (i.e., solving the fitted regression equation

for x0) and is easily extended to polynomial and nonlinear calibration problems. The

inverse estimator, as we will see in Section 3.4, is more useful under a specific Bayesian

framework.

3.2.1 The classical estimator.

Suppose we have n observations (xi,Yi). We assume the xi’s were measured

without error. (The case where there is error in both variables is discussed in Carroll

and Spiegelman (1986).) Generally, the model considered is of the form

(3.1) Yi = µ (xi;β) + εi, i = 1, . . . , n,

where µ = E {Y|x} is a known expectation function, β is a vector of p unknown

regression parameters, and the errors are independent and identically distributed

(i.i.d.) normal random variables: εi
iid∼ N (0, σ2

ε ). We consider the linear calibration

problem, a special case of Equation (3.1) with E {Y|x} = β0 + β1x.

The fitted calibration line is given as

(3.2) µ̂ = β̂0 + β̂1x,

where β̂0 and β̂1 are the ML estimates of β0 and β1, respectively. If we observe

Y0 = y0, where Y0 ∼ N (β0 + β1x0, σ
2
ε ), then the obvious estimate of x0 is obtained

by inverting the calibration line:

(3.3) x̂0 = µ−1(y0;β) =
y0 − β̂0

β̂1

= x̄+
Sxx
Sxy

(y0 − ȳ),

where Sxy =
∑

(xi− x̄)(yi− ȳ), and Sxx =
∑

(xi− x̄)2. Under the assumption of i.i.d.

normal errors, Equation (3.3) is the ML estimate of x0. More generally, suppose in

addition to the standards

(x1,Y1), (x2,Y2), . . . , (xn,Yn),
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we have m unknowns

(x0,Yn+1), (x0,Yn+2), . . . , (x0,Yn+m).

We assume that the Yi’s (i = 1, . . . , n) are independent and distributed according to

Yi ∼


N (β0 + β1xi, σ

2
I ), i = 1, 2, . . . , n

N (β0 + β1x0, σ
2
II), i = n+ 1, n+ 2, . . . , n+m

.

In practice, assuming that σ2
I = σ2

II is often reasonable; however, some authors (e.g.,

Berkson (1969, p. 659)), have argued otherwise. In controlled calibration, one could

argue that the variance in the first stage, σ2
I , may be smaller than the variance from

the second stage, σ2
II, since the standards were likely collected under more highly

controlled conditions. For example, the standards in the arsenic data may have been

collected in a laboratory under tightly controlled conditions, while the measurement

made on the new sample was likely made in the field (e.g., a lake) and therefore

susceptible to greater measurement error.

The log-likelihood for all n+m observations is

L
(
β0, β1, σ

2
ε , x0

)
=− n+m

2
log(2πσ2

ε )−

1

2σ2
ε

[
n∑
i=1

(Yi − β0 − β1xi)
2 +

n+m∑
i=n+1

(Yi − β0 − β1x0)2

]
.

Equating the partial derivatives of L (β0, β1, σ
2
ε , x0) to zero and solving for the

parameters produces the usual ML estimators of the slope and intercept, but also

yields

x̂0 =
Y0 − β̂0

β̂1

(3.4)

σ̂2
ε =

1

n+m− 3

[
n∑
i=1

(
Yi − β̂0 − β̂1xi

)2

+
n+m∑
i=n+1

(
Yi − Y0

)2

]
,(3.5)

where Y0 = m−1
∑n+m

i=n+1 Yi. Equation (3.4) is known as the classical estimator of x0.

The mean of x̂0 does not exist, and it has infinite variance and mean squared error
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(MSE). This is not too surprising since Equation (3.4) is a ratio of jointly normal

random variables (recall that a standard Cauchy distribution, which does not have

any finite moments, results from the ratio of standard normal random variables).

Also, note that the pooled estimate σ̂2
ε , Equation (3.5), is a weighted average of the

estimates of σ2
ε from the first and second stages of the calibration experiment.

The sampling distribution of x̂0 is quite complicated. Fortunately, its derivation

is not necessary for setting a 100(1−α)% confidence interval on x0 (see Section 3.3).

Nonetheless, the resulting distribution has been studied by Fieller (1932), Hinkley

(1969), Buonaccorsi (1986), and Pham-Gia et al. (2006), among others. The paper

by Pham-Gia et al. (2006) gives a closed-form expression for the density of the ratio

of jointly normal random variables. Buonaccorsi (1986) showed that a sufficient

condition for unimodality of the sampling distribution of x̂0 is

(x0 − x̄)2 < 5.094

(
σ

β1

)2(
1

m
+

1

n

)
.

A similar result also holds for the posterior of x0 in the Hunter and Lamboy (1981)

approach to Bayesian linear calibration (see Section 3.4). Unimodality here is

important since some confidence intervals (e.g. the Wald interval of Section 3.3.2) are

derived under the assumption that the sampling distribution of x̂0 is asymptotically

normal.

3.2.2 The inverse estimator.

The classical estimator involves regressing y on x and solving the fitted regression

equation for the unknown x0. The inverse estimator, however, uses the regression of

x on y to obtain

(3.6) x̃0 = γ̂0 + γ̂1ȳ0 = x̄+
Sxy
Syy

(ȳ0 − ȳ),
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where γ̂0 and γ̂1 are least squares (LS) estimates, and Syy =
∑

(yi − ȳ)2. After a bit

of algebra, Equation (3.6) can be re-written as

(3.7) x̃0 =

(
1−

S2
xy

SxxSyy

)
x̄+

S2
xy

SxxSyy
x̂0 =

(
1−R2

)
x̄+R2x̂0,

where R2 is the coefficient of determination computed from (3.2). This shows x̃0 as

a weighted average of the ML estimator x̂0 and x̄; hence, the inverse estimator takes

into account previous information about x0 (this is relevant to Section 3.4 where the

inverse estimator is shown to be Bayes with respect to a certain prior on x0). Also,

when the error variance is zero, R2 = 1 and x̃0 = x̂0.

Inference based on this approach, at least from the frequentist perspective, is

justifiable only if the observations (xi, yi) are sampled from a bivariate distribution

(i.e., a natural calibration experiment). In controlled calibration experiments, x is

held fixed and the classical estimator is mostly preferred. Nonetheless, much effort

has gone into justifying the use of the inverse estimator in controlled calibration (see,

for example, Krutchkoff (1967) and more recently Kannan et al. (2007)).

3.2.3 Criticisms and other estimators.

Using extensive Monte Carlo simulations, Krutchkoff (1967) argued that the

inverse estimator (3.6) had a uniformly smaller Mean squared error (MSE) than the

classical estimator (3.3). His experiments considered both normal and non-normal

error distributions. This sparked controversy in the statistical community resulting in

a renewed interest in the inverse estimator for controlled calibration. In a later paper

(Krutchkoff, 1969), Krutchkoff concluded that the classical approach is superior for

large sample sizes when extrapolating beyond the range of observations.

When the error distribution is normal and n ≥ 4, the inverse estimator has

finite MSE (Oman, 1985); whereas the classical estimator has infinite MSE for

finite n (Williams, 1969). Furthermore, Williams (1969) argued that MSE is an

inappropriate criterion for comparing the two estimators by establishing that “...no
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unbiased estimator [of x0] will have finite variance.” Halperin (1970) agreed with

Williams and suggested the use of the Pitman closeness criterion (Pitman Hobart

1937; Mood et al. 1974, pg. 290) instead. For a parameter φ with parameter space

Φ, an estimator T1 is said to be Pitman closer (to φ) than another estimator T2 if for

all φ ∈ Φ,

(3.8) Prφ (|T1 − φ| < |T2 − φ|) > 0.5.

Unlike the MSE criterion, Pitman closeness takes into consideration the correlation

between the two estimators being compared (here, they are perfectly correlated).

With respect to the Pitman closeness criterion, Halperin claimed that the classical

estimator is superior both outside and within the range of predictor values; though,

Halperin’s conclusions were based on asymptotic approximations. In addition,

Halperin also compared the two estimators in terms of consistency and MSE of the

relevant asymptotic distributions, showing that Krutchkoff’s findings were only true

for a closed interval around x̄. The width of this interval depends on the product of

the standardized slope and standard deviation of the predictor values, σx. Halperin

also preferred the classical estimator on the basis that it yields an exact 100(1−α)%

confidence region for x0 (see Section 3.3.1). In response, Krutchkoff (1972) used

the Pitman closeness criterion in Monte Carlo simulations and obtained the opposite

results; that is, the inverse estimator was overall superior to the classical estimator.

The contradiction seems to stem from the range of predictor values considered by

both authors.

The classical and inverse estimators cannot be compared through exact moments;

however, one can easily examine their asymptotic properties. Berkson (1969)

established that the classical estimator is asymptotically unbiased while the inverse

estimator is not. He derives formulas for the asymptotic bias, variance, and MSE of
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both estimators. Shukla (1972) extended these formulas to an accuracy of O(n−1):

Bias {x̂0} ≈
σ2
ε

Sxxβ2
1

(x0 − x̄)

Var {x̂0} ≈
σ2
ε

β2
1

[
1

m
+

1

n
+

(x0 − x̄)2

Sxx
+

3σ2
ε

mSxxβ2
1

]
MSE {x̂0} ≈

σ2
ε

β3
1

[
1

m
+

1

n
+

(x0 − x̄)2

Sxx
+

3σ2
ε

mSxxβ2
1

]
Bias {x̃0} ≈

σ2
ε

β2
1σ

2
xθ

(x̄− x0)− 2σ2
ε (x̄− x0)

nβ2
1σ

2
xθ

3

Var {x̃0} ≈
σ2
ε

β2
1θ

2

[
1

m
+

1

n
+

(x0 − x̄)2

Sxx
+
σ2
ε (θ

2 − 2θ + 6)

mSxxβ2
1θ

2

]
− 2σ4(x0 − x̄)2

nθ4β4
1σ

4
x

MSE {x̃0} ≈
σ2
ε

β2
1θ

2

[
1

m
+

1

n
+

(x0 − x̄)2

Sxx
+
σ2
ε (θ

2 − 2θ + 6)

mSxxβ2
1θ

2

]
− σ4(x0 − x̄)2

θ2β4
1σ

4
x

(
1− 6

nθ2

)
,

where σ2
x = Sxx/(n − 1) and θ = 1 + σ2

ε/(β1σx)
2. Lwin (1981) provided a further

extension by allowing the error distribution to be any member of the location-scale

family of distributions. To an accuracy of O(n−1), Lwin showed that the asymptotic

MSE of the classical estimator for any error distribution from the location-scale family

is the same as that obtained by Shukla (1972). The same is not true for the inverse

estimator whose MSE to the same order is affected by both the skewness and kurtosis

of the error distribution.

Kannan et al. (2007) obtained more accurate results supporting the use of the

inverse estimator. However, they found that when |β1/σ| is moderate to large, the

classical method is preferred in the sense of Pitman closeness. Ali and Ashkar (2002)

discussed the impact of the coefficient of determination and proposed an estimator

based on the midpoint of the inversion interval for x0 (see Section 3.3.1). Lwin and

Maritz (1982) take a compound estimation approach to the linear calibration problem.

They discuss the merits of both estimators and provide further justification for each
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without reference to specific distributional assumptions. Lwin and Maritz concluded

that the classical estimator is preferred only if the condition of asymptotic unbiased is

imposed. A likelihood analysis for the calibration problem was carried out by Minder

and Whitney (1975).

A number of other estimators have been proposed in the literature; though,

none have received the level of attention as the classical and inverse estimators. Ali

and Singh (1981), for example, used a weighted average of the classical estimator

x̂0 and x̄. The idea is to shrink the estimate toward x̄ when x0 is near the center

of the data. Using small-disturbance asymptotic approximations, Srivastava and

Singh (1989) derived an estimator that is a weighted average of the classical and

inverse estimators: ξ̂ = [x̂0 + (n− 3)x̃0] /(n − 2). This estimator gives more weight

to the inverse estimator x̃0 when the sample size is large and vice versa. In terms of

asymptotic bias, ξ̂ is superior to the classical and inverse estimators. Naszdi (1978)

proposed an estimator that is approximately (asymptotically) unbiased, consistent,

and more efficient than the classical estimator. Dahiya and McKeon (1991) obtain a

confidence interval for x0 based on the estimator in Naszdi (1978).

Many papers comparing the classical and inverse estimators have been published,

none of which offer a definitive answer on which estimator is best. If point estimation

is the only concern (which is rarely the case), both estimators are of value. On

the other hand, if inference is to be made regarding x0, the classical estimator is

preferred for controlled calibration experiments and the inverse estimator for natural

calibration experiments. Of course, if suitable prior information can be assembled,

then a Bayesian approach may be the best alternative in either case, especially if the

calibration curve is nonlinear (see Section 3.4).

Finally, note that most of the previous discussion was in reference to the linear

calibration problem with homoscedastic normal errors. The inverse estimator is less
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appropriate for nonlinear calibration curves, especially when the calibration curve has

horizontal asymptotes (Jones and Rocke, 1999)

3.2.4 Arsenic example.

Here we illustrate the use of the classical and inverse estimators on the arsenic

data, for which the simple linear regression model with homoscedastic normal

errors seems appropriate. This is a controlled calibration experiment since the true

concentrations of arsenic were preselected by the experimenter. We wish to estimate

the true concentration of arsenic in a new sample based on the new observation y0 = 3

µg/ml. Figure 3.1 shows a scatterplot of the standards with the fitted calibration line.

The ML estimate of x0 is 2.941 µg/ml while the inverse estimate is 2.945 µg/ml, a

difference of only 0.004. In practice, the two estimators will not be much different

when the coefficient of determination, R2, is close to one. For the arsenic data,

R2 = 0.9936 (recall Equation 3.6).
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Figure 3.1: Fitted calibration line for the arsenic data. The horizontal arrow indicates
the position of the observed response y0 = 3 µg/ml and the vertical arrow indicates
the position of the ML estimate x̂0 = 2.941.

3.3 Confidence intervals

Much effort has been put into deriving and comparing point estimators for

x0. Without some measure of precision, however, a point estimate is practically

useless. In this section, we discuss construction of 100(1 − α)% confidence intervals

for x0, also known as calibration intervals. There are two methods commonly used

for calculating calibration intervals (Zeng and Davidian, 1997b): inversion intervals

and Wald intervals, additionally, we also discuss bootstrap calibration intervals. A

discussion on Bayesian credible intervals is deferred until Section 3.4. For the most

part, we assume the regression model (3.1) with normal errors and constant variance

is appropriate and that the predictor values are fixed by design.
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3.3.1 Inversion interval.

Similar to inverting the calibration curve to obtain a point estimate, a confidence

interval for x0 can be constructed by inverting a prediction interval for the response.

We refer to this type of calibration interval as the inversion interval. The inversion

interval relies on the distribution of the predictive pivot, Q, which for the linear

calibration problem is given by

(3.9) Q =
Y0 − β̂0 − β̂1x0√

σ̂2
ε

[
1
m

+ 1
n

+ (x0−x̄)2

Sxx

] .
It can be shown (Graybill, 1976) that Q ∼ T (n+m− 3), hence,

Pr
(
tα/2,n+m−3 < Q < t1−α/2,n+m−3

)
= 1− α.

Squaring both sides of the inequality and expanding, we obtain a simple quadratic in

x0:

(3.10) Pr
(
ax2

0 + bx0 + c < 0
)

= 1− α,

where

a = β̂2
1 − σ̂2

ε t
2/Sxx

b = 2

[
x̄σ̂2

ε t
2

Sxx
− β̂1

(
Y0 − Y

)
− β̂2

1 x̄

]
c =

[(
Y0 − β̂0

)2

− σ̂2
ε t

2

(
1

m
+

1

n
+

x̄2

Sxx

)]
t = t1−α/2,n+m−3.

An exact 100(1− α)% confidence interval for x0 is given by the set

(3.11) Jcal (x) =
{
x : ax2 + bx+ c < 0

}
.

Although we use the term confidence interval here, it is possible that the values

of x that satisfy this inequality do not form an actual interval. In particular, four

possibilities exist:
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(i) the set is a finite interval, Jcal (x) = (L,U);

(ii) the set is the entire real line, Jcal (x) = (−∞,∞);

(iii) the set consists of two semi-infinite intervals, Jcal (x) = (−∞, U) ∪ (L,∞);

(iv) the set is empty, Jcal (x) = ∅.

The circumstances leading to (i)-(iv) are depicted in Figure 3.2. A finite interval

(i) will occur if and only if a > 0 and b2 − 4ac > 0. Upon closer inspection of the

quadratic in Equation (3.10), we see that this occurs when a > 0 or rather when

β̂2
1/(σ̂

2
ε/Sxx) > t2. In other words, when the slope β̂1 is significantly different from

zero at the specified α level (i.e., the regression line is not too flat), the solution to

Equation (3.11) forms a 100(1− α)% confidence interval for x0 and is given by

(3.12) x̄+
β̂1(ȳ0 − ȳ)

a
± tσ̂

a
×

√
a

(
1

m
+

1

n

)
+

(ȳ0 − ȳ)2

Sxx
.

or equivalently

x̂0 +
(x̂0 − x̄)g ±

(
tσ̂/β̂1

)√
(x̂0 − x̄)2/Sxx + (1− g)

(
1
m

+ 1
n

)
1− g

,

where g = (t2σ̂2
ε ) /(β̂

2
1Sxx). The dependence on a statistically significant slope is

generally not regarded as a concern since “any self-respecting calibrator will design

a calibration experiment such that his or her instrument is expected to have a

statistically significant slope ...” (Brown, 1993, pp. 25). Hoadley (1970) noted

that the width of interval (3.12) depends on the value of the observed test statistic,

F? = β̂2
1Sxx/σ̂

2
ε = t2, for testing H0 : β1 = 0 versus H1 : β1 6= 0. A large value of

F? is associated with a smaller interval and vice versa. An approximation can be

obtained by setting g = 0 in Equation (3.12), which gives

(3.13) x̂0 ± t1−α/2,n+m−3

(
σ̂

β̂1

)2
√

1

m
+

1

n
+

(x̂0 − x̄)2

Sxx
.
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This approximation is useful when g is small, say g < 0.05 (Draper and Smith, 1998).

Fieller’s method (Fieller, 1954), which applies to the ratio of normally distributed

random variables, can also be used to derive interval (3.12) using a fiducial argument.

Extending the inversion interval to the case of multiple predictors is discussed in

Draper and Smith (1998, pg. 229) and in Brown (1993, chap. 3). Brown considers

the special case of polynomial regression.

a > 0,  b2 − 4ac > 0

0

x0

a > 0,  b2 − 4ac < 0

x0

0

a < 0,  b2 − 4ac > 0

x0

0

a < 0,  b2 − 4ac < 0

x0

0

Figure 3.2: Solutions to the equation ax2 + bx + c < 0. Top left : The set is an
interval. Top right : The set is empty. Bottom left : The set consists of two semi-
infinite intervals. Bottom right : The set is the entire real line.
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For nonlinear calibration curves,

(3.14) Q =
Y0 − µ

(
x0; β̂

)
√
σ̂2
ε/m+ V̂ar

{
µ
(
x0; β̂

)}
is only an approximate pivot. We assume Q ∼ N (0, 1) as n goes to ∞. An

approximate 100(1 − α)% confidence interval for x0 based on Equation (3.14) is the

set

(3.15) Ĵcal(x) =

x : zα/2 <
ȳ0 − µ

(
x; β̂

)
√
σ̂2
ε/m+ V̂ar

{
µ
(
x; β̂

)} < z1−α/2

 ,

where zα/2 and z1−α/2 are the α/2 and 1 − α/2 quantiles of the standard normal

distribution, respectively. To be more conservative, we can replace the normal

quantiles with those of a T (n+m− p− 1) distribution (p being the dimension β).

Unlike the linear calibration problem, the solution to Equation (3.15) cannot be

written in closed-form and will require iterative techniques.

For the special case m = 1, the inversion interval is equivalent to drawing a

horizontal line through the scatterplot of the standards at y0 and finding the abscissas

of its intersection with the 100(1−α)% (pointwise) prediction band of the calibration

curve. For the straight line case, if β1 is not significantly different from zero, the

regression line is not well determined and the horizontal line drawn at y0 will not

intersect the prediction band at two points, leading to cases (ii) or (iii) outlined above;

this point is illustrated in Figure 3.3. The issue in linear calibration is that prediction

bands are really hyperbolas which, depending on the quality of the model/data, can

bend quite severely. To circumvent this problem, Trout and Swallow (1979) proposed

a similar procedure based on uniform prediction bands (i.e., prediction bands that

are parallel to the calibration line). This has the advantage of always producing a

(symmetric) confidence interval for x0, without sacrificing efficiency.
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y0 y0

y0

Figure 3.3: Common prediction band shapes. Left : Horizontal line at y0 intersects the
prediction band at two points, resulting in a finite interval. Middle: Horizontal line at
y0 does not intersect the prediction band at all resulting in an infinite interval. Right :
Horizontal line at y0 only intersects with one side of the prediction band resulting in
two semi-infinite intervals.

Similarly, we can compute the inversion interval for nonlinear calibration

problems by drawing the prediction band, however, inference in nonlinear regression

often relies on linear approximations, large samples, and approximate normality. For

nonlinear calibration curves, the bootstrap (see Section 3.3.3) may provide more

accurate results. Drawing the prediction band for calibration curves also gives an idea

as to what values of y0 lead to meaningful interval estimates for x0. For example, an

observed value y0 too close to a horizontal asymptote will produce a useless confidence

interval for x0 (if at all). Graphical methods like this are discussed by Jones and Lyons

(2009) who extend the approach for longitudinal data with bivariate response.

3.3.2 Wald interval.

Another common approach for obtaining a confidence interval for the unknown

x0 is to use the delta method (VerHoef, 2012; Dorfman, 1938), also see Casella and

Berger (2002). Let the variance-covariance matrix of
(
Y0, β̂

)′
be given by Σ where

Σ =

 Var
{
Y0

}
Cov

{
Y0, β̂

}
Cov

{
Y0, β̂

}
Var

{
β̂
}
 .
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Recall that β̂ is a linear function of the observations Y . Since Y0 is independent

of Y , it follows that Y0 and β̂ are also independent; hence, Cov
{
Y0, β̂

}
= 0p×p.

Therefore, Σ simplifies to

Σ =

σ2
ε/m 0p×p

0p×p σ2
ε (X ′X)−1

 .
The classical estimator, x̂0, has the form x = µ−1 (y;β). Let µ−1

1 (y;β) = ∂
∂y
µ−1 (y;β)

and µ−1
2 (y;β) = ∂

∂β
µ−1 (y;β). Note that if p (the dimension of β) is greater than

one, then µ−1
2 (y;β) will be a vector valued function. The delta method estimate of

the variance of x̂0 = µ−1
(
Y0; β̂

)
, based on a first-order Taylor series expansion, is

given by

(3.16) V̂ar {x̂0} =
σ̂2
ε

m

[
µ−1

1

(
Y0; β̂

)]2

+ σ̂2
ε

[
µ−1

2

(
Y0; β̂

)]′
(X ′X)

−1
[
µ−1

2

(
Y0; β̂

)]
.

For the simple linear calibration problem, Equation (3.16) reduces to

V̂ar {x̂0} =
σ̂2
ε

β̂2
1

[
1

m
+

1

n
+

(x̂0 − x̄)2

Sxx

]
.

The estimated standard error (se) of x̂0 is just se {x̂0} =

√
V̂ar {x̂0}.

Assuming that

(3.17) W =
x̂0 − x0

ŝe {x̂0}
·∼ N (0, 1)

for “large” n leads to an approximate 100(1 − α)% Wald-based confidence interval

for x0 of

(3.18) x̂0 ± t1−α/2,n+m−p−1 · ŝe {x̂0} ,

where t1−α/2,n+m−p−1 is the 1 − α/2 quantile of a Student’s t-distribution with

n + m − p − 1 degrees of freedom. If the sample size is large enough, we could

replace t1− α/2n+m− p− 1 with z1−α/2, the 1 − α/2 quantile of a standard

34



normal distribution. Unlike the inversion interval, Equation (3.15), the Wald-based

interval always exists and is symmetric about the point estimate x̂0. This approach

is useful when it is difficult (or impossible) to invert a corresponding prediction

interval. The symmetry of the Wald interval, however, may be unrealistic in nonlinear

calibration problems when, for example, ȳ0 is near a horizontal asymptote (Schwenke

and Millikem, 1991). Perhaps the biggest drawback is the approximate normality

assumption forW , which is not always reasonable in practice. For example, in simple

linear calibration, the distribution of x̂0 may not even be unimodal (Buonaccorsi,

1986). On the other hand, for the simple linear calibration problem, the Wald-based

interval is equivalent to the approximate inversion interval given in Equation (3.13).

Thus, provided g is “small,” the Wald interval may perform well even when W is not

asymptotically normal.

Schwenke and Millikem (1991) discuss the inversion and Wald confidence intervals

for nonlinear calibration. Using simulation, they showed that the inversion and Wald

intervals can attain the desired confidence level in samples of size 20 for a nonlinear

exponential decay model. They also discuss testing the equality of two calibration

points. However, Schwenke and Millikem treat Y0 as a fixed constant. In regulation-

type problems, this is the correct approach. However, in calibration, the confidence

interval for x0 will be too narrow. To illustrate, consider the conventional treatment

group of the postmortem data analyzed in Schwenke and Millikem (1991). In essence,

Schwenke and Millikem computed the time corresponding to a mean pH level of 6.0,

not an observed pH level of 6.0. They list a 95% Wald-based confidence interval for x0

of (3.315, 4.317). Accounting for the correct variation, however, this interval should

actually be (2.615, 5.016). The standard error they computed for x̂0 is based on

T = (β̂0, β̂1, β̂2)′ whereas here it is based on T = (Y0, β̂0, β̂1, β̂2)′. In short, Schwenke

and Millikem only account for the variance of the estimated regression parameters
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whereas in a true calibration problem, the variance of Y0 needs to be taken into

account.

There is an interesting relationship in the linear calibration problem (with m = 1)

between the Wald interval for x0, interval (3.18), and a prediction interval for Y0. Let

Lw and Uw denote the lower and upper bounds, respectively, from a 100(1−α)% Wald

confidence interval for x0 corresponding to an observed y0. If x̂0 is assumed given, then

it is easy to show that a 100(1−α)% prediction interval for Y0 is (β̂0+β̂1Lw, β̂0+β̂1Uw)

if β̂1 > 0 and (β̂0 + β̂1Uw, β̂0 + β̂1Lw) if β̂1 < 0. This relationship is illustrated in

Figure 3.4 for the arsenic example.
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Figure 3.4: Scatterplot of the arsenic data with fitted calibration line. The horizontal
arrow represents the response measurement for the new sample and the vertical arrow
represents the ML estimate of the unknown concentration. The vertical gray band
represents a 95% Wald confidence interval for x0 corresponding to y0 = 3 and the
horizontal gray band represents a 95% prediction interval for Y0 corresponding to
x0 = x̂0.
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3.3.3 Bootstrap intervals.

In many applications, the calibration curve is usually nonlinear (e.g., dose-

response curves and other types of assay data). Although the inversion and Wald

procedures can still be applied, they can be highly inaccurate when the sample size is

small. A useful alternative in these situations is to use the nonparametric bootstrap

(Efron, 1979), which is a computer intensive technique based on sampling with

replacement from the observed data. As such, the bootstrap provides an alternative

means to computing bias, standard errors, and confidence intervals. Unlike the delta

method, however, which is only first-order accurate, the bootstrap can often have

“second-order” accuracy (Casella and Berger, 2002, pg. 517). The bootstrap is not

without assumptions (e.g., independent observations are still required), but it does

allow us to relax the usual assumptions of large sample size and normality. The

supporting mathematics can be quite involved, but the interested reader is pointed

to Efron and Tibshirani (1994) and Hall (1992). A detailed and practical guide to

the bootstrap is given by Davison and Hinkley (1997).

Let µ̂i = µ
(
xi; β̂

)
be the fitted values and β̂ be the least squares estimate of β.

The two (nonparametric) bootstrap resampling schemes for regression are:

case resampling: pairs of data are sampled with replacement to produce

(x1, y1)? , . . . , (xn, yn)?;

model-based resampling: the residuals e1, . . . , en, or a modified version

thereof, are sampled with replacement and added to the fitted values to produce

(x1, µ̂1 + e?1) , . . . , (xn, µ̂n + e?n).

Efron and Tibshirani (1994) and Davison and Hinkley (1997) discuss the merits of

both schemes. Model-based resampling is more appropriate when the values of the

independent variable are fixed by design (e.g., controlled calibration experiments)

and the errors have constant variance. Resampling cases, on the other hand,
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is less accurate but more robust to violations of the model assumptions such as

homoscedastistic errors.

Various bootstrap approaches to calibration have been suggested in the literature.

Rosen and Cohen (1995b) discuss controlled calibration based on a parametric

bootstrap where, instead of sampling directly from the residuals, samples are drawn

from a normal distribution. This procedure will work even when the calibration curve

is estimated nonparametrically (e.g., cubic smoothing splines). Zeng and Davidian

(1997a) commented that the procedure proposed by Rosen and Cohen requires a large

number of resamples to achieve the desired accuracy. They suggested a bootstrap

adjustment to the inversion and Wald intervals that requires far fewer bootstrap

resamples. Given the speed and multicore functionality of modern computers, a large

number of resamples, say 10,000 or more, is less of a concern.

In this section, we outline a general bootstrap approach to controlled calibration

in Algorithm 1, but first we discuss a rather naive approach. For an observed ȳ0,

suppose we compute R bootstrap replicates of x̂0, and then use, for example, the

sample α/2 and 1− α/2 quantiles as a 100(1− α)% confidence interval for x0. This

results in ȳ0 being treated as a fixed parameter in the bootstrap simulation, but in

fact, ȳ0 is an observed value of the random variable Y0 which has variance σ2
ε/m. In

other words, some variation is not getting accounted for in this approach. This is

akin to ignoring Var
{
Y0

}
in the delta method discussed previously. One solution is

to simulate the correct variance by adding a small amount of noise to the observed

responses from the second stage of the calibration experiment.

A few issues regarding the residuals in Algorithm 1 are worth considering. For

the linear case, it is preferable to scale the residuals before centering (Davison and

Hinkley, 1997). In particular, compute ri = ei/
√

1− hii, where hii are the diagonal

elements of the hat matrix,H = X ′(X ′X)−1X. We then sample ε?j from the modified
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Algorithm 1: Model-based resampling for controlled calibration.

for r = 1 to R do

(1) for i = 1 to n do

(a) set x?i = xi;

(b) randomly sample ε?i from the centered residuals e′1, . . . , e
′
n;

(c) set y?i = µ
(
xi; β̂

)
+ ε?i ;

end

(2) Fit model to (x?1, y
?
1) , . . . , (x?n, y

?
n), giving estimates β̂?r , σ̂

2?
r ;

(3) for j = 1 to m do

(a) randomly sample ε?j from the centered residuals e′1, . . . , e
′
n;

(b) set y?0j = ȳ0 + ε?j ;

end

(4) Set ȳ?0r =
∑m

k=1 y
?
0k/m;

(5) Set x̂?0r = µ−1
(
ȳ?0r; β̂

?
r

)
;

if calculating an interval based on the studentized bootstrap, then
additionally:

(6) Compute ŝe {x̂?0r};

(7) Set W?
r = (x̂?0r − x̂0)/ŝe {x̂?0r};

end

residuals r1 − r̄, . . . , rn − r̄. This transforms the residuals so that they are centered

and have constant variance σ2
ε . For nonlinear calibration curves, the residuals should

be corrected for bias in addition to centering them (Davison and Hinkley, 1997).

When there are outliers in the residuals, the bootstrap distribution of x̂0 can become

skewed or multimodal. One suggestion is to replace the residuals in step (3) with
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something smoother, say random variates from a normal distribution. For the case

m > 1, Jones and Rocke (1999) suggest using a “residual pool” formed by e1, . . . , en

plus residuals computed from the unknowns: en+j = yn+j − ȳ0 (j = 1, 2, . . . ,m). In

Section 3.2, we mentioned that it is often reasonable to assume σ2
I = σ2

II. However,

if this assumption is not valid, then we can still proceed by resampling separately

from the two sets of residuals
{
ei
}n
i=1

and
{
ej
}n+m

j=n+1
(Gruet and Jolivet, 1993; Jones

and Rocke, 1999). For instance, we can resample from
{
ei
}n
i=1

in step (1) and from{
ej
}n+m

j=n+1
in step (3) of Algorithm 1. We can also accommodate nonconstant variance

(i.e., heteroscedasticity) by applying the wild bootstrap (Davison and Hinkley, 1997,

pp. 272). This approach is discussed in Huet et al. (2004, pp. 142).

Once we have our bootstrap replicates, a number of different bootstrap confidence

intervals can be constructed. For a studentized interval, we compute R bootstrap

replicates of W (Equation (3.17)): W?
1 ,W?

2 , . . . ,W?
R. This is outlined in steps (6)-

(7) of Algorithm 1. Instead of relying on normal theory assumptions about W , as

when computing the Wald interval, the bootstrap estimates the distribution of W

directly from the data. Thus, instead of approximating the quantiles of W using a

standard table, a “table is built for the data at hand” (Efron and Tibshirani, 1994).

An approximate 100(1 − α)% confidence interval for x0 based on the studentized

bootstrap is given by

(3.19)
(
x̂0 − γ?1−α/2 · ŝe {x̂0} , x̂0 − γ?α/2 · ŝe {x̂0}

)
,

where γ?α/2 and γ?1−α/2 are the sample quantiles from the bootstrap distribution of

W . One drawback of this approach is that it requires an estimate of the standard

error, ŝe {x̂?0r}. We could use a Taylor series approximation, as in the delta method,

but this is known to be unreliable for small samples. Another alternative is to use

the bootstrap to estimate the standard error of each x̂?0r. This implies a second level

of bootstrapping nested within the first and can be computationally expensive. The
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studentized interval for controlled calibration using the large-sample formula for the

standard error (see Equation (3.16)) is discussed by Zeng and Davidian (1997a) and

Jones and Rocke (1999). This interval can perform poorly in practice and is easily

influenced by outliers in the data.

Yet another technique (Jones and Rocke, 1999; Huet et al., 2004) is to bootstrap

the predictive pivot in Equation (3.14):

Q? =
ȳ?0 − µ

(
x̂0; β̂?

)
ŝe?
{
ȳ?0 − µ

(
x̂0; β̂?

)} =
ȳ?0 − µ

(
x̂0; β̂?

)
√
σ̂2?
ε /m+ V̂ar

?
{
µ
(
x̂0; β̂?

)} .
It is is easy to see that, for the linear calibration problem, Q? = W?; therefore,

the resulting interval is the same. For the nonlinear calibration problem, however,

a 100(1 − α)% confidence interval for x0 based on the bootstrapping the predictive

pivot is given by the set

J ?
cal(x) =

{
x : q?α/2 ≤ Q ≤ q?1−α/2

}
,

where q?α/2 and q?1−α/2 are the α/2 and 1−α/2 quantiles of the bootstrap distribution

of Q, respectively. This mimics the inversion method discussed in Section 3.3.1 but

usually performs better since we no longer have to rely on the approximate normality

of Q. Therefore, we might think of this as a bootstrap adjusted inversion interval.

According to Huet et al. (2004), this procedure performs reasonably well in practice,

even with small sample sizes and R as small as 200.

On the other hand, we can avoid computing a pivot altogether by working directly

with the bootstrap replicates of x̂0 from step (5) of Algorithm 1. A simple and often

satisfactory procedure, known as the percentile bootstrap, uses the sample α/2 and

1 − α/2 quantiles of x̂?01, . . . , x̂
?
0R as a confidence interval for x0. A more accurate

technique is the bias-corrected and accelerated (BCa) interval, which is essentially

a modification of the percentile interval; for details see Efron and Tibshirani (1994,
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chap. 14, sec. 3). The BCa method tends to work well, but usually requires R to

be large. It is both second-order accurate (Efron and Tibshirani, 1994, pp. 187)

and transformation respecting. For example, if we want a BCa confidence interval for

log(x0), we can simply log the endpoints of the corresponding BCa interval for x0. The

studentized interval is also second-order accurate, but not transformation respecting,

while the percentile interval is transformation respecting but only first-order accurate.

For an in-depth discussion regarding the different bootstrap confidence interval

procedures, see Davison and Hinkley (1997, chap. 5).

A related method for computing calibration intervals, based on the jackknife,

was given by Miller (1974). Let β = h(β) be a function of the regression parameters.

Miller showed that, under reasonable conditions, the jackknife estimate

β̂jack = nβ̂ − n− 1

n

n∑
i=1

β̂(−i),

where β̂(−i) denotes the estimate of β with the i-th observation removed from the

data, is asymptotically normally distributed (even if the errors εi are not normally

distributed). Hence, an approximate 100(1 − α)% confidence interval for x0 can be

developed that does not require a normality assumption for the errors of the model.

However, x0 is not just a function of β, but also of Y0. This is not a problem as long

as m > 1 and m/n→ c, 0 < c <∞. For regulation (Graybill and Iyer, 1994, pp. 431-

432), x0 is a function of the regression parameters only; hence, the jackknife-based

interval is easily applied.

3.4 Bayesian calibration

Although calibration has been the subject of much discussion and debate from

a frequentist point of view, it is just as intriguing from a Bayesian perspective.

Let y, y0, and data represent the data from the standards, unknowns, and both,

respectively. Also, if x has a nonstandardized t-distribution with mean µ, precision
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τ (i.e., recipricol of the variance), and k degrees of freedom—denoted x ∼ Tk(µ, τ)—

then the probability density function of x is

f(x;µ, τ, k) =
Γ(k/2 + 1/2)

Γ(k/2)
√
τkπ

[
1 +

(x− µ)2

τk

]−(k+1)/2

,

for −∞ < x <∞, −∞ < µ <∞, τ > 0, and k ≥ 1.

Two influential papers on Bayesian calibration are Hoadley (1970) and Hunter

and Lamboy (1981). Aitchison and Dunsmore (1980, chap. 10) discuss Bayesian

solutions to the linear calibration problem for both natural and controlled calibration

experiments. They also briefly discuss calibration under a general utility structure.

Dunsmore (1967) derived the inverse estimator (3.6) as the conditional mean of

x0|data assuming independent observations from a bivariate normal distribution (i.e.,

Gaussian data from a natural calibration experiment). For controlled calibration

experiments, Hoadley (1970) argued that the classical estimator is unsatisfactory,

since the width of the inversion interval (3.12) depends on the magnitude of the F-

statistic for testing the significance of the slope; in other words, the data contain

information about the precision of x̂0. Because of this, Hoadley argues that less

weight should be given to this estimator when it is known to be unreliable, which is

what a Bayes estimator does. He proposed a class of Bayesian solutions assuming, a

priori, that x0 is independent of (β0, β1, σ
2
ε ). His results are based on a general prior

of the form

π
(
β0, β1, σ

2
ε , x0

)
= π

(
β0, β1, σ

2
ε

)
π (x0) ,

but he obtained explicit results for the diffuse prior π (β0, β1, σ
2
ε ) ∝ 1/σ2

ε . For the case

m = 1, he was able to derive the inverse estimator (3.6) as a Bayes estimator under

squared error loss with respect to a nonstandardized Student’s t prior distribution for

x0:

(3.20) x0 ∼ Tn−3

{
x̄,

(
1 +

1

n

)
Sxx
n− 3

}
.
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This leads to the very simple result

(3.21) x0|data ∼ Tn−2

{
x̃0,

σ̂2
εSxx
Syy

(
1 +

1

n
+

(y0 − ȳ)2

Syy

)}
.

A 100(1 − α)% shortest credible interval for x0 can be obtained from (3.21) and is

given by

(3.22) x̃0 ±

√
σ̂2
εSxx
Syy

(
1 +

1

n
+

(y0 − ȳ)2

Syy

)
F1−α,1,n−2.

Although this provides some theoretical justification for using the inverse

estimator in controlled calibration, Hoadley is aware that it is merely a by-product

of the Bayesian approach and recommends a careful elicitation of prior information.

Aitchison and Dunsmore (1980, pp. 198, 204) give extensions of distributions (3.20)-

(3.21) and interval (3.22) for the case m > 1. As they point out, this extension is

somewhat nonsensical since the prior variance of x0 depends on m, the number of

future replicates. This is rather unrealistic, but “... tractability in these calibration

problems can lead to an unnecessary departure from reality ...” (Aitchison and

Dunsmore, 1980, pp. 198). Though many authors have criticized the classical

estimator on the grounds that it has infinite MSE, Hoadley also contested its use

based on the inherent problems of the inversion interval (3.10). These difficulties,

however, do not arise with the shortest credible interval (3.22). Figure 3.5 shows

the prior and posterior distributions of x0 for the arsenic example (Section 3.2.4)

using Hoadley’s approach. The mean of the posterior is 2.945 µg/ml, the same as

the inverse estimator, and the corresponding 95% shortest credible interval for x0 is

(2.547, 3.342).
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Figure 3.5: Bayesian calibration for the arsenic example. The black and green lines
represent the posterior and prior for x0, respectively. The posterior is symmetric and
centered at x̃0 = 2.945. The tick marks indicate the endpoints of a 95% HPD interval
for x0.

Hunter and Lamboy (1981) also considered the linear calibration problem, but

proposed a slightly different approach. Let η = β0 + β1x0 and assume,a priori, that

η and (β0, β1, σ
2
ε ) are independent. Assuming normal errors, a prior for the unknown

x0 = (η− β0)/β1 is induced by specifying improper reference priors for η, β0, β1, and

σ2
ε . That is, assuming

π
(
η, β0, β1, σ

2
ε

)
= π

(
β0, β1, σ

2
ε

)
π (η) ∝ 1/σ2

ε .

This is quite different from the approach put forth by Hoadley (1970) who does

not treat x0 as an explicit function of η, β0, and β1. Hunter and Lamboy also

discuss the case where σ2
ε is known, or at least, assumed known. The posterior they

obtain for x0 is equivalent to the posterior density for the ratio of bivariate normal
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random variables (σ2
ε known) or bivariate t random variables (σ2

ε unknown), both of

which have infinite variance. The latter is actually a generalization of the structural

distribution for x0 obtained by Kalotay (1971). A more thorough analysis of these

posteriors is given by Hunter and Lamboy (1979a) and Hunter and Lamboy (1979b).

Hunter and Lamboy claim that, under reasonable conditions, the inversion and Wald

intervals (Section 3.3.1 and Section 3.3.2) provide accurate approximations to the

highest posterior density (HPD) region for x0. That said, Hill (1981), Orban (1981),

Lwin (1981), and Brown (1982) all noted that Hunter and Lamboy’s method offer

some Bayesian justification for the classical estimator and confidence intervals.

Lawless (1981) criticized the authors for not using a more flexible family of

priors and described the sole reliance on improper priors as “... merely attempting to

dress classical frequency procedures in Bayesian clothes.” Hill (1981) made the same

criticism and argued that a carefully selected gamma prior for β1 would have been

more useful since, in practice, it is often reasonable to assume that β1 is positive and

not too close to zero. Lawless and Hill also pointed out that it is more realistic to

assume, a priori, independence of (β0, β1, σ
2
ε ) and x0 (as did Hoadley), rather than

independence of (β0, β1, σ
2
ε ) and η = β0+β1x0. Hill also pointed out that the approach

used by Hunter and Lamboy (1981) is just a special case of that proposed by Hoadley

(1970) with

π
(
β0, β1, σ

2
ε , x0

)
∝

 |β1|/σ2
ε , σ2

ε unknown

|β1|, σ2
ε known

.

On the other hand, Lwin (1981) considered their approach somewhat attractive since

it “... leads to an analysis parallel to the well-known ‘ratio of means problem’ ...”.

Lwin also objects to the use of non-informative priors and, in agreement with Hill,

argues that the posterior of x0 should be conditional on β1 > 0. Another major

criticism was that Hunter and Lamboy provide no justification for their choice of
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locally uniform priors, nor did they seem interested in exploring any properties of the

resulting posterior distribution and HPD intervals.

Bayesian methods can easily be extended to handle more complex situations. For

example, Racine-Poon (1988) discusses the essential role of calibration in assay-type

problems where relationships are inherently nonlinear. Following Hoadley (1970),

Poon assumes that, a priori, x0 and (β, σ2
ε ) are independent, that is,

π
(
β, σ2

ε , x0

)
= π

(
β, σ2

ε

)
π (x0) .

The resulting posterior is then given by

π
(
β, σ2

ε , x0|data
)
∝ π

(
y0|x0,β, σ

2
ε

)
π
(
y|β, σ2

ε

)
π
(
β, σ2

ε

)
π (x0) .

Poon noted the substantial amount of numerical integration involved in obtaining

the posterior of x0 and proposed instead an approximation method. Given the

current state of statistical software such as R (R Development Core Team, 2011)

and OpenBUGS (Lunn et al., 2009), this is less of an issue. A good discussion on

nonlinear calibration problems using proper priors is given by Hamada et al. (2003).

Du Plessis and Van Der Merwe (1996) use Bayesian calibration to estimate the age

of rhinoceros—a multivariate, nonlinear calibration problem.

3.4.1 Nasturtium example.

We end our discussion of Bayesian calibration with a nonlinear calibration

example. Consider the nasturtium data from Racine-Poon (1988). The objective

was to determine the concentrations of an agrochemical (e.g., pesticide) present in

soil samples. Bioassays were performed on a type of garden cress called nasturtium.

The response is weight of the plant in milligrams (mg) after three weeks of growth,

and the predictor is the concentration of the agrochemical in the soil. In the first stage

of the experiment, six replicates of the response Yi were measured at each of seven

preselected concentrations xi (g/ha). Figure 3.6 shows a scatterplot of the standards
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with concentration on the natural log scale (we added 0.01 to the zero concentrations

before taking the logarithm).
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Figure 3.6: Scatterplot of the nasturtium data with fitted logit-log model. The
horizontal arrow corresponds to the observed ȳ0 = 341.333 mg and the vertical arrow
corresponds to the logarithm of the estimated concentration log(x̂0) = 0.817.

A logit-log regression function is used to describe the data:

µ(x; β1, β2, β3) =

 β1, x = 0

β1/ [1 + exp {β2 + β3 ln(x)}] , x > 0,
.

The errors are assumed to be normally distributed with mean zero and constant

variance σ2
ε . Normality was checked using a normal Q-Q plot of the residuals and the

constant variance assumption appears reasonable from the scatterplot. In the second

stage of the experiment, the observed weights corresponding to three new soil samples

all sharing the same concentration x0 were observed to be 309, 296, and 419 mg. An
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estimate of the unknown concentration is obtained by inverting the fitted calibration

curve and found to be 2.2639. We follow Poon in assuming, a priori, that x0 is

independent of (β1, β2, β3, σ
2
ε ). Improper uniform priors were given to the parameters

(β1, β2, β3, σ
2
ε ), and the prior for x0 was chosen to be uniform over the experimental

range: x0 ∼ U(0, 4). The posterior for x0 is shown in Figure 3.7 and is nearly identical

to the approximation obtained by Racine-Poon (1988, fig. 9). A histogram of the

bootstrap distribution of x̂0 is also shown in Figure 3.7 for comparison. The mean of

the posterior density is 2.3434, and the mode is 2.3124. A corresponding 95% HPD

interval for the unknown x0 is (1.7566, 3.0011). For comparison, we also provide

the inversion, Wald, and BCa intervals for x0 in Table 3.1. If our prior information

accurately reflects the truth, then the HPD interval is preferred. Otherwise, the

inversion or bootstrap interval are both reasonable. The bootstrap distribution and

posterior density in Figure 3.7 are clearly skewed to the right; thus, a symmetric

interval, such as the Wald interval, may not be appropriate here.

Table 3.1: Comparison of 95% calibration intervals for the nasturtium example.

Inversion interval (1.772, 2.969)

Wald interval (1.689, 2.839)

BCa interval (1.805, 2.903)

HPD interval (1.7566, 3.0011)
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Figure 3.7: Posterior of x0 (solid curve) together with the bootstrap distribution of
x̂0 (histogram).
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IV. Semiparametric Calibration

So far, we have considered calibration curves in which the mean response

µ(x) = E {Y|x} has a known form that depends on a small number of unknown

parameters β. Finding a good parametric model, however, can be time consuming

and require a great deal of expertise. Therefore, it is sometimes useful to assess the

effects of the explanatory variable x without completely specifying the structural form

of µ(x). In this chapter, we propose a simple and fast semiparametric approach to

computing calibration curves. By “semiparametric”, we mean that only part of the

model is specified. Our treatment of semiparametric calibration curves follows the

work of Brumback et al. (1999), Ruppert (2002), and Ruppert and Wand (2003),

and Crainiceanu et al. (2005). Nonparametric calibration has also been discussed

in the literature by, for example, Clark (1979), Clark (1980), and Rosen and Cohen

(1995b). Our approach to calibration here is similar to that of Clark (1980) in that we

are inverting bias-adjusted prediction intervals. However, the LMM representation of

P-splines (Ruppert and Wand, 2003) we use here yields a rather simple method for

making this adjustment. Rosen and Cohen used a nonparametric bootstrap to obtain

calibration intervals from a cubic smoothing spline. Their approach, however, made

no attempt to correct for bias in the smoothed calibration curve.

In Section 4.1, we discuss the linear mixed-effects model representation of

P-splines. Section 4.2 proposes a method for obtaining bias-adjusted calibration

intervals based on the mixed model representation. A small Monte Carlo study

demonstrates that the these intervals have coverage probability close to the nominal

1−α level. A Bayesian analog of this procedure is proposed in Section 4.3. Section 4.4

concludes this chapter with a discussion on ideas for future research.
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4.1 Mixed model representation of P-splines

Recall the polynomial spline model from Section 2.4:

(4.1) Yi =

p∑
j=0

βjx
j
i +

K∑
k=1

αk (xi − ξk)p+ + εi, εi
iid∼
(
0, σ2

ε

)
, i = 1, . . . , n.

We can easily write this in matrix form, such as in Equation (2.13), but a more useful

form is obtained by separating the polynomial and spline terms as in

(4.2) Y = Xβ +Zα+ ε, ε ∼
(
0, σ2

εI
)
,

where β = (β0, β1, . . . , βp)
′ are the coefficients of the polynomial basis functions,

α = (α1, . . . , αK)′ are the coefficients of the spline basis functions, and X and Z are

known design matrices with i-th rows equal to

Xi =
(
1, xi, x

2
i , . . . , x

p
i

)′
and Zi = ((xi − ξ1)p+, . . . , (xi − ξK)p+)′ ,

respectively. Although we choose Z to be the truncated polynomial spline basis

matrix, any other basis will do (e.g., radial basis, B-spline basis, etc.). Based on the

matrix Equation (4.2), the penalized spline fitting criterion, Equation (2.14), becomes

‖Y −Xβ −Zα‖2 + λ2p ‖α‖2 ,

which is proportional to Equation (2.22), the PSS for an LMM with hierarchical

structure Y |α ∼ N (Xβ + Zα, σ2
εI) and α ∼ N (0, σ2

αI). Dividing through by the

error variance, σ2
ε , gives the smoothing parameter as λ2p = σ2

ε/σ
2
α, a simple ratio of

the variance components. This leads to the following mixed model representation of

P-splines (Brumback et al., 1999):

(4.3) Y = Xβ +Zα+ ε,

α
ε

 ∼ N

0

0

 ,
σ2

αI 0

0 σ2
εI


 .

The parameters β, α, σ2
α, and σ2

ε can all be estimated using standard mixed model

methodology and software. Under this framework, a P-spline is really just the BLUP
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from a special LMM! The amount of smoothing is determined automatically by

λ̂ = σ̂2
ε/σ̂

2
α, where σ̂2

ε and σ̂2
α are the REML estimates of σ2

ε and σ2
α, respectively.

Although λ could be estimated via ordinary ML estimation or cross-validation,

Krivobokova and Kauermann (2007) showed that the REML-based estimate is less

affected by the presence of different correlation structures for the errors, ε. The BLUP

of µ, denoted µ̃, was given in Equation (2.24); however, an equivalent expression for

µ̃ is given by

µ̃ = Ω

(
Ω′Ω +

σ2
ε

σ2
α

D

)−1

Ω′Y = SY , Ω = (X;Z) ,

where D = diag
{
0(p+1)×(p+1), IK×K

}
. The vector of fitted values (i.e., the EBLUP

of µ) is then just

µ̂ = Ω

(
Ω′Ω +

σ̂2
ε

σ̂2
α

D

)−1

Ω′Y ,

where σ̂2
ε and σ̂2

α are the REML estimates of σ2
ε and σ2

α, respectively.

As described in Robinson (1991), the LMM has a simple Bayesian analog. For

the mixed model representation, Equation (4.3), if β, σ2
ε , and σ2

α are all given

improper uniform priors, then the posterior of µ is N (µ̂, σ2
εS). Note the use of the

variance-covariance matrix σ2
εS rather than the variance-covariance matrix σ2

εSS
′

from Equation (2.16). It is easy to see that [S]ij ≥ [SS′]ij; hence, confidence and

prediction intervals based on the Bayesian variance-covariance matrix σ2
εS are wider

than those based on σ2
εSS

′. As pointed out by Hastie and Tibshirani (1990), the

“extra wideness” is due to the fact that S accounts for squared bias whereas SS′

does not.

4.2 Bias-adjusted calibration intervals

As mentioned in Section 2.4.1, the estimated mean response µ̂(x) is biased.

Inference for P-splines based on the LMM representation, Equation (4.3), differs

depending on whether we take the randomness of α into account. Ignoring the
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randomness in α leads to the same intervals given in Section 2.4.1. We can account

for bias in the confidence and prediction intervals, however, by conditioning on the

random effects α. To see this, note that the bias vector of µ̃, conditional on α, is

(4.4) E {µ̃− µ|α} = X
[
E
{
β̃|α

}
− β

]
+Z

[
E {α̃|α} −α

]
.

From the properties of conditional expectation (Casella and Berger, 2002, pg.

164), we have that E
{

E
(
β̃|α

)}
= E

{
β̃
}

and E {E (α̃|α)} = E {α̃}. But since

E
{
β̃
}

= β and E {α̃} = E {α} = 0, the unconditional bias is just

E {E (µ̃− µ|α)} = X (β − β) +Z (0− 0) = 0.

Thus, µ̃ is unbiased for µ when averaged over the distribution of α. This is equivalent

to the Bayesian approach where (pointwise) confidence and prediction bands use

diagonal entries of S in place of the diagonal entries of SS′ described in Section 2.4.1.

Let Ω0 = (1, x0, . . . , x
p
0, (x0 − ξ1)p+, . . . , (x0 − ξK)p+)′ where x0 is an arbitrary

value of the explanatory variable x. A 100(1−α)% (bias-adjusted) confidence interval

for µ(x0) is given by

µ̂(x0)± t1−α/2,df × σ̂ε

√
Ω0

(
ΩΩ′ +

σ̂2
ε

σ̂2
α

D

)−1

Ω′0,

where df = n−2 tr (S)+tr (SS′). In a similar manner, a 100(1−α)% (bias-adjusted)

prediction interval for a new observation, Y = µ(x0)+ε0 (independent of current ones),

is given as

(4.5) µ̂(x0)± t1−α/2,df × σ̂ε

√
1 + Ω0

(
ΩΩ′ +

σ̂2
ε

σ̂2
α

D

)−1

Ω′0.

Recall the intuition behind the inversion interval. Let Ipred(x) be a 100(1− α)%

prediction interval for the future observation Y0, such that Pr {Y0 ∈ Ipred(x)|x0 = x} =

1− α. Then, a confidence interval for x0 corresponding to an observed Y0 is just the

set Jcal(x) = {x : Y0 ∈ Ipred(x)} since, by construction,

Pr {x0 ∈ Jcal(Y0)} = Pr {Y0 ∈ Ipred(x)|x0 = x} = 1− α,

54



(Clark, 1980). In other words, a 100(1−α)% confidence interval for x0 can be obtained

by inverting a corresponding prediction interval for Y0. However, we need to invert

an appropriate prediction interval (i.e., one that adjusts for bias); otherwise, the

resulting confidence interval for x0 will likely not be reliable. To that end, we propose

the following bias-adjusted 100(1− α)% calibration interval for the unknown x0:

(4.6) Ĵ ba
cal(x0) =

x0 : tα/2,df <
y0 − µ̂(x0)√

σ̂2
ε

[
1 + Ω0

(
Ω′Ω + σ̂2

ε

σ̂2
α
D
)−1

Ω′0

] < t1−α/2,df

 ,

As before, great care should be taken to ensure that Ĵ ba
cal(x0) is an interval. This

may not be the case, for example, when µ(x) in not monotonic over the range of

interest. Also, as with nonlinear calibration, no closed-form expression exists for

Ĵ ba
cal(x) and iterative techniques are required. In a similar fashion, a 100(1 − α)%

bias-adjusted regulation interval for x0 is obtained by inverting a corresponding bias-

adjusted confidence interval for the mean response:

Ĵ ba
reg(x0) =

x0 : tα/2,df <
y0 − µ̂(x0)√

σ̂2
εΩ0

(
Ω′Ω + σ̂2

ε

σ̂2
α
D
)−1

Ω′0

< t1−α/2,df

 .

We designed a small Monte Carlo study to investigate the coverage probability

of this technique. The results of this study are presented in Tables 4.1 and 4.2.

The true calibration function is the sine wave µ(x) = sin(πx− π/2)/2 + 1/2 plotted

in Figure 4.1. For data following such a pattern, it would be tempting to fit a

nonlinear model, perhaps modeling µ(x) as a logistic function. Inference based on

the resulting fit would then be inaccurate since, for example, the true calibration

curve does not have any asymptotes. For situations like this, it would be useful to

have a semiparametric alternative for which to compare inference.
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Figure 4.1: Scaled sine wave function.

Notice that the sine wave plotted in Figure 4.1 is scaled to lie in [0, 1]× [0, 1] with

a period of 2. For each of 1,000 simulations, we used 10, 30, and 50 uniformly spaced

designed points on the domain [0, 1] with 1, 2, and 3 independent replicates of the

response at each design point. The errors were generated as i.i.d. N (0, 0.052) random

variates and the true unknown was chosen to be x0 = 0.75 (hence, µ0 ≈ 0.8536).

Tables 4.1 and 4.2 display the estimated coverage probability for this technique

applied to the sine wave experiment for both calibration (Table 4.1) and regulation

(Table 4.2). For comparison, we also transformed the data to an equivalent linear

model and applied Fieller’s method (which yields an exact 95% confidence interval for

x0). Clearly, our bias-adjusted intervals performed well for quadratic (degree = 2) and

cubic (degree = 3) P-splines with increasing sample size without sacrificing interval

length. Notice, however, that the calibration results are somewhat conservative (i.e.,

the coverage probability is slightly larger than 0.95) while the regulation intervals

tend to hit the target coverage 1 − α = 0.95. The reason for this is that the bias in

predicting a future observation is the same as that for estimating the mean response,
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but the former has larger variance. Therefore, the bias accounts for a smaller portion

of the mean-squared error in prediction (i.e., the bias gets “washed out” by a larger

variance). Thus, for larger samples (perhaps n ≥ 20 with m ≥ 1 replicates at each

design point), calibration intervals could be computed with or without adjusting for

bias. Regulation intervals, on the other hand, should always be adjusted for bias.

Table 4.1: Coverage and length of 95% calibration intervals for data from the sine
wave experiment with σε = 0.05.

P-spline (p = 1) P-spline (p = 2) P-spline (p = 3) Fieller

n m CP Length CP Length CP Length CP Length

10 1 0.93 0.25 0.93 0.21 0.90 0.19 0.95 0.25

10 2 0.96 0.21 0.97 0.20 0.96 0.19 0.96 0.22

10 3 0.97 0.21 0.96 0.20 0.97 0.19 0.96 0.21

30 1 0.95 0.21 0.95 0.20 0.97 0.18 0.96 0.21

30 2 0.96 0.20 0.96 0.19 0.97 0.18 0.95 0.20

30 3 0.97 0.20 0.96 0.19 0.97 0.18 0.96 0.20

50 1 0.97 0.20 0.96 0.19 0.96 0.18 0.96 0.20

50 2 0.97 0.20 0.97 0.19 0.96 0.18 0.95 0.20

50 3 0.98 0.20 0.97 0.19 0.97 0.18 0.96 0.20
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Table 4.2: Coverage and length of 95% regulation intervals for data from the sine
wave experiment with σε = 0.05.

Degree = 1 Degree = 2 Degree = 3 Fieller

n m CP Length CP Length CP Length CP Length

10 1 0.74 0.13 0.92 0.12 0.92 0.11 0.95 0.10

10 2 0.89 0.09 0.94 0.09 0.94 0.08 0.95 0.06

10 3 0.91 0.07 0.95 0.07 0.94 0.06 0.95 0.05

30 1 0.96 0.07 0.95 0.07 0.94 0.06 0.95 0.05

30 2 0.97 0.06 0.95 0.05 0.94 0.04 0.95 0.04

30 3 0.97 0.05 0.95 0.04 0.95 0.03 0.95 0.03

50 1 0.96 0.06 0.95 0.05 0.95 0.05 0.95 0.04

50 2 0.97 0.04 0.96 0.04 0.95 0.03 0.95 0.03

50 3 0.97 0.04 0.96 0.03 0.95 0.03 0.95 0.02

4.2.1 Whiskey age example.

The point of this example is to demonstrate how our bias-adjusted semiparamet-

ric approach to calibration compares against a simpler parametric model (when one

is available). To this end, we analyze the whiskey data from Schoeneman et al. (1971)

presented in Figure 4.2. The data give the proof (measured as twice the percentage of

alcohol by volume, denoted 2ABV) of whiskey stored in a charred oak barrel against

time in years; clearly, some curvature is present. Suppose a new sample is obtained

from the same barrel and that the proof is observed to be y0 = 108 2ABV. It is

desired to estimate how long this batch has been aged.

## Loading required package: rootSolve
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Figure 4.2: Scatterplot of the whiskey data.

We begin by fitting a simple quadratic P-spline with five knots:

µ(agei) = β0 + β1agei + β2proof
2
i +

5∑
k=1

αk (proofi − ξk)
2
+ .

The number of knots and their placement were determined automatically using the

methods described in Section 2.4. The fitted model is depicted in the right-hand side

of Figure 4.3. It appears from the scatterplot that a simple quadratic may be sufficient

(i.e., αi = 0, i = 1, . . . , 5); this fit is depicted in the left side of Figure 4.3. Both models

are different, but the fits are indistinguishable to the human eye. In fact, both models

produce identical calibration intervals for x0 (when rounded to four decimal places).

For the linear model, we have x̂0 = 5.2329 years with a 95% confidence interval for

x0 of (4.6776, 5.7352). Similarly, for the P-spline model, we have x̂0 = 5.2329 years

with a 95% (bias-adjusted) confidence interval for x0 of (4.6776, 5.7352). The reason

we get the same answer from both models is that the polynomial basis part of the

penalized spline model is sufficient for modeling the curvature of µ(age), therefore,
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the spline basis terms are effectively “zeroed out” (see Figure 4.4). Although our

P-spline approach to obtaining calibration intervals requires large samples, in this

small sample example, they happen to coincide with the classical inversion limits

from the quadratic linear model. If we did not correct for bias in the P-spline model,

however, the confidence interval obtained for x0 would be (4.7223, 5.7016), which is

too narrow.
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Figure 4.3: Fitted models for the whiskey data. Left : Quadratic linear model with
95% (pointwise) prediction band. Right : Quadratic P-spline with five knots and 95%
(pointwise) bias-adjusted prediction band.
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Figure 4.4: Profiles of spline coefficients for the P-spline in Figure 4.3, as the
smoothing parameter λ is varied from zero to three. Coefficients are plotted versus
the smoothing parameter λ; the REML estimate is λ̂ = 385.2228.

4.3 Bayesian semiparametric calibration

The mixed model P-spline, Equation (4.3), provides a simple method for

estimating the smoothing parameter and accounting for bias in calibration intervals.

These intervals, however, do not account for the variability of the estimated smoothing

parameter λ̂ = σ̂2
ε/σ̂

2
α (similar to inference in LMMs which typically ignores the

variability of V̂ ). This problem can be remedied by adopting a fully Bayesian

approach which we now discuss.

Let π(·) denote a probability density function. Following Hoadley (1970), we

assume that the calibration experiment contains no information about x0 and that

the priors for x0 and the calibration experiment are independent; thus,

π(x0,β,α, σ
2
ε , σ

2
α) = π(x0)π(β,α, σ2

ε , σ
2
α).
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The mixed model representation, Equation (4.3), has α ∼ N (0, σ2
αI). A

fully Bayesian approach, however, requires a prior distribution on the parameters

(β, σ2
ε , σ

2
α, x0). Following standard convention, we assume, a priori, that the fixed-

effects are independent and assign vague, independent priors to (β, σ2
ε , σ

2
α). We used

the vague (but proper) priors

βj ∼ N
(
0, σ2

β

)
, j = 1, . . . , p+ 1,

σ2
ε ∼ IG (a, b) ,

σ2
α ∼ IG (c, d) ,

where IG stands for the inverse gamma distribution. The variance σ2
β should be

chosen large enough (say 106) so that (for all intents and purposes) the βj’s are

uniform. Similarly, the parameters a, b, c, and d should be small (say 10−6). These

distributions can be considered as an approximate representation of vagueness in the

absence of good prior information. In addition, we assume that the prior for x0, the

predictor value of interest, is uniform over the experimental range: x0 ∼ U [a, b].

The (unnormalized) posterior density of (x0,β,α, σ
2
ε , σ

2
α) is given by

π(x0,β,α, σ
2
ε , σ

2
α|data) = π(x0,β,α, σ

2
ε , σ

2
α|y,y0)

∝ π(y,y0|x0,β,α, σ
2
ε , σ

2
α)π(x0,β,α, σ

2
ε , σ

2
α)

∝ π(y0|x0,β,α, σ
2
ε , σ

2
α)π(y|β,α, σ2

ε , σ
2
α)π(β,α, σ2

ε , σ
2
α)π(x0)

∝ π(y0|x0,β,α, σ
2
ε )π(y|β,α, σ2

ε )π(β)π(α|σ2
α)π(σ2

ε )π(σ2
α)π(x0),

where y and y0 represent the observed data from the first and second stages of the

calibration experiment, respectively. It is relatively straightforward to show that (see

Section A.1 in the appendix) the conditional posterior of (β,α) is proportional to

exp

{
− 1

2σ2
ε

(
‖y0 −X0β −Z0α‖2 +

σ2
ε

σ2
α

‖α‖2

)}
,
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where

y0 =

y
y0

 , X0 =

X
x′0

 , Z0 =

Z
z′0


are augmented data vectors and matrices. Upon completing the square we have that

β,α|y0,y, x0, σ
2
ε , σ

2
α ∼ N

{(
Ω′0Ω0 +

σ2
ε

σ2
α

D

)−1

Ω′0y0, σ
2
ε

(
Ω′0Ω0 +

σ2
ε

σ2
α

D

)−1
}
,

where Ω0 = (X0,Z0). In a similar fashion, the conditional posteriors of σ2
ε and σ2

α

are the inverse gammas:

σ2
ε |y0,y,β,α, σ

2
α, x0 ∼ IG

(
a+

n+ 1

2
, b+

1

2
‖y0 −X0β −Z0α‖2

)
,

σ2
α|y0,y,β,α, σ

2
ε , x0 ∼ IG

(
c+

K

2
, d+

1

2
‖α‖2

)
,

where K is the number of knots or random effects (see Section A.2 in the appendix).

The conditional posterior of x0 is more difficult to obtain analytically, however,

regardless of the prior π(x0). This makes it difficult (or impossible) to obtain a

full Gibbs sampler here, nonetheless, we can sample from the posterior of x0 using

more specialized Markov Chain Monte Carlo methods such as the Metropolis-Hastings

algorithm (see, for example, Robert and Casella (2004, chap. 7)). Thus, as discussed

in (Gelman et al., 2003, pg. 292), we could update the parameters one at a time using

Gibbs sampling for (β,α, σ2
ε , σ

2
α) and a metropolis update for x0. We illustrate this

approach with the following example involving radioimmunoassays. The data were

analyzed using the JAGS software within R via the rjags package.

4.3.1 Enzyme-linked immunosorbent assay (ELISA) example.

Rosen and Cohen (1995a) derived a 95% calibration interval for the unknown

concentration in a radioimmunoassay problem using the nonparametric bootstrap.

We demonstrate our method on the same dataset and compare the results. The data,

plotted in Figure 4.5, consists of 23 distinct concentrations with four (independent)
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replicates of the response at each concentration. The results from analyzing these

data are summarized in Table 4.3 at the end of this section.
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Figure 4.5: Scatterplot of the ELISA data.

The four parameter logistic model,

Yi = β1 +
β2 − β1

1 + exp {β4(log xi − β3)}
+ εi, εi

iid∼ N
(
0, σ2

ε

)
, i = 1, . . . , n,

provides a reasonable parametric fit model to the ELISA data. Although we assume

the errors are normal with constant variance, Rosen and Cohen (1995a) more

generally assumed εi
iid∼ (0, σ2

i ), where σi = σ (µ(xi,β))θ. This adds an unnecessary

complication to the calibration model and so we simply assume constant variance

(standard residual plots do not reveal any serious indication of heteroscedastic errors).

Following Rosen and Cohen (1995a), we assume we have a new observation y0 = 20

with unknown concentration x0. The frequentist (i.e., classical) estimate of x0 is
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rather straightforward to derive

x̂0 = exp

{
1

β̂4

log

(
β̂2 − y0

y0 − β̂1

)
+ β̂3

}
= 9.1837.

The 95% inversion limits for x0 based on Equation (3.15) are (7.356, 11.657)—see

Figure 4.6.
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Figure 4.6: Nonlinear least squares fit of the ELISA data to the four parameter logistic
model with (pointwise) 95% prediction band.

Figure 4.7 shows a fitted semiparametric calibration curve, a quadratic P-spline

with five interior knots. Also shown is the posterior mean based on a fully Bayesian

P-spline model. Seeing as how the concentration should not be negative, we used a

U [0, 50] prior for x0, though, lognormal or gamma priors may also be reasonable. The

frequentist estimate of x0 is obtained by (numerically) inverting the fitted P-spline:

x̂0 = 9.345. A (bias-adjusted) inversion interval for x0 based on Equation (4.6)

is (7.462, 11.711). As previously mentioned, this interval does not account for
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the variability of the estimated smoothing parameter σ̂2
ε/σ̂

2
α, hence, we expect the

Bayesian credible interval to be slightly wider. The estimator we use for the Bayesian

model is the posterior mode of x0 which is equal to 9.285. There are a number

of ways to compute a 95% credible interval from a given posterior; for example,

highest posterior density (HPD) intervals. Here we simply report the 0.025 and 0.975

quantiles of the posterior which are 7.250 and 11.776, respectively. As noted earlier,

these limits are slightly wider than the corresponding frequentist limits, but this extra

wideness is likely due to the added uncertainty of the estimated smoothing parameter.

Rosen and Cohen (1995a) also obtained calibration intervals for these data. Their

approach involved bootstrapping a cross-validated cubic smoothing spline, but did not

account for bias in µ̂(x). For a brief discussion on bias correction in nonparametric

regression using the bootstrap, see Davison and Hinkley (1997, pp. 362-366).
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Figure 4.7: Nonparametric calibration for ELISA data. Left : Bayesian P-spline with
posterior and 95% credible interval for x0. The shaded blue region represents the
(pointwise) prediction band and the density curve represents the posterior of x0.
Right : Mixed-effects model P-spline with bias-adjusted 95% calibration interval for
x0. The shaded blue region represents the (pointwise) bias-adjusted predction band.
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Table 4.3: Point and interval estimates for x0 for the ELISA data with y0 = 20.

Method Estimate 95% interval

Parametric (homoscedastic errors) 9.184 (7.356, 11.657)

P-spline (bias-adjusted) 9.345 (7.462, 11.711)

P-spline (Bayesian) 9.285 (7.250, 11.776)

4.4 Discussion

We have proposed a new method for calibration in a semiparametric setting based

on the mixed model approach to smoothing that corrects for bias in the smoothed

calibration curve. While the idea of using LMMs for penalized smoothing is not

new (see, for example, Demidenko (2013, pp. 13 - 17)), this approach has never

been adapted for the calibration problem as we have proposed here. By using a

simple Monte Carlo experiment, we have demonstrated that bias-adjusted prediction

intervals can be used to (numerically) obtain calibration intervals for the unknown x0

that have good coverage probabilities. We have discussed a situation where this bias-

correction is more serious (i.e., regulation, or rather, calibration where the unknown

x0 corresponds to some specified mean response µ0). Finally, we developed a Bayesian

framework for semiparametric calibration by extending the approach originally put

forth by Hoadley (1970) for linear calibration (see Section 3.4). The frequentist

framework, while fast and simple, has the same disadvantage inherent in LMM

inference; that is, the variance of the estimated smoothing parameter (which is a

function of the estimated variance components) is ignored. The Bayesian approach

handles this by incorporating prior information for all unknown parameters in the

model, leading to slightly wider calibration intervals. The Bayesian approach we

presented, however, is slower and more difficult to implement in practice.
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4.4.1 Priors.

Although we used a uniform prior for x0 in our examples, such a prior for x is

unlikely to be useful in general and we recommend a more careful elicitation of prior

information. A sensitivity analysis should also be carried out to see if the results are

sensitive to the choice of prior for x0. Although inverse gamma priors are commonly

used in practice as noninformative priors for scale parameters in hierarchical models

(e.g., the variance components in a LMM), Gelman (2006) argued against their use.

Instead, Gelman adovcated the use of conditionally conjugate priors from a new

folded-noncentral-t family.

4.4.2 Future work.

The methods proposed in this chapter open the door to a number of future

research opportunities. Perhaps, the most interesting (and logical) next step would

be the inclusion of constraints. For example, we have assumed that the calibration

curve is monotonic over the range of interest. Fortunately, this is not usually a concern

when the data are collected from a carefully designed experiment. The semiparametric

fit, however, is not necessarily monotonic for every value of the smoothing parameter

which may cause problems when, say, obtaining a bias-adjusted calibration interval.

It is possible, however, to incorporate constraints, such as monotonicity, using the

general projection method described in Mammen et al. (2001). Until such a constraint

can be smoothly incorporated (no pun intended) into our semiparametric approach

to calibration, we can instead rely on inference regarding the first derivative of f as

described in Ruppert and Wand (2003, pp. 151-156). For instance, if we assume

that f is monotonically increasing (decreasing) over the interval [a, b], then a plot of

the estimated first derivative of the regression function should lie completely above

(below) the x-axis. This derivative function can be estimated in exactly the same

way as the regression function itself, that is, using P-splines. Therefore, a thorough
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calibration analysis might include a plot of the data with fitted mean response,

supplemented by a plot of the estimated first derivative function (possibly with a

confidence band). For instance, we might supplement our analysis of the ELISA data

with the following graphic:
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Figure 4.8: Estimate of the first derivative of the regression function for the ELISA
example with a 95% global confidence band. A horizontal reference line is displayed
at zero on the y-axis. This plot was produced using the R package SemiPar.
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V. Calibration with Grouped Data

In this chapter, we extend the application of calibration to grouped data; that

is, data in which the observations are grouped into disjoint classes called clusters

or groups. Common examples of grouped data include repeated measures data and

longitudinal data. Groups tend to be homogeneous, therefore, observations belonging

to the same group cannot be considered independent. (Although, observations

between clusters usually are.) Thus, we need to account for within cluster dependence

when modeling this type of data. To our knowledge, other than Oman (1998), very

little has been done for calibration with grouped data. Oman considered a simpler

model that only allowed for the intercept and slope to vary between groups, whereas

we take a more general (and practical) approach that allows for an arbitrary random

effects structure. Furthermore, while Oman considers only one type of calibration

interval, we discuss four different calibration intervals that can be computed for

grouped data, along with some adjustments to improve their accuracy. Moreover, the

calibration interval considered by Oman was based on an approximate parametric

bootstrap that did not account for the variance attributed by the random variable

Y0.

The LMM was introduced in Section 2.5. In Section 5.1, we discuss a particular

useful LMM: the random coefficient model. In Section 5.2, we propose a simple

method for estimating the unknown x0 in a mixed model setting. We argue the

utility of this approach by showing that, in a particular case, it coincides with

the ML solution. In Sections 5.3 and 5.4, we discuss construction of Wald and

asymptotic inversion intervals, respectively. We then propose a fully parametric

bootstrap approach for controlled calibration in Section 5.5. Unlike Oman (1998),

our parametric bootstrap algorithm does take into account the variability attributed

70



by Y0. Distribution-free calibration intervals are (briefly) considered in Section 5.6.

Finally, Section 5.8 applies the aforementioned techniques to a real dataset taken

from Brown (1993).

5.1 LMMs for repeated measures data

As discussed in Section 2.5, the LMM extends the basic LM (2.2) to

(5.1) Y = Xβ +Zα+ ε,

where X and Z are known design matrices, β is a vector of fixed effects, α is a vector

of random effects, and ε is a vector of random errors. Since we are using mixed models

to analyze grouped data, it would behoove us to decompress model (5.1) into the form

introduced by Laird and Ware (1982),

(5.2) Y i = Xiβ +Ziαi + εi, i = 1, . . . ,m,

where, for the i-th group:

• Y i is an ni × 1 vector of response variables;

• Xi and Zi are known design matrices of dimensions ni × p and ni × q,

respectively;

• β is a p× 1 vector of fixed effects;

• αi is a q × 1 vector of random effects;

• εi is an ni × 1 vector of random errors.

Furthermore, it is assumed that the random variables
{
αi
}m
i=1

and
{
εi
}m
i=1

are

mutually independent and distributed according to

αi ∼ N (0,G) , εi ∼ N
(
0, σ2

εRi

)
.
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For our purposes, we shall assume that Ri = I (an N ×N identity matrix); that is,

we are assuming constant variance within groups. Also, for computational purposes

(e.g., maximizing the likelihood), it is convenient to reparameterize G as σ2
εG
†, where

G† is the “scaled” variance-covariance matrix for the random effects. In other words,

we have that

αi ∼ N
(
0, σ2

εG
†) , εi ∼ N

(
0, σ2

εI
)
.

Model (5.1) can also be written in marginal form as

Y i ∼ N (Xiβ,Vi) ,

where

Vi = ZiGZ
′
i + σ2

εI.

In long notation (Equation (5.1)), we have

Y =


Y1

...

Ym


N×1

, X =


X1

...

Xm


N×p

, Z =


Z1 0 0

0
. . . 0

0 0 Zm


N×mq

,

α =


α1

...

αm


mq×1

, ε =


ε1

...

εm


N×1

,

where N =
∑m

i=1 ni is the total number of observations. Similarly, this can be

summarized in marginal form as Y ∼ N (Xβ,V ) where

V = σ2
ε

{
diag

Ini +ZiG
†Z ′i

}m
i=1
.

Notice, in this model, how the fixed effects are used to model the mean of Y while

the random effects govern the variance-covariance structure of Y . In fact, as pointed

out by McCulloch et al. (2008), a key reason for including random effects in a model
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is to simplify the otherwise difficult task of dealing with N(N + 1)/2 unique elements

of V .

Ignoring constants, the log-likelihood for the data can be written as

(5.3) L
(
β, σ2

ε ,θ
)

= −N
2

log(σ2
ε )−

1

2

m∑
i=1

log
∣∣I +ZiG

†Z ′i
∣∣

− 1

2σ2
ε

m∑
i=1

(Y i −Xiβ)′
(
I +ZiG

†Z ′i
)−1

(Y i −Xiβ) ,

where θ is a vector containing the unique elements ofG†. SinceG† is symmetric, it has

at most q(q+1)/2 unique elements; hence, θ has a maximum dimension of q(q+1)/2.

In many practical applications, however, we can restrict G† (or equivalently G) to

simpler forms involving only a few parameters. For example, G† may be a constant

multiple of the identity matrix, τI, which corresponds to uncorrelated random effects

with constant variance σ2
ε τ ; in this case, θ = τ has dimension one. This is the

variance-covariance structure we used for the random coefficients in the mixed model

approach to P-splines in the previous chapter.

One of the most useful LMMs for repeated measures data is the so-called random

linear trend model :

(5.4) Yij = (β0 + α0i) + (β1 + α1i)xij + εij, i = 1, . . . ,m, j = 1, . . . , ni,

where β0 and β1 are fixed effects,
{
α0i

}
are random intercepts distributed asN (0, σ2

0),{
α1i

}
are random slopes distributed as N (0, σ2

1), and
{
εij
}

are i.i.d. random errors

distributed as N (0, σ2
ε ). Also, if we let Cov {α0i, α1i} = σ01, then

G =

σ2
0 σ01

σ01 σ2
1

 .
We often assume the random intercepts and slopes are independent, that is, σ2

1 = 0;

this can be formally tested using a likelihood ratio test. Also, setting α01 = · · · =

α0m = 0 or α11 = · · · = α1m = 0 yields the random intercept and random slope models,
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respectively (see Figure 5.1). Considerable simplifications arise for the balanced cases

(i.e., when ni = n for all i). For example, for a balanced random intercept model,

the matrix Z of Equation (5.1) is just Z = Im ⊗ 1n, where the symbol ⊗ denotes

the Kronecker product. Estimating the fixed effects and variance components for

model (5.4) is also much simpler in the balanced case.

Figure 5.1: Common random coefficient models for grouped data. Each plot consists
of ten measurements on 15 subjects—each of which has a positive, linear trend. Left :
Random intercepts. Middle: Random slopes. Right : Random intercepts and slopes.

5.1.1 Prediction of future observations.

In the literature for mixed models, prediction of future observations is often

overshadowed by the prediction of random effects. Nonetheless, prediction of future

observations in mixed models is an important topic—see Jiang (2007) for some

motivating examples. For LMMs, there are two kinds of predictions we can make

regarding a future observations: (1) predicting a new observation within an existing

group, and (2) predicting a new observation in a new group. Since longitudinal
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studies often aim to make inference for the whole population under study—and not

just the groups sampled—we will restrict our attention to case (2). In particular, for

calibration, we will assume that a (single) new observation, denoted Y0, is independent

of the current observations and does not belong to an existing group.

5.2 Point estimation

In this section, we discuss point estimation of x0 in a mixed model setting.

Generally, it is difficult to compute the ML estimate of x0 due to the complex nature

of mixed model likelihoods; however, as shown below, some cases yield relatively

simple results.

Consider the linear random trend model (Equation (5.4)). For a particular x, we

have

Y = β0 + β1x︸ ︷︷ ︸
FIXED

+

RANDOM︷ ︸︸ ︷
α0 + α1x+ ε = µ (x;β)︸ ︷︷ ︸

FIXED

+

RANDOM︷ ︸︸ ︷
R (x;α),

where µ (x;β) = E {Y|x} is the (population) mean response. For simplicity of

notation, let µ (x) = µ (x;β). Solving the equation µ(x) = β0 + β1x for x, we

get (assuming β1 6= 0)

x =
µ(x)− β0

β1

.

If Y0 denotes a random observation from a normal distribution with mean µ(x0), then

E {Y0} = µ(x0) = β0 + β1x0, therefore, a natural estimator of x0 is

(5.5) x̂0 =
Y0 − β̂0

β̂1

,

where β̂ =
(
β̂0, β̂1

)′
is the EBLUE of β = (β0, β1)′. Notice how this has the same

form as the classical estimator (Equation (3.3)) discussed in Section 3.2. In fact, for

the balanced random intercept model, the classical estimator is still the ML estimator
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of x0; in other words, we can compute the ML estimator of x0 using ordinary least

squares with i.i.d. normal errors! To see this, note that for the general case G† = τI

and Zi = 1i (a column vector of all ones), hence, Vi = σ2
ε (Ii + τ1i1

′
i). Therefore, we

can write

Y i ∼ N
{
Xiβ, σ

2
ε (Ii + τ1i1

′
i)
}
, i = 1, . . . ,m,

whereXi is an ni×2 design matrix with j-th row equal toX ′ij = (1, xij), β = (β0, β1)′

is a vector of fixed effects, σ2
ε is the within-subject variance, and σ2

ε τ is the variance of

the random intercepts. From Equation (5.3), the log-likelihood for the data (ignoring

constants) is

LI

(
β, σ2

ε , τ
)

= −N
2

log
(
σ2
ε

)
− 1

2

m∑
i=1

log |I + τ1i1
′
i|

− 1

2σ2
ε

m∑
i=1

(Y i −Xiβ)′ (I + τ1i1
′
i)
−1

(Y i −Xiβ) .

The subscript “I” is there to remind us that this is the likelihood for the standards,

the data from the first stage of the calibration experiment (see Section 1). Using the

following formulas (Demidenko, 2013, pg. 49),

• |I + τ1i1
′
i| = 1 + niτ ;

• (I + τ1i1
′
i)
−1 = I − τ

1+niτ
1i1
′
i;

the log-likelihood simplifies to

LI

(
β, σ2

ε , τ
)

= −N
2

log
(
σ2
ε

)
− 1

2

m∑
i=1

log (1 + niτ)

− 1

2σ2
ε

m∑
i=1

(Y i −Xiβ)′
(
I − τ

1 + niτ
1i1
′
i

)
(Y i −Xiβ) .

Similarly, the log-likelihood for the (single) unknown (i.e., the log-likelihood for the

data from the second stage of the calibration experiment) is

LII

(
β, σ2

ε , τ, x0

)
= −1

2
log
(
σ2
ε

)
− 1

2
log (1 + τ)− 1

2σ2
ε (1 + τ)

(Y0 − β0 − β1x0)2 .
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From the independence of Y and Y0, the log-likelihood for the pooled data, denoted

L (β, σ2
ε , τ, x0), is given by

L
(
β, σ2

ε , τ, x0

)
= LI

(
β, σ2

ε , τ
)

+ LII

(
β, σ2

ε , τ, x0

)
= −N + 1

2
log
(
σ2
ε

)
− 1

2

m∑
i=1

log (1 + niτ)− 1

2
log (1 + τ)

− 1

2σ2
ε

m∑
i=1

(Y i −Xiβ)′
(
I − τ

1 + niτ
1i1
′
i

)
(Y i −Xiβ)

− 1

2σ2
ε (1 + τ)

(Y0 − β0 − β1x0)2 .

Thus, the full log-likelihood is the sum of two parts: the log-likelihood for the

standards, and the log-likelihood for the unknown. Equating to zero the partial

derivative of the full log-likelihood with respect to the parameter x0 results in

x̃0 (β) = (Y0 − β0) /β1. In other words, for any value of β, x̃0 (β) maximizes the

likelihood with respect to x0. Plugging this back into the log-likelihood yields the

profiled log-likelihood

Lp

(
β, σ2

ε , τ
)

= −N + 1

2
log
(
σ2
ε

)
− 1

2

m∑
i=1

log (1 + niτ)− 1

2
log (1 + τ)

− 1

2σ2
ε

m∑
i=1

(Y i −Xiβ)′
(
I − τ

1 + niτ
1i1
′
i

)
(Y i −Xiβ) ,

Similarly, equating the partial derivative of Lp (β, σ2
ε , τ), with respect to the

parameter σ2
ε , to zero yields

σ̃2
ε (β, τ) =

1

N + 1

m∑
i=1

(Y i −Xiβ)

(
I − τ

1 + niτ
1i1
′
i

)
(Y i −Xiβ)′ .

Substituting this back into the profiled log-likelihood and simplifying (i.e., cancelling

common factors and ignoring constants) we get

Lp (β, τ) = −N + 1

2
log

{
m∑
i=1

(Y i −Xiβ)′
(
I − τ

1 + niτ
1i1
′
i

)
(Y i −Xiβ)

}

− 1

2

m∑
i=1

log (1 + niτ)− 1

2
log (1 + τ) ,
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The parameters x0 and σ2
ε have been “profiled out”, resulting in a simpler log-

likelihood in only p + 1 parameters. We could continue in this fashion with the

parameter β as well, although it is quite easy to see that the value of β that maximizes

Lp (β, τ) is just the usual GLS estimator, β̃, given by Equation (2.19). Furthermore,

it can be shown (Demidenko, 2013) that, for the balanced case, β̃ does not depend

on τ and in fact reduces to the ordinary LS estimator β̂ = (X ′X)−1X ′Y . Thus, the

ML estimator of x0 for the balanced random intercept model is simply

x̂0 = x̃0

(
β̂
)

=
Y0 − β̂0

β̂1

,

where

β̂1 =

∑n
i=1

∑m
j=1 (xij − x̄) (yij − ȳ)∑n

i=1

∑m
j=1 (xij − x̄)2 , β̂0 = ȳ − β̂1x̄.

In general, the ML estimator x̂0 of x0 is difficult to obtain analytically. For

example, in a random slope model, Y0 ∼ N (β0 + β1x0, x
2
0σ

2
α + σ2

ε ), thus, the unknown

x0 affects both the mean and variance of Y0. A reasonable, and more practical

approach, is to proceed as before, that is, by solving the equation y0 = µ(x0) for the

unknown x0. As shown above, for the balanced random intercept model, this leads

to the ML estimate.

We should point out that, in general, the EBLUE of β (Equation (2.20)) depends

on the estimated variance components through V̂ . Furthermore, recall that for the

linear calibration problem, the bias-adjusted ML estimator of σ2
ε (the only variance

component) is

(5.6) σ̂2
ε =

1

n− 2

n∑
i=1

(
Yi − β̂0 − β̂1xi

)2

+
1

m− 1

n+m∑
i=n+1

(
Yi − Y0

)2
.

The first term in Equation (5.6) is the usual unbiased estimator of σ2
ε , and the second

term is just the sample variance of the m unknowns Y01, . . . ,Y0m. If there is only

one unknown, then the second term in Equation (5.6) is zero! Hence, for a single

unknown, the ML estimator of the variance σ2
ε (adjusted for bias) is unaffected. We
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could extrapolate by making a similar argument for calibration in mixed models.

That is, if only a single observation, Y0, is available from the second stage of the

calibration experiment, then the ML estimates of the variance components (adjusted

for bias) should be unaffected—this would not be the case for replicate unknowns

sharing a single unknown x0. In this chapter, we only concern ourselves with the case

of a single unknown; thus, we make the argument that the usual estimates of the

variance components are valid for calibration inference.

For illustration, we generated n = 30 observations for each of m = 15 groups

from a random intercept model with fixed effects β = (0, 1)′ and variance components

σ2
α = 0.01 and σ2

ε = 0.001. A spaghetti plot of the data is shown in Figure 5.2; notice

the apparent linear trend with varying intercepts. For a new observation, y0 = 0.75,

the estimate of the corresponding unknown x0 is x̂0 =
(

0.75− β̂0

)
/β̂1 = 0.7819.

Since these data are balanced, x̂0 is also the ML estimate of x0.
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Figure 5.2: Simulated random intercept data.

5.3 Wald interval

The delta method provides the simplest approach to computing confidence

intervals, as long as the quantity of interest is a function of random variables that

are at least asymptotically normal. Under mild regularity conditions often satisfied

in practice, the ML estimator β̂ of β is consistent and asymptotically normal with

mean vector β and asymptotic variance-covariance matrix (X ′V −1X)
−1

(Pinheiro,

1994). Furthermore, by assumption, Y0 is distributed as N (β0 + β1x0, σ
2
0), where σ2

0

denotes the variance of Y0 which, depending on the random effects structure of the

model, may involve the unknown x0. For instance, if R (x;α) = α+ ε (i.e., a random

intercept model), then σ2
0 = σ2

α + σ2
ε , whereas if R (x;α) = αx + ε (i.e., a random
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slope model), then σ2
0 = x2

0σ
2
α + σ2

ε which depends on x0. Although our attention is

restricted to LMMs in this dissertation, the simplicity of the Wald-based approach

extends to nonlinear mixed-effects models (NLMMs) as well. For an introduction to

NLMMs, see Pinheiro (1994) and Pinheiro and Bates (2009).

The Wald statistic, denoted W , is essentially a generalization of the usual Z-

statistic. Here it is the point estimator, normalized by an estimate of its standard

error which we obtain using Taylor’s theorem. By assumption, for large enough N ,

W = x̂2
0/V̂ar {x̂0} has a χ2(1) distribution. As pointed out by Harrell (2001, p. 184),

most statistical packages treat
√
W as having a t-distribution with degrees of freedom

df (rather than a standard normal distribution), however, there is usually no basis

for this outside of the ordinary linear model (Gould, 1993).

We discussed the delta method for calibration in Section 3.3.2, where we used a

first-order Taylor series expansion to approximate the variance of x̂0. The same basic

procedure holds here for LMMs except now Var {Y0} contains additional variability

attributed by the random effects. As a simple example, we consider the balanced

random intercept model. For this case, we have shown that the ML estimator of x0

is given by x̂0 =
(
Y0 − β̂0

)
/β̂1. We should make clear, however, that even though

β̂ does not depend on the variance components, its variance-covariance matrix does!

Therefore, we still need to compute the variance-covariance matrix of β̂ from a mixed

model; for example, the variance-covariance matrix obtained from the SAS/STAT (SAS

Institute Inc., 2011) software’s PROC MIXED procedure or the lme function from the R

package nlme (Pinheiro et al., 2013). The variance-covariance matrix of
(
Y0, β̂

)
is

(5.7) Σ =

Var {Y0} 0

0 Var
{
β̂
}
 =

σ2
0 0

0 (X ′V −1X)
−1

 ,
Since Y0 is independent of Y , it is also independent of β̂. Recall that our point

estimate has the form x = µ−1 (y;β). Let µ−1
1 (y;β) and the vector-valued function
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µ−1
2 (y;β) be the partial derivatives of µ−1 with respect to the parameters y and

β, respectively. Our point estimator is given by µ−1
(
Y0; β̂

)
, where Y0 is a new

observation and β̂ is the EBLUE of β. Using a first-order Taylor-series expansion,

an approximate variance for x̂0 is given by

(5.8) Var {x̂0} =
[
µ−1

1

(
Y0; β̂

)]2

σ2
0 +

[
µ−1

2

(
Y0; β̂

)]′ (
X ′V −1X

)−1
[
µ−1

2

(
Y0; β̂

)]
.

Of course, to obtain V̂ar {x̂0}, we need to replace σ2
0 and V in Equation (5.8) with

their corresponding estimates σ̂2
0 and V̂ , respectively. Once we have V̂ar {x̂0}, an

approximate 100(1−α)% confidence interval for x̂0 is given by x̂0±z1−α/2

√
V̂ar {x̂0}.

As pointed out by Davidian and Giltinan (1995, p. 283), the first term in

Equation (5.8) usually (but not necessarily) dominates the second term, leaving

the cruder approximation Var {x̂0} =
[
µ−1

1

(
Y0; β̂

)]2

σ2
0. For example, consider the

random intercept model discussed earlier. For this model, we have

µ−1 (y;β) = (y − β0) /β1,

∂

∂y
µ−1 (y;β) = 1/β1,

thus, for the balanced case, the crude approximation turns out to be Varcrude {x̂0} =

σ2
ε (1 + τ) /β̂2

1 . In general, the approximate variance (Equation (5.8)) can be difficult

to compute by hand leading to widespread use of the cruder formula. However, given

the ease with which complex computations can be carried out numerically (and with

great accuracy), it is good practice to compute and use both terms. In Section 5.8,

we illustrate with a real data example how easily this can be done using the software

R (in particular, see Example 5.8.1).

For the simulated data in Figure 5.2, we get an approximate standard error (i.e.,

using Taylor’s theorem) of 0.1 which produces a Wald-based calibration interval for

x0 of (0.5859, 0.9778). Compare this to the cruder interval (0.5915, 0.9722) obtained

by using Varcrude {x̂0} in place of the full Taylor-series estimate (5.8).
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Unfortunately, one of the difficulties with inference in LMMs is that

Var
{
β̂
}

=
(
X ′V̂ −1X

)
involves V̂ , but does not take into account its variability. In other words, Var

{
β̂
}

underestimates the true variance of β̂ (see, for example, McCulloch et al. (2008, pp.

165-167)). Thus, any inference relying on Var
{
β̂
}

, including the Wald interval for

calibration just discussed, may be misleading. An alternative is to use the so-called

parametric bootstrap to compute a bootstrap estimate of the variance-covariance

matrix β̂ to use in place of Var
{
β̂
}

in Equation (5.7) (see steps (1)-(4) of Algorithm 2

on page 85).

5.4 Inversion interval

We can also obtain a confidence interval for the unknown x0 by inverting an

asymptotic prediction interval for Y0. Let X0 have the same form as the i-th row of

X, but with xij replaced with x0. For example, if µ (xij;β) = β0 +β1xij +β2x
2
ij, then

X0 = (1, x0, x
2
0)
′
.

For brevity, let µ0 = µ (x0;β), µ̃0 = µ
(
x0; β̃

)
, and µ̂0 = µ

(
x0; β̂

)
where, as

before, β̃ and β̂ denote the BLUE and EBLUE of β, respectively. A new observation,

Y0 say, with unknown x0, is distributed as N (µ0, σ
2
0). Clearly, Y0 − µ̃0 is a normally

distributed random variable with expectation zero (since E {Y0} = E {µ̃0} = µ0).

Also, note that Y0 and µ̃0 are independent, hence, Cov {Y0, µ̃0} = 0. It therefore

follows that the statistic

(5.9) Z =
Y0 − µ̃0√

Var {Y0}+ Var {µ̃0}
=

Y0 − µ̃0√
σ2

0 +X ′0 (X ′V −1X ′)−1X0

is a pivotal quantity that has an asymptotic standard normal distribution or,

equivalently, Z2 ·∼ χ2
1 (a Chi-squared distribution with a single degree of freedom).

The key here is that µ̃0 is a linear function of Y . For example, for a balanced random
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intercept model, Equation (5.9) reduces to

Z =
Y0 − β̃0 − β̃1x0√

σ2
ε + σ2

α +X ′0
[
X ′ (σ2

αIm ⊗ Jn + σ2
εIN)−1X

]−1
X0

,

where Jn = 1n1
′
n is an n× n vector of all ones.

In practice, σ2
0, V , and x0 are usually unknown and need to be estimated from

the data. In such cases, an approximate pivot (essentially a Wald statistic), denoted

Q, can be obtained by replacing σ2
0, V , and x0 in the above equation with their

respective estimates σ̂2
0, V̂ , and x̂0. This suggests an approximate 100(1 − α)%

confidence interval for x0 of

(5.10) Ĵcal(x) =
{
x : zα/2 < Q < z1−α/2

}
,

where zα/2 = z1−α/2 denote the α/2 and 1 − α/2 quantiles of a standard

normal distribution, respectively. Similar to the approximate predictive pivot

(Equation (3.14)), it is unlikely that Equation (5.10) will yield closed-form solutions,

thus, the solution must be obtained numerically. For the simulated data example, a

95% inversion interval based on Equation (5.10), corresponding to y0 = 0.75, is given

by (0.5859, 0.9779), which is very similar to the Wald-based intervals obtained earlier.

5.5 Parametric bootstrap

In Section 3.3.3, we discussed how to calculate calibration intervals based on

the nonparametric bootstrap. A crucial assumption for the ordinary nonparametric

bootstrap, however, is that the data are independent; for reasons discussed earlier,

this assumption is typically not valid for grouped data. Nonetheless, a different

kind of bootstrap, called the parametric bootstrap, has shown promise as a serious

inferential tool. For examples, see McCulloch et al. (2008, pg. 342) and Efron

(2011). When applicable, the parametric bootstrap typically gives answers similar

to a Bayesian analysis with uninformative priors, however, it is much faster than
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MCMC simulations (bootstrap simulations usually only require a few thousand

iterations whereas traditional MCMC simulations may require tens, or even hundreds

of thousands, of iterations). The parametric bootstrap essentially entails sampling

from the fitted model itself, rather than sampling (with replacement) from the

data. For controlled calibration in a mixed model setting, we propose the following

algorithm (essentially a parametric version of Algorithm 1 based on the LMM instead

of the ordinary LM):

Algorithm 2: Parametric bootstrap for controlled calibration in LMMs.

for r = 1 to R do

(1) generate q new values of the random effects, denoted α?r, from a N
(
0, Ĝ

)
distribution;

(2) generate N new errors, denoted ε?r, from a N (0, σ̂2
εI) distribution;

(3) set y?r = Xβ̂ +Zα?r + ε?r;

(4) update the original model using y?r as the response vector to obtain β̂?r ;

(5) generate y?0r from a N (y0, σ̂
2
0) distribution;

(6) compute x̂?0r = µ−1
(
y?0r; β̂

?
r

)
.

end

Note that only steps (5) and (6) are specific to calibration. Similar parametric

bootstrap schemes have also been proposed for mixed models. For example, we

can condition on the current values of the random effects by ignoring step (1) of

Algorithm 2 and using the current EBLUP, α̂, in place ofα?. Semiparametric variants

of Algorithm 2 that involve sampling directly from the EBLUP and residuals have

also been proposed, but Morris (2002) considers this to be bad practice because it

consistently underestimates the true variation in the data.

We applied Algorithm 2 to the simulated data from Figure 5.2. A histogram of

the R = 9, 999 bootstrap replicates of x̂0 is shown in Figure 5.3. Not surprisingly,
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the distribution is reasonably symmetric and approximately normal; the normal Q-Q

plot also confirms this. These bootstrap replicates were used to produce the last

two confidence intervals in Table 5.1. For comparison, we have also included the

calibration intervals computed in the previous sections. The results are all very

similar and there is little reason here for choosing one interval over another. The

Wald-based intervals are symmetric, but, as can be seen from Figure 5.3, symmetry

is not unrealistic for this example (this is not the case for the example given in

the next section). The inversion interval is not symmetric about x̂0, as well as the

bootstrap intervals, however, the bootstrap approach has the advantage of providing

an estimate of the entire sampling distribution of x̂0. It should be noted, though, that

the parametric bootstrap assumes that the model specified for the data is correct! If,

however, the data were not normal, then all of these intervals would likely produce

misleading results. In the next section, we discuss a potential remedy that can be used

for non-Gaussian LMMs, that is, LMMs that do not assume a specific distribution

for the random effects or the errors.

Table 5.1: Approximate 95% calibration intervals for the simulated balanced random
intercept example. The intervals based on the parametric bootstrap are labeled (PB).

Interval Estimate Lower 2.5% Upper 97.5% Length SE

Wald 0.7819 0.5859 0.9778 0.3920 0.0999

Crude interval 0.7819 0.5915 0.9722 0.3807 0.0971

Inversion 0.7819 0.5859 0.9779 0.3920 NA

Normal (PB) 0.7819 0.5873 0.9742 0.3870 0.0987

Percentile (PB) 0.7819 0.5895 0.9789 0.3893 0.0987
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Figure 5.3: Bootstrap distribution of x̂0 obtained using Algorithm 2. The dotted red
curve represents a normal distribution with mean x̂0 and standard deviation estimated
from the bootstrap replicates x̂?0r. The vertical black line indicates the position of x̂0.

5.5.1 Parametric bootstrap adjusted inversion interval.

Although we favor the bootstrap confidence intervals obtained directly from the

R bootstrap replicates of x̂0, researchers are likely more familiar with the inversion

and Wald-based intervals discussed in the previous two sections. These intervals,

however, use the quantiles from a standard normal distribution (i.e., rely on normal

approximations). The parametric bootstrap can be used to improve upon these

intervals by replacing the standard normal quantiles with more accurate ones. For

instance, for the inversion interval, at each run in Algorithm 2, we compute

Q? =
y?0 − µ

(
x̂0; β̂?

)
√
σ̂2?

0 +X ′0

(
X ′V̂ ∗−1X ′

)−1

X0

,
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where the denominator is evaluated at x0 = x̂0. As a result, we obtain the R bootstrap

values Q?r. Let γ?α/2 and γ?1−α/2 denote the sample α/2 and 1 − α/2 quantiles of Q?r,

respectively. A bootstrap adjusted inversion interval for x0 is then given by

(5.11) Ĵ ?
cal(x) =

{
x : γ?α/2 < Q < γ?1−α/2

}
.

We illustrate this on the bladder volume example in Section 5.8. A similar adjustment

can also be made for the Wald-based interval as well; this is very similar to the

studentized bootstrap procedure outlined in steps (6)-(7) of Algorithm 1.

5.6 Distribution free calibration interval

For certain cases, we can easily obtain an asymptotic prediction interval for

a future observation that does not require normality for the random effects or

errors. These intervals are called distribution-free prediction intervals; for details,

the interested reader is pointed to Jiang and Zhang (2002) or Jiang (2007). This

suggests the possibility of a distribution-free calibration interval for x0 by inverting a

corresponding distribution-free prediction interval.

We consider only the case of standard LMMs. Following Jiang and Zhang (2002)

and Jiang (2007), an LMM is said to be standard if each Zi of Equation (5.2) consists

of only 0’s and 1’s, such that each row contains exactly one 1 and each column has at

least one 1. The random intercept model (balanced or unbalanced case) is standard

in this sense; the random slope model, however, is not.

The method for standard LMMs turns out to be quite simple. Compute

the ordinary LS estimate β̂ = (X ′X)−1X ′y, then obtain the residual vector as

e = y−Xβ̂. Denote the α/2 and 1−α/2 quantiles of the residuals as eα/2 and e1−α/2,

respectively. Then, a distribution-free prediction interval for a new observation, y0,

with asymptotic coverage probability 1−α is given by
[
µ̂(x0) + eα/2, µ̂(x0) + e1−α/2

]
,

where µ̂(x0) is the empirical best predictor of y0. For example, for a random intercept
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model, the interval in question is simply
(
β̂0 + β̂1x0 + eα/2, β̂0 + β̂1x0 + e1−α/2

)
. If y0

is observed and x0 is the unknown, then this formula can be inverted (in closed-form)

to produce an asymptotic 100(1− α)% distribution-free confidence interval for x0 of

(5.12)

[(
y0 − e1−α/2

)
− β̂0

β̂1

,

(
y0 − eα/2

)
− β̂0

β̂1

]
.

Using Equation (5.12), a 95% distribution-free calibration interval for the simulated

random intercept example is (0.6121, 0.9852). However, since these data are normal

(we know because we generated the data), the intervals given in Table 5.1 are probably

more accurate.

5.7 Simulation study

To illustrate the practical performance of the confidence interval procedures

discussed in Sections 5.3-5.5, we ran a small simulation study in which (xij,Yij),

i = 1, 2, . . . , 30, j = 1, 2, . . . , 20, were generated from both

Yij = (α0j + β0) + (α1j + β1)xij + εij

and

Yij = (α0j + β0) + (α1j + β1)xij + β2x
2
ij + εij.

In the first model, (β0, β1) = (0, 2), α0j
iid∼ N (0, 0.001), α1j

iid∼ N (0, 0.05),

and εij
iid∼ N (0, 0.001). Similarly, in the second model, (β0, β1, β2) = (0, 3,−1),

α0j
iid∼ N (0, 0.0001), α1j

iid∼ N (0, 0.05), and εij
iid∼ N (0, 0.001). In both models, the

random variables
{
α0j

}
,
{
α1j

}
, and

{
εij
}

are mutually independent. We computed

separate 95% calibration intervals using each method corresponding to five different

unknowns: Y0 =
{

0, 0.5, 1, 1.5, 2
}

. An example data set from each model is displayed

in Figure 5.4.

Due to the large computational time involved in bootstrapping and fitting mixed

models, the Monte Carlo sample size was limited to N = 1, 000 and the bootstrap
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sample size was set to R = 999. Furthermore, because we used a confidence level

of 1− α = 0.95, the standard deviation of the coverage probability is approximately√
0.95 (1− 0.95) /1000 = 0.007; thus, we only report two decimal places of precision

in Tables 5.2 and 5.3.
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Figure 5.4: Scatterplots of simulated data. Left : Data from a balanced random
intercept and slope model. Right : Data from a balanced random intercept and slope
model with a fixed quadratic term. The mean response is shown as a solid black curve
and the dashed lines indicate the positions of the true unknowns (x0,Y0) .

As expected, all four procedures perform well for the balanced random intercept

and slope model, with coverage estimates close to 0.95 (see Table 5.2). For the model

with the quadratic term, the methods still performed well, however, the Wald-based

interval performed much worse for Y0 = 2, with coverage probability well below 0.95

(see Table 5.3). A decrease in coverage was anticipated since we do not expect the

sampling distribution of the inverse estimator, x̂0, to be approximately normal (or
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Table 5.2: Coverage probability and length estimates of calibration intervals
corresponding to various values of Y0 in a balanced random intercept and slope
model. The Monte Carlo sample size was N = 1, 000 and the bootstrap sample
size was R = 999.

Y0 = 0 0.5 1 1.5 2

Coverage Wald 0.95 0.94 0.93 0.94 0.93

Inversion 0.95 0.95 0.94 0.93 0.95

Percentile bootstrap 0.95 0.94 0.93 0.93 0.94

Adjusted inversion 0.96 0.94 0.94 0.94 0.96

Length Wald 0.09 0.14 0.24 0.35 0.45

Inversion 0.09 0.14 0.24 0.34 0.45

Percentile bootstrap 0.09 0.14 0.24 0.34 0.45

Adjusted inversion 0.09 0.14 0.24 0.36 0.47

Table 5.3: Coverage probability and length estimates of 95% calibration intervals
corresponding to various values of Y0 in a balanced random intercept and slope model
containing a quadratic term. The Monte Carlo sample size was N = 1, 000 and the
bootstrap sample size was R = 999.

Y0 = 0 0.5 1 1.5 2

Coverage Wald 0.95 0.96 0.94 0.94 0.87

Inversion 0.96 0.95 0.94 0.93 0.93

Percentile bootstrap 0.94 0.93 0.93 0.93 0.92

Adjusted inversion 0.94 0.94 0.94 0.93 0.92

Length Wald 0.04 0.08 0.17 0.35 1.09

Inversion 0.04 0.08 0.16 0.38 1.36

Percentile bootstrap 0.04 0.08 0.16 0.37 0.63

Adjusted inversion 0.04 0.08 0.17 0.37 1.37
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even symmetric) in this portion of the curve. Surprisingly, the inversion interval seems

to perform as well as the intervals based on the parametric bootstrap with respect to

coverage. However, the interval based on the percentile bootstrap has the advantage

of providing an estimate of the entire sampling distribution of x̂0, rather than just a

confidene interval, as well as good width. Also, the Wald-based and inversion intervals

do not account for the uncertainty in the estimated variance components and rely on

large-sample sizes, therefore, these intervals would not be expected to perform as well

on smaller data sets. A more extensive simulation study allowing for different sample

size configurations would be necessary to further substantiate these claims.

5.8 Bladder volume example

In this section, we discuss an example involving a real dataset taken from Brown

(1993) where the author states:

“A series of 23 women patients attending a urodynamic clinic were

recruited for the study. After successful voiding of the bladder, sterile

water was introduced in additions of 10, 15, and then 25 ml increments

up to a final cumulative total of 175 ml. At each volume a measure of

height (H) in mm and depth (D) in mm of largest ultrasound bladder

images were taken. The product H × D was taken as a measure of liquid

volume...”

The product of H and D is plotted against true volume in Figure 5.5 for each of the 23

subjects. As can be seen from this plot, each subject has a slightly nonlinear trend

and there are some missing observations (i.e., the data are unbalanced).
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Figure 5.5: Scatterplot of the bladder volume data.

Finding an appropriate random effects structure for the model can be difficult.

An informal, but simple, approach is to fit the same model to the data for each subject

and compare the estimated coefficients. To this end, we fit a simple quadratic model,

µ(x) = β0 + β1x + β2x
2, to each of the 23 subjects measurements. Plots of the

individual 95% confidence intervals are displayed in Figure 5.6. We should point out

that we used orthogonal polynomials to obtain each fit; this was done to remove

the correlation between the estimated coefficients. Clearly, the intercept and slope

parameters, β0 and β1, vary greatly between subjects, while β2 remains relatively

constant throughout. This suggests an LMM with random effects for the intercept
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and linear terms. In particular, we used the following random coefficient model:

(5.13) HDij = β0 + α0i + (β1 + α1i) volumeij + β3volume
2
ij.

Notice this is just the linear random trend model (Equation (5.4)) with an additional

quadratic term. Figure 5.7 shows the subject-specific fits based on model (5.13).

Clearly, the model does a good job describing the data. Figure 5.7 also shows how

each subject deviates from the overall fitted mean response µ̂ (x) = β̂0 + β̂1x+ β̂2x
2.
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Figure 5.6: 95% confidence intervals for regression coefficients from subject-specific
fits to the bladder volume data. Note that we used orthogonal polynomials in order
to remove the correlation between the estimated coefficients.
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Figure 5.7: Scatterplot of the bladder volume data with fitted mean response. Left :
Scatterplot of the bladder volume data with fitted mean response (solid black curve).
The horizontal red arrows indicate the positions of the unknown HD0 = 70 mm2 and
the point estimate v̂olume0 obtained from inverting the fitted mean response. Right :
Fitted curves from a quadratic model fit to the bladder volume data. The model
includes (uncorrelated) random effects for the intercept and linear term for each
subject.

Suppose we obtain a new observation, HD0 = 70 mm2, for which the true volume

is unknown. To estimate the unknown volume, denoted volume0, we proceed as

discussed at the end of Section 5.2. In particular, we solve the equation

µ̂ (volume0) = β̂0 + β̂1volume0 + β̂2volume
2
0 = 70 mm2

for volume0 using the quadratic formula. The point estimate obtained is v̂olume0 =

93.4124 ml (see Figure 5.7). Since v̂olume0 is not the ML estimate, we cannot compute
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an approximate ML interval as we could for the balanced random intercept example.

However, the following snippet of R code shows how to use the well-known car package

(Fox and Weisberg, 2011) to compute the approximate standard error based on the

first-order Taylor series estimate given in Equation (5.8). Note that our model has

Var {Y0} = σ2
0 +x2

0σ
2
1 +σ2

ε where σ2
0 and σ2

1 are the variances of the random intercept

and linear terms, respectively. If the random effects were correlated, there would be

an additional term x0σ01 where σ01 = Cov {α0i, α1i}.

R Example 5.8.1.

## Obtain fitted model

mod <- lme(HD ~ volume + I(volume^2), random = pdDiag(~volume),

data = Bladder)

b <- as.numeric(fixef(mod)) # vector of fixed effects

## Set up variance-covariance matrix from Equation (5.7)

var.y0 <- getVarCov(mod)[1, 1] + x0.est^2 * getVarCov(mod)[2, 2] +

summary(mod)$sigma^2

covmat <- diag(4)

covmat[1:3, 1:3] <- vcov(mod)

covmat[4, 4] <- var.y0

## Call the deltaMethod() function from package car

dm <- car:::deltaMethod(c(b0 = b[1], b1 = b[2], b2 = b[3], y0 = 70),

g = "(-b1+sqrt(b1^2-4*b2*(b0-y0)))/(2*b2)", vcov. = covmat)

rownames(dm) <- ""

dm

## Estimate SE

## 93.41 19.63

The resulting standard error is 19.63 which yields an approximate (Wald-based)

95% confidence interval for volume0 of (54.94, 131.89). For comparison, we computed

the same interval assuming the data are cross-sectional, that is, by ignoring the

grouped structure of the data and using the methods discussed in Section 3.3.2.

The resulting interval is (56.43, 130.77) which, as expected, is narrower than the one

previously obtained.
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Obtaining the inversion interval (Equation (5.10)) is less straightforward; we have

to write our own prediction function in R that will also return the standard errors

of the fitted values. Example 5.8.2 shows the minimal R code necessary to obtain

Ĵcal(x) for the bladder volume example. The first line simply extracts the point

estimate, v̂olume0, obtained in Example 5.8.1. The next few lines of code define a

new prediction function, predFun, that simply calls the built-in prediction function,

but additionally returns the standard errors of the fitted values. The last block of

code finds the roots to the equation Q2 − z2
1−α/2 = 0 where Q is the approximate

pivot described in Section 5.4. The resulting interval, (58.24, 137.05), is only slightly

larger than the interval based on the delta method. Notice it is also not symmetric

about the point estimate v̂olume0 = 93.41 ml which, given the nonlinear trend and

increasing variation in the data, is more realistic.

R Example 5.8.2.

## Extract point estimate from previous example

x0.est <- dm[["Estimate"]]

## Function to compute fitted values and their standard errors

predFun <- function(x) {
z <- list(volume = x)

fit <- predict(mod, newdata = z, level = 0)

se.fit <- sqrt(diag(cbind(1, unlist(z), unlist(z)^2) %*%

mod$varFix %*% t(cbind(1, unlist(z), unlist(z)^2))))

list(fit = fit, se.fit = se.fit)

}
## Invert approximate prediction bounds (numerically)

invBounds <- function(x) {
z <- list(volume = x)

(70 - predFun(x)$fit)^2/(var.y0 + predFun(x)$se.fit^2) -

qnorm(0.975)^2

}
c(uniroot(invBounds, interval = c(10, x0.est), tol = 1e-10)$root,

uniroot(invBounds, interval = c(x0.est, 175), tol = 1e-10)$root)

## [1] 58.24 137.05
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In addition, we can also obtain the bootstrap adjusted inversion interval

(Equation (5.11)) described at the end of Section 5.5. Figure 5.8 shows a histogram

of the R = 9, 999 bootstrap replicates of W . As can be seen, the estimated sampling

distribution of W is reasonably normal. The necessary quantiles to compute Ĵ ?
cal(x)

are q?0.025 = −2 and q?0.975 = 1.98 (compare these to the corresponding quantiles from

a standard normal distribution; i.e., ±1.96)). Making the necessary adjustments to

the code in Example 5.8.2 yields Ĵ ?
cal(x) = (57.94, 138.16), which is only slightly wider

than the unadjusted inversion interval based on the normal approximation. In short,

the normal approximation works quite well for these data.
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Figure 5.8: Bootstrap distribution of W for the bladder volume example. A standard
normal distribution (solid black curve) is shown for comparison.
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Finally, we compute the bootstrap distribution of v̂olume0 directly using

Algorithm 2. Our results are based on a bootstrap simulation of size R = 9, 999. Since

we do not expect the sampling distribution of v̂olume0 to be symmetric, we provide

only a 95% percentile bootstrap interval, that is, the interval obtained by taking the

lower 2.5 and upper 97.5 percentiles of the bootstrap distribution. The resulting

interval, (58.37, 136.02), is quite close to the inversion interval previously obtained.

A histogram of the 9, 999 bootstrap replicates of v̂olume0 is given in Figure 5.9. As

indicated by the normal Q-Q plot in Figure 5.9, the bootstrap distribution is positively

skewed (the estimated skewness is 0.3011), providing further support for the inversion

and percentile intervals over the symmetric Wald-based interval obtained earlier using

the delta method.
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Figure 5.9: Bootstrap distribution of v̂olume0 obtained using Algorithm 2. Left :
Bootstrap distribution of v̂olume0 obtained using Algorithm 2. The solid black line
indicates the original point estimate and the dotted red lines indicate the positions of
the sample 2.5 and 97.5 quantiles of the bootstrap distribution. Right : Normal Q-Q
plot of the bootstrap replicates of v̂olume0.
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5.9 Discussion

We have described a number of techniques for controlled calibration in a (linear)

mixed model setting. The Wald-based interval is the simplest, but relies on the

asymptotic normality of x̂0 along with a Taylor-series approximation of its variance.

Perhaps the biggest drawback to using a Wald-based calibration interval is that

it is always symmetric about x̂0. While this is appealing to many researchers, it

is not very realistic in standard situations where, say, the data exhibit nonlinear

behavior (possibly due to horizontal asymptotes) and nonconstant variance. The

asymptotic normality of x̂0 may also be questioned when x̂0 is not the ML estimate

(as in the bladder volume example). This is akin to using the Wald-based method

for nonlinear calibration problems (the software JMP does this). Nonetheless, the

estimated sampling distribution of x̂0 displayed in Figures 5.3 and 5.9 using the

parametric bootstrap are both reasonably normal. Thus, the Wald-based approach

may still produce reliable inference when the distribution of x̂0 can be considered

symmetric. Although more difficult to obtain, the inversion and parametric bootstrap

intervals are presumably superior to the Wald-based interval.

All the methods we have proposed rely on certain assumptions, for example,

normality and large sample size. These assumptions may or may not hold in practice.

If the random effects and errors are not normally distributed, then it is possible to fit a

non-Gaussian mixed model (Jiang, 2007, p. 8). In this situation, we can still calculate

a calibration interval by inverting a corresponding distribution-free prediction interval

with asymptotic coverage probability 1 − α. As we have shown in Section 5.6, this

is rather simple to do for standard LMMs. If, on the other hand, the data are not

normal and the sample size is rather small, then there is not much we can do with

the methods discussed in this chapter.
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Future work on data like these might combine the nonparametric method of

calibration proposed in Chapter 4 with the application to grouped data discussed in

this chapter. In particular, we would recognize the grouped structure of the data

but allow each specimen to have its own (nonlinear) trend by introducing subject-

specific spline terms which may or may not have corresponding random effects. This

may seem far-fetched at first, but remember that the specific approach we took for

nonparametric calibration is already based on an LMM (4.2). This is an obvious, and

likely promising, area of future research, and we discuss it, along with some other

ideas, in the conclusion to this dissertation.
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VI. Conclusions and Suggestions for Further Research

Statistical calibration is an important application of regression in many areas of

science, for example: bioassays, chemometrics, and calibrating laboratory equipment.

For many of these applications, the data are inherently nonlinear with no known

parametric form, or sometimes the data are collected in such a way that the

observations can not be considered as independent. It is necessary, then, to have

simple and general methods available for calibration in these situations. This has

been the main goal of our research.

6.1 Conclusions

We discussed (controlled) semiparametric calibration in Chapter 4. We provided

a frequentist approach to obtaining calibration intervals that involved inverting bias-

corrected prediction intervals based on the simple LMM-based smoother described in

Ruppert and Wand (2003). The coverage probability and length of these intervals

were investigated using a small Monte Carlo experiment. This experiment showed

that these intervals do in fact obtain coverage probability close to the nominal 1− α

level without sacrificing length. The experiment also highlighted that correcting for

bias is more serious for calibration with respect to a mean response (i.e., regulation).

A simple Bayesian analog was also proposed that has the benefit of providing the

entire posterior distribution of x0. We illustrated these methods using real data

analysis examples.

In Chapter 5, we extended the usual methods of (controlled) calibration (i.e.,

point estimation and obtaining Wald-based/inversion intervals) for grouped data

using the LMM. We also proposed a parametric bootstrap algorithm for controlled

calibration in the LMM. This algorithm can be used to obtain confidence intervals

for the unknown x0 directly from the estimated sampling distribution of the point

102



estimator x̂0, or by improving the inversion interval by removing the normality

constraint on the approximate predictive pivot W . These strategies were illustrated

using real data analysis examples. We also briefly described how to use a distribution-

free prediction interval to obtain a distribution-free inversion interval for the unknown

x0 in closed form for the random intercept model.

Calibration will always remain an important topic in statistics. We list here some

possible topics for future research based on extending the ideas in Chapters 4 and 5:

• Semiparametric calibration with constraints;

• Prior selection for x0 in semiparametric calibration;

• Bootstrap for (controlled) semiparametric calibration;

• Calibration in NLMMs;

• Semiparametric calibration with random coefficients.

For the most part, these topics were discussed in the conclusions to Chapters 4 and

5.
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Appendix A: Proofs

In this appendix, we provide the ”extra steps” for deriving some of the

mathematical results presented in this dissertation.

A.1 Conditional posterior of (β,α)

Note that the kernel of a multivariate normal distribution with mean vector µ

and variance-covariance matrix Σ is

K (x;µ,Σ) ∝ exp

{
−1

2
(x− µ)′Σ−1 (x− µ)

}
.

Furthermore, let x and θ be n× 1 vectors, and A be an invertible n× n symmetric

matrix. We can complete the square for the quadratic form x′Ax− θ′x by writing

x′Ax− θ′x = (x− µ)′A−1 (x− µ) + C,

where

µ =
1

2
A−1θ and C = −1

4
θ′A−1θ.

Let the vectors x0 and z0 have the same form as the i-th rows of X and Z in

Equation (4.2), respectively, but with xi replaced with x0. Ignoring the constant of

proportionality, the conditional posterior of (β,α) is

π
(
β,α|y, y0, σ

2
ε , σ

2
α, x0

)
∝ π

(
y|β,α, σ2

ε , σ
2
α, x0

)
π
(
y0|β,α, σ2

ε , σ
2
α, x0

)
π (β) π

(
α|σ2

α

)
∝ exp

{
− 1

2σ2
ε

||y −Xβ −Zα||2 − 1

2σ2
α

||α||2 − 1

2σ2
ε

[y0 − µ(x0)]2
}

= exp

{
− 1

2σ2
ε

(
||y −Xβ −Zα||2 + [y0 − µ(x0)]2 +

σ2
ε

σ2
α

||α||2
)}

= exp

{
− 1

2σ2
ε

(
||y −Xβ −Zα||2 + (y0 − x′0β − z′0α)

2
+
σ2
ε

σ2
α

||α||2
)}

= exp

{
− 1

2σ2
ε

(
||y0 −X0β −Z0α||2 +

σ2
ε

σ2
α

||α||2
)}

,
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where

y0 =

y
y0

 , X0 =

X
x′0

 , Z0 =

Z
z′0


are augmented data vectors and matrices. To show that the conditional posterior of

θ = (β′,α′)′ is normal, note that

exp

{
− 1

2σ2
ε

(
||y0 −X0β −Z0α||2 +

σ2
ε

σ2
α

||α||2
)}

= exp

{
− 1

2σ2
ε

||y∗0 −X∗0β −Z∗0α||2
}

= exp

{
− 1

2σ2
ε

||y∗0 −Ω∗0θ||2
}
,

where, similar to before,

y∗0 =

y0

0

 , X∗0 =

X0

0

 , Z∗0 =

 Z0

(σ2
ε/σ

2
α) I


are augmented data vectors and matrices and Ω∗0 = (X∗0 ;Z∗0). Now, using basic

matrix multiplication,

exp

{
− 1

2σ2
ε

||y∗0
′ −Ω∗0θ||2

}
= exp

{
− 1

2σ2
ε

(
y∗0
′y∗0 − 2y∗0

′Ω∗0θ + θ′Ω∗0
′Ω∗0θ

)}
∝ exp

{
− 1

2σ2
ε

(
θ′Ω∗0

′Ω∗0θ − 2y∗0
′Ω∗0θ

)}
.

Upon completing the square, we get

exp

{
− 1

2σ2
ε

(
θ′Ω∗0

′Ω∗0θ − 2y∗0
′Ω∗0θ

)}
= exp

{
−1

2
(θ − µθ)′Σ−1

θ (θ − µθ)

}
,

where

µθ =
(
Ω∗0
′Ω∗0
)−1

Ω∗0
′y∗0 =

(
Ω0
′Ω0 +

σ2
ε

σ2
α

D

)−1

Ω0
′y0, D = diag {0p×p, Iq×q} ,

and

Σθ = σ2
ε

(
Ω∗0
′Ω∗0
)−1

= σ2
ε (Ω0

′Ω0)
−1
.

Thus, the conditional posterior of the coefficients θ is multivariate normal with mean

vector µθ and variance-covariance matrix Σθ.
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A.2 Conditional posteriors of σ2
ε and σ2

α

Note that since σ2
ε ∼ IG (a, b), then

π(σ2
ε ) =

ba

Γ(a)

(
σ2
ε

)−(a+1)
exp

{
− b

σ2
ε

}
.

Now, ignoring the constant of proportionality, the conditional posterior of σ2
ε is

π(σ2
ε |y, y0,β,α, σ

2
α, x0) ∝ π(y|β,α, σ2

ε )π(y0|β,α, σ2
ε , x0)π(σ2

ε )

∝
(
σ2
ε

)−(a+1)
exp

{
−||y −Xβ −Zα||

2

2σ2
ε

− (y0 − x0β − z0α)2

2σ2
ε

− b

σ2
ε

}

=
(
σ2
ε

)−(a+1)
exp

{(
1
2
||y0 −X0β −Z0α||2 + b

)
σ2
ε

}
,

which is proportional to the density function of a IG
(
a, 1

2
||y0 −X0β −Z0α||2 + b

)
distribution. The proof for the conditional posterior π(σ2

α|y, y0,β,α, σ
2
ε , x0) follows

in an analogous manner.

A.3 LMM log-likelihood

For the LMM (Equation (5.1)), we have that

Y ∼ N (Xβ,V ) ,

hence, the density function is

f(y) = (2π)−N/2 |V |−1/2 exp

{
−1

2
(Y −Xβ)′ V −1 (Y −Xβ)

}
.

Taking the logarithm of f(y) gives the log-likelihood

` = −N
2

log(2π)− 1

2
log (|V |)− 1

2
(Y −Xβ)′ V −1 (Y −Xβ) .

Let V have the block diagonal form V = σ2
ε

{
diag
Ini + ZiG

∗Z ′i

}m
i=1

. Since the

determinant of a block diagonal matrix is just the product of the determinant of
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the block diagonals, then

log (|V |) = log

{
m∏
i=1

∣∣σ2
ε (Ini +ZiG

∗Z ′i)
∣∣}

= log

{
m∏
i=1

(
σ2
ε

)ni |Ini +ZiG
∗Z ′i|

}

=
m∑
i=1

ni log
(
σ2
ε

)
+

m∑
i=1

log (|Ini +ZiG
∗Z ′i|)

= N log
(
σ2
ε

)
+

m∑
i=1

log (|Ini +ZiG
∗Z ′i|) .

Similarly, since the inverse of a block diagonal matrix is another block diagonal matrix,

composed of the inverse of each block, it follows that

(Y −Xβ)′ V −1 (Y −Xβ) =
m∑
i=1

(Y i −Xiβ)′ V −1
i (Y i −Xiβ) ,

where Vi = σ2
ε (Ini +ZiG

∗Z ′i). Therefore, the log-likelihood becomes

` = −N
2

log(2π)− 1

2
log (|V |)− 1

2
(Y −Xβ)′ V −1 (Y −Xβ)

= −N
2

log(2π)− N

2
log(σ2

ε )−
1

2

m∑
i=1

log (|Ini +ZiG
∗Z ′i|)

− 1

2σ2
ε

m∑
i=1

(Y i −Xiβ)′ (Ini +ZiG
∗Z ′i)

−1
(Y i −Xiβ) .
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Appendix B: The R Package investr

In this appendix, we describe the investr package for the R statistical software.

The name investr stands for inverse estimation in R. It is currently listed on CRAN

at http://cran.r-project.org/web/packages/investr/index.html. The source code for

additional functions (e.g., pspline) can be obtained from the GitHub development

site at https://github.com/w108bmg/Research/tree/master/Rcode. To install the

package, simply open an R terminal and type:

install.packages("investr", dependencies = TRUE) # install package

library(investr) # load package

Once the package is loaded, we have access to all of its functions, datasets, and

examples. The three main functions are described in Table B.

Function Description

calibrate For a vector of m response values with unknown

predictor value x0, computes the classical estimate (i.e.,

ML estimate) x̂0 and a corresponding Wald or inversion

interval for the simple linear calibration problem.

invest For a vector of m response values with unknown

predictor value x0, computes the classical estimate x̂0

and a corresponding Wald or inversion interval for

polynomial and nonlinear calibration problems.

plotFit For plotting fitted regression models with or without

confidence/prediction bands.

Table B.1: Main functions from the investr package.
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B.1 The plotFit function

The plotFit function is a general purpose function that is also useful outside of

statistical calibration problems. Its sole purpose is to plot fitted models for R objects

of class lm or class nls with the option of adding a confidence and/or prediction

band. For example, the following snippet of R code fits a simple linear regression

model to the crystal data frame and plots the data along with the fitted regression

line and (pointwise) 95% confidence band. Of course, we can change the default

95% confidence level by specifying, for example, level=0.9. Additionally, we can

also specify an adjustment for simultaneous inference such as Scheffé, Bonferroni, or

Working-Hotelling. The second call to plotFit in the code below illustrates the use

of both of these options.

par(mfrow = c(1, 2), cex.main = 0.8) # side-by-side plots

crystal.lm <- lm(weight ~ time, data = crystal) # fit model

plotFit(crystal.lm, interval = "confidence", shade = T,

col.conf = "skyblue", main = "95% pointwise confidence band")

plotFit(crystal.lm, interval = "confidence", shade = T,

col.conf = "skyblue", level = 0.9, adjust = "W-H",

main = "90% Working-Hotelling band")
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More elaborate models can also be plotted in the same way. For example, the following

snippet of code fits a simple linear, quadratic, cubic, and natural cubic spline model

to the well-known cars data frame and then plots the corresponding fits with both

confidence and prediction bands at the 95% level.

data(cars, package = "datasets") # load cars data frame

library(splines) # load splines package

## Fit models

cars.lm1 <- lm(dist ~ poly(speed, degree = 3), data = cars)

cars.lm2 <- lm(dist ~ ns(speed, df = 3), data = cars)

## Plot models

par(mfrow = c(1, 2)) # 2-by-2 grid of plots

plotFit(cars.lm1, interval = "both", xlim = c(-10, 40),

ylim = c(-50, 150), main = "Cubic polynomial")

plotFit(cars.lm2, interval = "both", xlim = c(-10, 40),

ylim = c(-50, 150), main = "Natural cubic spline")
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B.2 The calibrate function

The most basic calibration problem, the one often encountered in more advanced

regression texts, is the simple linear calibration problem for which

Yi = β0 + β1xi + εi, εi
iid∼ N

(
0, σ2

ε

)
, i = 1, . . . , n,

Y0j = β0 + β1x0 + ε0j, ε0j
iid∼ N

(
0, σ2

ε

)
, j = 1, . . . ,m.

For example, consider the arsenic data introduced in Section 3.2.4. The following

snippet of code obtains a 95% inversion interval and 95% Wald-based interval for

the unknown x0 corresponding to y0 = 3 based on Equations (3.12) and (3.18),

respectively:

calibrate(arsenic.lm, y0 = 3, interval = "inversion")

## estimate lower upper

## 2.931 2.537 3.325

calibrate(arsenic.lm, y0 = 3, interval = "Wald")

## estimate lower upper se

## 2.9314 2.5374 3.3255 0.1929

If instead we were interested in the unknown x0 corresponding to a fixed mean

response of µ0 = 3 (i.e., a regulation problem) we would instead use

calibrate(arsenic.lm, y0 = 3, interval = "inversion",

mean.response = TRUE)

## estimate lower upper

## 2.931 2.860 3.002

B.3 The invest function

In this section, we describe the more general function, invest, which can be used

for more complex univariate calibration problems such as polynomial and nonlinear

calibration.
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For the quadratic linear model in the whiskey age example of Section4.2.1, we

used the following code to obtain a 95% inversion interval for the unknown age

corresponding to sample with a known proof of 108:

whiskey <- data.frame(age = c(0, 0.5, 1, 2, 3, 4, 5,

6, 7, 8), proof = c(104.6, 104.1, 104.4, 105, 106,

106.8, 107.7, 108.7, 110.6, 112.1))

whiskey.lm <- lm(proof ~ age + I(age^2), data = whiskey)

invest(whiskey.lm, y0 = 108)

## estimate lower upper

## 5.233 4.678 5.735

As for a nonlinear regression example, we consider the nasturtium example of

Section 3.4.1. The following snippet of code fits the log-logistic regression function

µ(x; β1, β2, β3) =

 β1, x = 0

β1/ [1 + exp {β2 + β3 ln(x)}] , x > 0
.

to the data and obtains both a 95% inversion interval and 95% Wald-based interval

for the unknown concentration corresponding to the three unknowns 309, 296, and

419:

nas.nls <- nls(weight ~ ifelse(conc == 0, theta1, theta1/(1 +

exp(theta2 + theta3 * log(conc)))), data = nasturtium,

start = list(theta1 = 1000, theta2 = 0, theta3 = 1))

invest(nas.nls, y0 = c(309, 296, 419), interval = "inversion")

## estimate lower upper

## 2.264 1.772 2.969

invest(nas.nls, y0 = c(309, 296, 419), interval = "Wald")

## estimate lower upper se

## 2.2639 1.6889 2.8388 0.2847

Bootstrap approaches to obtaining calibration intervals are currently not

available in the investr package, however, a future release is likely to contain some
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bootstrap functionality. Until such time, the well-known boot package can be used

to obtain the bootstrap calibration intervals described in Chapter 3. The bootMer

function from the R package lme4 (≥ 1.0 − 5) can be used to obtain the parametric

bootstrap calibration intervals discussed in Chapter 5.
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