
NAWCWD TP 8786

Two-Dimensional Distributed Velocity
Collision Avoidance

by
Josh L. Wilkerson

Jim Bobinchak
Michael Culp

Josh Clark
Tyler Halpin-Chan

Katia Estabridis
Gary Hewer

Physics Division
Research and Intelligence Department

FEBRUARY 2014

NAVAL AIR WARFARE CENTER WEAPONS DIVISION
CHINA LAKE, CA 93555-6100

 DISTRIBUTION STATEMENT A: Approved for
public release.

Naval Air Warfare Center Weapons Division

FOREWORD

This report summarizes some of the authors’ research as part of an effort to
understand and assess collision avoidance algorithms both in simulation and in a
hardware-in-the-loop (HWIL) arena studies. The Navy’s capacity and capability can be
expanded and enhanced by integrating autonomous unmanned aerial vehicles (UAVs)
into the force. They can both reduce labor intensive mission requirements and minimize
many of the risks associated with personnel in potentially adversarial environments. In
addition, they offer unique capabilities for intelligence, surveillance, and reconnaissance
(ISR) type missions. Collision avoidance is certainly an essential capability for any
cooperative venture. This work was done with support from Public Law Section 219
funds during calendar year 2013.

This report was reviewed for technical accuracy by Larry Peterson.

Approved by Under authority of
L. MERWIN, Head M. T. MORAN
Research and Intelligence Department RDML, U.S. Navy
11 February 2014 Commander

Released for publication by
S. O’NEIL
Director for Research and Engineering

NAWCWD Technical Publication 8786

Published by ... Technical Communication Office
Collation .. Cover, 18 leaves
First printing ... 20 paper, 21 electronic media

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE (DD-MM-YYYY)

11-02-2014

2. REPORT TYPE

Final
3. DATES COVERED (From - To)

1 January – 31 December 2013

4. TITLE AND SUBTITLE

Two-Dimensional Distributed Velocity Collision Avoidance (U)

5a. CONTRACT NUMBER

N/A
5b. GRANT NUMBER

N/A

5c. PROGRAM ELEMENT NUMBER

N/A
6. AUTHOR(S)

Josh L. Wilkerson, Jim Bobinchak, Michael Culp, Josh Clark,
Tyler Halpin-Chan, Katia Estabridis, Gary Hewer

5d. PROJECT NUMBER

N/A
5e. TASK NUMBER

N/A
5f. WORK UNIT NUMBER

N/A
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Air Warfare Center Weapons Division
1 Administration Circle
China Lake, California 93555-6100

8. PERFORMING ORGANIZATION
REPORT NUMBER

NAWCWD TP 8786

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Naval Air Warfare Center Weapons Division (Code 400000D)
1 Administration Circle
China Lake, California 93555-6100

10. SPONSOR/MONITOR’S ACRONYM(S)

NAWCWD

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

N/A

12. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A: Approved for public release.

13. SUPPLEMENTARY NOTES

None.

14. ABSTRACT

(U) This report presents the two-dimensional (2D) version of the Automated Velocity Obstacle Collision Avoidance (AVOCA)
system. AVOCA is a platform independent, distributed collision avoidance system for multi-agent environments. AVOCA requires
minimal communication between agents, with plans to extend into sensor based agent recognition in future work. AVOCA uses well-
founded velocity obstacle approaches that have been enhanced for the AVOCA system. Additionally, AVOCA uses the novel
kinematic velocity obstacle (KVO) to account for agent kinematics in its calculations, also presented in this report. Results are
presented for both simulations and physical experimentation, which demonstrate both the system’s ability to guide agents without
collision in the vast majority of cases and the effectiveness of KVOs in general.

15. SUBJECT TERMS

Automated Velocity Obstacle Collision Avoidance (AVOCA), Autonomous Operation, Collision Avoidance System, Kinematic
Velocity Obstacle (KVO), Two Dimensional (2D), Unmanned Aerial Vehicle (UAV), Velocity Obstacle (VO)

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
OF PAGES

34

19a. NAME OF RESPONSIBLE PERSON

Josh L. Wilkerson
a. REPORT

UNCLASSIFIED
b. ABSTRACT

UNCLASSIFIED
c. THIS PAGE

UNCLASSIFIED
19b. TELEPHONE NUMBER (include area code)

(760) 793-0122

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Standard Form 298 Back SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

NAWCWD TP 8786

1

CONTENTS

1.0 Introduction ... 3

2.0 Related Work .. 4

3.0 AVOCA Algorithm ... 5
3.1 Velocity Obstacles (VOs) .. 5

3.1.1 Basic and Truncated VOs ... 5
3.1.2 RVOs and HRVOs .. 9

3.2 Clearpath .. 11
3.3 Kinematic Velocity Obstacles (KVOs) ... 13

4.0 Simulation Results .. 16
4.1 MATLAB Simulation .. 16
4.2 6DOF Simulation... 20

4.2.1 Graphical Components .. 21
4.2.2 Simulation Dynamics .. 21
4.2.3 Simulation Results .. 22

5.0 TurtleBot Experimentation Results... 23
5.1 AVOCA Integration With ROS ... 23

5.1.1 Adaptive Monte Carlo Localization (AMCL) .. 23
5.1.2 Integration ... 24
5.1.3 Velocity Controller ... 24
5.1.4 Networking and Infrastructure .. 25
5.1.5 Test Scenario and Results ... 27
5.1.6 Limitations and Sources of Error .. 30

6.0 Conclusion .. 30

7.0 References ... 31

8.0 Nomenclature .. 33

NAWCWD TP 8786

2

Figures:
1. Example VO Construction ... 6
2. Positive Tangent Calculation for Convex Polygons .. 8
3. Comparison Between VO, RVO, and HRVO .. 10
4. Clearpath Example ... 12
5. KVO Example .. 15
6. Box Plots Summarizing MATLAB Experiments .. 18
7. Snapshot of 6DOF Simulation Arena .. 20
8. Multiagent 6DOF Simulation Results .. 22
9. Diagram of AVOCA/ROS Integration .. 24
10. Quantile Plots of the RTTs .. 26
11. Histograms of the RTTs ... 27
12. Summary of TurtleBot Experiment Results ... 29
13. Example TurtleBot Path From Experiments .. 29

ACKNOWLEDGMENTS

The authors wish to express appreciation for the support of the Naval Air Warfare
Center Weapons Division (NAWCWD) Public Law Section 219 funds.

NAWCWD TP 8786

3

1.0 INTRODUCTION

Collision avoidance is one of the most important elements in autonomous operation.
While many collision avoidance systems have been proposed both to detect impending
midair collisions and to perform deconfliction maneuvers, it is not the intention of this
technical publication to provide a comprehensive literature review of them, but rather to
document a fledgling effort to develop, implement, and test collision avoidance
algorithms in a small scale hardware-in-the-loop (HWIL) arena. The HWIL arena hosts
four TurtleBots that serve as platforms to verify the robustness of the algorithms. The
arena environment includes a real-time communication network, combined with
mapping, localization, and collision avoidance algorithms. The TurtleBots come
equipped with sensors and the Robot Operating System (ROS), which provided the
necessary functionality for navigation (mapping and localization), allowing the authors to
concentrate on communications and collision avoidance in dynamic environments.

As the number of autonomous vehicles introduced on the ground, air, and sea

continues to increase for both commercial and military applications, collision avoidance
is of utmost importance for safety. The U.S. military operates thousands of autonomous
vehicles. Militaries from France, Israel, England, Russia, and elsewhere are also
operating UxVs (unmanned vehicle, with x standing for air, ground, surface, or undersea)
in ever-growing numbers. Currently, 15 of the North Atlantic Treaty Organization’s
(NATO’s) 26 nations have unmanned systems in their inventories and the number is
expected to grow (Reference 1). Future military applications will include teams of UxVs
working collaboratively for intelligence, surveillance, and reconnaissance (ISR); battle
space awareness; and for strike type operations. Additionally, hybrid teams that include
both manned and unmanned vehicles are envisioned as part of future strategic operations.

UxVs operating autonomously either in standalone or team/swarm configuration

present a challenge and is an ongoing area of research. As the level of autonomy
increases, mission planning needs to transition away from the execution of specifically
unrealistic deterministic scenarios to a new operational paradigm that must be established
to understand and validate the decisions made in a dynamic environment. Collision
avoidance algorithms are essential in order to successfully execute missions of unmanned
vehicles in dynamic environments. These algorithms not only have the potential to
support developmental efforts but they can also support the test and evaluation (T&E)
community. Recognizing such need has guided the developmental effort presented in
this report, addressing not only algorithm development and simulation but also hardware
implementation.

This report presents the two-dimensional (2D) version of the Automated Velocity

Obstacle Collision Avoidance (AVOCA) system, a collection of velocity obstacle (VO)
based collision avoidance algorithms. The primary goal of the AVOCA system is to

NAWCWD TP 8786

4

achieve cooperative collision avoidance by dynamic entities in the problem space
(agents) performed in a distributed fashion with minimal communication requirements.
The algorithms used in AVOCA achieve implicit cooperation through their application
and require only basic information (i.e., position and velocity) information on other
agents for their calculations. AVOCA has been implemented both in simulation and in
the HWIL arena with great success; these experiments, along with their results, are
detailed in this report as well.

The remaining sections of this report are organized as follows:

 Section 2.0 discusses the research efforts most critical to AVOCA.

 Section 3.0 details the AVOCA algorithms and their implementation.

 Section 4.0 describes the simulation systems used to test AVOCA, along with
simulation results.

 Section 5.0 describes the integration of AVOCA with the TurtleBot systems and
the experiments conducted with the TurtleBots and their results.

 Section 6.0 summarizes the information presented.

2.0 RELATED WORK

VO collision avoidance has been used for at least the last century, with the earliest
recorded usage occurring in 1903 for port navigation (Reference 2). Since then, the
approach has been rediscovered a number of times, with Fiorini et al. first using the term
velocity obstacle in 1993 (Reference 3). Being such a time-tested, effective approach,
there is a wide variety of VO algorithms. The AVOCA system uses basic VOs
(Reference 3), truncated VOs (References 4 and 5), reciprocal velocity obstacles (RVOs)
(Reference 6), hybrid reciprocal velocity obstacles (HRVOs) (Reference 7), and
Clearpath (Reference 5).

Generally, a VO is a geometric region (typically an infinite triangle) that is

calculated using two agents in the problem space, a source agent (Asrc) (i.e., the agent that
is being guided by the algorithm) and an other agent (Aoth). The VO region defines the
set of all points that, if used for the endpoint for Asrc’s velocity vector, will result in a
collision between the two agents at some point in the future. A characteristic of basic
VOs is that there is no assumed cooperation between agents (i.e., between entities in the
problem space). If the agents are actually cooperating, then this results in wide avoidance
trajectories, which can be a problem in close quarters situations. RVOs, introduced by
Van den Berg et al. in 2008, solve this problem by allowing agents to split the task of
avoidance. However, one issue remained with VOs and RVOs, namely the possibility for
reciprocal dances. Basically, this is when two agents repeatedly attempt to pass each
other on the same side. The HRVO was proposed by Snape et al. in 2011 and solves this

NAWCWD TP 8786

5

problem by combining components from both VOs and RVOs; this action essentially
removes a plane of symmetry between the two agents’ VO regions. These algorithms are
described in more detail in the following sections.

3.0 AVOCA ALGORITHM

An assumption is made that each agent can be represented by a convex shape.
Typically, these are either circular regions (representing the agent and optionally a safety
keep-out region) or convex polygons, constructed from points that represent possible
agent locations. Often an agent’s precise location cannot be known (Reference 8), and so
a set of possible locations (typically based on sensory data) are generated. The set of
points is provided to AVOCA to determine the convex hull for the point cloud provided
using the monotone chain algorithm (Reference 9). Since each point in the point cloud
represents a possible location for the center of the agent, AVOCA also provides
functionality for the user to define a physical shape for the agent, which it will use in
these calculations to create a true shape/region that will completely contain the agent.

3.1 VELOCITY OBSTACLES (VOs)

To perform its avoidance calculations, AVOCA builds basic VOs, RVOs, and
HRVOs for all other agents in the problem space. The constructs are built using the
velocity and position of each agent, and so these data items are required by AVOCA.
Currently, AVOCA relies on inter-agent communication for this information; however, it
is planned in future work to allow agents to get these data from onboard sensors. This
addition will make the collision avoidance system completely localized.

3.1.1 Basic and Truncated VOs

As mentioned previously, basic VOs assume no inter-agent cooperation. When used
unmodified, this means that Asrc assumes full responsibility for performing the collision
avoidance between the two agents. This strategy works well in situations where the other
agent is noncooperative; however, it also results in overly conservative avoidance
maneuvers when both agents are attempting to avoid each other. In its current state,
AVOCA only uses unaltered VOs in its avoidance calculations when the basic VO does
not indicate an impending collision between the agents. Including noncooperative agents
in the AVOCA calculations is left as future work.

While there are a number of ways to approach VO construction, the method

described here will perform the construction in place (i.e., in the global problem space) as
much as possible in an effort to simplify the process/description. Additionally, to make
some of the calculations more intuitive, the AVOCA system uses bound Euclidean
vectors (i.e., vectors in which both the base and end point are used), rather than the more

NAWCWD TP 8786

6

commonly used free vectors (i.e., vectors in which just the magnitude and angle are
relevant). Figure 1 shows a visual example of the VO construction process. This figure
will be discussed as the VO construction process is described.

FIGURE 1. Example VO Construction.

The first step of basic VO (henceforth referred to as simply VO) construction is to

find the apex of the VO region. This apex is found by transposing the velocity vector of
Aoth (Voth) to the centroid of Asrc (Csrc); in Figure 1, the transposed vector is labeled ௢ܸ௧௛

ᇱ .
The endpoint of the transposed vector defines the apex of the VO region (A).

The next step is to calculate the combination of Asrc and Aoth. Conceptually, in order

to avoid Aoth, Asrc must account for both its own shape as well as Aoth’s. This step is done
by calculating the Minkowski sum of the two agent shapes. For circular agents, this
process involves simply adding the radii of the two agents. For convex polygons, the
sum is calculated by transposing each shape to the origin and adding each point in Aoth to
all points in Asrc. Another way of thinking of this is to take the shape for Aoth and copy it
for each point in Asrc, placing the center of each copy on the points in Aoth. After
performing this sum, the new convex hull is once again calculated for the result (C).

However, consider the case where Asrc and Aoth are facing each other, and Asrc intends

to pass Aoth by going below it (if this situation is viewed from a top-down perspective).
In this case, the top of Asrc’s shape must be able to go past the bottom of Aoth’s shape. But
in the calculation just described, the bottom of C will be defined by the bottom of Asrc
summed with the bottom of Aoth (by virtue of the convexity of the shape), where it needs
to be defined by the top of Asrc summed with the bottom of Aoth. This can be accounted

NAWCWD TP 8786

7

for by rotating the shape for Asrc by 180 degrees before doing the summation (simply
achieved by negating all points in Asrc after being transposed to the origin).

Once the shapes for Asrc and Aoth are combined into C, it must then be placed relative

to A. The center for C (Cc) is calculated by subtracting the center for Aoth (Coth) from Csrc
and adding the result to A. When constructed in place, Cc will always be the endpoint of
Voth as drawn from Coth. This process can be seen in Figure 1, where an inverted copy of
Asrc was placed at Cc, and then copies of Aoth are placed on each node on the Asrc copy.
The resulting convex polygon C is shown by the dashed line encompassing the result of
this process.

The final step is to calculate the two rays that will define the VO region. The VO

rays are defined by the two tangent lines for C that pass through A; in other words, the
two lines that contain A and are as wide apart as possible while still touching C. For
circular agents, the tangents are found using basic trigonometry. For convex polygon
agents, the tangents are found by iterating over each point, calculating the z-component
of the cross product between a vector from A to the current point and a vector from A to
each other point in the hull. When a point is found that has a positive result for all other
points in the hull, then that point defines one of the tangents. Similarly, when a point is
found that has a negative result for all points, then that point defines the other tangent.
Figure 2 shows the algorithm for this process for the positive tangent in pseudocode. The
only difference in this algorithm for negative tangent calculation is that on the last line of
the if block in the for loop, the z-component of R is checked to be less than or equal to 0.
These points are marked in Figure 1 next to the labels for the VO rays. Once both
tangents are found, the rays are set and stored, and the VO is complete.

If there is uncertainty in an agent’s position, then there is a possibility that the agent

shapes could overlap without a collision occurring. If this happens, then when a VO
between the two agents is built, the VO apex will fall inside the C shape. Because the
tangent rays must contain the entire C shape, and are based at A (which is now inside of
C), attempting to calculate the rays using the procedure previously described will
invariably result in error. In AVOCA, if A falls inside of C, then a special VO
construction process is used with the goal of generating near-flat VO regions that
encourage the agents to separate. Near-flat means that the smaller angle between the VO
rays is less than π radians by an arbitrarily small amount. If the rays are exactly π radians
apart, then the decision for which side of the rays the VO region falls on is determined by
floating point error rather than the intention of AVOCA (as the VO region must be
convex, and so is always on the side of the rays defined by the smaller angle between
them).

NAWCWD TP 8786

8

polygon ← The set of convex polygon nodes
A ← The VO apex

done := false
for curNodeIdx := 0...|polygon|-1 and done = false do

P := polygon[curNodeIdx]
allPos := true
for i := 0...|polygon|-1 and allPos = true do

if i ≠ curNodeIdx then
M := polygon[i]
ሬܴԦ: ൌ ሬሬሬሬሬԦܲܣ ൈ ሬሬሬሬሬሬԦܯܣ
allPos := (Rz ≥ 0)

end if
end for
if allPos = true then

:1ሬሬሬሬሬሬሬሬሬሬԦݕܴܽ ൌ ሬሬሬሬሬԦܲܣ
done := true

end if
end for

FIGURE 2. Positive Tangent Calculation for Convex Polygons.

If circular agents are being used, then the VO for the overlapping agent case is

constructed by drawing a vector starting at Cc and initially ending at A (which, if you
recall, is inside of C). The vector magnitude is then adjusted to be the radius of C plus a
small amount (enough to place the endpoint just outside of C, 0.0002 was arbitrarily
selected for the experiments presented), while the angle of the vector is maintained. The
endpoint of this vector is now used as the new VO apex, and the VO construction process
continues on as previously described.

If convex polygons are being used to represent the agents, then the VO is constructed

by first finding the point on the polygon edge that is closest to A, let this point be P (note
that P can fall on both the edges and the nodes on the polygon). Next, a vector is drawn
from the centroid of C to P. Just like for circular agents, the magnitude for this vector is
adjusted to make the endpoint fall slightly outside of C and this endpoint is used as the
new VO apex. Since C is a convex polygon, the points defining the VO rays must be the
two nodes for the edge on C that contains P. If P is one of the nodes on C, then P and the
two nodes adjacent to P on C are considered, with the two points resulting in the widest
VO being selected.

Truncated VOs are a type of VO that is useful for static/stationary objects/agents. In

AVOCA, VOs are truncated if the ratio of the slower agent speed to the faster agent
speed is less than a constant threshold value (2.5% was arbitrarily selected as a proof of

NAWCWD TP 8786

9

concept for all experiments presented) or if either agent has a zero speed (covering the
very slow speed edge case). In other words, a VO is truncated if either agent can be
effectively assumed to be stopped to the other agent.

To build a truncated VO, first a normal VO is built as described previously. The VO

is then truncated by terminating the VO rays at the ray defining points on C (rather than
at A). The bottom of the VO is then defined by the section of line segments on C that are
between the VO defining points while maintaining the convexity of the VO (i.e., the set
of line segments that are closer to A). If the VO in Figure 1 was to be truncated, the
bottom of the VO would be defined by the two line segments on the bottom side of C
between the VO ray defining points; in the figure, these line segments are dashed and
drawn in bold on C (note that this particular VO would not be truncated by AVOCA, this
is just used as an example for this discussion).

3.1.2 RVOs and HRVOs

As stated in the previous section, one of the major drawbacks of basic VOs is that
each agent assumes full responsibility for avoiding the other agents, regardless of the
potential for collaboration from other agents. RVOs were developed to help deal with
this situation. When employing RVOs, the implicit assumption is other cooperating
agents will share the task of avoidance equally. In the problem space, this often results in
VO regions that are smaller in the immediate area of operation, allowing for more
effective use of the space.

RVOs are created by first constructing the VO, as described previously. Next, the

VO apex is shifted to be the midpoint between A and the endpoint of Vsrc; the selection of
the midpoint for this shift can be thought of as the agents each taking half of the load in
avoiding each other. The resulting VO region is the RVO. One key restriction on RVO
construction is that the modifications should not be made if the endpoint of Vsrc does not
fall in the basic VO. If the Vsrc endpoint was not in the basic VO, then the apex for the
RVO could possibly fall outside the basic VO region. This would be an inaccurate VO
region, as it would then include points that would not result in a collision. This
restriction guarantees that the RVO will always be a subset of the basic VO.

One of the major downsides of RVOs (and technically basic VOs as well) is the risk

of entering a reciprocal dance (Reference 10). This risk occurs when the two agents are
facing each other and repeatedly select the same side to pass on. This issue is addressed
by HRVOs (Reference 7) and is achieved by making the modifications to the basic VO to
favor the source bot’s current velocity (i.e., encourage the bot to change course as little as
possible). To describe the HRVO construction process, first examine what was done in
the RVO construction process. Two strips were removed from the VO to make the RVO;
one that followed each ray (with overlap between the two apices). HRVOs are
constructed by adding one of these strips back in, to make the modification nonsymmetric
(which is what will allow for the bias in the algorithm). The strip added back in is the
one furthest away from the Vsrc endpoint. Another way of looking at this is that the

NAWCWD TP 8786

10

HRVO will be constructed using either ray 1 from the VO and ray 2 from the RVO or
ray 1 from the RVO and ray 2 from the VO (with the RVO ray extended in both cases to
find the HRVO apex).

Figure 3 illustrates the differences between the three VO types described. In this

figure, the three apices are indicated for the three VOs shown. The VO is the same
region used in Figure 1, the RVO (the darkest VO region in the figure) is constructed by
shifting the VO apex to the midpoint between Vsrc’s endpoint and the VO apex, and the
HRVO is constructed by adding the right strip of the VO back onto the RVO (with the
left RVO ray extended along the yellow line, to get the HRVO apex).

FIGURE 3. Comparison Between VO, RVO, and HRVO.

A characteristic of the VOs between two agents is that if the VO region is rotated

180 degrees about the midpoint between the agent velocity endpoints, then the resulting
region is the VO from the other bot’s perspective (i.e., as if Aoth were the source). Using
this, it can be seen how the HRVO modification achieves implicit agent cooperation.
Consider Figure 3. In this example, the endpoint for Vsrc is reasonably close to either ray
of the RVO (recall that this is the darkest region in the figure), which is an ideal condition
for reciprocal dances to occur. The HRVO is constructed by adding the right strip from
the VO back to the RVO, making the HRVO the combination of the two darker regions
in this image. Now it is much more likely that the source agent will elect to simply slow
down some to avoid the other agent. Now imagine the HRVO being rotated around the
midpoint between the two velocity endpoints to achieve the HRVO for Aoth. In this case,
the left strip from the VO was added to the RVO to create the HRVO, making it most
likely that Aoth will simply speed up a little to avoid Asrc. And so, cooperation is achieved
with no explicit communication regarding how to do so.

NAWCWD TP 8786

11

It is conceivable (even likely, in some applications) that the presence of other agents
will preclude selecting a velocity that will cooperate with Aoth. In this case, the HRVO
algorithm naturally will change the nature of the implicit cooperation in future time steps
(switching the sides that are added back onto the RVO).

As stated previously, the AVOCA system uses VOs and HRVOs in its calculations,

but only for agents that pass an initial relevancy check. There are two conditions used to
determine if an agent is relevant to Asrc:

1. Aoth is in front of Asrc
2. Aoth is traveling in the same direction as Asrc

The first condition is checked by determining if any portion of the other agent’s

shape falls in the half-plane that contains Vsrc and is defined by the line perpendicular to
Vsrc. The second condition is checked by determining if the following relationship is
true:

െ
ߨ
2

൑ ሺס ௦ܸ௥௖ െ ס ௢ܸ௧௛ሻ ൑
ߨ
2

 (1)

If either condition is true, then the agent is considered relevant, and VO construction

continues as described. If both conditions are false, then the agent is considered
nonrelevant and is ignored in the avoidance calculations. This addition can reduce the
computational load considerably for each agent, especially in clustered/congested
environments.

3.2 CLEARPATH

After the VOs and HRVOs have been constructed for all other agents in the problem
space, the next step in AVOCA is to determine what velocity to recommend for the
source agent. While the VO regions remove some possibilities for the result, there is still
an infinite set of candidate velocities remaining. The Clearpath (Reference 5) algorithm
provides a method for reducing this problem space to a discrete, relatively small number
of candidates. In addition, the algorithm has also been proven to always have the optimal
velocity choice in the set of candidates it produces, where optimal is defined as the
velocity that is as close as possible to the agent’s preferred velocity (Reference 5).

In the AVOCA implementation of the Clearpath algorithm, candidate velocity

endpoints are generated in one of four methods:

1. A VO region apex (if the VO is not truncated)

2. Any of the nodes along the truncation polyline (if the VO is truncated)

3. The projection of preferred velocity onto an edge of the (HR)VO, including
projections onto the truncation polyline

NAWCWD TP 8786

12

4. A point of intersection between two VO regions

The set of candidate velocities is generated by iterating over all (HR)VOs generated

for the agent, calculating the candidates using each of these four methods. Any candidate
that falls inside of another VO region is removed. Once all (HR)VOs have been iterated
over, the candidate that is closest to the preferred velocity is selected as the result
(i.e., the suggested velocity for Asrc). If there are no valid candidates, then the published
Clearpath algorithm removes the (HR)VO for the agent farthest away from the source,
and repeats the process.

Figure 4 illustrates application of the Clearpath algorithm. In this figure, the blue

polygon represents the source agent, the circles represent candidate velocities generated
by Clearpath, the red vector represents the source agent’s preferred velocity, and the
green vector represents the velocity suggested by Clearpath. The agent in the center of
problem space is stationary, resulting in a truncated VO, as shown. The other two agents
have HRVOs drawn for them. In this figure, there is at least one Clearpath candidate
velocity generated by each of the four possible methods described.

FIGURE 4. Clearpath Example.

VO removal in Clearpath is modified in the AVOCA system, as the furthest away

agent, and may not be the most irrelevant agent, especially if all agents are in close
quarters. If the source agent is moving, then an ignore factor is calculated for the each
other agent (if the source agent is not moving then bot distance is used for this value).
The first step is to rank the other agents based on distance, considering how fast the
source agent is traveling:

NAWCWD TP 8786

13

݇݊ܽݎ ൌ ൤
ݐ݋ܤ݋ܶ݁ܿ݊ܽݐݏ݅݀
݀݁݁݌ܵ݁ܿݎݑ݋ݏ

൨ (2)

This will coarsely sort the agents based on the time it will take the source agent to

reach them. Next, the agents are sorted within their ranks, based on the direction they are
traveling compared to the source agent:

ݎ݋ݐܿܽܨ݁ݎ݋݊݃݅ ൌ ݇݊ܽݎ ൅ ቆ1 െ
|݂݅ܦ݈݁݃݊ܽ|

ߨ
ቇ (3)

where angleDif is the difference between the source velocity vector angle and the other
agent velocity angle on (−π, π). Conceptually, this calculation makes it so that agents
traveling in the same direction as the source agent will be more likely to be ignored than
those traveling in the opposite direction. For example, assume there are two other agents
A1 and A2 that are in the same rank, but A2 is farther away from the source. Now say that
A1 is traveling in the same direction, beside the source agent, whereas A2 is traveling
directly at the source. In the original Clearpath algorithm, the VO for A2 would be
removed from consideration first, very possibly opening up the problem space, and
ultimately putting the source agent on a collision course. However, if ignore factors are
used, then A2 is more important (i.e., has a lower ignore factor), and so the VO for A1
would be removed first.

In normal operation it is quite unlikely that the set of (HR)VOs occlude the entire

problem space (as that is what is required for Clearpath to not be able to generate a
candidate velocity). However, the introduction of kinematic VOs (described in the next
section) to the problem space make exactly the opposite true, and so this addition is
largely focused on solving the side effects of their usage.

3.3 KINEMATIC VELOCITY OBSTACLES (KVOs)

KVOs are a novel concept with the goal of allowing a Clearpath based avoidance
scheme that takes into account the physical capabilities of the source agent. In a general
VO approach, there is nothing to stop Clearpath from suggesting a velocity that is not
realistically attainable by the agent. For example, if car-like agents are being guided
using Clearpath, there is nothing to stop the algorithm from suggesting an agent come to
a complete stop in one time step followed by a 90-degree left turn (relative to its current
heading) at 100 miles per hour. If a time step is long enough to allow the agent to get up
to that speed, then that much is acceptable; but a car-like agent cannot change direction
immediately, additional maneuvering is required. KVOs are intended to remedy this
problem while still fitting cleanly into a VO based avoidance scheme.

KVOs are constructed based solely on the source agent’s capabilities (i.e., no

information from other agents is needed). They are based on (one-time) user specified

NAWCWD TP 8786

14

movement axes, which describe the directions and speeds an agent can travel relative to
the current heading. Each movement axis has the following information:

 Angle of axis relative to current heading

 Range of radial motion on this axis

 Minimum/maximum speed for the axis

 Maximum speed increase and decrease possible in a time step on the axis
(i.e., the acceleration and deceleration limits)

Clearly, some knowledge of the operating environment (i.e., time step size) is

required for accurate values for the speed change data (and to a lesser degree the range of
radial motion data items, though in empirical testing these are much less sensitive).
However, even very rough values will help improve agent performance. If nothing else,
arbitrarily large values can be used for these data items, effectively removing their role in
KVO construction (the remaining data items will still provide considerable benefits).

Each movement axis has a banded velocity obstacle (BVO) constructed that is

centered on the axis. The apex of the BVO is the center of the agent shape. The angle
between the rays for the BVO is equal to the range of radial motion provided for the axis.
If the range of motion is wider than π radians, then the BVO is split in half along the
axis itself.

Next, two arcs are constructed between the BVO rays, centered at the agent center.

These arcs define a band that is between the BVO rays but is not in the BVO region. The
arc radii for the band are based on the agent’s current speed and the speed constraints for
the axis. If the agent’s current velocity can be associated with the movement axis (i.e., its
endpoint is in the BVO region), then the magnitude of the current velocity vector is used
as the current speed (S) for the radii calculations. Otherwise, the agent’s velocity vector
is projected onto the axis, and the magnitude of the resulting vector is used for S. The arc
radii are calculated using the following equations:

௜௡௡௘௥ݎ ൌ ሺܵݔܽ݉ െ ,݁ݏܽ݁ݎܿ݁ܦ݀݁݁݌ܵݔܽ݉ ሻ݀݁݁݌ܵ݊݅݉ (4)

௢௨௧௘௥ݎ ൌ ሺܵݔܽ݉ ൅ ,݁ݏܽ݁ݎܿ݊ܫ݀݁݁݌ܵݔܽ݉ ሻ (5)݀݁݁݌ܵݔܽ݉

If S is zero and at least one other axis has a non-zero S, then the band is not used

(resulting in the BVO operating as a typical VO). This ensures that the avoidance
algorithm will not attempt to direct the agent to suddenly change to travel in the opposite
direction.

Lastly, normal VOs are constructed to fill in the areas between the axis BVOs. The

resulting set of KVOs is then added to the set of VOs generated for the other agents and
Clearpath is executed like normal. The only regions that Clearpath can use for velocity
suggestions are the band(s) in the BVOs. Figure 5 shows an example agent with four

NAWCWD TP 8786

15

movement axes along cardinal directions (the black triangle in the bot center indicates the
bot heading). The green VO regions are the BVOs and the orange regions are the VOs
used to fill in between the BVOs. The forward and left (relative to the bot heading) axes
of motion have active bands in their BVOs, while the backward and right bands were
cleared because the velocity projection does not fall on those axes.

FIGURE 5. KVO Example.

As stated previously, the addition of KVOs will result in very common usage of VO

removal in Clearpath, as the majority of the problem space is typically blocked by the
KVOs. For example, consider Figure 5. In the situation shown, the agent only has two
small regions (the band around the velocity vector, and a small region near the agent
center) from which to select velocities, relative to the same problem space with no KVOs.
It would be relatively easy to add a single other agent that would occlude both of these
regions. If multiple other agents are added, it becomes more likely that the entire
problem space is occluded than not. Additionally, in AVOCA KVOs can never be
removed in Clearpath’s VO removal process (they are given arbitrarily low ignore
factors), which is done to ensure that the velocity constraints provided are always adhered
to. If the algorithm attempts to remove a KVO, then damage control (DC) velocity
selection is performed instead.

The idea of DC velocity selection is that the algorithm has detected that the agent is

very close to collision, and so the suggested velocity should guide the agent away from
collision as best as possible, given the agent KVO set. First, the set of candidate
velocities is generated for the problem space with just the KVO set present, S1; these

NAWCWD TP 8786

16

represent ideal possible velocities for the agent. Next, using the rank from the other
agent ignore factors, the set of closest agents are selected along with their associated
VOs. The set of candidate velocities are then generated for these VOs without the KVOs
present, S2; these represent the ideal velocities that will get the agent away from collision.
Lastly, the velocity from S1 whose endpoint is closest to that of any velocity in S2 is
selected and returned as the suggested velocity. Conceptually, this finds the physically
feasible velocity that will get the agent away from collision as fast as possible.

4.0 SIMULATION RESULTS

Two simulation systems were used to test the AVOCA system, a MATLAB
simulation (allowing 3 degrees of freedom [DOF]) and a 6DOF simulation. Generally
speaking, the simulations manage a set of virtual agents (with associated velocity,
heading, and position data) and manage the time passing in the simulated environment.
Agent position and velocity information is passed to AVOCA, which returns back
velocities that will result in collision free trajectories.

A key difference between the simulations is how they use the information returned

from AVOCA. The MATLAB simulation provides an environment where AVOCA has
complete control over the agents (i.e., the results from the AVOCA calculations are
followed exactly). This provides an ideal environment for AVOCA, demonstrating best
case scenarios for the system.

The 6DOF simulation passes the AVOCA results through a first-order filter before

applying them to the virtual agents (described in more detail in Section 4.2). The filter
acts as a smoothing function for vehicle inputs in terms of speed and turning commands.
This provides a valuable testing tool, demonstrating AVOCA’s performance in nonideal
environments.

4.1 MATLAB SIMULATION

The MATLAB Simulation uses C++ simulation code (with AVOCA integrated) to
run the simulation and create data files detailing the run. These data files are then used
by MATLAB to create an animation showing what happened in the run. For example,
Figure 4 is a screenshot from a MATLAB animation.

The simulation is initialized through input files indicating file locations for the

simulation and agent information. The agent positions are indicated via a point cloud
(which is converted by AVOCA to a convex polygon). Goal locations and movement
axes (if used) are also indicated for each agent. Using this information, the simulation
environment is constructed, and simulation is then executed. Each time step represents a
5% step of the simulation unit time (specific units are not needed for the purposes of this

NAWCWD TP 8786

17

simulation, as long as all agents (and other measured values) use the same units); for
example, if the simulation unit time is an hour, then a time step is 5% of an hour, or
3 minutes. This percentage can be changed as desired by the user (5% was used for the
experiments shown).

Preferred velocities are generated for each agent to be the maximum agent speed

heading directly at the agent’s goal. As stated previously, the AVOCA suggested
velocities are used unmodified for each time step. As soon as an agent reaches its goal, it
holds position. Once all agents reach their goals the simulation ends. The simulation is
capped at 500 time steps (arbitrarily selected), in the event that the agents cannot reach
their goal locations.

Agent data were generated for the experiments shown using a random data

generation tool for the MATLAB Simulator. Agents were set to be spaced equally
around a ring 100 units across. The agents themselves are indicated by a cloud of
between 10 and 20 points, no more than 10 units apart. Each agent was indicated to have
a physical shape representable by a circle with a radius of 3, which was combined with
the agent’s point cloud by AVOCA. Convex polygons were made for each agent using
this information. Agent goals were indicated to be diametrically across the ring from the
agent starting location. Rings of 3, 6, 9, 12, and 15 agents were generated.

Two configurations were used for each agent layout, one using KVOs and one not

using them. The KVOs used were the same for all agents. Each agent was given a
forward and backward movement axis, with the same data values:

 Range of radial motion: 20 degrees

 Minimum speed: 0

 Maximum speed: 25

 Maximum slow down: 5

 Maximum speed up: 10

This results in 10 unique configurations (5 variations on bot number/position, each
run both with and without KVOs). Each configuration was run 30 times, yielding a total
of 300 runs. For each run, a safety radius of 0.25 unit was used for the agents (i.e., agent
collisions only occur if the agent shapes overlapped by more than 0.5 unit). Data were
recorded for the runs indicating the number of time steps used, the number of agent
collisions, and the number of invalid velocity selections (as defined by the movement
axes). The recorded data are summed up in the box plots shown in Figure 6*.

* Note that shorthand nomenclature is used to indicate agent configurations in this figure, where “C3”

indicates the circle of 3 bots, “C6” indicates the circle of 6 bots, and so on.

NAWCWD TP 8786

18

FIGURE 6. Box Plots Summarizing MATLAB Experiments.

NAWCWD TP 8786

19

A boxplot (Reference 11) is a simple graphical representation of a probability
distribution. The edges of a box plot represent the 25th and 75th percentile with the line
inside the box representing the median. Additionally, error bars indicating the 10th and
90th percentiles are included above and below each box. In Figure 6, the data averages
are also shown as floating markers in the same column as the box plots.

Chart A in Figure 6 summarizes the collisions recorded during the runs. Both

approaches (KVO and no KVO) did very well up to the circle of 9 experiments, recording
less than 5 collisions in all runs (and 1 or less in the majority of runs). However, with
12 and 15 bots, the no KVO experiments had a notable increase in collisions; whereas the
experiments using KVOs recorded less than 5 collisions in the vast majority of runs. This
result is not unexpected, since without KVOs the agent movements will almost certainly
be erratic when many agents are in close quarters (keeping in mind that in the MATLAB
simulation, agents move exactly as AVOCA indicates).

Trendlines were also added to Chart A to visualize the growth of average collisions

recorded (the floating markers in the chart); R2 values are also shown for the trendlines (a
metric indicating how closely the trendline matches the data, where 1.0 is a perfect
match). For the experiments using KVOs, a linear trendline was used (shown in purple
on the chart), whereas a third order polynomial was used to match the experiments that
did not use KVOs (shown in cyan on the chart). This indicates that it is reasonable to
expect that as the number of agents in the area of operation increases, the number of
collisions should increase at a much slower rate if KVOs are used.

Chart B in Figure 6 shows the summary for the invalid velocity data recorded. As

expected, the KVO experiments reported 0 invalid velocities for all experiments and so
were not included in this chart. As can be seen, velocities outside of the agent’s true
abilities are selected very frequently when KVOs are not used, even when relatively few
agents are in the area of operation. This means that when applied to real agents with
physical limitations, AVOCA (and most other VO based collision avoidance algorithms)
will frequently provide unrealistic velocities to the agents if KVOs are not used, which
can easily be expected to result in agent collisions.

Lastly, Chart C in Figure 6 summarizes the amount of time steps taken for the

experiments to complete. Recall that an experiment was ended if either all agents
reached their goals or 500 time steps occurred. Generally, the KVO experiments took
longer to complete for the experiments with 9 or fewer agents. This result is expected,
since when KVOs are used the agents are much more restricted in their movements,
resulting in (relatively) slower traversal of the problem space. When 12 agents were
present, the two approaches took roughly the same amount of time to complete.
However, when 15 agents were present, the experiments not using KVOs often resulted
in agent deadlocks or agent scattering (i.e., an agent(s) selecting a velocity with a
relatively enormous magnitude to avoid a collision, resulting in the agent moving very far
away in the problem space almost instantaneously), meaning the runs were timed out at
500 time steps. When KVOs are used, agents move more predictably and realistically,

NAWCWD TP 8786

20

effectively sidestepping both of these issues, resulting in more predictable/stable
performance.

Trendlines and R2 values were added to Chart C in the same manner as Chart A.

Once again, a linear trendline was used to match the data for experiments using the
KVOs. For the experiments not using KVOs, a second order polynomial was used to
match the recorded data. A similar conclusion can be drawn for Chart C as was in
Chart A, namely that as the number of agents increase, the amount of time needed for the
agents to traverse the area can be expected to increase at a much slower rate if KVOs
are used.

4.2 6DOF SIMULATION

A graphical Multiagent 6DOF Simulation was written to test and evaluate AVOCA.
The simulation allows the user to activate one of several predefined scenarios where the
agents are to avoid one another. In addition, two other types of collision avoidance
algorithms can be activated, namely no collision avoidance (i.e., a worst-case scenario to
serve as a baseline for comparison) and force-based virtual spring collision avoidance.
There is also a way to activate several graphical features used for visualization during the
simulation. For example, red and yellow arrows representing the current and preferred
heading of all the agents (see Figure 7) can be activated via a checkbox.

FIGURE 7. Snapshot of 6DOF Simulation Arena.

NAWCWD TP 8786

21

The Multiagent 6DOF Simulation currently simulates three-dimensional (3D) agents
maneuvering on a 2D surface, but it can be easily extended to simulate 3D agents
maneuvering in a 3D volume. This will allow testing and evaluation of 3D AVOCA
algorithms currently in development for unmanned aerial vehicles (UAVs).

4.2.1 Graphical Components

Three publicly available graphics libraries are used in the Multiagent 6DOF
Simulation: Open Graphics Library (OpenGL), OpenGL Utility Toolkit (GLUT), and the
OpenGL User Interface (GLUI). OpenGL (Reference 12) is a cross-language, multi-
platform application programming interface for rendering 2D and 3D computer graphics.
The Application Programming Interface (API) is typically used to interact with a graphics
processing unit to achieve hardware-accelerated rendering.

GLUT (Reference 13) is a library of utilities for OpenGL programs, which primarily

perform system-level input/output (I/O) with the host operating system. Functions
performed include window definition, window control, and monitoring of keyboard and
mouse input. Routines for drawing a number of geometric primitives (both in solid and
wireframe mode) are also provided, including cubes, spheres and the Utah teapot. GLUT
also has some limited support for creating pop-up menus. The two aims of GLUT are to
allow the creation of cross-platform portable code between operating systems and to
make learning OpenGL easier. OpenGL programming while using GLUT often takes
only a few lines of code and does not require knowledge of operating system-specific
windowing APIs.

GLUI (Reference 14) is a C++ user interface library that provides controls such as

push buttons, radio buttons, checkboxes, and spinners to OpenGL applications. It is
window-system independent, relying on GLUT to handle all system-dependent issues,
such as window, keyboard, and mouse management.

4.2.2 Simulation Dynamics

An agent’s motion is governed by two ordinary differential equations:

݄݃݊݅݀ܽ݁ ߜ
ݐߜ

ൌ ݄݁ܽ݀݅݊݃௖௠ௗ െ ݄݁ܽ݀݅݊݃ (6)

and

݀݁݁݌ݏ ߜ
ݐߜ

ൌ ௖௠ௗ݀݁݁݌ݏ െ (7) ݀݁݁݌ݏ

These equations are first-order filters on the commanded input, and are solved using

a second-order Adams-Bashforth numerical integrator (Reference 15). Integrating

NAWCWD TP 8786

22

Equation 6 (i.e., time rate of change of heading) yields the agent’s heading, and
integrating Equation 7 (i.e., time rate of change of speed) yields the agent’s speed, and
together these form the agent’s preferred velocity vector. The preferred velocity vectors
of all the agents are then passed to the AVOCA algorithm along with each agent’s current
velocity vector, and on return, each agent receives a new velocity vector that will result in
collision-free travel for the current time step.

4.2.3 Simulation Results

To evaluate the performance of the AVOCA algorithm, 20 agents having a 1-foot
radius were randomly positioned with random headings in a 32 x 32 square foot (ft2)
simulated arena, as shown in Figure 7. When an agent reached the arena boundary, it
was given a heading that would take it back into the arena, passing near the center. Three
collision avoidance cases where tested in the Multiagent 6DOF Simulation, and the
results are plotted in Figure 8 as three box plots.

FIGURE 8. Multiagent 6DOF Simulation Results.

In the box plots show in Figure 8, all values beyond the 10th and 90th percentiles are

graphed individually as a point on a graph. In this figure, the box plots for the number of
agent collisions per time step that occurred during a 1-minute simulation run (each time
step is 1/60 second, so 1 minute = 3,600 time steps) are shown. The leftmost boxplot in
Figure 8 shows the results of the simulation when using no collision avoidance, the
middle boxplot shows the results when using virtual spring coupling, and the rightmost
boxplot shows the results when using AVOCA. Collision avoidance using virtual spring
coupling is implemented as a repulsive spring force that activates when two or more
agents enter the local neighborhood of another agent, thereby “pushing” them apart. As
seen in the figure, this drastically reduced the number of collisions between agents

NAWCWD TP 8786

23

compared to the case when using no collision avoidance. However, the AVOCA
algorithm reduces the number of collisions even further and also guarantees smooth agent
trajectories.

5.0 TURTLEBOT EXPERIMENTATION RESULTS

The algorithm is implemented on four Kobuki TurtleBots. These differential-drive
open robotics platforms are equipped with netbooks, Microsoft kinect sensors,
Ubuntu 12.04 Precise operating system, and designed to run ROS. The netbooks use an
Intel ATOM N2600 processor with four virtual cores at 1.6 gigahertz (GHz), and
1 gigabyte (GB) of random access memory (RAM). The kinect sensor is capable of
capturing a depth image at a rate of 30 hertz (Hz) with a range of 0.5 to 10 meters (m).
The IEEE 802.11n (2.4 GHz band) wireless network standard is used for inter-bot
communication.

5.1 AVOCA INTEGRATION WITH ROS

“ROS provides libraries and tools to help software developers create robot
applications. It provides hardware abstraction, device drivers, libraries, visualizers,
message-passing, package management, and more. ROS is licensed under an open
source, BSD license.” (Reference 16)

ROS is designed to support multiple robotic platforms. ROS provides basic function

libraries and hardware drivers, both of which allow implementation of the AVOCA
algorithm using object oriented C++. The Internet Protocol (IP) based message passing
protocol provided by ROS enables message passing between software packages without
direct interaction.

5.1.1 Adaptive Monte Carlo Localization (AMCL)

AMCL is an implementation of a Monte Carlo Localization (MCL) that adds random
samples to the particle map, providing a more robust localization in the absence of
landmarks and in the “kidnapped robot” scenario (Reference 17). The specific
implementation is credited to Brian P. Gerkey of Willow Garage who developed the ROS
node “amcl,” which is used in the implementation (Reference 18). After the TurtleBot is
localized by the amcl node, it posts a pose array consisting of the most likely positions
and orientations. The convex hull is then created and stored for a brief period of time
until the AVOCA algorithm runs. The “amcl” node updates position information by
resampling the pose array after observing finite linear or rotational displacements. Based
on the average speed of the TurtleBots, resampling every 0.02 m or 1 degree provides a
resampling rate approximately 15 Hz, based on a 0.3 meter per second (m/s) forward
velocity.

NAWCWD TP 8786

24

5.1.2 Integration

The AVOCA algorithm was integrated into the TurtleBot and ROS through the use
of multiple custom classes. The two main classes are Subscribe And Create Agents and
VelocityCalculator. Subscribe And Create Agents instantiates all ROS publishers and
subscribers, which pass data between packages, and all agents, which store the data for
each TurtleBot. The VelocityCalculator uses the most recently stored data to construct
all VOs and their variants then executes the modified Clearpath algorithm, which chooses
the collision free velocity. This velocity is then passed to a velocity controller which
issues commands to the TurtleBot. Figure 9 outlines this class communication.

FIGURE 9. Diagram of AVOCA/ROS Integration.

5.1.3 Velocity Controller

The AVOCA code is designed around absolute velocity space. It is based on the
assumption that each robot is able to immediately move in the intended direction and at
the intended speed on the xy-plane. This assumption is unrealistic and cannot be upheld
by any physical system. However, it is possible to obtain the new velocity before the
next time step. Within AVOCA, KVOs ensure that selected velocities are within the
limits of the physical system. The velocity controller converts these velocities to
TurtleBot commands.

Due to the number of software layers between individual wheel speeds and the

AVOCA algorithm, it was impractical to create a firmware level proportional integral
derivative (PID) controller. Instead, an application-level proportional control was
implemented. The velocity controller operates at the same rate as the AVOCA algorithm:
Ra = 5 Hz. The bots heading and velocity must match the commanded values, θ and V,

NAWCWD TP 8786

25

by 1/Ra seconds. Therefore, the angular velocity that is issued to the bot is Vang = (θg −
θc)/ where θg is the goal heading and θc is the current heading, and  is a constant
representing the time allowed to complete the rotation. In the ideal case  = 1/Ra. The
linear velocity issued to the bot Vlin = |V| where |V| is the magnitude of the commanded
velocity. The TurtleBot firmware handles the combination of the linear and angular
velocities and conversion to individual wheel speeds. It attempts to set the speed of the
left and right wheels, vl and vr respectively, such that vl + vr = 2(Vlin) and vl −vr = L(Vang)
where L is the distance between the wheels. In the event that the vl or vr are greater than
the maximum wheel speed vmax, then the speeds are linearly reduced: for vl > vr: vl,adj =
vmax and vr,adj = vr − (vl − vmax). The vr > vl case similarly adjusted, meaning that the bot
will reduce vlin in order to maintain vang. In the event that vl > vr and vl > vmax and vl − vr
> vmax then vl and vr are adjusted such that vl,adj = −vr,adj = (vl − vr)/2, ensuring that vang is
maintained at the expense of vlin.

5.1.4 Networking and Infrastructure

Without the use of sensing techniques, each TurtleBot must communicate its
position and velocity with the other TurtleBots. The network and communications work
is basic. A course in networking and communications would cover the basic concepts
that follow. An IEEE 802.11n wireless network is used for the communications. The
802.11n wireless network offers a large throughput and can work on both the 2.4 and
5 GHz frequency bands. The high throughput is not necessary for collision avoidance.
Collision avoidance uses a large number packets but a small amount of data (i.e., there
are many messages to send, but the messages themselves are small). Thus, latency of the
network is a bigger concern than bandwidth. The different frequency bands offer a
capability of swapping frequencies in case there is a source of radio interference on either
of the bands. Most modern day routers, switches, or network cards have 802.11n
capabilities. Additional information can be found in Reference 19.

The IP is the standard method of communication between computers via packets

(Reference 20). There are two main methods for the transportation layer of IP:
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). The TCP
gives a guarantee of flow control, discards duplicate packets, and provides a mechanism
for congestion control. The TCP is useful for applications that need reliability and
correctness such as web pages or databases. The reliability given by TCP comes with an
overhead cost and is less suited for real-time applications. The UDP has no reliability
constraints and does read packets that are out of order and that are duplicate. The UDP
has reduced overhead, making it more ideal for real-time applications that stream data or
pass simple communication. For a program to use UDP for its communication, it needs
to be robust against lost and out of order packets.

To implement VOs, the TurtleBots must update their velocities and positions at or

faster than the VOs calculations. With AMCL, the position frequency depends on change
in distance or change in angle. If using an overhead camera to track the bots, the
frequency can be increased to the frame rate of the camera. Using TCP is inappropriate

NAWCWD TP 8786

26

for communications. If a series of packets lag, then TCP will block until it receives all
packets in the correct order. The VOs will then rely on old data to calculate a new set of
VOs. The UDP can continue accepting the new packets about positions and velocities
when receiving packets out of order. With UDP, old and duplicated packets are dropped,
leaving only the newest data for use.

A ping test was run from the four TurtleBot netbooks simultaneously to a single

computer at rate of 20, 40, and 80 Hz. The round trip time (RTT) medians were 9.69,
15.72, and 16.07 milliseconds (ms) for the 20, 40, and 80 Hz tests, respectively. As the
frequency increases, the latency on the RTTs increases as shown in Figure 10.

FIGURE 10. Quantile Plots of the RTTs.
The test size for each transmission rate was 40,000.

Figure 10 appears to be alarming in the number of outliers, however the number of

data points used for these tests are large enough to create such a large number of outliers.
In Figure 11, the RTTs appear to form an exponential distribution. The outliers of
Figure 10 are in the tail and have a relatively small probability. For up to around 40 Hz
the majority of RTTs are smaller than the transmission rate. With such low latencies, the
position can be updated at a faster rate that the VOs and positions are calculated. This
allows for extrapolation of the position with a higher transmission rate of velocities.

NAWCWD TP 8786

27

FIGURE 11. Histograms of the RTTs.

5.1.5 Test Scenario and Results

Square Scenario. The four TurtleBots are placed on four corners of a 10 ft x 10 ft
square located within the arena. After performing a rotate in place operation to help with
localization, each TurtleBot is instructed to move to the opposing corner. Each bot starts
movement at roughly the same time; there is occasionally a noticeable delay in start times
due to delayed packet transmission and individual netbook performance. The scenario
was performed 30 times each for 5 different set of parameters. The following notable
parameters were common to all scenarios: AVOCA Rate = 5 Hz, AMCL “Rate” =
0.02 m/1 degree. Two movement axes were used for each of the bots, a forward and a
reverse. The forward axis used the following parameters: maximum speed = 0.3 m/s,
minimum speed = 0.0 m/s, maximum acceleration = 0.05 meter per second squared
(m/s2), maximum deceleration = 0.05 m/s2, and range of motion = 15 degrees. The
reverse axis parameters were identical with the following exception: maximum speed =
0.2 m/s.

Each bot has a radius value r that represents its physical size. This value is applied

to the convex hull and represents the entire area containing the bot in real space.
Increasing this value provides a buffer between bots and accommodates localization
errors. Additionally, it was necessary to increase r beyond the actual 0.17-m radius of the
bots in order to mitigate error introduced in bot position from the use of delayed data,
differential drive dynamics during a curved turn, and for the protection of hardware assets
via a buffer region. If the bot radius is too low, then the bots will always scrape or
collide (AVOCA will not waste any problem space unnecessarily, often providing
velocities placing agent shapes flush with each other); if the bot radius is too high, then

NAWCWD TP 8786

28

the bots will never collide, but velocity space will become unnecessarily obstructed and
agents may not be able to traverse narrow corridors, if that is part of the problem space.

The scenario was run 30 times for each of the following cases:

 Case A0: r =0.25 γ = 0.25 with KVOs

 Case A1: r =0.25 γ = 0.25 without KVOs

 Case B0: r =0.32 γ = 0.25 with KVOs

 Case B1: r =0.32 γ = 0.25 without KVOs

 Case C: r =0.32 γ = 0.2 with KVOs

During initial experimentation γ =0.2 was used with and without KVOs but it was

found that in cases without KVOs the bots frequently overshot the desired heading and
began oscillation. γ =0.25 was found to provide adequate rotational response in both the
KVO and non-KVO scenarios. Figure 12 shows the results in terms of scrapes,
collisions, and runs completed with no collisions, and Figure 13 shows an example of the
bot paths from one of the C scenarios. Scrapes refer to instances where bots attempt to
avoid, make contact, then continue forward on roughly their intended path. Collisions are
characterized by bots that, after making contact, were not able to move forward and were
therefore stopped to prevent hardware damage. The data show that the results are quite
similar for KVOs and no KVOs for each of the bot radius values. During test scenarios it
was noted that when KVOs were used the bot motion was smoother, and there was
significantly less rotating in place, sudden stops, and abrupt accelerations. The presence
of scrapes and collisions in the laboratory tests may be indicative of several issues: the
bots are incapable of avoidance because they too often chose velocities that were within a
VO, the bots are incapable of performing the commanded velocities adequately, or there
is too much error in the bot position data. The increase in collisions when using a smaller
bot radius suggests that the error in position is the most significant. These results agree
with and reinforce the conclusions from the MATLAB experiments; namely that for
small numbers of agents, the use of KVOs will result in similar performance as when no
KVOs are used, but provides significantly smoother, less erratic agent behavior.

NAWCWD TP 8786

29

FIGURE 12. Summary of TurtleBot Experiment Results.

FIGURE 13. Example TurtleBot Path From Experiments.

NAWCWD TP 8786

30

5.1.6 Limitations and Sources of Error

Unlike nonstochastic simulations, there are multiple sources of error in every
physical implementation. The following sources of error were identified and either
compensated for, minimized, or noted.

 Localization Error. Due to the TurtleBot’s configurations, when multiple

TurtleBots approach each other head on, each bot obstructs the field of view of
the other bot’s kinect sensor, decreasing the accuracy of that bots localization.
Additionally, there is the possibility of wheel slip, orientation errors caused by
hardware limitations (accelerometer noise), and the effect of moving landmarks
(the other TurtleBots) that decreases the localization accuracy. All of these
errors are dealt with by AMCL with the effective result of increased hull size.

 Delayed Data. Due to the asynchronous operation of all TurtleBots, each bot
will always receive out of date position data from the other bots and itself. Due
to the low speeds and small distances used in this implementation, the errors in
position and velocity are relatively small, and an inflated hull size is used to
compensate for the error. However, in higher speed, critical or close quarters
applications, the position data should be extrapolated to reflect the movement of
the agents between the times when the data was taken and when the VOs are
calculated.

 Velocity Command vs. Response. It is essential that all agents are capable of
performing the commanded velocities, without this capability agent collisions are
inevitable. Since the TurtleBots have a limited means of confirming that their
actions have had the intended response, KVOs are used to ensure that the
AVOCA algorithm issues only commands that can be performed.

6.0 CONCLUSION

Unmanned vehicles have a wide area of application that is still growing. Collision
avoidance is arguably one of the most important problems for autonomous operation of
these vehicles, especially as they become more prevalent. This report details the
AVOCA, a distributed, limited-communication collision avoidance system. AVOCA
uses VOs to perform collision avoidance, an approach that has been used in general for at
least a century. Specifically, the system uses VOs, RVOs, HRVOs, KVOs (a novel
contribution), and an enhanced Clearpath algorithm. The 2D AVOCA system has been
tested in simulation and under physical experiments using TurtleBot systems. Results for
these experiments show that the AVOCA system is able to guide agents without collision
in the vast majority of cases.

NAWCWD TP 8786

31

7.0 REFERENCES

1. P. L. Franchi. “Near Misses Between UAVs and Airliners Prompt NATO Low-level
Rules Review,” Flight International, 2006.

2. F. S. Miller and A. F. Everett. Instructions for the Use of Martins Mooring Board
and Battenbergs Course Indicator, Authority of the Lords of Commissioners of the
Admiralty, 1903.

3. P. Fiorini and Z. Shiller. “Motion Planning in Dynamic Environments Using the
Relative Velocity Paradigm,” in Proceedings of IEEE International Conference on
Robotics and Automation, 1993, pp. 560–565.

4. P. Fiorini and Z. Shillert. “Motion Planning in Dynamic Environments Using
Velocity Obstacles,” International Journal of Robotics Research, vol. 17, 1998,
pp. 760–772.

5. S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha, and P. Dubey.
“Clearpath: Highly Parallel Collision Avoidance for Multiagent Simulation,” in
ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation, 2009.

6. J. van den Berg, M. C. Lin, and D. Manocha. “Reciprocal Velocity Obstacles for
Real-Time Multi-Agent Navigation,” in IEEE International Conference on Robotics
and Automation, 2008.

7. J. Snape, J. van den Berg, S. J. Guy, and D. Manocha. “The Hybrid Reciprocal
Velocity Obstacle,” IEEE Transactions on Robotics, vol. 27, 2011, pp. 696–706.

8. I. J. Cox. “Blanche-An Experiment in Guidance and Navigation of an Autonomous
Robot Vehicle,” IEEE Transactions on Robotics and Automation, vol. 7, 1991,
pp. 193–204.

9. A. M. Andrew. “Another Efficient Algorithm for Convex Hulls in Two
Dimensions,” Info. Proc. Letters 9, 1979, pp. 216–219.

10. Univ. Tokyo, Japan. Simulating the Collision Avoidance Behavior of Pedestrians,
by F. Feurtey. Dept. of Electrical Engineering, Tokyo, Japan, 2000. (Masters
thesis.)

11. Wikipedia. “Box Plot—Wikipedia, The Free Encyclopedia,”
http://en.wikipedia.org/wiki/Box plot, 2013.

12. “OpenGL Online Documentation,” http://www.opengl.org/wiki/Main Page, 2012.

NAWCWD TP 8786

32

13. Wikipedia. “OpenGL Utility Toolkit—Wikipedia, The Free Encyclopedia,”
http://en.wikipedia.org/wiki/OpenGL Utility Toolkit, 2013.

14. “GLUI Online Documentation,” http://glui.sourceforge.net, 2006.

15. Wikipedia. “Linear Multistep Method—Wikipedia, The Free Encyclopedia,”
http://en.wikipedia.org/wiki/Linear multistep method, 2013.

16. E. Fernandez. “Robotic Operating System Documentation,” http://wiki. ros.org,
2013.

17. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics, ser. Intelligent Robotics
and Autonomous Agents Series. Mit Press, 2005. [Online]. Available:
http://books.google.com/books?id=k yOQgAACAAJ

18. S. Osentoski. “Robotic Operating System Documentation amcl,
http://wiki.ros.org/amcl,” http://wiki.ros.org/amcl, 2013.

19. Wikipedia. “IEEE 802.11—Wikipedia, The Free Encyclopedia,”
http://en.wikipedia.org/w/index.php?title=IEEE 802.11&oldid=583511166, 2013.
[Online; accessed 2 December 2013].

20. Wikipedia. “Internet Protocol Suite—Wikipedia, The Free Encyclopedia,”
http://en.wikipedia.org/w/index.php?title=Internet protocol suite&oldid=583183806,
2013, [Online; accessed 2 December 2013].

NAWCWD TP 8786

33

8.0 NOMENCLATURE

2D two-dimensional
3D

three-dimensional

AMCL Adaptive Monte Carlo Localization
Aoth other agent
API Application Programming Interface
Asrc source agent

AVOCA

Adaptive Velocity Obstacle Collision Avoidance [system]

BVO

banded velocity obstacle

Coth center for Aoth
Csrc

centroid of Asrc

DC damage control
DOF

degrees of freedom

ft2

square foot

GB gigabyte
GHz gigahertz

GLUI OpenGL User Interface
GLUT

OpenGL Utility Toolkit

HRVO hybrid reciprocal velocity obstacle
HWIL hardware-in-the-loop

Hz

hertz

I/O input/output
IP Internet Protocol

ISR

intelligence, surveillance, and reconnaissance

KVO

kinematic velocity obstacle

m meter
m/s meter per second

m/s2 meter per second squared
MCL Monte Carlo Localization

ms

millisecond

NAWCWD TP 8786

34

NATO North Atlantic Treaty Organization
NAWCWD

Naval Air Warfare Center Weapons Division

OpenGL

Open Graphics Library

PID

proportional integral derivative

RAM random access memory
ROS Robot Operating System
RTT round trip time
RVO

reciprocal velocity obstacle

S

speed

T&E test and evaluation
TCP

Transmission Control Protocol

UAV unmanned aerial vehicle
UDP User Datagram Protocol
UxV unmanned vehicle, with x standing for air, ground, surface or

undersea

Voth velocity vector of Aoth
VO velocity obstacle

INITIAL DISTRIBUTION

 1 Defense Technical Information Center, Fort Belvoir, VA
 4 University of Utah, Salt Lake City, UT
 Bareiss, D. (2)
 Van den Berg, J. (2)

ON-SITE DISTRIBUTION

 4 Code 400000D
 Boyd, M. (2)
 MacArthur, S. (2)
 2 Code 4L0000D, Merwin, L.
 2 Code 4L4000D, Hewer, G.
 8 Code 4L4100D
 Estabridis, K. (2)
 Pentony, J. (2)
 Peterson, L. (2)
 Tyler, K. (2)
 2 Code 4L6100D (Scientific and Technical Library Branch, archive copies)
 2 Code 4L6200D (Technical Communication Office, file copies)
 2 Code 452000D, Kirchner, R.
 2 Code 47H000D, McCauley, H.
 4 Code 471200D
 Bobinchak, J. (2)
 Clark, J. (2)
 4 Code 471800D
 Culp, M. (2)
 Wilkerson, J. L. (2)
 2 Code 472100D, Halpin-Chan, T.
 2 Code 476000D, Schultz, R.

	Contents

	1.0 Introduction

	2.0 Related Work

	3.0 AVOCA Algorithm

	3.1 Velocity Obstacles (VOs)

	3.2 Clearpath

	3.3 Kinematic Velocity Obstacles (KVOs)

	4.0 Simulation Results

	4.1 MATLAB Simulation
	4.2 6DOF Simulation

	5.0 Turtlebot Experimentation Results

	5.1 AVOCA Integration With ROS

	6.0 Conclusion

	7.0 References

	8.0 Nomenclature

