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FOREWORD 
 
 

This report summarizes some of the authors’ research as part of an effort to 
understand and assess collision avoidance algorithms both in simulation and in a 
hardware-in-the-loop (HWIL) arena studies.  The Navy’s capacity and capability can be 
expanded and enhanced by integrating autonomous unmanned aerial vehicles (UAVs) 
into the force.  They can both reduce labor intensive mission requirements and minimize 
many of the risks associated with personnel in potentially adversarial environments.  In 
addition, they offer unique capabilities for intelligence, surveillance, and reconnaissance 
(ISR) type missions.  Collision avoidance is certainly an essential capability for any 
cooperative venture.  This work was done with support from Public Law Section 219 
funds during calendar year 2013. 
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1.0  INTRODUCTION 

Collision avoidance is one of the most important elements in autonomous operation.  
While many collision avoidance systems have been proposed both to detect impending 
midair collisions and to perform deconfliction maneuvers, it is not the intention of this 
technical publication to provide a comprehensive literature review of them, but rather to 
document a fledgling effort to develop, implement, and test collision avoidance 
algorithms in a small scale hardware-in-the-loop (HWIL) arena.  The HWIL arena hosts 
four TurtleBots that serve as platforms to verify the robustness of the algorithms.  The 
arena environment includes a real-time communication network, combined with 
mapping, localization, and collision avoidance algorithms.  The TurtleBots come 
equipped with sensors and the Robot Operating System (ROS), which provided the 
necessary functionality for navigation (mapping and localization), allowing the authors to 
concentrate on communications and collision avoidance in dynamic environments. 

 
As the number of autonomous vehicles introduced on the ground, air, and sea 

continues to increase for both commercial and military applications, collision avoidance 
is of utmost importance for safety.  The U.S. military operates thousands of autonomous 
vehicles.  Militaries from France, Israel, England, Russia, and elsewhere are also 
operating UxVs (unmanned vehicle, with x standing for air, ground, surface, or undersea) 
in ever-growing numbers.  Currently, 15 of the North Atlantic Treaty Organization’s 
(NATO’s) 26 nations have unmanned systems in their inventories and the number is 
expected to grow (Reference 1).  Future military applications will include teams of UxVs 
working collaboratively for intelligence, surveillance, and reconnaissance (ISR); battle 
space awareness; and for strike type operations.  Additionally, hybrid teams that include 
both manned and unmanned vehicles are envisioned as part of future strategic operations. 

 
UxVs operating autonomously either in standalone or team/swarm configuration 

present a challenge and is an ongoing area of research.  As the level of autonomy 
increases, mission planning needs to transition away from the execution of specifically 
unrealistic deterministic scenarios to a new operational paradigm that must be established 
to understand and validate the decisions made in a dynamic environment.  Collision 
avoidance algorithms are essential in order to successfully execute missions of unmanned 
vehicles in dynamic environments.  These algorithms not only have the potential to 
support developmental efforts but they can also support the test and evaluation (T&E) 
community.  Recognizing such need has guided the developmental effort presented in 
this report, addressing not only algorithm development and simulation but also hardware 
implementation. 

 
This report presents the two-dimensional (2D) version of the Automated Velocity 

Obstacle Collision Avoidance (AVOCA) system, a collection of velocity obstacle (VO) 
based collision avoidance algorithms.  The primary goal of the AVOCA system is to 
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achieve cooperative collision avoidance by dynamic entities in the problem space 
(agents) performed in a distributed fashion with minimal communication requirements.  
The algorithms used in AVOCA achieve implicit cooperation through their application 
and require only basic information (i.e., position and velocity) information on other 
agents for their calculations.  AVOCA has been implemented both in simulation and in 
the HWIL arena with great success; these experiments, along with their results, are 
detailed in this report as well. 

 
The remaining sections of this report are organized as follows: 
 
 Section 2.0 discusses the research efforts most critical to AVOCA. 

 Section 3.0 details the AVOCA algorithms and their implementation. 

 Section 4.0 describes the simulation systems used to test AVOCA, along with 
simulation results. 

 Section 5.0 describes the integration of AVOCA with the TurtleBot systems and 
the experiments conducted with the TurtleBots and their results. 

 Section 6.0 summarizes the information presented. 

2.0  RELATED WORK 

VO collision avoidance has been used for at least the last century, with the earliest 
recorded usage occurring in 1903 for port navigation (Reference 2).  Since then, the 
approach has been rediscovered a number of times, with Fiorini et al. first using the term 
velocity obstacle in 1993 (Reference 3).  Being such a time-tested, effective approach, 
there is a wide variety of VO algorithms.  The AVOCA system uses basic VOs 
(Reference 3), truncated VOs (References 4 and 5), reciprocal velocity obstacles (RVOs) 
(Reference 6), hybrid reciprocal velocity obstacles (HRVOs) (Reference 7), and 
Clearpath (Reference 5).  

 
Generally, a VO is a geometric region (typically an infinite triangle) that is 

calculated using two agents in the problem space, a source agent (Asrc) (i.e., the agent that 
is being guided by the algorithm) and an other agent (Aoth).  The VO region defines the 
set of all points that, if used for the endpoint for Asrc’s velocity vector, will result in a 
collision between the two agents at some point in the future.  A characteristic of basic 
VOs is that there is no assumed cooperation between agents (i.e., between entities in the 
problem space).  If the agents are actually cooperating, then this results in wide avoidance 
trajectories, which can be a problem in close quarters situations.  RVOs, introduced by 
Van den Berg et al. in 2008, solve this problem by allowing agents to split the task of 
avoidance.  However, one issue remained with VOs and RVOs, namely the possibility for 
reciprocal dances.  Basically, this is when two agents repeatedly attempt to pass each 
other on the same side.  The HRVO was proposed by Snape et al. in 2011 and solves this 



NAWCWD TP 8786 

5 

problem by combining components from both VOs and RVOs; this action essentially 
removes a plane of symmetry between the two agents’ VO regions.  These algorithms are 
described in more detail in the following sections. 

3.0  AVOCA ALGORITHM 

An assumption is made that each agent can be represented by a convex shape.  
Typically, these are either circular regions (representing the agent and optionally a safety 
keep-out region) or convex polygons, constructed from points that represent possible 
agent locations.  Often an agent’s precise location cannot be known (Reference 8), and so 
a set of possible locations (typically based on sensory data) are generated.  The set of 
points is provided to AVOCA to determine the convex hull for the point cloud provided 
using the monotone chain algorithm (Reference 9).  Since each point in the point cloud 
represents a possible location for the center of the agent, AVOCA also provides 
functionality for the user to define a physical shape for the agent, which it will use in 
these calculations to create a true shape/region that will completely contain the agent.  

3.1  VELOCITY OBSTACLES (VOs) 

To perform its avoidance calculations, AVOCA builds basic VOs, RVOs, and 
HRVOs for all other agents in the problem space.  The constructs are built using the 
velocity and position of each agent, and so these data items are required by AVOCA.  
Currently, AVOCA relies on inter-agent communication for this information; however, it 
is planned in future work to allow agents to get these data from onboard sensors.  This 
addition will make the collision avoidance system completely localized. 

3.1.1  Basic and Truncated VOs 

As mentioned previously, basic VOs assume no inter-agent cooperation.  When used 
unmodified, this means that Asrc assumes full responsibility for performing the collision 
avoidance between the two agents.  This strategy works well in situations where the other 
agent is noncooperative; however, it also results in overly conservative avoidance 
maneuvers when both agents are attempting to avoid each other.  In its current state, 
AVOCA only uses unaltered VOs in its avoidance calculations when the basic VO does 
not indicate an impending collision between the agents.  Including noncooperative agents 
in the AVOCA calculations is left as future work. 

 
While there are a number of ways to approach VO construction, the method 

described here will perform the construction in place (i.e., in the global problem space) as 
much as possible in an effort to simplify the process/description.  Additionally, to make 
some of the calculations more intuitive, the AVOCA system uses bound Euclidean 
vectors (i.e., vectors in which both the base and end point are used), rather than the more 
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commonly used free vectors (i.e., vectors in which just the magnitude and angle are 
relevant).  Figure 1 shows a visual example of the VO construction process.  This figure 
will be discussed as the VO construction process is described. 

 

 

FIGURE 1.  Example VO Construction. 

 
The first step of basic VO (henceforth referred to as simply VO) construction is to 

find the apex of the VO region.  This apex is found by transposing the velocity vector of 
Aoth (Voth) to the centroid of Asrc (Csrc); in Figure 1, the transposed vector is labeled ௢ܸ௧௛

ᇱ .  
The endpoint of the transposed vector defines the apex of the VO region (A). 

 
The next step is to calculate the combination of Asrc and Aoth.  Conceptually, in order 

to avoid Aoth, Asrc must account for both its own shape as well as Aoth’s.  This step is done 
by calculating the Minkowski sum of the two agent shapes.  For circular agents, this 
process involves simply adding the radii of the two agents.  For convex polygons, the 
sum is calculated by transposing each shape to the origin and adding each point in Aoth to 
all points in Asrc.  Another way of thinking of this is to take the shape for Aoth and copy it 
for each point in Asrc, placing the center of each copy on the points in Aoth.  After 
performing this sum, the new convex hull is once again calculated for the result (C). 

 
However, consider the case where Asrc and Aoth are facing each other, and Asrc intends 

to pass Aoth by going below it (if this situation is viewed from a top-down perspective).  
In this case, the top of Asrc’s shape must be able to go past the bottom of Aoth’s shape.  But 
in the calculation just described, the bottom of C will be defined by the bottom of Asrc 
summed with the bottom of Aoth (by virtue of the convexity of the shape), where it needs 
to be defined by the top of Asrc summed with the bottom of Aoth.  This can be accounted 
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for by rotating the shape for Asrc by 180 degrees before doing the summation (simply 
achieved by negating all points in Asrc after being transposed to the origin).  

 
Once the shapes for Asrc and Aoth are combined into C, it must then be placed relative 

to A.  The center for C (Cc) is calculated by subtracting the center for Aoth (Coth) from Csrc 
and adding the result to A.  When constructed in place, Cc will always be the endpoint of 
Voth as drawn from Coth.  This process can be seen in Figure 1, where an inverted copy of 
Asrc was placed at Cc, and then copies of Aoth are placed on each node on the Asrc copy.  
The resulting convex polygon C is shown by the dashed line encompassing the result of 
this process. 

 
The final step is to calculate the two rays that will define the VO region.  The VO 

rays are defined by the two tangent lines for C that pass through A; in other words, the 
two lines that contain A and are as wide apart as possible while still touching C.  For 
circular agents, the tangents are found using basic trigonometry.  For convex polygon 
agents, the tangents are found by iterating over each point, calculating the z-component 
of the cross product between a vector from A to the current point and a vector from A to 
each other point in the hull.  When a point is found that has a positive result for all other 
points in the hull, then that point defines one of the tangents.  Similarly, when a point is 
found that has a negative result for all points, then that point defines the other tangent.  
Figure 2 shows the algorithm for this process for the positive tangent in pseudocode.  The 
only difference in this algorithm for negative tangent calculation is that on the last line of 
the if block in the for loop, the z-component of R is checked to be less than or equal to 0.  
These points are marked in Figure 1 next to the labels for the VO rays.  Once both 
tangents are found, the rays are set and stored, and the VO is complete.  

 
If there is uncertainty in an agent’s position, then there is a possibility that the agent 

shapes could overlap without a collision occurring.  If this happens, then when a VO 
between the two agents is built, the VO apex will fall inside the C shape.  Because the 
tangent rays must contain the entire C shape, and are based at A (which is now inside of 
C), attempting to calculate the rays using the procedure previously described will 
invariably result in error.  In AVOCA, if A falls inside of C, then a special VO 
construction process is used with the goal of generating near-flat VO regions that 
encourage the agents to separate.  Near-flat means that the smaller angle between the VO 
rays is less than π radians by an arbitrarily small amount.  If the rays are exactly π radians 
apart, then the decision for which side of the rays the VO region falls on is determined by 
floating point error rather than the intention of AVOCA (as the VO region must be 
convex, and so is always on the side of the rays defined by the smaller angle between 
them).   
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polygon ← The set of convex polygon nodes 
A ← The VO apex 
 
done := false 
for curNodeIdx := 0...|polygon|-1 and done = false do  

P := polygon[curNodeIdx]  
allPos := true  
for i := 0...|polygon|-1 and allPos = true do  

if i ≠ curNodeIdx then 
M := polygon[i] 
ሬܴԦ: ൌ ሬሬሬሬሬԦܲܣ ൈ  ሬሬሬሬሬሬԦܯܣ
allPos := (Rz ≥ 0)  

end if  
end for  
if allPos = true then  

:1ሬሬሬሬሬሬሬሬሬሬԦݕܴܽ ൌ  ሬሬሬሬሬԦܲܣ
done := true 

end if  
end for  

FIGURE 2.  Positive Tangent Calculation for Convex Polygons. 

 
If circular agents are being used, then the VO for the overlapping agent case is 

constructed by drawing a vector starting at Cc and initially ending at A (which, if you 
recall, is inside of C).  The vector magnitude is then adjusted to be the radius of C plus a 
small amount (enough to place the endpoint just outside of C, 0.0002 was arbitrarily 
selected for the experiments presented), while the angle of the vector is maintained.  The 
endpoint of this vector is now used as the new VO apex, and the VO construction process 
continues on as previously described.  

 
If convex polygons are being used to represent the agents, then the VO is constructed 

by first finding the point on the polygon edge that is closest to A, let this point be P (note 
that P can fall on both the edges and the nodes on the polygon).  Next, a vector is drawn 
from the centroid of C to P.  Just like for circular agents, the magnitude for this vector is 
adjusted to make the endpoint fall slightly outside of C and this endpoint is used as the 
new VO apex.  Since C is a convex polygon, the points defining the VO rays must be the 
two nodes for the edge on C that contains P.  If P is one of the nodes on C, then P and the 
two nodes adjacent to P on C are considered, with the two points resulting in the widest 
VO being selected.  

 
Truncated VOs are a type of VO that is useful for static/stationary objects/agents.  In 

AVOCA, VOs are truncated if the ratio of the slower agent speed to the faster agent 
speed is less than a constant threshold value (2.5% was arbitrarily selected as a proof of 
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concept for all experiments presented) or if either agent has a zero speed (covering the 
very slow speed edge case).  In other words, a VO is truncated if either agent can be 
effectively assumed to be stopped to the other agent. 

 
To build a truncated VO, first a normal VO is built as described previously.  The VO 

is then truncated by terminating the VO rays at the ray defining points on C (rather than 
at A).  The bottom of the VO is then defined by the section of line segments on C that are 
between the VO defining points while maintaining the convexity of the VO (i.e., the set 
of line segments that are closer to A).  If the VO in Figure 1 was to be truncated, the 
bottom of the VO would be defined by the two line segments on the bottom side of C 
between the VO ray defining points; in the figure, these line segments are dashed and 
drawn in bold on C (note that this particular VO would not be truncated by AVOCA, this 
is just used as an example for this discussion).  

3.1.2  RVOs and HRVOs 

As stated in the previous section, one of the major drawbacks of basic VOs is that 
each agent assumes full responsibility for avoiding the other agents, regardless of the 
potential for collaboration from other agents.  RVOs were developed to help deal with 
this situation.  When employing RVOs, the implicit assumption is other cooperating 
agents will share the task of avoidance equally.  In the problem space, this often results in 
VO regions that are smaller in the immediate area of operation, allowing for more 
effective use of the space.  

 
RVOs are created by first constructing the VO, as described previously.  Next, the 

VO apex is shifted to be the midpoint between A and the endpoint of Vsrc; the selection of 
the midpoint for this shift can be thought of as the agents each taking half of the load in 
avoiding each other.  The resulting VO region is the RVO.  One key restriction on RVO 
construction is that the modifications should not be made if the endpoint of Vsrc does not 
fall in the basic VO.  If the Vsrc endpoint was not in the basic VO, then the apex for the 
RVO could possibly fall outside the basic VO region.  This would be an inaccurate VO 
region, as it would then include points that would not result in a collision.  This 
restriction guarantees that the RVO will always be a subset of the basic VO. 

 
One of the major downsides of RVOs (and technically basic VOs as well) is the risk 

of entering a reciprocal dance (Reference 10).  This risk occurs when the two agents are 
facing each other and repeatedly select the same side to pass on.  This issue is addressed 
by HRVOs (Reference 7) and is achieved by making the modifications to the basic VO to 
favor the source bot’s current velocity (i.e., encourage the bot to change course as little as 
possible).  To describe the HRVO construction process, first examine what was done in 
the RVO construction process.  Two strips were removed from the VO to make the RVO; 
one that followed each ray (with overlap between the two apices).  HRVOs are 
constructed by adding one of these strips back in, to make the modification nonsymmetric 
(which is what will allow for the bias in the algorithm).  The strip added back in is the 
one furthest away from the Vsrc endpoint.  Another way of looking at this is that the 
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HRVO will be constructed using either ray 1 from the VO and ray 2 from the RVO or 
ray 1 from the RVO and ray 2 from the VO (with the RVO ray extended in both cases to 
find the HRVO apex).  

 
Figure 3 illustrates the differences between the three VO types described.  In this 

figure, the three apices are indicated for the three VOs shown.  The VO is the same 
region used in Figure 1, the RVO (the darkest VO region in the figure) is constructed by 
shifting the VO apex to the midpoint between Vsrc’s endpoint and the VO apex, and the 
HRVO is constructed by adding the right strip of the VO back onto the RVO (with the 
left RVO ray extended along the yellow line, to get the HRVO apex).  

 

 

FIGURE 3.  Comparison Between VO, RVO, and HRVO. 

 
A characteristic of the VOs between two agents is that if the VO region is rotated 

180 degrees about the midpoint between the agent velocity endpoints, then the resulting 
region is the VO from the other bot’s perspective (i.e., as if Aoth were the source).  Using 
this, it can be seen how the HRVO modification achieves implicit agent cooperation.  
Consider Figure 3.  In this example, the endpoint for Vsrc is reasonably close to either ray 
of the RVO (recall that this is the darkest region in the figure), which is an ideal condition 
for reciprocal dances to occur.  The HRVO is constructed by adding the right strip from 
the VO back to the RVO, making the HRVO the combination of the two darker regions 
in this image.  Now it is much more likely that the source agent will elect to simply slow 
down some to avoid the other agent.  Now imagine the HRVO being rotated around the 
midpoint between the two velocity endpoints to achieve the HRVO for Aoth.  In this case, 
the left strip from the VO was added to the RVO to create the HRVO, making it most 
likely that Aoth will simply speed up a little to avoid Asrc.  And so, cooperation is achieved 
with no explicit communication regarding how to do so.  
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It is conceivable (even likely, in some applications) that the presence of other agents 
will preclude selecting a velocity that will cooperate with Aoth.  In this case, the HRVO 
algorithm naturally will change the nature of the implicit cooperation in future time steps 
(switching the sides that are added back onto the RVO). 

 
As stated previously, the AVOCA system uses VOs and HRVOs in its calculations, 

but only for agents that pass an initial relevancy check.  There are two conditions used to 
determine if an agent is relevant to Asrc:  

 
1. Aoth is in front of Asrc  
2. Aoth is traveling in the same direction as Asrc  
 
The first condition is checked by determining if any portion of the other agent’s 

shape falls in the half-plane that contains Vsrc and is defined by the line perpendicular to 
Vsrc.  The second condition is checked by determining if the following relationship is 
true:  

 

െ
ߨ
2

൑ ሺס ௦ܸ௥௖ െ ס ௢ܸ௧௛ሻ ൑
ߨ
2

 (1)

 
If either condition is true, then the agent is considered relevant, and VO construction 

continues as described.  If both conditions are false, then the agent is considered 
nonrelevant and is ignored in the avoidance calculations.  This addition can reduce the 
computational load considerably for each agent, especially in clustered/congested 
environments.  

3.2  CLEARPATH 

After the VOs and HRVOs have been constructed for all other agents in the problem 
space, the next step in AVOCA is to determine what velocity to recommend for the 
source agent.  While the VO regions remove some possibilities for the result, there is still 
an infinite set of candidate velocities remaining.  The Clearpath (Reference 5) algorithm 
provides a method for reducing this problem space to a discrete, relatively small number 
of candidates.  In addition, the algorithm has also been proven to always have the optimal 
velocity choice in the set of candidates it produces, where optimal is defined as the 
velocity that is as close as possible to the agent’s preferred velocity (Reference 5).  

 
In the AVOCA implementation of the Clearpath algorithm, candidate velocity 

endpoints are generated in one of four methods:  
 
1. A VO region apex (if the VO is not truncated)  

2. Any of the nodes along the truncation polyline (if the VO is truncated)  

3. The projection of preferred velocity onto an edge of the (HR)VO, including 
projections onto the truncation polyline  
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4. A point of intersection between two VO regions  
 
The set of candidate velocities is generated by iterating over all (HR)VOs generated 

for the agent, calculating the candidates using each of these four methods.  Any candidate 
that falls inside of another VO region is removed.  Once all (HR)VOs have been iterated 
over, the candidate that is closest to the preferred velocity is selected as the result 
(i.e., the suggested velocity for Asrc).  If there are no valid candidates, then the published 
Clearpath algorithm removes the (HR)VO for the agent farthest away from the source, 
and repeats the process.  

 
Figure 4 illustrates application of the Clearpath algorithm.  In this figure, the blue 

polygon represents the source agent, the circles represent candidate velocities generated 
by Clearpath, the red vector represents the source agent’s preferred velocity, and the 
green vector represents the velocity suggested by Clearpath.  The agent in the center of 
problem space is stationary, resulting in a truncated VO, as shown.  The other two agents 
have HRVOs drawn for them.  In this figure, there is at least one Clearpath candidate 
velocity generated by each of the four possible methods described.  

 

 

FIGURE 4.  Clearpath Example. 

 
VO removal in Clearpath is modified in the AVOCA system, as the furthest away 

agent, and may not be the most irrelevant agent, especially if all agents are in close 
quarters.  If the source agent is moving, then an ignore factor is calculated for the each 
other agent (if the source agent is not moving then bot distance is used for this value).  
The first step is to rank the other agents based on distance, considering how fast the 
source agent is traveling:  
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݇݊ܽݎ ൌ ൤
ݐ݋ܤ݋ܶ݁ܿ݊ܽݐݏ݅݀
݀݁݁݌ܵ݁ܿݎݑ݋ݏ

൨ (2)

 
This will coarsely sort the agents based on the time it will take the source agent to 

reach them.  Next, the agents are sorted within their ranks, based on the direction they are 
traveling compared to the source agent:  

 

ݎ݋ݐܿܽܨ݁ݎ݋݊݃݅ ൌ ݇݊ܽݎ ൅ ቆ1 െ
|݂݅ܦ݈݁݃݊ܽ|

ߨ
ቇ (3)

 
where angleDif is the difference between the source velocity vector angle and the other 
agent velocity angle on (−π, π).  Conceptually, this calculation makes it so that agents 
traveling in the same direction as the source agent will be more likely to be ignored than 
those traveling in the opposite direction.  For example, assume there are two other agents 
A1 and A2 that are in the same rank, but A2 is farther away from the source.  Now say that 
A1 is traveling in the same direction, beside the source agent, whereas A2 is traveling 
directly at the source.  In the original Clearpath algorithm, the VO for A2 would be 
removed from consideration first, very possibly opening up the problem space, and 
ultimately putting the source agent on a collision course.  However, if ignore factors are 
used, then A2 is more important (i.e., has a lower ignore factor), and so the VO for A1 
would be removed first. 

 
In normal operation it is quite unlikely that the set of (HR)VOs occlude the entire 

problem space (as that is what is required for Clearpath to not be able to generate a 
candidate velocity).  However, the introduction of kinematic VOs (described in the next 
section) to the problem space make exactly the opposite true, and so this addition is 
largely focused on solving the side effects of their usage.  

3.3  KINEMATIC VELOCITY OBSTACLES (KVOs) 

KVOs are a novel concept with the goal of allowing a Clearpath based avoidance 
scheme that takes into account the physical capabilities of the source agent.  In a general 
VO approach, there is nothing to stop Clearpath from suggesting a velocity that is not 
realistically attainable by the agent.  For example, if car-like agents are being guided 
using Clearpath, there is nothing to stop the algorithm from suggesting an agent come to 
a complete stop in one time step followed by a 90-degree left turn (relative to its current 
heading) at 100 miles per hour.  If a time step is long enough to allow the agent to get up 
to that speed, then that much is acceptable; but a car-like agent cannot change direction 
immediately, additional maneuvering is required.  KVOs are intended to remedy this 
problem while still fitting cleanly into a VO based avoidance scheme.  

 
KVOs are constructed based solely on the source agent’s capabilities (i.e., no 

information from other agents is needed).  They are based on (one-time) user specified 
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movement axes, which describe the directions and speeds an agent can travel relative to 
the current heading.  Each movement axis has the following information:  

 
 Angle of axis relative to current heading  

 Range of radial motion on this axis  

 Minimum/maximum speed for the axis  

 Maximum speed increase and decrease possible in a time step on the axis 
(i.e., the acceleration and deceleration limits) 

 
Clearly, some knowledge of the operating environment (i.e., time step size) is 

required for accurate values for the speed change data (and to a lesser degree the range of 
radial motion data items, though in empirical testing these are much less sensitive).  
However, even very rough values will help improve agent performance.  If nothing else, 
arbitrarily large values can be used for these data items, effectively removing their role in 
KVO construction (the remaining data items will still provide considerable benefits). 

 
Each movement axis has a banded velocity obstacle (BVO) constructed that is 

centered on the axis.  The apex of the BVO is the center of the agent shape.  The angle 
between the rays for the BVO is equal to the range of radial motion provided for the axis.  
If the range of motion is wider than π radians, then the BVO is split in half along the 
axis itself.  

 
Next, two arcs are constructed between the BVO rays, centered at the agent center.  

These arcs define a band that is between the BVO rays but is not in the BVO region.  The 
arc radii for the band are based on the agent’s current speed and the speed constraints for 
the axis.  If the agent’s current velocity can be associated with the movement axis (i.e., its 
endpoint is in the BVO region), then the magnitude of the current velocity vector is used 
as the current speed (S) for the radii calculations.  Otherwise, the agent’s velocity vector 
is projected onto the axis, and the magnitude of the resulting vector is used for S.  The arc 
radii are calculated using the following equations:  

 
௜௡௡௘௥ݎ ൌ ሺܵݔܽ݉ െ ,݁ݏܽ݁ݎܿ݁ܦ݀݁݁݌ܵݔܽ݉ ሻ݀݁݁݌ܵ݊݅݉ (4)

 
௢௨௧௘௥ݎ ൌ ሺܵݔܽ݉ ൅ ,݁ݏܽ݁ݎܿ݊ܫ݀݁݁݌ܵݔܽ݉ ሻ (5)݀݁݁݌ܵݔܽ݉

 
If S is zero and at least one other axis has a non-zero S, then the band is not used 

(resulting in the BVO operating as a typical VO).  This ensures that the avoidance 
algorithm will not attempt to direct the agent to suddenly change to travel in the opposite 
direction.  

 
Lastly, normal VOs are constructed to fill in the areas between the axis BVOs.  The 

resulting set of KVOs is then added to the set of VOs generated for the other agents and 
Clearpath is executed like normal.  The only regions that Clearpath can use for velocity 
suggestions are the band(s) in the BVOs.  Figure 5 shows an example agent with four 
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movement axes along cardinal directions (the black triangle in the bot center indicates the 
bot heading).  The green VO regions are the BVOs and the orange regions are the VOs 
used to fill in between the BVOs.  The forward and left (relative to the bot heading) axes 
of motion have active bands in their BVOs, while the backward and right bands were 
cleared because the velocity projection does not fall on those axes.  

 

 

FIGURE 5.  KVO Example. 

 
As stated previously, the addition of KVOs will result in very common usage of VO 

removal in Clearpath, as the majority of the problem space is typically blocked by the 
KVOs.  For example, consider Figure 5.  In the situation shown, the agent only has two 
small regions (the band around the velocity vector, and a small region near the agent 
center) from which to select velocities, relative to the same problem space with no KVOs.  
It would be relatively easy to add a single other agent that would occlude both of these 
regions.  If multiple other agents are added, it becomes more likely that the entire 
problem space is occluded than not.  Additionally, in AVOCA KVOs can never be 
removed in Clearpath’s VO removal process (they are given arbitrarily low ignore 
factors), which is done to ensure that the velocity constraints provided are always adhered 
to.  If the algorithm attempts to remove a KVO, then damage control (DC) velocity 
selection is performed instead.  

 
The idea of DC velocity selection is that the algorithm has detected that the agent is 

very close to collision, and so the suggested velocity should guide the agent away from 
collision as best as possible, given the agent KVO set.  First, the set of candidate 
velocities is generated for the problem space with just the KVO set present, S1; these 
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represent ideal possible velocities for the agent.  Next, using the rank from the other 
agent ignore factors, the set of closest agents are selected along with their associated 
VOs.  The set of candidate velocities are then generated for these VOs without the KVOs 
present, S2; these represent the ideal velocities that will get the agent away from collision.  
Lastly, the velocity from S1 whose endpoint is closest to that of any velocity in S2 is 
selected and returned as the suggested velocity.  Conceptually, this finds the physically 
feasible velocity that will get the agent away from collision as fast as possible.  

4.0  SIMULATION RESULTS 

Two simulation systems were used to test the AVOCA system, a MATLAB 
simulation (allowing 3 degrees of freedom [DOF]) and a 6DOF simulation.  Generally 
speaking, the simulations manage a set of virtual agents (with associated velocity, 
heading, and position data) and manage the time passing in the simulated environment.  
Agent position and velocity information is passed to AVOCA, which returns back 
velocities that will result in collision free trajectories.  

 
A key difference between the simulations is how they use the information returned 

from AVOCA.  The MATLAB simulation provides an environment where AVOCA has 
complete control over the agents (i.e., the results from the AVOCA calculations are 
followed exactly).  This provides an ideal environment for AVOCA, demonstrating best 
case scenarios for the system.  

 
The 6DOF simulation passes the AVOCA results through a first-order filter before 

applying them to the virtual agents (described in more detail in Section 4.2).  The filter 
acts as a smoothing function for vehicle inputs in terms of speed and turning commands.  
This provides a valuable testing tool, demonstrating AVOCA’s performance in nonideal 
environments. 

4.1  MATLAB SIMULATION 

The MATLAB Simulation uses C++ simulation code (with AVOCA integrated) to 
run the simulation and create data files detailing the run.  These data files are then used 
by MATLAB to create an animation showing what happened in the run.  For example, 
Figure 4 is a screenshot from a MATLAB animation.  

 
The simulation is initialized through input files indicating file locations for the 

simulation and agent information.  The agent positions are indicated via a point cloud 
(which is converted by AVOCA to a convex polygon).  Goal locations and movement 
axes (if used) are also indicated for each agent.  Using this information, the simulation 
environment is constructed, and simulation is then executed.  Each time step represents a 
5% step of the simulation unit time (specific units are not needed for the purposes of this 
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simulation, as long as all agents (and other measured values) use the same units); for 
example, if the simulation unit time is an hour, then a time step is 5% of an hour, or 
3 minutes.  This percentage can be changed as desired by the user (5% was used for the 
experiments shown).  

 
Preferred velocities are generated for each agent to be the maximum agent speed 

heading directly at the agent’s goal.  As stated previously, the AVOCA suggested 
velocities are used unmodified for each time step.  As soon as an agent reaches its goal, it 
holds position.  Once all agents reach their goals the simulation ends.  The simulation is 
capped at 500 time steps (arbitrarily selected), in the event that the agents cannot reach 
their goal locations.  

 
Agent data were generated for the experiments shown using a random data 

generation tool for the MATLAB Simulator.  Agents were set to be spaced equally 
around a ring 100 units across.  The agents themselves are indicated by a cloud of 
between 10 and 20 points, no more than 10 units apart.  Each agent was indicated to have 
a physical shape representable by a circle with a radius of 3, which was combined with 
the agent’s point cloud by AVOCA.  Convex polygons were made for each agent using 
this information.  Agent goals were indicated to be diametrically across the ring from the 
agent starting location.  Rings of 3, 6, 9, 12, and 15 agents were generated.  

 
Two configurations were used for each agent layout, one using KVOs and one not 

using them.  The KVOs used were the same for all agents.  Each agent was given a 
forward and backward movement axis, with the same data values:  

 
 Range of radial motion: 20 degrees

 
 

 Minimum speed: 0  

 Maximum speed: 25  

 Maximum slow down: 5  

 Maximum speed up: 10  
 

This results in 10 unique configurations (5 variations on bot number/position, each 
run both with and without KVOs).  Each configuration was run 30 times, yielding a total 
of 300 runs.  For each run, a safety radius of 0.25 unit was used for the agents (i.e., agent 
collisions only occur if the agent shapes overlapped by more than 0.5 unit).  Data were 
recorded for the runs indicating the number of time steps used, the number of agent 
collisions, and the number of invalid velocity selections (as defined by the movement 
axes).  The recorded data are summed up in the box plots shown in Figure 6*. 

                                                 
* Note that shorthand nomenclature is used to indicate agent configurations in this figure, where “C3” 

indicates the circle of 3 bots, “C6” indicates the circle of 6 bots, and so on. 
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FIGURE 6.  Box Plots Summarizing MATLAB Experiments. 



NAWCWD TP 8786 

19 

A boxplot (Reference 11) is a simple graphical representation of a probability 
distribution.  The edges of a box plot represent the 25th and 75th percentile with the line 
inside the box representing the median.  Additionally, error bars indicating the 10th and 
90th percentiles are included above and below each box.  In Figure 6, the data averages 
are also shown as floating markers in the same column as the box plots.  

 
Chart A in Figure 6 summarizes the collisions recorded during the runs.  Both 

approaches (KVO and no KVO) did very well up to the circle of 9 experiments, recording 
less than 5 collisions in all runs (and 1 or less in the majority of runs).  However, with 
12 and 15 bots, the no KVO experiments had a notable increase in collisions; whereas the 
experiments using KVOs recorded less than 5 collisions in the vast majority of runs.  This 
result is not unexpected, since without KVOs the agent movements will almost certainly 
be erratic when many agents are in close quarters (keeping in mind that in the MATLAB 
simulation, agents move exactly as AVOCA indicates).  

 
Trendlines were also added to Chart A to visualize the growth of average collisions 

recorded (the floating markers in the chart); R2 values are also shown for the trendlines (a 
metric indicating how closely the trendline matches the data, where 1.0 is a perfect 
match).  For the experiments using KVOs, a linear trendline was used (shown in purple 
on the chart), whereas a third order polynomial was used to match the experiments that 
did not use KVOs (shown in cyan on the chart).  This indicates that it is reasonable to 
expect that as the number of agents in the area of operation increases, the number of 
collisions should increase at a much slower rate if KVOs are used.  

 
Chart B in Figure 6 shows the summary for the invalid velocity data recorded.  As 

expected, the KVO experiments reported 0 invalid velocities for all experiments and so 
were not included in this chart.  As can be seen, velocities outside of the agent’s true 
abilities are selected very frequently when KVOs are not used, even when relatively few 
agents are in the area of operation.  This means that when applied to real agents with 
physical limitations, AVOCA (and most other VO based collision avoidance algorithms) 
will frequently provide unrealistic velocities to the agents if KVOs are not used, which 
can easily be expected to result in agent collisions. 

 
Lastly, Chart C in Figure 6 summarizes the amount of time steps taken for the 

experiments to complete.  Recall that an experiment was ended if either all agents 
reached their goals or 500 time steps occurred.  Generally, the KVO experiments took 
longer to complete for the experiments with 9 or fewer agents.  This result is expected, 
since when KVOs are used the agents are much more restricted in their movements, 
resulting in (relatively) slower traversal of the problem space.  When 12 agents were 
present, the two approaches took roughly the same amount of time to complete.  
However, when 15 agents were present, the experiments not using KVOs often resulted 
in agent deadlocks or agent scattering (i.e., an agent(s) selecting a velocity with a 
relatively enormous magnitude to avoid a collision, resulting in the agent moving very far 
away in the problem space almost instantaneously), meaning the runs were timed out at 
500 time steps.  When KVOs are used, agents move more predictably and realistically, 
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effectively sidestepping both of these issues, resulting in more predictable/stable 
performance. 

 
Trendlines and R2 values were added to Chart C in the same manner as Chart A.  

Once again, a linear trendline was used to match the data for experiments using the 
KVOs.  For the experiments not using KVOs, a second order polynomial was used to 
match the recorded data.  A similar conclusion can be drawn for Chart C as was in 
Chart A, namely that as the number of agents increase, the amount of time needed for the 
agents to traverse the area can be expected to increase at a much slower rate if KVOs 
are used.  

4.2  6DOF SIMULATION 

A graphical Multiagent 6DOF Simulation was written to test and evaluate AVOCA.  
The simulation allows the user to activate one of several predefined scenarios where the 
agents are to avoid one another.  In addition, two other types of collision avoidance 
algorithms can be activated, namely no collision avoidance (i.e., a worst-case scenario to 
serve as a baseline for comparison) and force-based virtual spring collision avoidance.  
There is also a way to activate several graphical features used for visualization during the 
simulation.  For example, red and yellow arrows representing the current and preferred 
heading of all the agents (see Figure 7) can be activated via a checkbox.  

 

 

FIGURE 7.  Snapshot of 6DOF Simulation Arena. 
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The Multiagent 6DOF Simulation currently simulates three-dimensional (3D) agents 
maneuvering on a 2D surface, but it can be easily extended to simulate 3D agents 
maneuvering in a 3D volume.  This will allow testing and evaluation of 3D AVOCA 
algorithms currently in development for unmanned aerial vehicles (UAVs). 

4.2.1  Graphical Components 

Three publicly available graphics libraries are used in the Multiagent 6DOF 
Simulation: Open Graphics Library (OpenGL), OpenGL Utility Toolkit (GLUT), and the 
OpenGL User Interface (GLUI).  OpenGL (Reference 12) is a cross-language, multi-
platform application programming interface for rendering 2D and 3D computer graphics.  
The Application Programming Interface (API) is typically used to interact with a graphics 
processing unit to achieve hardware-accelerated rendering.  

 
GLUT (Reference 13) is a library of utilities for OpenGL programs, which primarily 

perform system-level input/output (I/O) with the host operating system.  Functions 
performed include window definition, window control, and monitoring of keyboard and 
mouse input.  Routines for drawing a number of geometric primitives (both in solid and 
wireframe mode) are also provided, including cubes, spheres and the Utah teapot.  GLUT 
also has some limited support for creating pop-up menus.  The two aims of GLUT are to 
allow the creation of cross-platform portable code between operating systems and to 
make learning OpenGL easier.  OpenGL programming while using GLUT often takes 
only a few lines of code and does not require knowledge of operating system-specific 
windowing APIs.  

 
GLUI (Reference 14) is a C++ user interface library that provides controls such as 

push buttons, radio buttons, checkboxes, and spinners to OpenGL applications.  It is 
window-system independent, relying on GLUT to handle all system-dependent issues, 
such as window, keyboard, and mouse management.  

4.2.2  Simulation Dynamics 

An agent’s motion is governed by two ordinary differential equations:  
 

݄݃݊݅݀ܽ݁ ߜ
ݐߜ

ൌ ݄݁ܽ݀݅݊݃௖௠ௗ െ ݄݁ܽ݀݅݊݃ (6)

 
and 
 

݀݁݁݌ݏ ߜ
ݐߜ

ൌ ௖௠ௗ݀݁݁݌ݏ െ (7) ݀݁݁݌ݏ

 
These equations are first-order filters on the commanded input, and are solved using 

a second-order Adams-Bashforth numerical integrator (Reference 15).  Integrating 
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Equation 6 (i.e., time rate of change of heading) yields the agent’s heading, and 
integrating Equation 7 (i.e., time rate of change of speed) yields the agent’s speed, and 
together these form the agent’s preferred velocity vector.  The preferred velocity vectors 
of all the agents are then passed to the AVOCA algorithm along with each agent’s current 
velocity vector, and on return, each agent receives a new velocity vector that will result in 
collision-free travel for the current time step.  

4.2.3  Simulation Results 

To evaluate the performance of the AVOCA algorithm, 20 agents having a 1-foot 
radius were randomly positioned with random headings in a 32 x 32 square foot (ft2) 
simulated arena, as shown in Figure 7.  When an agent reached the arena boundary, it 
was given a heading that would take it back into the arena, passing near the center.  Three 
collision avoidance cases where tested in the Multiagent 6DOF Simulation, and the 
results are plotted in Figure 8 as three box plots.  

 

 

FIGURE 8.  Multiagent 6DOF Simulation Results. 

 
In the box plots show in Figure 8, all values beyond the 10th and 90th percentiles are 

graphed individually as a point on a graph.  In this figure, the box plots for the number of 
agent collisions per time step that occurred during a 1-minute simulation run (each time 
step is 1/60 second, so 1 minute = 3,600 time steps) are shown.  The leftmost boxplot in 
Figure 8 shows the results of the simulation when using no collision avoidance, the 
middle boxplot shows the results when using virtual spring coupling, and the rightmost 
boxplot shows the results when using AVOCA.  Collision avoidance using virtual spring 
coupling is implemented as a repulsive spring force that activates when two or more 
agents enter the local neighborhood of another agent, thereby “pushing” them apart.  As 
seen in the figure, this drastically reduced the number of collisions between agents 
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compared to the case when using no collision avoidance.  However, the AVOCA 
algorithm reduces the number of collisions even further and also guarantees smooth agent 
trajectories. 

5.0  TURTLEBOT EXPERIMENTATION RESULTS 

The algorithm is implemented on four Kobuki TurtleBots.  These differential-drive 
open robotics platforms are equipped with netbooks, Microsoft kinect sensors, 
Ubuntu 12.04 Precise operating system, and designed to run ROS.  The netbooks use an 
Intel ATOM N2600 processor with four virtual cores at 1.6 gigahertz (GHz), and 
1 gigabyte (GB) of random access memory (RAM).  The kinect sensor is capable of 
capturing a depth image at a rate of 30 hertz (Hz) with a range of 0.5 to 10 meters (m).  
The IEEE 802.11n (2.4 GHz band) wireless network standard is used for inter-bot 
communication.  

5.1  AVOCA INTEGRATION WITH ROS 

“ROS provides libraries and tools to help software developers create robot 
applications.  It provides hardware abstraction, device drivers, libraries, visualizers, 
message-passing, package management, and more.  ROS is licensed under an open 
source, BSD license.” (Reference 16) 

 
ROS is designed to support multiple robotic platforms.  ROS provides basic function 

libraries and hardware drivers, both of which allow implementation of the AVOCA 
algorithm using object oriented C++.  The Internet Protocol (IP) based message passing 
protocol provided by ROS enables message passing between software packages without 
direct interaction.  

5.1.1  Adaptive Monte Carlo Localization (AMCL) 

AMCL is an implementation of a Monte Carlo Localization (MCL) that adds random 
samples to the particle map, providing a more robust localization in the absence of 
landmarks and in the “kidnapped robot” scenario (Reference 17).  The specific 
implementation is credited to Brian P. Gerkey of Willow Garage who developed the ROS 
node “amcl,” which is used in the implementation (Reference 18).  After the TurtleBot is 
localized by the amcl node, it posts a pose array consisting of the most likely positions 
and orientations.  The convex hull is then created and stored for a brief period of time 
until the AVOCA algorithm runs.  The “amcl” node updates position information by 
resampling the pose array after observing finite linear or rotational displacements.  Based 
on the average speed of the TurtleBots, resampling every 0.02 m or 1 degree provides a 
resampling rate approximately 15 Hz, based on a 0.3 meter per second (m/s) forward 
velocity.  
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5.1.2  Integration 

The AVOCA algorithm was integrated into the TurtleBot and ROS through the use 
of multiple custom classes.  The two main classes are Subscribe And Create Agents and 
VelocityCalculator.  Subscribe And Create Agents instantiates all ROS publishers and 
subscribers, which pass data between packages, and all agents, which store the data for 
each TurtleBot.  The VelocityCalculator uses the most recently stored data to construct 
all VOs and their variants then executes the modified Clearpath algorithm, which chooses 
the collision free velocity.  This velocity is then passed to a velocity controller which 
issues commands to the TurtleBot.  Figure 9 outlines this class communication.  

 

 

FIGURE 9.  Diagram of AVOCA/ROS Integration. 

 

5.1.3  Velocity Controller 

The AVOCA code is designed around absolute velocity space.  It is based on the 
assumption that each robot is able to immediately move in the intended direction and at 
the intended speed on the xy-plane.  This assumption is unrealistic and cannot be upheld 
by any physical system.  However, it is possible to obtain the new velocity before the 
next time step.  Within AVOCA, KVOs ensure that selected velocities are within the 
limits of the physical system.  The velocity controller converts these velocities to 
TurtleBot commands.  

 
Due to the number of software layers between individual wheel speeds and the 

AVOCA algorithm, it was impractical to create a firmware level proportional integral 
derivative (PID) controller.  Instead, an application-level proportional control was 
implemented.  The velocity controller operates at the same rate as the AVOCA algorithm: 
Ra = 5 Hz.  The bots heading and velocity must match the commanded values, θ and V, 
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by 1/Ra seconds.  Therefore, the angular velocity that is issued to the bot is Vang = (θg − 
θc)/ where θg is the goal heading and θc is the current heading, and  is a constant 
representing the time allowed to complete the rotation.  In the ideal case  = 1/Ra.  The 
linear velocity issued to the bot Vlin = |V| where |V| is the magnitude of the commanded 
velocity.  The TurtleBot firmware handles the combination of the linear and angular 
velocities and conversion to individual wheel speeds.  It attempts to set the speed of the 
left and right wheels, vl and vr respectively, such that vl + vr = 2(Vlin) and vl −vr = L(Vang) 
where L is the distance between the wheels.  In the event that the vl or vr are greater than 
the maximum wheel speed vmax, then the speeds are linearly reduced: for vl > vr: vl,adj = 
vmax and vr,adj = vr − (vl − vmax).  The vr > vl case similarly adjusted, meaning that the bot 
will reduce vlin in order to maintain vang.  In the event that vl > vr and vl > vmax and vl − vr 
> vmax then vl and vr are adjusted such that vl,adj = −vr,adj = (vl − vr)/2, ensuring that vang is 
maintained at the expense of vlin.  

5.1.4  Networking and Infrastructure 

Without the use of sensing techniques, each TurtleBot must communicate its 
position and velocity with the other TurtleBots.  The network and communications work 
is basic.  A course in networking and communications would cover the basic concepts 
that follow.  An IEEE 802.11n wireless network is used for the communications.  The 
802.11n wireless network offers a large throughput and can work on both the 2.4 and 
5 GHz frequency bands.  The high throughput is not necessary for collision avoidance.  
Collision avoidance uses a large number packets but a small amount of data (i.e., there 
are many messages to send, but the messages themselves are small).  Thus, latency of the 
network is a bigger concern than bandwidth.  The different frequency bands offer a 
capability of swapping frequencies in case there is a source of radio interference on either 
of the bands.  Most modern day routers, switches, or network cards have 802.11n 
capabilities.  Additional information can be found in Reference 19. 

 
The IP is the standard method of communication between computers via packets 

(Reference 20).  There are two main methods for the transportation layer of IP: 
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).  The TCP 
gives a guarantee of flow control, discards duplicate packets, and provides a mechanism 
for congestion control.  The TCP is useful for applications that need reliability and 
correctness such as web pages or databases.  The reliability given by TCP comes with an 
overhead cost and is less suited for real-time applications.  The UDP has no reliability 
constraints and does read packets that are out of order and that are duplicate.  The UDP 
has reduced overhead, making it more ideal for real-time applications that stream data or 
pass simple communication.  For a program to use UDP for its communication, it needs 
to be robust against lost and out of order packets.  

 
To implement VOs, the TurtleBots must update their velocities and positions at or 

faster than the VOs calculations.  With AMCL, the position frequency depends on change 
in distance or change in angle.  If using an overhead camera to track the bots, the 
frequency can be increased to the frame rate of the camera.  Using TCP is inappropriate 
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for communications.  If a series of packets lag, then TCP will block until it receives all 
packets in the correct order.  The VOs will then rely on old data to calculate a new set of 
VOs.  The UDP can continue accepting the new packets about positions and velocities 
when receiving packets out of order.  With UDP, old and duplicated packets are dropped, 
leaving only the newest data for use.  

 
A ping test was run from the four TurtleBot netbooks simultaneously to a single 

computer at rate of 20, 40, and 80 Hz.  The round trip time (RTT) medians were 9.69, 
15.72, and 16.07 milliseconds (ms) for the 20, 40, and 80 Hz tests, respectively.  As the 
frequency increases, the latency on the RTTs increases as shown in Figure 10.  

 

 

FIGURE 10.  Quantile Plots of the RTTs.   
The test size for each transmission rate was 40,000. 

 
Figure 10 appears to be alarming in the number of outliers, however the number of 

data points used for these tests are large enough to create such a large number of outliers.  
In Figure 11, the RTTs appear to form an exponential distribution.  The outliers of 
Figure 10 are in the tail and have a relatively small probability.  For up to around 40 Hz 
the majority of RTTs are smaller than the transmission rate.  With such low latencies, the 
position can be updated at a faster rate that the VOs and positions are calculated.  This 
allows for extrapolation of the position with a higher transmission rate of velocities.  
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FIGURE 11.  Histograms of the RTTs. 

5.1.5  Test Scenario and Results 

Square Scenario.  The four TurtleBots are placed on four corners of a 10 ft x 10 ft 
square located within the arena.  After performing a rotate in place operation to help with 
localization, each TurtleBot is instructed to move to the opposing corner.  Each bot starts 
movement at roughly the same time; there is occasionally a noticeable delay in start times 
due to delayed packet transmission and individual netbook performance.  The scenario 
was performed 30 times each for 5 different set of parameters.  The following notable 
parameters were common to all scenarios: AVOCA Rate = 5 Hz, AMCL “Rate” = 
0.02 m/1 degree.  Two movement axes were used for each of the bots, a forward and a 
reverse.  The forward axis used the following parameters: maximum speed = 0.3 m/s, 
minimum speed = 0.0 m/s, maximum acceleration = 0.05 meter per second squared 
(m/s2), maximum deceleration = 0.05 m/s2, and range of motion = 15 degrees.  The 
reverse axis parameters were identical with the following exception: maximum speed = 
0.2 m/s. 

 
Each bot has a radius value r that represents its physical size.  This value is applied 

to the convex hull and represents the entire area containing the bot in real space.  
Increasing this value provides a buffer between bots and accommodates localization 
errors.  Additionally, it was necessary to increase r beyond the actual 0.17-m radius of the 
bots in order to mitigate error introduced in bot position from the use of delayed data, 
differential drive dynamics during a curved turn, and for the protection of hardware assets 
via a buffer region.  If the bot radius is too low, then the bots will always scrape or 
collide (AVOCA will not waste any problem space unnecessarily, often providing 
velocities placing agent shapes flush with each other); if the bot radius is too high, then 
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the bots will never collide, but velocity space will become unnecessarily obstructed and 
agents may not be able to traverse narrow corridors, if that is part of the problem space.  

 
The scenario was run 30 times for each of the following cases:  
 
 Case A0: r =0.25 γ = 0.25 with KVOs  

 Case A1: r =0.25 γ = 0.25 without KVOs  

 Case B0: r =0.32 γ = 0.25 with KVOs  

 Case B1: r =0.32 γ = 0.25 without KVOs  

 Case C: r =0.32 γ = 0.2 with KVOs  
 
During initial experimentation γ =0.2 was used with and without KVOs but it was 

found that in cases without KVOs the bots frequently overshot the desired heading and 
began oscillation.  γ =0.25 was found to provide adequate rotational response in both the 
KVO and non-KVO scenarios.  Figure 12 shows the results in terms of scrapes, 
collisions, and runs completed with no collisions, and Figure 13 shows an example of the 
bot paths from one of the C scenarios.  Scrapes refer to instances where bots attempt to 
avoid, make contact, then continue forward on roughly their intended path.  Collisions are 
characterized by bots that, after making contact, were not able to move forward and were 
therefore stopped to prevent hardware damage.  The data show that the results are quite 
similar for KVOs and no KVOs for each of the bot radius values.  During test scenarios it 
was noted that when KVOs were used the bot motion was smoother, and there was 
significantly less rotating in place, sudden stops, and abrupt accelerations.  The presence 
of scrapes and collisions in the laboratory tests may be indicative of several issues: the 
bots are incapable of avoidance because they too often chose velocities that were within a 
VO, the bots are incapable of performing the commanded velocities adequately, or there 
is too much error in the bot position data.  The increase in collisions when using a smaller 
bot radius suggests that the error in position is the most significant.  These results agree 
with and reinforce the conclusions from the MATLAB experiments; namely that for 
small numbers of agents, the use of KVOs will result in similar performance as when no 
KVOs are used, but provides significantly smoother, less erratic agent behavior.  
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FIGURE 12.  Summary of TurtleBot Experiment Results. 

 

FIGURE 13.  Example TurtleBot Path From Experiments. 
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5.1.6  Limitations and Sources of Error 

Unlike nonstochastic simulations, there are multiple sources of error in every 
physical implementation.  The following sources of error were identified and either 
compensated for, minimized, or noted.  

 
 Localization Error.  Due to the TurtleBot’s configurations, when multiple 

TurtleBots approach each other head on, each bot obstructs the field of view of 
the other bot’s kinect sensor, decreasing the accuracy of that bots localization.  
Additionally, there is the possibility of wheel slip, orientation errors caused by 
hardware limitations (accelerometer noise), and the effect of moving landmarks 
(the other TurtleBots) that decreases the localization accuracy.  All of these 
errors are dealt with by AMCL with the effective result of increased hull size.  

 Delayed Data.  Due to the asynchronous operation of all TurtleBots, each bot 
will always receive out of date position data from the other bots and itself.  Due 
to the low speeds and small distances used in this implementation, the errors in 
position and velocity are relatively small, and an inflated hull size is used to 
compensate for the error.  However, in higher speed, critical or close quarters 
applications, the position data should be extrapolated to reflect the movement of 
the agents between the times when the data was taken and when the VOs are 
calculated.  

 Velocity Command vs. Response.  It is essential that all agents are capable of 
performing the commanded velocities, without this capability agent collisions are 
inevitable.  Since the TurtleBots have a limited means of confirming that their 
actions have had the intended response, KVOs are used to ensure that the 
AVOCA algorithm issues only commands that can be performed.  

6.0  CONCLUSION 

Unmanned vehicles have a wide area of application that is still growing.  Collision 
avoidance is arguably one of the most important problems for autonomous operation of 
these vehicles, especially as they become more prevalent.  This report details the 
AVOCA, a distributed, limited-communication collision avoidance system.  AVOCA 
uses VOs to perform collision avoidance, an approach that has been used in general for at 
least a century.  Specifically, the system uses VOs, RVOs, HRVOs, KVOs (a novel 
contribution), and an enhanced Clearpath algorithm.  The 2D AVOCA system has been 
tested in simulation and under physical experiments using TurtleBot systems.  Results for 
these experiments show that the AVOCA system is able to guide agents without collision 
in the vast majority of cases. 
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8.0  NOMENCLATURE 

2D two-dimensional 
3D 

 
three-dimensional 

AMCL Adaptive Monte Carlo Localization 
Aoth other agent 
API Application Programming Interface 
Asrc source agent 

AVOCA 
 

Adaptive Velocity Obstacle Collision Avoidance [system] 

BVO 
 

banded velocity obstacle 

Coth center for Aoth 
Csrc 

 
centroid of Asrc 

DC damage control 
DOF 

 
degrees of freedom 

ft2 
 

square foot 

GB gigabyte 
GHz gigahertz 

GLUI OpenGL User Interface 
GLUT 

 
OpenGL Utility Toolkit 

HRVO hybrid reciprocal velocity obstacle 
HWIL hardware-in-the-loop 

Hz 
 

hertz 

I/O input/output 
IP Internet Protocol 

ISR 
 

intelligence, surveillance, and reconnaissance 

KVO 
 

kinematic velocity obstacle 

m meter 
m/s meter per second 

m/s2 meter per second squared 
MCL Monte Carlo Localization 

ms 
 

millisecond 
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NATO North Atlantic Treaty Organization 
NAWCWD 

 
Naval Air Warfare Center Weapons Division 

OpenGL 
 

Open Graphics Library 

PID 
 

proportional integral derivative 

RAM random access memory 
ROS Robot Operating System 
RTT round trip time 
RVO 

 
reciprocal velocity obstacle 

S 
 

speed 

T&E test and evaluation 
TCP 

 
Transmission Control Protocol 

UAV unmanned aerial vehicle 
UDP User Datagram Protocol 
UxV unmanned vehicle, with x standing for air, ground, surface or 

undersea 
 

Voth velocity vector of Aoth 
VO velocity obstacle 
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