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Abstract 

 In this research effort, a Microelectromechanical system (MEMS) cantilever 

pressure sensor was designed, modeled, and fabricated to investigate the photoacoustic 

(PA) response of gases to terahertz (THz) radiation under low vacuum conditions. 

Previous efforts in this project were improved upon, to include lowering resting out-of-

plane curvature to improve sensitivity of devices. Dimensional analysis is taken into 

consideration and altered dimensions also serve to boost sensitivity while improving 

fragility of devices. All devices were fabricated on silicon-on-insulator (SOI) wafers and 

tested in a custom designed THz vacuum chamber. Fabricated devices have a minimum 

normalized noise equivalent absorption (NNEA) coefficient of 4.28x10-10, an 

improvement of 69% on prior 10µm devices. 
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Microelectromechanical Systems (MEMS) photoacoustic (PA) detector of Terahertz 
(THz) radiation for chemical sensing 

I.  Introduction 

1.1 Background 

 The process of photoacoustic (PA) wave generation is the effect of a sample 

absorbing photons and then generating a pressure wave as a result. This photoacoustic 

method can be used to study the chemical and physical properties of various samples, to 

include gas analysis, optical spectroscopy, or probing of optically thick samples [1]. The 

basic concept of photoacoustic detection are that when a sample absorbs light, a small 

portion of the molecules become excited and jump to higher energy levels. As they return 

back down to lower energy levels, they release heat and produce a pressure wave [1,2]. 

The resulting pressure wave can be detected with an appropriate sensor, such as a 

microphone used for a gaseous sample.  

 Terahertz (THz)  radiation is electromagnetic radiation in the 300 Gigahertz – 0.3 

Terahertz frequency range. It is chosen as the radiation source due to well documented 

chemical signatures in this regime and the penetrative properties of THz radiation [2]. 

The higher power radiation also provides for more spectral purity to receive a higher PA 

signal[4,5]. 

 Currently, traditional microphones have fundamental limitations that make PA 

detection more difficult. The gap between the membrane surrounding the cantilever and 

the cantilever itself in optical microphones cannot be decreased below a certain limit, 

restraining the miniaturization of sensors [3]. This inability to decrease the gap size past a 

certain point will limit the signal range that is able to be measured by a sensor. Because 
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the goal of this project is to measure frequencies in the THz range, we require a sensor in 

the micron range. Also, the required resonant frequencies of cantilever microphones to 

best perform PA spectroscopy exist in the 1 – 1000 Hz frequency range. Because 

resonant frequency is a function of cantilever dimension, cantilevers must have a 

relatively high length to thickness ratio, approximately 700 – 1400, for thicknesses of 

either 10µm or 5µm respectively, which makes them fragile and difficult to fabricate and 

transport. 

 Trace gas analysis is a highly sought after capability since its applications are 

numerous in both civilian and military environments. However, current gas analysis is 

limited in portability due to the best current solution, which is large spectroscopy 

systems. By measuring this unique amount of energy released, it can be compared against 

a database of known elements and their collective spectral signatures and determine what 

substance that has just been irradiated in your spectroscopic test setup. Unfortunately, the 

path length of the radiation is a factor that must be accounted for and current 

spectroscopic setups can vary in length from 3 – 100 ft, making portable spectroscopy 

difficult [6,7]. 

1.2 Problem Statement 

 Modern spectroscopic methods involve large pieces of equipment and are 

generally limited to a laboratory setting due to their dependency upon the path length of 

the radiation to be sensed [8,9]. However, photoacoustic spectroscopy is independent of 

the absorption path of the radiation emitted from a sample, which makes it an ideal 

candidate for a portable spectroscopic system [4]. This research effort is being 
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undertaken to produce more sensitive microelectromechanical systems (MEMS) PA 

detectors of THz radiation with the goal of designing a smaller, portable spectroscopy 

system. 

 This research focuses on the fabrication of a MEMS cantilever sensor as the 

mechanism for PA spectroscopy. The effort will include producing a sensitive cantilever 

to be used as a microphone for PA detection. The deflection will be measured using a 

laser interferometer, and the two measurements will be compared. 

 The research question to be answered is how to design a MEMS cantilever to best 

perform PA spectroscopy. Investigative questions will detail answers on how to properly 

fabricate a sensitive cantilever, what dimensions for a cantilever are best for optimizing 

cantilever deflection, and how best to acquire spectroscopic data. 

1.3 Scope, Limitations, Assumptions 

 This research focuses only on the fabrication of the cantilevers and their 

deflection due to the PA effect of a single gas, methyl cyanide. No other gases are used 

and all tests are performed using a single THz radiation source.  

 Another limitation to this current design is the leakage of heat in the system. As 

heat leaks away through thermal conduction from the cell walls or heat capacity of the 

gas, the pressure waves generated will begin to vary [4]. While this change can be 

modeled, its effect is considered negligible and not taken into consideration. 

1.4 Methodology 

 The current method of collecting data involves placing the fabricated cantilevers 

in a stainless steel test chamber placed in a THz test setup at Wright State University. A 
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Virginia Diode Inc. THz radiation source is placed at one opening of the test chamber and 

a diode receives the resulting power signal. The deflection of the cantilever is currently 

measured with a laser interferometer that reflects a laser beam off of a gold (Au) stacked 

with Titanium (Ti) surface on the tip of the cantilever and passes through a series of 

apertures. It is required to use a Ti/Au stack since Au doesn’t normally adhere well to 

silicon and Ti does. Ti was chosen as the adhesion layer instead of other metals, such as 

Chromium, to be consistent with the process follower previously developed by former 

students. As the laser deflects, the irises crop off portions of the laser and a separate diode 

measures the change in laser power. The changing laser power is compared to the THz 

signal to determine how accurately the cantilever deflection will match the THz signal. 

1.5 Overview 

 Chapter two of this thesis will detail a literature review undertaken in support of 

this project. The literature review is conducted to determine similar research efforts along 

similar lines and to prevent duplication of efforts. It also provides a basis of 

understanding of the work accomplished in this field in order to best prepare for the 

research effort. Chapter three of this thesis describes the methodology used to perform 

the experiments. This chapter will include the specific experimental arrangement and all 

relevant information concerning the testing environment. It will include diagrams of the 

test arrangement along with the specifications of all equipment used so that future work 

wishing to replicate the research accomplished in this effort will be able to do so with 

more ease. Chapter four will present the data collected in this research effort. Chapter 

five will be an analysis of the data collected. Chapter six will be a conclusion of this 
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thesis and will include discussion of potential future works, changes to the research effort 

that could have been made in order to better acquire results, and an overview of the 

research effort.  
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II. Background 

The literature review for this research effort includes topics covering 

spectroscopy, chemical sensing, and MEMS technologies involved in the design and 

fabrication of sensors for PA detection. First, the PA effect and its use for chemical 

sensing is discussed as are the various detection methods. This discussion includes the 

various MEMS technologies involved, such as thin films, piezoelectrics, and physical 

sensors.  

2.1 Photoacoustic systems  

The photoacoustic (PA) effect was first discovered by Bell, Tyndall, and Rontgen 

in 1880 and is the process of generating acoustic waves by irradiating a sample with 

photons [2,13,14]. Bell first published on this phenomenon when he discovered that 

modulated sun light incident on a thin disk generated sound waves [5]. However, this 

process has been largely without applications until 1968, when the prevalence of laser 

light sources dramatically increased. The concept of PA detection is simple. A sample is 

irradiated, which excites a portion of the molecules in the sample into higher energy 

bands [16,17]. These molecules fall back to ground energy states and this falling 

generates heat around the sample, which subsequently generates a pressure wave that 

propagates away from the source [1,2,18].  

There are many variables that influence the sensitivity of PA sensing systems. 

One such variable is the noise which arises from electrical, Brownian, and vibrational 

sources. Typical Signal to Noise Ratio (SNR) in a PA system is given by 

                                   																											SNR ൌ 	
ೄೌ
ಿೞ

	          ( 1 ) 
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where PASignal is the strength of the PA signal centered on an absorption line and PANoise 

is the strength of the PA signal when the system is tuned off an absorption line [6]. The 

noise floor of a PA signal is generally determined by taking the Root Mean Square 

(RMS) value of the signal over some sampling interval off an absorption line. There are 

some instances when the radiation frequency cannot be shifted adequately away from an 

absorption line, so the radiation source is either blocked or removed from the system 

[20,21,22]. 

 The sensitivity of a system, αmin is a descriptor of the minimum absorption 

strength the PA system can detect and is defined as 

                                                          			∝ൌ
∝ೌೖ
ௌேோ

          ( 2 ) 

where αpeak is the value of the absorption coefficient measured divided by the SNR of the 

measurement. To achieve higher sensitivities, measured signals may be averaged over 

longer periods [7]. Lastly, since PA systems can vary immensely, it is important to have a 

standard value of sensitivity, and this is the normalized noise equivalent absorption 

(NNEA) coefficient and it is expressed as                                                                                              

																																																															NNEA ൌ	∝୫୧୬ P√T	                                          ( 3 ) 

NNEA values allow for more accurate performance comparisons between PA systems by 

taking into account the sensitivity, αmin, the radiation power, P0, and the PA signal 

averaging time, T [24,25]. 

2.2 MEMS Fabrication 

There are many techniques and methods for fabricating MEMS devices; to 

include surface micromachining, bulk micromachining, and micromolding technologies. 
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MEMS are systems that can consist of electrical, mechanical, and optical components. 

For example, Figure 1 shows the first electrostatic MEMS device, a resonant gate 

transistor developed by Nathanson in the 1960s to filter or amplify electrical signals 

using the resonance of an electroplated cantilever [8]. 

 

Figure 1. First MEMS device, a resonant gate transistor developed by Nathanson in the 
1960s. This device was used to filter or amplify electrical signals using the resonance of a 
cantilever [9]. 

When an electrical signal is applied to the cantilever, the electrical attractive force 

actuates the cantilever and a detection circuit formed underneath the beam detects the 

filtered or amplified signal generated by the vibration. 

2.2.1 Surface micromachining 

 Surface micromachining is the process of forming structural layers on a sacrificial 

structure, which is a structure whose sole purpose is for layers to be built on top of it, and 
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removal of the sacrificial layer, leaving behind a desired structure, typically a mechanical 

layer. This technique can be used to create structures on top of substrate materials.  

 

Figure 2. Creating of a cantilever structure via surface micromachining. Shown is the 
sacrificial layer being deposited in step (1), an anchor being dug in step (2), and the 
mechanical layer being deposited in step (3). After the device is shaped, removal of the 
sacrificial layer in step (5) is how the cantilever is released [8]. 

In Figure 2, a sacrificial layer is deposited in step (1). An anchor is “dug” into it and a 

mechanical layer is layered on top. After shaping the structure, the sacrificial layer is 

removed and your mechanical layer is left as your final structure. By using photoresist as 

the sacrificial layer, a gold tip may be deposited onto devices without having to coat the 

entire structure. 
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2.2.2 Bulk micromachining 

. Bulk micromachining is the process of creating structures out of the substrate 

material itself. This is done by the direct machining of the bulk material through chemical 

or physical means. It is relatively simpler than surface micromachining, as it generally 

requires fewer masks. The primary method of bulk micromachining in this research effort 

is through etching.   

2.2.2.1 Wet Etching 

Wet etching uses a wet etchant to form structures by removing undesired layers or 

portions of layers under a structure. Wet etchants are generally categorized as having 

isotropic or anisotropic etch profiles. 

Isotropic etchants have the characteristic of etching in all directions at nearly the 

same rate. Isotropic etching of bulk silicon and a layer on a substrate is illustrated in 

Figure 3. 

 

Figure 3. Isotropic etching profile. A mask is applied to the surface of the substrate in (a) 
and as the etchant reacts with the exposed substrate, it etches equally in all directions. 
This results in the undercutting of the masking material shown in (b). 

In Figure 3a, a channel is etched into bulk silicon with an isotropic etchant, and as a 

result, the masking layer is undercut. The degree and severity of the undercut can be 
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influenced by the type of etchant, temperature, and agitation. Etchants can be selected 

based upon many criteria, to include the material to be etched, the masking material, and 

other materials that may be exposed to the etchant. 

 Anisotropic etchants are those that etch much more quickly in one direction than 

others. For example, potassium hydroxide (KOH) can be used to anisotropically etch a 

(100) bulk silicon wafer since its etch rate in the <111> direction is nearly 0 compared to 

other directions [8]. Figure 4 shows how KOH etches aggressively in the <100> direction 

but very slowly in the <111> direction. 

 

Figure 4. Anisotropic etching results in ‘V’ grooves due to the etchant reacting almost 
entirely in the <100> direction [8]. 

This type of anisotropic etch can be used to form ‘V’ grooves into a sample or in any 

application where a directional etch is desired [10]. 

  2.2.2.2 Dry Etching 

 Dry etching is performed with dry etchants that are typically categorized into two 

categories, gas vapors or plasmas. Gas vapors are generally selected due to their 
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chemistry and selective reactions. For instance, vaporized hydrofluoric acid (HF) etches 

silicon dioxide much more quickly than bulk silicon, and HF is commonly used to etch 

away SiO2 that is commonly applied as sacrificial layers while the silicon acts as an etch 

stop. 

 There are many forms of plasma etching, the most basic of which is that done by 

inert ions in plasma. These inert ions are accelerated into a layer and the kinetic energy of 

the ion removes a small piece of the layer in the resulting collision. This principle, known 

as sputtering is a physical destruction of a target [8]. The inert ion may be replaced with a 

reactive ion, such as sulfur hexafluoride (SF6). However, it is only reactive to certain 

materials, based on chemistry, such as silicon. This process is known as reactive ion 

etching (RIE) and is an isotropic etch. 

 A specialized derivation of RIE exists and is known as deep reactive ion etching 

(DRIE). This specialized process allows for high-aspect ratio silicon structures [11]. This 

is considered a silicon tool since it is based upon SF6. This process involves a series of 

shallow RIE etches and can provide aspect ratios of up to 30:1 and sidewall angles of 90 

± 2º [27,31]. Figure 5 demonstrates the DRIE process. 
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Figure 5. Mechanics of DRIE, which uses SF6 as the etchant to perform a series of RIE 
etches into a silicon substrate. While high aspect ratios can be achieved, the sidewalls of 
a DRIE etch are scalloped due to the isotropic nature of the RIE etch [8].  

Combined, these techniques allow for two general styles of MEMS fabrication, surface 

and bulk micromachining. Simply stated, surface micromachining involves depositing, 

patterning, and etching subsequent layers of thin films. Bulk micromachining differs in 

that the substrate, typically single crystalline silicon, is patterned and shaped to form a 

structure.  

2.2.3 Micromolding 

 Micromolding is the process of creating MEMS structures through the use of a 

mold for casting of polymers.  
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Figure 6. Micromolding process shows how a mold is created in (b) which is used to 
create a mold master in (c). This mold master is used to create flexible molds (d) which 
are used to shape polymers into your desired structures (f) [12]. 

In this process, shown in Figure 6, a rigid mold is fabricated out of SU-8 to form a 

negative of our desired structure. This rigid mold is used to produce a mold master from a 

suitable material, that is dependent upon desired material properties. The mold master is 

then used to create a flexible mold that is a copy of the original model. It is best to choose 

a material with a low modulus and low surface energy to allow for best results in casting 

structures. Polymer microstructures are then fabricated from the final flexible mold [12].  

2.2.4 Silicon-on-insulator (SOI) Processing 

 SOI processing is unique in that the bulk substrate is a combination of materials, 

an insulator in between silicon, that have been pre-deposited prior to processing. In the 
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case of this research effort, bulk silicon was deposited with approximately 1µm of silicon 

dioxide and 10µm of silicon on top of that. Fabrication of the cantilever is done via bulk 

micromachining of the top, silicon device layer through DRIE. However, it can be 

considered surface micromachining since the silicon dioxide is used as a sacrificial layer 

for the mechanical layer. 

 SOI wafers may be produced by several methods, to include separation by 

implantation of oxygen (SIMOX) or through wafer bonding [13]. Figure 7 shows the 

process of SIMOX. 
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Figure 7. Separation by implantation of oxygen (SIMOX) is a process of creating silicon-
on-insulator (SOI) wafers. Oxygen ions are implanted into a silicon wafer and an anneal 
is used to combine these oxygen atoms with the surrounding silicon. The result is a layer 
of silicon dioxide within the wafer. The depth of the insulating layer is dependent upon 
the power used during ion implantation [14]. 

First, an oxygen ion beam is used to implant oxygen within the silicon layer. Then a high 

temperature anneal is used to anneal the oxygen which both helps to grow silicon dioxide 

and helps to form the crystalline structure of the silicon dioxide. 
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 It is also possible to first grow the oxide then apply a top layer of silicon as shown 

in Figure 8. 

. 

 

Figure 8. Creation of silicon-on-insulator (SOI) wafers through wafer bonding. An oxide 
is grown at the surface of a silicon substrate, and a second silicon wafer is flip bonded 
onto the oxide. The top wafer is cut along bubbles in the silicon created through 
“controlled exfoliation” and then smoothed through chemical mechanical polishing 
(CMP). This technique, known as the “Smart Cut” process was developed by Soitec 
[34,35]. 

This process shown is done through wafer bonding, that is, bonding two silicon wafers 

and then using chemical and mechanical polishing (CMP) to smooth down the top silicon 

substrate. In this process, developed by Soitec [15], an oxidation layer is grown onto a 

silicon substrate and a second wafer is bonded to the surface. The second wafer is then 
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brought to the desired thickness through “controlled exfoliation” which is the breaking of 

the second wafer along a line of “bubbles” implanted into the top wafer [14].  

 SOI processing is the chosen method for cantilever fabrication in this research 

effort as the included buried oxide acts as the sacrificial layer required for forming 

mechanical layers on substrate silicon. 

2.3 PA sensing element 

In order to best detect PA signals, a microphone is required as a sensing element. 

Several research groups have tackled the photoacoustic analysis of gasses and other 

materials using fabricated cantilever, bridges, and membrane microphones. The first 

model of sensing elements were Helmholtz resonators [16]. This type of sensor is an 

open and adjoining neck. The air in the open cavity oscillates while the air in the neck 

acts as a spring to dampen the oscillations [16]. The resulting wave generated can be 

measured through the output of the neck. While simple, this setup does not generate 

enough sensitivity in order to perform accurate spectroscopy. 

There has been success using a capacitive microphone, which is a flexible 

membrane acting as the sensor [17]. This membrane deforms due to the pressure 

variations in the gas sample and this deformation is measured via an interferometer. 

However, since the entire membrane is strained and has to stretch radially, it lacks very 

high sensitivities, such as those desired by this research effort, cannot be achieved [17]. 

A more complicated method, but the preferred method of choice for this research 

is a MEMS cantilever as the sensing element due to the capability to achieve higher 

sensitivities. Cantilever designs can be used in a wide range of sensor applications.  
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Cantilever feature dimensions can be on the millimeter scale all the way down to the 

nanometer scale depending on the application.  For sensor applications, there are many 

ways to extract information based on the cantilever behavior.  Changes in the cantilever 

resonant frequency, tip amplitude displacement, piezoelectric signal, or combinations of 

these signal behaviors can be used to infer information about changes to the environment. 

A micromachined, silicon cantilever used as the sensing element can achieve higher 

sensitivities than traditional methods [18]. A cantilever also has the benefit of being a 

mechanical structure, which has a series of natural, vibrational modes or resonant 

frequencies. By knowing which particular samples that are desired to be sensed, the 

cantilever can be designed to have a resonant frequency around the frequencies expected 

to achieve through the PA spectroscopic techniques. These cantilevers may be measured 

through a piezoelectric layer applied to the surface of the beam or through an optical 

measurement, such as a Michelson type interferometer or other variations.  

De Paula et al. reported an early optical microphone for PA spectroscopy of solids 

where they optically measured the deflection of a pellicle placed over a duct outside a PA 

chamber [19].  The designed sensor was a 25 µm thick Mylar droplet shaped pellicle 

cantilever  that was mirrored and 13 mm long, 2.5 mm wide at the tip, and tapered down 

to the anchor of 1.5 mm wide.  A 1,000 W Xeon lamp was used as the radiation source 

which was then filtered using band pass slits 10 nm across.  PA spectra of a blackened 

Teflon surface was collected at a modulation frequency of 17 Hz, sweeping at a rate of 

50nm/min across a spectrum of approximately 300 – 900 nm wavelengths, and with a 

time constant of 3 s [19]. Modulation frequency scans of the radiation source showed the 
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maximum PA signal was achieved at 17 Hz due to the long, flexible design of the Mylar 

pellicle sensor. 

Ledermann et al. [20] fabricated piezoelectric acoustic sensors out of bridge and 

cantilever structures for CO2 detection.  Samples were made out of a solid silicon wafer 

that was backside etched to control the device layer thicknesses, which ranged from 5 - 

20 μm.  Figure 9 (a) is an example of the one of the 2×2×0.017 mm3 (length × width × 

thickness) fabricated cantilever designs with a 5 µm gap around the edge of the beam.  A 

pulsed incandescent lamp was used in the test chamber as the radiation source.  The 

photoacoustic results shown in Figure 9 (b), 200-1,300 μV was the measurable generated 

voltage from the lead zirconate titanate (PZT) material on the cantilever design 

depending on the CO2 concentration.  The cantilever design by far outperformed the 

bridge sensor by almost a factor of two; with the cantilever producing 170 mV/Pa and the 

bridge sensor producing 93 mV/Pa.  

 

Figure 9. (a) 2x2x0.017mm cantilever sensor fabricated by Ledermann et al. and (b) PA 
results for CO2 [20] 
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For the fabrication process, Ledermann et al. used a 1 μm thick thermal oxide 

under the bottom electrode to compensate for stress in the cantilever that built up as the 

additional layers were added [20].  The TiO2/Ti and Pt bottom electrode materials along 

with a {100}-oriented PbTiO3 seed layer was used to improve the crystal formation of the 

deposited PZT films.  The seed layer established the desired orientation and texture for 

the preferential crystal formation of the PZT.  Deposited by chemical solution deposition 

(sol-gel), a 1 μm thick PZT film was used as the piezoelectric material layer.  During the 

PZT spin on deposition process, samples went through multiple bakes at 350 °C and a 

final anneal at 650 °C under a flow of oxygen.  X-ray diffraction (XRD) analysis was 

performed on the annealed PZT films which showed good film crystallinity.  After the 

top Cr/Au contact layer was in place, the PZT film was hot poled at 150 °C for 10 

minutes with a 200 kV/cm applied electric field, which is about a 20 V applied potential 

[20].  

Kuusela et al. has made recent progress in making a small photoacoustic trace gas 

detection chamber with cantilever sensor and laser interferometer measurements [1,6].  In 

2009, they tested six different gases in their chamber with a 10 μm thick silicon 

cantilever that was 3×1.5×0.01 mm3 with 5 μm gap around edge of the cantilever.  In the 

tests, three different LED sources centered at 3.4, 4.2, and 7.0 μm wavelengths were used 

to excite the gaseous species that had absorption lines within those wavelengths.  The 

lowest detection limit achieved was 6 ppm for propane with a 1 s sample integration time.  

Experiments were performed at atmospheric pressure (760 Torr) and the gas species were 

diluted with nitrogen to control the concentration [6,40].  LED’s offered a compact, low 

cost option for the for PA excitation source.  The broad emitted power spectrum of the 
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LED sources spanned multiple absorption lines of the gasses under investigation. Dips in 

the spectral output power of the 7 µm wavelength LED was due to the absorption lines of 

water.  Due to the broad spectral output of the LED’s, this system design could only 

perform chemical detection for a limited number of gases.  

A benefit in fabricating optically detected cantilevers is that it limits the number 

of layers required to fabricate a cantilever microphone so it removes the two electrode 

and piezoelectric layers. Also, cantilever microphones whose displacement is measured 

with Michelson-type laser interferometers have so far achieved the highest sensitivities in 

PA systems [6,41,42]. However, this sensitivity is closely controlled by the fabrication 

process and properties of the silicon. For instance, the work done by Sievila et al. 

characterizes the sensitivities of the cantilevers as they relate to the deflection of the 

cantilever out of plane. After the cantilevers are fabricated, the curvature out of plane is 

measured interferometrically. The angle of deflection shown in Figure 10 is reported to 

vary from 10-3 rad to 10-2 rad [21]. 
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Figure 10. Cantilever deflection at rest of the cantilever fabricated by Sievila et al. This 
shows that without external stimuli, the cantilever is bent out of plane due to an internal 
stress gradient along the length of the cantilever. The displacement is not to scale [21]. 

This bending out of plane allows for a larger gap between the cantilever and membrane, 

which limits the damping of the cantilever from the gas and ultimately lowers sensitivity. 

However, these cantilevers were masked for etching by thermally growing an oxide onto 

the surface, which diffuses dopants further into the silicon resulting in internal stress [22]. 

It has been shown that depositing an   through plasma enhanced chemical vapor 

deposition (PECVD) and a subsequent anneal can lower the released curvature to having 

radii of curvatures from 4.5 m to 15 m [22]. 

 As mentioned earlier, the gap between the cantilever gap and membrane is crucial 

as to prevent leakage of gases and proper damping of the cantilever system. This gap is 

dependent upon the resolution of the patterning and the etch performed to release the 

cantilever. The release process performed by Sievila et al. is a wet etch. The etchant used 
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is tetramethylammonium hydroxide (TMAH) which has an isotropic etch profile. This 

results in a larger gap around the corner of the cantilever as shown in Figure 11 [23]. 

 

Figure 11. SEM image of rounded corner of cantilever fabricated by Sievila et al. This 
rounded corner is due to the isotropic etch of tetramethylammonium hydroxide (TMAH) 
which was used to release the device. This rounded corner increases the gap around the 
corner and is a source of sensitivity loss [44,45]. 

This rounded corner is also a source of gas leakage and a loss of sensitivity in the PA 

system due to the membrane gap around the corner increasing from approximately 3µm 

along the edge of the beam to approximately 20 µm at the corner.  

 The process for designing a piezoelectric cantilever is similar to an optically 

detected cantilever with the inclusion of two electrodes sandwiching a piezoelectric 

material, such a lead zirconate titanate (PZT) or zinc oxide (ZnO) [35,46,47,48]. Figure 

12 shows the fabrication process for a piezoelectric cantilever.  
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Figure 12. Piezoelectric cantilever fabrication process[27]. The additional layers applied 
to the surface of the cantilever will generate an electric potential between the top and 
bottom metal contacts when the cantilever is strained. This could yield in a more portable 
system, but the added layers could hinder cantilever motion [49,50]. 

This process shows PZT as the piezoelectric layer, but success has been reported using 

ZnO as well [35,51,52,53,54,55]. Figure 13 shows a fabricated ZnO cantilever. 

 

Figure 13. Cross section of zinc oxide (ZnO) cantilever. ZnO has had reported success as 
the piezoelectric layer in fabricating cantilever sensors [35,54]. 
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However, as stated above, adding piezoelectric layers to a cantilever microphone comes 

with tradeoffs. For not needing an external interferometer, a loss of sensitivity is incurred 

[49,50,56,57]. 

2.4 Cantilever motion 

Cantilever bending in an underdamped system can be expressed through 

analytical models where the tip displacement A is given by 
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where τ is the time constant, m is the mass of the cantilever, F is the applied force, ω is 

angular frequency, and ω0 the angular resonant frequency [8]. An examination of this 

equation reveals that an increase in time constant, reduction in mass, and reduction in 

resonant frequency will allow for larger deflections for a given force. A cantilever’s 

resonant frequency f0 is described by  
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where k is the sprint constant and meff is the effective mass of the cantilever [8]. Effective 

mass of a cantilever takes into account how easily the cantilever is accelerated due to 

spring constant and can be calculated using Rayleigh’s method through the conservation 

of energy[28]. Using this method, it is shown that the effective mass of a cantilever is 

described by 
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where ρ is the density of the material, L is the length, w is the width, and h is the 

thickness of the cantilever. 
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The spring constant, k, of a cantilever beam can be described by                               
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where Eγ is the Young’s modulus of the material. Often, cantilevers are not perfectly flat 

due to the imperfect nature of SOI and the internal stress that is built when annealing the 

buried oxide which expands differently than the silicon layer on top. This results in a 

curvature to the cantilever. By measuring the radius of curvature, the internal stress 

gradient, Δσ can be measured through the use of Stoney’s equation.                              

																																																																						ଵ	
ோ
ൌ 	 	

ሺଵିఔሻ௱ఙ

ாംௗమ
                                                     ( 8 ) 

Where R is the radius of curvature, Eγ is the Young’s Modulus for the cantilever material, 

in this case, silicon, ν is Poisson’s ratio corresponding to the crystal orientation of the 

bending cantilever, and d is the thickness of the beam. 

2.5 Finite Element Method (FEM) 

 Finite element method is a problem solving method that is used to find 

approximate solutions to a field problem[29]. Field problems, which are described 

through differential equations, attempt to determine “spatial distribution of one or more 

dependent variables” [35,59]. FEM takes a device or area and divides it into finite 

elements, which together, represent the entire physical structures. The boundaries 

between elements are called nodes. The arrangement of elements within the structure is 

defined as the mesh. The mesh created is “represented by a system of algebraic equations 

to be solved for unknowns at the nodes”[29]. Performed in a piecewise fashion, 

approximate solutions of the structure are calculated element by element. The accuracy of 

the solution can be increased by increasing the number of elements in the structure. FEM 



28 

simulations can be used to model the behavior of a particular device which is constrained 

by material properties, boundary conditions, and applied stimuli.  
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III.  Methodology 

Photoacoustic spectroscopy can be broken into two main components, the 

generation and sensing of pressure waves. This research effort focuses primarily on the 

sensing aspect, which is accomplished by a designed and fabricated cantilever which is 

housed by a stainless steel photoacoustic chamber. This chapter details the efforts in the 

design and process of creating the testing fixtures. 

3.1 Wave Generation 

 The gas species chosen for this research effort is Methyl Cyanide (CH3CN). This 

gas is chosen due to it being well documented in the THz regime and having absorption 

lines over a wide range of frequencies, from 0.018 – 1.8065 THz. Figure 14 shows the 

absorption spectrum for Methyl Cyanide as characterized by NASA’s Jet Propulsion 

Labs (JPL) [24]. 

 

Figure 14. Absorption spectrum for Methyl Cyanide as characterized by NASA’s Jet 
Propulsion Labs. Methyl Cyanide has absorption lines from 0.018 – 1.8065 THz [24]. 
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This graph displays the entire absorption spectrum for Methyl Cyanide, which spans 

1.7885 THz. For the purposes of this research effort, only a fraction of this spectrum is 

required. Figure 15 shows the absorption lines of Methyl Cyanide as characterized by 

prior students in this research project. 

 

Figure 15. Methyl Cyanide absorption Lines taken at 13 mTorr from 0.3117 – 0.3127 
THz. This narrow spectrum shows 14 absorption peaks. 

This graph shows 14 different absorption lines taken at 13 mTorr within a relatively 

narrow THz spectrum, from 0.3117 – 0.3127 THz, a 1GHz band. This figure illustrates 

how methyl cyanide has very distinct absorption lines across a spectrum that we are 

interested in scanning, in this case, a 1 GHz band within the 0.3 THz region. 

A THz source is also highly desirable due to its high tenability, low ionization 

energy, directionality, and material penetrating properties [3,60]. To generate the THz 

radiation and cause the photoacoustic effect, a Virginia Diodes Inc. (VDI) Amplifier 

Multiplier Chain 317 was used.  The signal to the VDI THz radiation diode was provided 

by an Agilent E8254A PSG-A signal generator.  The signal generator created an 

amplitude modulated square wave at the desired frequency and modulation pulse 

frequency which was configured through a LabView interface.  Emitted power by the 
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THz VDI source ranged from 0.6 – 1.4 mW and is frequency dependent.  On the opposite 

side of the chamber from the THz source, there’s a VDI sensor positioned to measure the 

amount of power that exits the chamber.  For this experiment, the amplifier chain used 

generated radiation over the 0.250-0.375 THz frequency range.   

3.2 Test Chamber Design 

 A custom designed photoacoustic chamber was machined out of stainless steel to 

house the sensing element of the research project. This chamber is also where the gaseous 

sample is held and where the photoacoustic waves are generated. Figure 16 shows half of 

the photoacoustic cell. 

 

Figure 16. Schematic of back of photoacoustic test chamber [25]. Test chamber is 2x2x2 
in3 and machined from stainless steel. The absorption cell has a radius r = 0.197 in and is 
sealed at either end with Teflon windows. The cantilever sits between the two halves of 
the cell and is measured optically with a laser through a window in the front half of the 
cell. 

The stainless steel cell is a cube with length l = 2 in and where the radius r = 0.197 in. 

The chamber consists of a front and back half and a 1 in2 silicon sample, which acts as a 
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handle for the cantilever microphone, sits between the two pieces. The back half of the 

chamber houses the absorption cell while the front half houses a balancing volume. In 

order to maintain a seal on our gaseous sample, Teflon windows are used to seal the ends 

of the absorption cells and an antireflective (AR) coated glass window seals the balance 

volume which allows for the interferometer to make optical measurements of the 

cantilever deflection. Figure 17 shows a photo of the test chamber. 

 

Figure 17.Photoacoustic test chamber shown along with vacuum tube, radiation source, 
Teflon windows, radiation detector, focal lens, beam splitter, and detector for 
photoacoustic signal [25]. 

A Pfeiffer HiCubeTM turbo pumping station  is used to evacuate the photoacoustic cell and 

to achieve a low pressure, approximately 0.5 mTorr. Liquid CH3CN is exposed to this 

low pressure, which then vaporizes. The vapor is then slowly and carefully allowed into 
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the absorption chamber through a series of valves. This allows for a high degree of 

controllability in allowing discrete volumes of gas into our photoacoustic cell.  

 Measurements in the test fixture are made optically with a Michelson-type laser 

interferometer. A Helium (He)- Neon (Ne) laser beam is guided through a series of 

mirrors, beam splitters, irises, and focusing lenses and reflected off the Ti-Au spot on the 

tip of the cantilever. This reflected beam travels back to a photodiode where the laser 

beam power is measured. The irises serve to clip the beam, which lowers power as the 

beam sways due to cantilever deflection. By blocking a reference mirror in the test 

fixture, PA spectral data is collected. In order to quantify sinusoidal changes in power 

observed at the photodiode, the reference mirror is unblocked, which provides 

interferometric measurements. With these measurements, tip deflection measurements 

may be made through the generated interferometric signal. Figure 18 (not to scale) shows 

both the PA optical measurements by beam clipping when the reference mirror is 

blocked, and the Michelson interferometer displacement measurements when reference 

mirror is unblocked. 
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Figure 18. Diagram of laser measurements in test fixture [25]. As the laser is shifted due 
to the cantilever bending, part of the beam is clipped by an iris. This results in a loss of 
power at the diode. This changing power is measured and is how photoacoustic data is 
collected.  

In both cases, the signal passes a Stanford Research Systems SR560 preamplifier that acts 

as a bandpass filter. The signal is also sent to a Stanford Research Systems SR530 lock-in 

amplifier. The modulated frequency from the Agilent signal generator is used as the 

reference in the SR530 lock-in amplifier.  

3.2.1 Testing 

Testing is done through the use of a Virginia Diodes Inc. THz radiation source 

that emits THz radiation through a Teflon window into the absorption volume in the test 

chamber. This volume sits “below” the cantilever and houses our gas species, methyl 

cyanide. This THz radiation is what causes the gas to heat and expand, inducing the PA 

effect. A THz source is chosen due to having fast modulation frequency as well as being 

able to pass through materials easily, such as the Teflon windows used to ensure a 

vacuum in the test chamber. Methyl Cyanide also has very strong absorption lines in the 

THz regime, which makes it a good candidate as a radiation source. 
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3.3 Modeling 

By reviewing equations ( 4 ), ( 5 ), ( 6 ), and ( 7 ), it can be seen that maximum tip 

deflection results from increasing length (L) and decreasing width (w) and thickness (h). 

However, careful consideration must be taken into fragility of devices.  Larger length to 

thickness ratios will lead to difficult to fabricate devices due to the fragile nature of high 

length to thickness ratio structures. 

Initial cantilever designs were evaluated through the use of CoventorWare® FEM 

software. Using a harmonic modal analysis tool, a harmonic pressure load was applied to 

the cantilever surface as a function of frequency and the magnitude of the tip 

displacement was recorded. An important consideration in FEM modeling is the number 

of elements used to model the structure. Figure 19 shows a simulated cantilever with a 

50x50x10 µm3 mesh. 

 

Figure 19. 7x2x0.01 mm3 cantilever with 50x50x10 µm3 element simulated with 
CoventorWare® finite element methods (FEM) software. 
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A 50x50x10 µm3 element is the largest element size used in modeling this cantilever, but 

still results in 5,600 finite elements in the mesh across the entire length of the beam. Each 

element must be simulated for during the entire frequency spectrum and through the 

modal harmonics, which results in a large number of computations. The finest mesh of 

10x10x10 µm3 blocks yields in 140,000 elements. 

To increase the number of elements allows for more accurate simulations, but is 

very computationally demanding. This increase in computing time is nonconductive to 

running many simulations and a diminishing returns effect can be seen. As such, a mesh 

analysis was performed to find a suitable minimum elemental mesh size to obtain 

accurate results. Figure 20 shows a mesh analysis performed on CoventorWare® for a 

simulated 7x2x0.01 mm3 cantilever. 
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Figure 20. Mesh analysis showing that as the number of elements in a simulation 
approaches infinity, the deflection of a 7x2x0.01 mm3 cantilever under a 0.1 mPa load 
approaches 0.214 µm. This analysis also shows that increasing the size of an element 
from 10x10x10 µm3 to 25x25x10 µm3 will more than halve computation time while only 
resulting in an error of 0.48% from the true value. 

This mesh analysis shows a cantilever beam under a 0.01 mPA pressure load applied 

along the surface. This mesh study indicates that as the number of mesh elements 

approaches infinity, in other words, 1/number of mesh elements approaches 0, the tip 

deflection should approach a value of 0.214 µm. This study is important in justifying 

larger meshes, which yields fewer elements which reduces computation times. An 

increase in mesh dimensions from 10x10x10 µm3 to 25x25x10 µm3 reduces run times by 

over 50% but only yields in a difference in results of 0.26% and an error from the 

estimated  true value of 0.48%.  With a suitable sized mesh, a proper series of simulations 

may be run to simulated cantilever bending, resonant frequency, modal harmonics, and 

various other cantilever aspects. Figure 21 shows a completed CoventorWare® simulation 

with the first modal harmonic being displayed. 
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Figure 21. CoventorWare® simulation of 7x2x0.01 mm3 cantilever at first modal 
harmonic at 280.858 Hz. 

This simulation shows the first modal harmonic of the cantilever appearing at 280.858 

Hz. 

3.4 Cantilever Fabrication 

 The fabrication process is done on an n-type SOI wafer. First, a thin layer 

(200/1000 Å) of titanium/Gold (Ti/Au) is evaporated onto the tip of the cantilever as a 

reflective surface for the interferometer. The titanium acts as an adhesion layer for the 

gold, which does not normally stick very well to silicon. Next, the device layer is 

patterned, with photoresist and spun to a thickness of ~2 µm and exposed in an MJB3 

mask aligner with the proper device layer mask. It is exposed with UV light for ~8 s and 

receives a power dosage of approximately 150 mJ/cm2 in order to pattern the resist which 
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is then developed and baked. Next, the sample is etched using DRIE to create a gap 

between the device layer from the surrounding membrane. This gap distance must be 

tightly controlled for if it is too large, it allows for gas leakage between the cantilever and 

surrounding membrane. This membrane gap and associated gas leakage controls the 

damping of the system. Too much leakage and the system becomes undamped and no 

longer functions properly since undamped systems will only oscillate at the structure’s 

resonant frequency. Figure 22 shows a schematic of the device layer gap along with an 

optical image of the gap. 

 

Figure 22. Device layer gap along the edge of the cantilever beam separates the cantilever 
from the surrounding membrane [25]. This gap is important in controlling the damping of 
the cantilever system. Too large and the cantilever becomes undamped, which results in 
the cantilever only vibrating at resonant frequency. 

Through experimentation and modeling, it is found that a 3 µm gap is smallest membrane 

gap achievable through DRIE. It is possible to form the gap through RIE, but the 

resulting gaps were found to be ~8 µm.  

After the topside DRIE, the back of the sample must undergo DRIE to reach the 

oxide layer. This oxide is subsequently etched away with HF vapor, releasing the device. 
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However, the layer of oxide between the device layer and substrate leads to residual 

stress in the membrane directly behind the base of the cantilever, causing the beams at 

rest to bend upwards. This is due to the residual stress Δσ in the cantilever, which, using 

Equation ( 7 ), can be calculated. Using R = 1.11 m, the resting radius of curvature of a 

fabricated cantilever, Eγ = 169 GPa, which is the Young’s Modulus for silicon, ν = 0.064 

which is the Poisson’s ratio corresponding to the crystal orientation of the bending 

cantilever and d = 10 µm, which is the thickness of the beam, it is shown that the 

cantilevers have an internal stress gradient Δσ = 2.702 N/m [26]. 

To counter this bending, a layer of oxide was thermally grown at the top of the 

device layer. As an oxide is grown on the surface of silicon, this caused the phosphorous 

atoms that our n-type wafer was doped with to gather at the surface [8]. In other words, 

the growing oxide drives phosphorous atoms towards the oxide. The larger phosphorous 

atoms accumulating towards the top of the device layer results in residual stress bending 

the cantilever back into plane, which is shown in Figure 23. Figure 24 shows the 

fabrication steps from a cross sectional view of the sample. 
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Figure 23. Diagram of effect of oxide growth on n-type silicon doped with phosphorous 
atoms. Prior to oxidation, phosphorous atoms are spread evenly through silicon. After 
oxide growth, phosphorous gathers at the interface, which causes the silicon to stress 
away from oxide growth due to the phosphorous atoms being larger than surrounding 
silicon atoms. 
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Figure 24. Fabrication steps for improved cantilever fabrication process. First, an oxide is 
grown in an oxidation furnace at 1000º C. Then the oxide is etched away, the cantilever is 
shaped with deep reactive ion etching (DRIE). The backside of the handle wafer is also 
etched to the buried oxide and finally the oxide is removed through a hydrofluoric vapor 
etch. 

After release, cantilever curvature is measured using a NewViewTM Zygo white light 

interferometer. This interferometer works by reflecting light onto a surface and then 

using the resulting fringe lines documented on the surface to measure surface topography. 

These fringe lines result from the white light emanating varying wavelengths which 

reflect off a surface. As these waves bounce back, some constructively interfere while 
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others destructively interfere. It is this interference that causes the fringe lines which are 

then evaluated through software to perform accurate measurements. 

 Another source for loss of sensitivity in previously fabricated cantilever systems 

is the rounded corners shown in Figure 11. This is due to the etch profiles of wet etchants 

traditionally used to release cantilevers having  an isotropic etch profile. This research 

effort includes the use of a HF vapor etch. This HF vapor etch allows for a higher degree 

of selectivity between the oxide layer and the mechanical, silicon layer. The HF vapor 

etches at approximately 0.3 µm / min and results in significantly tighter corners along the 

edge of the cantilever beam. The etch continues until it is optical verified that all oxide 

has been removed from the bottom of the cantilever. Due to the thin nature of the oxide 

diffracting light, it is very noticeable when oxide remains on the surface. Figure 25 shows 

an optical image of oxide that has not been completely removed during device release. 
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Figure 25. Oxide on the bottom of a cantilever remaining after release. This remaining 
oxide will cause the cantilever beam to curl by as much as 100 µm if not completely 
etched away. 

 Once all the oxide has been etched, the cantilever is fully released and ideally maintains 

a small gap around the entire length of the cantilever beam. Figure 26 shows an optical 

image of a corner of the cantilever beam.  
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Figure 26. Corner of cantilever beam showing the tight ~3 µm gap that exists along the 
entire length of the beam, including the corner [25]. 

As can be seen, the membrane gap is maintained throughout the entirety of the beam, 

which limits gas leakage, which increases sensitivity in the cantilever devices. This 

process of dry etching also provides less force upon the cantilever during the release 

process than would be applied during submerging and surfacing of the sample into a 

liquid etchant. With high length to thickness ratios (700) careful consideration must be 

taken into handling of the cantilever during and after release. It is due to this high 

fragility that the longer 7 mm cantilevers are only fabricated on 10 µm SOI, since the 

5µm devices yield such a low percentage of working devices and are prone to snapping 

and cracking along the cantilever / membrane gap. Figure 27 shows a cantilever where 

the small 3µm gap had been over-etched to become much larger and a close-up on the top 

right corner where a hairline fracture had developed in the membrane. 
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Figure 27. Cantilever with large gap and cracked membrane. This large gap was due to 
over-etching during the release process and a hairline fracture that formed along the 
membrane. 

However, once released the cantilevers are less prone to fracturing since they become 

separated from the membrane by the gap along the edge of the beam. The cantilever 

beams are relatively flexible and can bend with minor vibrations or impacts. It is during 

the release process that they are most fragile, but care must still be taken when handling 

released cantilevers. 

 Previous students have made several attempts at fabricating piezoelectric 

cantilevers using a PZT target to sputter PZT onto a cantilever. However, before another 

attempt was done by this research effort, an analysis of the PZT target was conducted. A 
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chemical composition done by electron dispersive spectroscopy (EDS) was performed on 

the target and it was determined that the target was severely deficient in lead, which is 

necessary for PZT to have adequate piezoelectric properties [22,30]. Figure 28 shows the 

results of the EDS scan on the PZT target. 

 

Figure 28. Electron dispersive spectroscopy (EDS) results performed on the lead 
zirconate titanate (PZT) target used in previous attempts at fabricating piezoelectric 
cantilever. It is shown that the target has a lead deficiency, which inhibits proper 
piezoelectric properties in material sputtered from this target. 

The EDS result shows a PZT target with a lead concentration of 33%, which is smaller 

than required for a good thin film of PZT to be sputtered and have piezo properties. With 

this knowledge, any future attempts at fabricating PZT coated cantilever for this research 

effort were no longer considered. 
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IV.  Data 

Chapter Overview 

This chapter details the results of developing sensitivity improved cantilevers. 

The improvements to fabrication techniques are discussed as are the physical results of 

these modifications. The changes made to the cantilevers include: oxide growth prior to 

fabrication, modification to cantilever dimensions, and shaping the geometry of 

cantilevers. Each of these changes and their impacts on cantilever sensitivity are 

discussed. 

4.1 Cantilever Geometry 

 As shown earlier in Figure 27, during release, the membrane surrounding the 

cantilever is prone to fracturing. This is due, in part, to the large surface area being only 

10 µm thin making the silicon prone to cracking due to high length to thickness ratios.  

This is especially true of the area of silicon closest to the corner of the cantilever. The 

sharp right angle has a high stress concentration that makes the silicon prone to cracking 

due to accidental force or when the silicon is slightly weakened by the release process 

[27]. To counter this high stress concentration, the edge of the cantilever has been filleted 

in order to reduce the stress concentration and to improve survivability and yield of 

cantilevers. Figure 29 shows the filleted corner of a cantilever. 
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Figure 29. Filleted corner of cantilever is used to reduce stress in the membrane caused at 
the sharp right angle that previously existed. The tight ~3 µm gap is still maintained 
throughout the corner. 

This rounded corner has reduced the number of cracked membranes of fabricated 

cantilevers by roughly 50%. The number of cracked membranes is very nearly tied to 

yield of cantilevers since the cantilevers are relatively robust prior to being released and 

the membrane is the most likely to fracture during release.  

4.2 Cantilever dimensions 

 Cantilever sensitivity is also a function of cantilever dimensions, which affects 

resonant frequency and deflection. Ideally, an incredibly long, narrow, and thin cantilever 

would produce the most sensitive device. Unfortunately, fragility comes into play when 
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dealing with such devices. While prior students and other research efforts have had 

success with 5x5x0.005 mm3 devices, these devices have been difficult to fabricate and 

handle due to their extremely fragile nature. This research effort focused on thicker, 

10µm cantilevers but increased the length to 7 mm in order to compensate for lost 

sensitivity. Figure 30 shows the expected results from an increase in cantilever length. 

 

Figure 30.CoventorWare® simulation showing effect of increasing cantilever length [25]. 
In both the 5 µm thick beams and 10 µm thick beams, increasing the length from 5 mm to 
7 mm results in an increased cantilever tip deflection by up to 4x. 

However, while longer cantilever dimensions provide more deflection, increasing 

length also decreases the delta in between the first two modal harmonics of the cantilever.  
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Figure 31. CoventorWare® simulation showing first four modal harmonics of a simulated 
7x2x0.01 mm3 cantilever and the amount of tip deflection that occurs at these frequencies 
[25]. It is primarily the first two modes that contribute to tip deflection. 

As the length of a cantilever continues to increase, the delta in between the first two 

modes will decrease, until it becomes difficult to vibrate a cantilever at resonant 

frequency without unintentionally exciting higher vibrational modes. However, this effect 

is limited at a length of 7 mm, which still leaves a delta of ~1500 Hz. For a review of the 

first two modal harmonics of a variety of cantilever dimensions, reference Appendix E. 

4.3 Thermal Oxidation 

Previously fabricated cantilever beams did not yield perfectly flat cantilevers. As 

a result, sensitivity loss was incurred due to the beam’s resting position leaving a larger 
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than 3µm gap around the beam. This large gap is a source of gas leakage. Figure 32 

shows the measurements of a previously fabricated cantilever. 

 

Figure 32 (a). Surface map of cantilever as shown by ZygoTM white light interferometer. 
The resting curvature of this cantilever beam is 22.6 µm out of plane measured from the 
tip to the membrane directly across from it. 

Figure 32(a) shows a 3D model of the surface of the cantilever (top) based on the optical 

image formed with white light interferometer image (bottom) along with the out of plane 

curvature as measured by the interferometer. 

Membrane 

Edge of beam 
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Figure 32 (b). ZygoTM white light interferometer measurement of cantilever showing the 
graph of displacement of the top of the cantilever along the length of the beam. 

Figure 32 (b) shows a graph of displacement in the x-direction along the length of the 

cantilever.  

 Prior to device fabrication, a layer of thermal oxide is grown on top of the SOI. 

This allows the silicon to be converted into SiO2 at a rate of 44% Si per unit SiO2. This 

conversion also changes the beam geometry, but due to the relatively small amount of 

oxide grown relative to the device layer thickness ( 0.1 µm compared to 10 µm) this 

effect is negligible. This causes the phosphorous atoms in the n-type Si to gather at the 

oxidation site. The phosphorous atoms gathering along the interface causes the remaining 

Si to tend to stress towards the handle. This is due to phosphorous atoms being larger 

than the surrounding silicon atoms. Oxides were grown in a wet thermal oxidation 

furnace at 1000º C for 1,2,3, and 4 hours. The resulting oxide thicknesses are recorded in 

Figure 33. 
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Figure 33. Plot of oxide thicknesses over time of two sets of samples. The samples were 
put into an oxidation furnace at 1000º C for 1,2,3, and 4 hours.  

As seen in Figure 33, the oxide thicknesses tend to grow linearly as a function of time in 

the furnace. The oxide thicknesses are measured via a ZygoTM white light interferometer.  

 After cantilever release, the resting deflection out of plane is then measured with 

the ZygoTM. The measurements are shown in Figure 34. 
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(a) 

 

(b) 

 

(c) 

Figure 34. Cantilever deflections out of plane for 1 (a), 2 (b), and 3 (c) hours. As can be 
seen, the more oxide grown on the surface of the beam prior to fabrication, the less the 
resulting tip deflection 

Membrane 

Membrane 

Membrane 

Edge of beam 

Edge of beam 

Edge of beam 

Tip deflection 

Tip deflection 

Tip deflection 



56 

The resulting radii of curvature are then plotted against oxide thickness. Unfortunately, 

both 4 hour oxide growth samples did not make it to device release. One was mishandled, 

causing it to shatter, and the other had SU-8 photoresist sputtered into the DRIE etch hole 

when the DRIE carrier wafer lost thermal contact with the samples.  

 

Figure 35. Plot of cantilever curvatures vs oxide thickness. The curvatures decrease 
linearly with amount of oxide grown prior to fabrication. Only 3 points are shown due to 
the 4 hour samples shattering prior to device release. 

As can be seen, as the oxide grown becomes thicker, the curvature out of plane of the 

device becomes smaller, indicating a flatter resting state which allows for less gas 

leakage during sensing. This is due to the reasons discussed earlier, to include the 

diffusion of phosphorous atoms into the silicon and the annealing effects of the furnace 

required to grow the oxide. As gas leakage around the tip of the cantilever is reduced, the 

spring constant of the systems increases as more gas stays behind the device to allow for 

more effective damping. This increase in damping allows for more sensitive gas sensing. 
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While no four hour sample survived, it can be predicted that the resulting curvature out of 

plane would have been roughly 3.96 µm. This can be inferred due to the linear nature of 

the graph of curvature to oxide thickness. 

4.4 Spectral Data 

 All other things being equal, a flatter cantilever should result in a more sensitive 

device due to the cantilever deflecting more in both directions. Next, spectral data is 

collected to measure and compare the relative sensitivities of the flatter cantilever that is 

the result of this research effort with prior results.  Figure 36 displays methyl cyanide 

spectra collected at 15 mTorr. 

 

Figure 36. Methyl cyanide spectra of 7x2x0.01 mm cantilever beam taken at 15 mTorr 
along a ~1.5 GHz spectrum. The collection shows strong absorption lines as well as high 
signal to noise (SNR) ratios. 

Upon first inspection, the spectra looks clean with strong absorption lines and comes 

close to matching the performance of the previously fabricated 5µm device. 

Frequency (GHz) 

P

A 

Si



58 

 

Figure 37. Overlay of methyl cyanide spectra of 7x2x0.01 mm3 design and 5x2x0.005 
mm3 design. The 7 mm design does not have as high a response as the 5 mm design, but 
that is expected due to the 7 mm design being twice as thick. However, the peaks match 
very closely. 

As seen in Figure 37, the two spectra collections line up very closely. However, as can be 

expected, the 5µm device still outperforms its longer, thicker counterpart. This spectra 

utilized a 0.2 MHz step size with an excitation of 4s, followed by a signal averaging time 

of 0.5 s. This data collection took 9.1 hours to perform, during which the chamber 

pressure rose by 5 mTorr. This spectra was collected with a cantilever that had oxide 

grown for 3 hours in the furnace. The long data collections are due to the cantilever 

requiring a long excitation time due to slow response times at lower pressures. Figure 38 

shows the varying results from varying the excitation time. This spectrum was collected 

by previously fabricated 5x2x0.010 mm3 cantilever. 
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Figure 38. Spectra PA signals taken at 38 mTorr with varying excitation times [25]. 

As can be seen, lowering excitation time both increases the peak response to higher 

frequencies and lowers the amplitudes of the PA signal. This is due to the low excitation 

pressure generated in the chamber due to the low overall pressure. Under low pressures, 

the excitation time for a single data point collect can be roughly 4-12 s. In order to best 

collect data, the cantilever should be at steady state prior to data collection. However, due 

to the large sizes of spectrums that are being scanned and the small step sizes, waiting too 

long for the cantilever to reach steady state can unnecessarily increase data collection 

times. In order to illustrate the time it takes to reach steady state, the amplitude of the PA 

signal is graphed against time as shown in Figure 39 and Figure 40. 
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Figure 39. Photoacoustic (PA) data recorded at 11 mTorr. At this pressure, the PA signal 
continues to grow until about 8 s, after which the cantilever reaches steady state. 

As displayed, the PA signal from the cantilever continues to grow until roughly 8 

seconds, after which the cantilever reaches steady state. After the THz radiation is turned 

off, the exponential decay of the PA signal can also be seen. This also contributes to the 

time taken in between data collects in order to ensure the cantilever has come to rest prior 

to being re-excited. This slow decay is also due to the small damping coefficient and 

continued excitation at a lower absorption strength, causes the amplitude deflection to 

reduce slowly. These times become drastically reduced at higher pressures as shown in 

Figure 40. 
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Figure 40. Photoacoustic (PA) data recorded at 78 mTorr. At this pressure, the PA signal 
reaches steady state much quicker than previously recorded at 11 mTorr. 

By increasing the pressure from 11 mTorr to 78 mTorr, the excitation time required drops 

from 8 s to 3 s. These times required are compared to chamber pressure in Figure 41. 
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Figure 41. Plot of excitation time required vs chamber pressure. It can be seen that as 
pressure increases in the chamber, the amount of time required to bring the cantilever to 
maximum deflection decreases. 

However, by increasing pressure, the resolution and sensitivity of our systems decreases 

as shown in Figure 42. 
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Figure 42. PA spectra collected at varying chamber pressures. As the pressure increases 
in the chamber, the resolution of the system decreases. At 40 mTorr, two absorption 
peaks that are apparent at 2 mTorr become indistinguishable. 

As can be seen, with a higher pressure, the last two absorption peaks begin to blur into 

one large peak as the pressure raises from 16 mTorr to 40 mTorr. This resolution is 

quantified as the quality factor of the cantilever. Quality factor (Q) can be expressed as 

                                                               ܳ ൌ	 ఠబ

௱ఠ
ൌ 	 బ

௱
                                                   ( 9 ) 

where f0 is the resonant frequency of the cantilever and Δf is the full width half max of the 

PA signal. Figure 43 shows how quality factor of a system changes with chamber 

pressure. 
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Figure 43. Quality factors, based on Equation ( 9 ), of cantilevers previously fabricated 
with dimensions of 5x2x0.01 mm3 and 5x2x0.005 mm3 [25]. This plot shows how quality 
factor decreases sharply with increase of chamber pressure. 

While an increase in chamber pressure may decrease the response time for a cantilever to 

reach steady state, it will suffer in terms of specificity. A system with a low quality factor 

may incapable of distinguishing one gas species from another. To keep high quality 

factors, chamber pressure must be kept low, and photoacoustic collections will take 

longer. 

While these long data collects seem impractical, they are unnecessary for basic 

chemical identification. A fast scan technique with a low excitation time at a higher 

chamber pressure could be used to quickly evaluate small spectral regions for absorption 

lines in order to give a quick identification of an unknown chemical. Lower chamber 

pressures and long excitation times can then be used to identify line center absorption 

frequencies and the relative PA amplitudes for each absorption line.  
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V. Analysis 

 Using the PA spectra collected, the performance of the system is evaluated and 

compared against prior research. The SNR is determined by finding the maximum and 

minimum signals found in the spectra. The noise level of the PA measurement must be 

measured away from strong rotational absorption lines and away from any weak excited 

state vibrational absorption lines. To locate the noise floor, the root-mean-squared (RMS) 

value of the signal was calculated by 

                                              ݈ܵ݅݃݊ܽோெௌ ൌ 	ට
ሺ௦భమା௦మమା⋯ା௦మሻ


      ( 10 ) 

Where n is the number of samples in the interval and s is the PA signal value measured at 

each frequency step. A sample size n = 100 consecutive samples provides a conservative 

RMS noise floor for the PA spectral data, and is used for the remainder of the analysis. 

The calculated SNRs are shown in Table 1 for various data collections. 

 

Table 1. SNR results for multiple sample size intervals 
 

Sample Size Max Signal RMS Noise SNR 
10 3.0127 0.0009 3,347.4 
25 3.0127 0.0015 2,008.5 
50 3.0127 0.0017 1,772.2 
100 3.0127 0.0019 1,585.6 
200 3.0127 0.0025 1,205.1 
500 3.0127 0.0028 1,076.0 

 

The SNR of the system varies across the collections due to several reasons. Settings on 

the photodiode and lock-in amplifiers required adjustment for large versus small 

cantilever deflections since large deflections causes PA signals greater than 10V, which 
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would overload the DAQ card’s ±10 V limit. Spectrums were also collected over large 

frequency ranges which required longer times which allowed more time for external 

noise to be introduced into the system. This noise in the PA system and in the 

measurements are discussed in a later section. 

 Next, the sensitivity of the device is evaluated. Using the equation for αmin , the 

sensitivity of the device can be calculated based on the absorption strength and the SNR 

corresponding to the measurement. The best sensitivity  was found to be 1.71x10-5 cm-1.  

 

Table 2. Best sensitivity results for cantilever designs compared to prior research. 

Cantilever 
Design 
(mm3) 

Chamber 
Pressure 
(mTorr) 

Radiation 
Frequency 

(GHz) 

αpeak (cm-1) SNR αmin (cm-1) 

5x2x0.01 13 312.633 0.02400 1,221 1.97x10-5 

7x2x0.01 13 312.633 0.03450 2,012 1.71x10-5 

5x2x0.005 38 459.627 0.05387 3,719 1.13x10-5 

 

As can be seen in Table 2, the sensitivity of this device improves upon previously 

fabricated 10µm devices. However, many factors have changed between prior students 

and the current search effort, to include chamber design, laser, the THz source has been 

changed, and the chamber mount has been adjusted and also may have made the system 

more susceptible to vibrational noise.  

 To help account for some of these variations, the NNEA , which takes into 

account the radiation source output power and the sampling time, is calculated. The 

results are shown below in Table 3. 
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Table 3. Best NNEAs achieved by the system compared to prior results. 

Cantilever 
Design (mm3) 

Chamber 
Pressure 
(mTorr) 

P0 (µW) T(s) NNEA (cm-1 W Hz-1/2) 

5x2x0.01 13 ~100 0.5 1.39x10-9 

7x2x0.01 13 ~25 1 4.28x10-10 

5x2x0.005 38 ~25 1 2.83x10-10 

 

As can be seen, the sensitivity-improved cantilever improved the NNEA of the 10µm 

cantilever-based system by 69% while only being outperformed by the 5µm cantilever by 

33%. 

There are two factors used in the sensitivity and NNEA calculations which have 

some margin of error associated with then. The first potential source of error is the peak 

absorption coefficient (αpeak) extracted from the simulation software which was used to 

calculate the sensitivity. The other factor that was estimated to as close a degree as 

possible was the power output of the THz radiation source. There are insertion losses in 

power as the radiation entered the PA chamber, depending how close the source was to 

the Teflon window. Fluctuations in the THz diode output power are frequency dependent, 

which also contributes to the uncertainty of the power used to calculate the NNEA.  
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VI. Conclusions 

Chemical sensing and PA spectroscopy is an area of research with many possibilities for 

both commercial and military applications. Designing and fabricating the sensitivity 

improved MEMS cantilever sensors and analyzer was a multidisciplinary effort, which 

requires incorporation of chemistry, physics, and engineering principles. In this research 

effort, sensitive PA cantilever sensors were successfully designed, modeled, fabricated, 

and tested under very low chamber pressures for THz chemical spectroscopy. Design 

parameters of length, width, thickness, as well as an initial thermal oxidation growth of 

the cantilever structures were analyzed and compared and used to improve upon previous 

cantilever designs that were sensitive to the low pressures generated in the stainless steel 

PA test chamber. Along the path to creating these sensitive devices, several fabrication 

processes and techniques were improved upon to make this effort successful. The 

compact PA THz spectroscopy system developed in this work is significantly smaller 

than traditionally used long path gas phase molecular spectroscopy systems which 

presents the possibility of portable spectroscopy systems. 

6.1. Fabrication 

Several contributions to the previous work done at AFIT in designing, fabricating, 

and testing MEMS cantilever PA sensors were accomplished in this work. Through the 

improvement of previously established fabrication processes, very sensitive MEMS 

cantilever PA sensors were created. The inclusion of a thermal oxide growth to help 

alleviate internal stresses allow for a degree of control in the resting curvatures of 

cantilever beams. The best designed beam had a curvature of roughly 9µm out of plane, 
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and due to the 10µm thickness of the beam, this ensures that the 3µm gap between the 

beam and membrane is intact along the entire length of the beam. Survivability of the 

cantilevers were also improved upon by fileting the corners of the beam. This filet 

reduces residual stress in the membrane that tends to crack. While not as crucial on the 

more robust 10µm designs, this filet could greatly improve yield on potential 5µm 

designs.  

6.2. Sensitivity Results 

In this research effort, the custom fabricated THz photoacoustic spectroscopy 

system achieved a sensitivity of 1.71x10-5 cm-1 and a NNEA of 4.28x10-10cm-1 W Hz-1/2. 

While this did not achieve the same sensitivity of previously fabricated 5µm devices, it 

lays the groundwork on how to improve upon designs. By improving upon the 10µm 

design by as much as 69%, it is reasonable to assume that if the same changes to 

cantilever dimension were done on a 5µm device, that sensitivity results would continue 

to be improved. 

6.3. Future Research 

As well as fabricating a 7x2x0.005 mm3 cantilever, recommendations for future 

work would include adding a piezoelectric layer onto the cantilever design. This would 

allow for a footprint reduction in a PA test setup. A piezoelectric sensor configuration 

would provide a compact way of evaluating the cantilever response to the PA pressures 

and the optical measurement method could be used in tandem with or potentially be 

eliminated entirely, depending on the piezoelectric performance. The cantilever 

fabrication process was developed to ensure the device layer surface was protected during 
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every step of the fabrication sequence. PZT or ZnO are promising piezoelectric layers 

that could be implemented into the designs. The protective photoresist layer used during 

the cantilever release process would completely protect the piezoelectric materials from 

the strong HF vapors. 

Internal stresses in the cantilever are alleviated through thermal oxidation of the 

SOI prior to fabrication but may not be necessary through modifications to the selection 

of SOI. Reducing the buried oxide (BOX) layer thickness to ~0.2µm on the SOI wafer 

would greatly reduce the residual stress built up in the device layer and may remove the 

need for thermal oxidation, or require less of it to result in cantilever with no to little 

resting curvature. A 0.2 µm BOX would still be thick enough to serve as an effective etch 

stop for the DRIE step of the handle. Also, the final step in cantilever release involves 

removal of the BOX with HF vapor. Any inadequate coverage of the protective 

photoresist layer may result in etching and depositing films onto the device layer. A BOX 

layer of 0.2 µm would etch in 20% of the current etch time and may also reduce risk of 

damaging the cantilever surface. 

The PA laser beam clipping measurement technique allowed for an accurate 

deflection measurement, which utilized low data sampling rates. However, Converting 

the experimental setup and data collection to a Michelson configuration would allow the 

optical layout to be further reduced in size by eliminating the beam clipping iris, making 

the system even more compact. Higher resolution can also be achieved if a data 

acquisition card with a higher sampling rate is acquired. 
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Appendix A. Visual Bibliography 

 A visual bibliography is a great tool to help sort through a literature review. It 

visually represents keywords common throughout literature pertinent to this research 

effort and links documents based upon these keywords. Seeing which papers share 

common keywords allows a user to easily sort through works and find those most 

relevant. Figure 44 shows such a visual bibliography where the numbers shown are 

reference numbers in the bibliography. 
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Figure 44: Visual bibliography relating keywords shown in the circles. The numbers 
along the connecting lines are the reference numbers of articles in the bibliography. 
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Appendix B. Mask Layouts 

Shown below are the individual masks used for fabrication. These masks were 

designed through the use of L-Edit and written with a Heidelberg instruments µPG 101 

lithography system. 
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Figure 45. The gold (Au) tip and device layer mask. This single mask has 4 masks within 
it, masks for a Au spot and device layer for both a 5x3 mm2 and a 7x2 mm2 cantilever. 
The thickness of the beam is up to the user. 
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Figure 46. Zoomed view of the gold (Au) spot mask for a 7x2 mm2 cantilever. The 
thickness of the beam is up to the user. 
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Figure 47. Zoomed view of the device layer mask for a 7x2 mm2 cantilever. The 
thickness of the beam is up to the user. 

The series of six rectangles on either side of mask shown in Figure 46 and the matching 

outline on either side of the mask in Figure 47 are the alignment marks used to align the 

device layer mask onto the sample that has already been exposed and developed using the 

gold tip mask. Shown in Figure 48 is a zoom view of the alignment marks used in the 
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previous two masks. These alignment marks are 10 µm across. Similar alignment marks 

exist in the backside mask shown in Figure 49. 

 

Figure 48. Zoom of the alignment marks at the edge of the rectangles shown in Figure 46 
and their counterparts in Figure 47. These alignment marks are 10 µm across. 
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Figure 49. Backside etch mask for a 7x2 mm2 cantilever. This mask is to be used in 
conjunction with a backside-mask aligner. The thickness of the beam is up to the user. 
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Appendix C. Process Follower 

 The exact process follower used to fabricate the cantilever in this research effort 

is shown below.  

Process Follower for Cantilever Device 

 

Overview of fabrication steps: 

- Clean photoresist off device layer after dicing 

- Deposit oxide layer 

- Device layer Etch 

- Backside DRIE etch 

- Remove buried oxide 

 

Clean photoresist off device layer after dicing 

- With PR still on device layer, mark backside with diamond scribe with a "B" in one of 

the corners 

- Clean sticky tape residue off after dicing with a cotton swab and acetone 

- On the spinner, soak with acetone, then spray off with acetone pressure sprayer until 

clean, ~20 sec 

- Standard clean for samples on the spinner  

 Spinner settings – spread 20 sec on 500 RPM, spin 5 sec on 1,000 RPM;  

- 25 sec Acetone 
- 25 sec Methanol 
- 25 sec Isopropyl 
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- 25 sec DI water 
- Dry with N2 gun for full cycle of spinner 
- Clean sample in plasma asher 

- 125 W for 3 minutes 
- Bake on 200 °C hotplate for 5 min if applying another coat of PR 
- Cool for longer than 2 min 

 

Deposit oxide on device layer  

‐Grow Oxide in furnace to desired thickness and etch prior to processing 

 

Device layer Etch 

- For 5 and 10 um device layers 
- Coat sample with 1818, ramp set at 800, 3 sec on 500 RPM spread, 30 sec on 

3,000 RPM spin. 
- Bake at 110 °C for 90 sec 
- Expose sample with Device mask on MJB3 for 8.2 sec. 
- Spray develop with 5:1 (DI:351) for 30 sec, holding the sample with a 

tweezers or on the spinner with vacuum, no spinning required 
- Rinse with DI for 30 sec 
- Dry with N2 for 30 sec 
- Bake at 110 °C for 20 min 

 

DRIE device layer 

- WPFAT 
 Assume 7um/min etch rate +10% over etch 

 Very little effect on sample gap has been observed from over 
etching by even 3 minutes 

 

RIE device layer (Trion Etch Recipes.xlsx) 

- * * * Ensure etch director is positioned over the Si area to be etched 
- Run Si_SF6_ETCH  

o 200W 
o 100 mTorr 
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o 30 sccm of SF6 and 3 sccm O2 
 5um device layer  – 92-101 sec (101 sec is 10% over etch) 
 10um device layer – 184-202 sec (202 sec is 10% over 

etch) 
 

- For 20 and 40 um device layers 
- Coat sample with AZ 9260, ramp set at 800, 3 sec on 500 RPM spread, 60 sec 

on 2,500 RPM spin. 
- Bake at 110 °C for 3 min (165 sec minimum) 
- Expose sample with Device mask on MJB3 for 2.16 min (need 1,500 

mJ/cm^3). 
- Spray develop with 4:1 (DI:AZ400K) for 180-230 sec holding the sample 

with blue clamps, may have to go longer due to not using heated developer. 
- Rinse with DI for 20 sec 
- Dry with N2 for 30 sec 
- Bake at 90 °C for 30 min 
- DRIE etch for: (DRIE calculations.xlsx) 
 20um device layer  – 2.86-3 min  (3 is 5% over etch) 
 40um device layer  – 5.71-6 min  (6 is 5% over etch) 

 

Backside Etch 

- **  Ensure back side of handle wafer does not have an oxide layer on it before 
the SU-8 pattern is applied 

 

- DRIE carrier wafer 
 Perform standard clean on 4 in wafer 
 Remove surface oxide with BOE  
 Rinse with DI water for 30 sec 
 Bake on 200 °C hotplate for 5 min  

- On the Suss spinner 
 Recipe 8 (settings on page 2 of notebook) 
 Dispense SU-8 2025 to cover ¾ of the wafer 
 Wipe off back of wafer with EBR 

 ** Back needs to be clean for DRIE Helium back side cooling 
 “Air-Bake” at room temperature for ~1 min 
 Pre-Bake @ 65 °C for 3 min, then move directly to second hotplate 

for soft-bake 
 Soft Bake @ 95 °C for 6 min 

- Expose on MAB-6 at AFRL 
 Remove mask holder 
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 Set to flood exposure  
 Exposure time = 60 sec 

- Post Exposure Bake (PEB) 
o PEB 1 @ 65 °C for 3 min, then move directly to second hotplate 

for PEB 2 
o PEB 2 @ 110 °C for 10 min, then move directly to 200 °C 

covered hotplate or oven for 1-2 hours 
 

- SF-11 protective device layer coating 
- Perform standard clean on front and back of wafer while holding it with a 

tweezers, bake step important before SF-11 deposition 
- Coat device layer with SF11, ramp set at 800, 3 sec on 500 RPM spread, 45 

sec on 3,000 RPM spin.  Bake at 170 °C for 5min 
 

- SU-8 25 coating at AFIT 
- Coat sample with ~1ml SU-8 25, ramp set at 800, 5 sec on 500 RPM spread, 

30 sec on 2,800 RPM spin.     (3kRPM yields ~18 µm thick SU-8 which held 
up okay in the DRIE through the handle wafer) 
 “Air-Bake” at room temperature for ~1 min 
 Pre-Bake @ 65 °C for 3 min, then move directly to second hotplate 

for soft-bake 
 Soft Bake @ 95 °C for 7 min 

- Wrap samples in aluminum foil and take them to AFRL for Exposure, PEB, 
develop, and DRIE   

 

- Expose on MAB-6 at AFRL 
o Set alignment gap =  ~80  µm 
o Set exposure time = 60 Sec 
o Exposure mode = Low Vac 

 Required dose is roughly 150-250 mJ/cm2 

 Lamp power =   _____________ 
o During back side alignment, shift over one alignment mark to the 

make the base of the cantilever be more released 
- Post Exposure Bake (PEB) 

o PEB 1 @ 65 °C for 1 min, then move directly to second hotplate 
for soft-bake 

o PEB 2 @ 95 °C for 3 min 
- Develop – 3-4 minutes 

o Place sample in small dish, spray with SU-8 Developer until 
immersed in liquid.  Puddle develop, spray occasionally. Rinse 
area with SU-8 Dev as sample is pulled out at 3-4 min mark 
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o Rinse with isopropyl alcohol (IPA) ~15 sec 
o Rinse with DI water 30 sec 
o Dry with N2 gun 30 sec 

- Hard bake 
o 65 °C for 2 min, then move directly to second hotplate for hard-

bake 
o 95 °C for 3 min, increase temperature to 110 °C for ~1 hour or 

130 °C for ~30 min 
 

DRIE 

- Place a small drop of fomblin oil on the SU-8 carrier wafer, then place sample 
on oil spot.  Ensure it is securely in place and doesn’t slide away.  
 DRIE with WPFAT program in two etches for a total etch time of 55 

min 
 Etch for 30 min, check samples and carrier for unwanted etch 

spots and apply Kapton tape as needed 
 Etch for additional 25 min 
 ***  Membranes on samples are fragile now, apply IPA to 

carrier wafer and edges of samples.   As IPA cleans away oil, 
lightly push samples until they can float to the edge of the 
carrier wafer  

- Remove SF-11 
- Set hotplate to 125 °C with PG remover in 50 ml beaker, soak sample for 30 

min 
- Rinse off with IPA, dry with N2 
- Plasma ash for 3 min at 125 W 

o Put a glass slide in the Petri dish,  set sample in dish partially on 
the slide to allow air to go under the sample 

 

- 1818 protective device layer coating 
- Coat device layer with 1818, ramp set at 800, 3 sec on 500 RPM spread, 30 

sec on 560 RPM spin. 
- Bake at 110 °C for 5min 

 

- RIE remaining silicon on backside 
- Set up laser depth monitor over Si area 
- Etch through remaining backside silicone until cantilever is free 

 Aggressive etch first 
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 100 mTorr 
 150 W 

- When BOX becomes exposed, used gentle etch until cantilever is free 
 150 mTorr 
 100 W 

** Very carefully remove sample from chamber ** 

Remove buried oxide 

- Using blue locking claps, carefully clip onto sample without jarring it 
 Suspend sample over HF container for 5-7 minutes until BOX is gone 
 Dip in DI water 
 Dip sample into 50 ml beaker of acetone for 5-10 min 

 Repeat with additional fresh beakers of acetone 2-3 more times 
 Pull sample out and allow to air dry 

 

- Ash sample to clean off any remaining PR 
** Caution ** – over time in the plasma asher, the sample heats up.  If the SU-8 on 

the backside is undercut during the HF release, the SU-8 can bubble up and be 

removed too, which can cause the sample to move and potentially break the 

cantilever.  Carefully remove any released SU-8 before the sample goes into the 

asher. 

 

- Put a glass slide in the Petri dish,  set sample in dish partially on the slide to 
allow air to go under the sample 

- Ash for 1-3 min at 125 W, ash additional time is needed in 3 min segments 
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Appendix D. Matlab Code 

 The PA data collected in the LabView software was analyzed using a MATLAB® 

script written by Major Nathan Glauvitz. Below is the script used to analyze and plot the 

PA spectral data collected. 

%% Analysis PA Spectral Data 
% reads data from *.txt file 
clear all; close all; clc; 
%% Enter radiation source power 
power = 0.000025 % Power in watts 
%% Enter absorption strength at for the strongest line 
% Absorption coefficient in cm^-1 for 
absorption_max = 0.053871 
%% Enter the signal averaging time (sec) 
averaging_time = 1; 
%% Window sample size 
window_size = 100 
%% Description of Data file content 
% Column 1 is not used 
% Column 2 is the THz Diode excitation frequency, Loaded in THz from the file 
% Column 3 is the Oscilliscope signal from the HeNe diode 
% Column 4 is the THz Diode average voltage 
% Column 5 is the lock-in Ampliphier signal (R) 
[filename, pathname, filterindex] = uigetfile({ '*.*', 'All Files (*.*)'}, ... 
'Select THz data files to process...', 'MultiSelect', 'on'); 
%% Loop over selected files, reading each into a data matrix 
% Read in base pressure file first 
B = []; 
if ~iscell(filename) % handle single file selection 
nFiles = 1; 
filename = {filename}; 
else 
nFiles = size(filename,2); 
end 
for i = 1:nFiles 
178 
fid = fopen(fullfile(pathname,char(filename(i)))); 
B = [B; textscan(fid, '%[^...] %f %f %f %f', 'delimiter', ' ', 'MultipleDelimsAsOne', 1)]; 
fclose(fid); 
end 
%% Plots the Oscilliscope signal 
figure; 
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axes2 = axes('Parent',gcf,'FontSize',24,'FontName','Times New Roman'); 
box(axes2,'on'); 
hold(axes2,'all'); 
hold on; 
for i = 1:nFiles 
hold on; 
plot(1000*B{i,2},B{i,3}/1000,'g'); 
end 
ylabel('PA Signal (a.u.)','FontSize',30,'FontName','Times New Roman') 
xlabel('Frequency (GHz)','FontSize',30,'FontName','Times New Roman'); 
pf(1) = 4.5; 
pf(2) = 14.5; 
width = 40; % [cm] 
height = 10; % [cm] 
set(gcf,'Units','centimeters','Position',[pf(1) pf(2) width height]); 
hold off; 
%% Finds the variance over a window_size interval 
dimension=size(B{1,5}); 
for i=1:dimension(1,1)-window_size 
var1(i,1) = var(B{1,5}(i:i+window_size,1)); 
end 
[o,p] = min(var1); % locates the index of minimum varience 
for i=1:dimension(1,1)-window_size 
var_THz(i,1) = var(B{1,4}(i:i+window_size,1)); 
end 
figure; 
axes2 = axes('Parent',gcf,'FontSize',24,'FontName','Times New Roman'); 
box(axes2,'on'); 
hold(axes2,'all'); 
plot(1000*B{1,2}(1:dimension(1,1)-window_size,1),var1); 
hold on; 
plot(1000*B{1,2}(1:dimension(1,1)-window_size,1),var_THz,'r'); 
ylabel('Variance','FontSize',30,'FontName','Times New Roman'); 
xlabel('Frequency (GHz)','FontSize',30,'FontName','Times New Roman'); 
pf(1) = 4.5; 
179 
pf(2) = 1.5; 
width = 40; % [cm] 
height = 10; % [cm] 
set(gcf,'Units','centimeters','Position',[pf(1) pf(2) width height]); 
hold off 
%% Fluctuations in THz signal 
for i=1:dimension(1,1)-1 
THz_diode_fluctuations(i,1) = B{1,4}(i,1) - B{1,4}(i+1,1); 
end 
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Sig_fluct=abs(THz_diode_fluctuations); 
THz_Fluctuation_mean=mean(sqrt(THz_diode_fluctuations.^2)) 
figure; 
axes2 = axes('Parent',gcf,'FontSize',24,'FontName','Times New Roman'); 
box(axes2,'on'); 
hold(axes2,'all'); 
plot(1000*B{1,2}(1:dimension(1,1)-1,1),Sig_fluct); 
hold on; 
plot(1000*B{1,2}(1:dimension(1,1)-1,1),THz_Fluctuation_mean,'g','LineWidth',2.5); 
ylabel('Mean Fluctuations in THz Diode Signal (V)','FontSize',30,'FontName','Times 
New Roman'); 
xlabel('Frequency (GHz)','FontSize',30,'FontName','Times New Roman'); 
pf(1) = 4.5; 
pf(2) = 1.5; 
width = 40; % [cm] 
height = 25; % [cm] 
set(gcf,'Units','centimeters','Position',[pf(1) pf(2) width height]); 
hold off 
%% Fluctuations in R-lock-in signal 
for i=1:dimension(1,1)-1 
R_signal_fluctuations(i,1) = B{1,5}(i,1) - B{1,5}(i+1,1); 
end 
R_Sig_fluct=abs(R_signal_fluctuations); 
R_Fluctuation_mean=mean(sqrt(R_signal_fluctuations.^2)) 
figure; 
axes2 = axes('Parent',gcf,'FontSize',24,'FontName','Times New Roman'); 
box(axes2,'on'); 
hold(axes2,'all'); 
plot(1000*B{1,2}(1:dimension(1,1)-1,1),R_Sig_fluct); 
180 
hold on; 
plot(1000*B{1,2}(1:dimension(1,1)-1,1),R_Fluctuation_mean,'g','LineWidth',2.5); 
ylabel('Mean Fluctuations in PA Signal (a.u.)','FontSize',30,'FontName','Times New 
Roman'); 
xlabel('Frequency (GHz)','FontSize',30,'FontName','Times New Roman'); 
pf(1) = 4.5; 
pf(2) = 1.5; 
width = 40; % [cm] 
height = 25; % [cm] 
set(gcf,'Units','centimeters','Position',[pf(1) pf(2) width height]); 
hold off 
%% find RMS noise floor of R-signal for window size interval 
dimension=size(B{1,5}); 
for i=1:dimension(1,1)-window_size 
RMS1(i,1) = sqrt(mean((B{1,5}(i:i+window_size,1)).^2)); 
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end 
[o1,p1] = min(RMS1); % locates the index of minimum RMS noise 
disp('Index start and frequency of lowest noise'); 
disp(p1) 
disp(1000*B{1,2}(p1,1)); 
figure; 
semilogy(1000*B{1,2}(1:dimension(1,1)-window_size,1),RMS1); 
hold on; 
semilogy(1000*B{1,2}(1:dimension(1,1)-window_size,1),var1,'r'); 
hold off; 
RMS_noise = sqrt(mean((B{1,5}(p1:p1+window_size,1)).^2)); 
disp('RMS Noise Floor'); 
disp(RMS_noise); 
Frequency1_of_noise_measured = 1000*B{1,2}(p1,1) 
Frequency2_of_noise_measured = 1000*B{1,2}(p1+window_size,1) 
Max_PA_signal = max(B{1,5}); 
disp('Max_PA_signal'); 
disp(Max_PA_signal); 
SNR = Max_PA_signal / RMS_noise; 
disp('SNR RMS_noise'); 
disp(SNR); 
181 
%% Sensitivity absorption_min 
alfa_min = absorption_max / SNR; 
disp('Sensitivity, alfa_min in cm^-1'); 
disp(alfa_min); 
%% NNEA 
NNEA = alfa_min * power * sqrt(averaging_time); 
disp('NNEA, in cm^-1 W Hz^(-1/2)'); 
disp(NNEA); 
%% Plots the "R" lock in signal 
figure; 
axes2 = axes('Parent',gcf,'FontSize',24,'FontName','Times New Roman'); 
box(axes2,'on'); 
hold(axes2,'all'); 
hold on; 
for i = 1:nFiles 
hold on; 
array_size = ones(size(B{i,2})); 
plot(1000*B{i,2},B{i,5},'b'); 
plot(1000*B{i,2},RMS_noise*array_size,'g') 
end 
ylabel('PA Signal (a.u.)','FontSize',30,'FontName','Times New Roman'); 
xlabel('Frequency (GHz)','FontSize',30,'FontName','Times New Roman'); 
pf(1) = 5; 
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pf(2) = 2; 
width = 40; % [cm] 
height = 20; % [cm] 
set(gcf,'Units','centimeters','Position',[pf(1) pf(2) width height]); 
hold off; 
%% Plots the THz detector average voltage 
figure; 
axes2 = axes('Parent',gcf,'FontSize',24,'FontName','Times New Roman'); 
box(axes2,'on'); 
hold(axes2,'all'); 
for i = 1:nFiles 
hold on; 
plot(1000*B{i,2},2*B{i,4},'k') 
end 
ylabel('THz Diode (V)','FontSize',30,'FontName','Times New Roman'); 
xlabel('Frequency (GHz)','FontSize',30,'FontName','Times New Roman'); 
182 
pf(1) = 5; 
pf(2) = 15; 
width = 40; % [cm] 
height = 10; % [cm] 
set(gcf,'Units','centimeters','Position',[pf(1) pf(2) width height]); 
hold off; 
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Appendix E. CoventorWare® simulations 

Below is a table of the simulations performed through CoventorWare® of varying 

cantilever dimensions. The shown values in green / yellow are the frequencies that the 

first 2 modal harmonics occur at. The tip displacement is the maximum displacement at 

the first modal harmonic. 

Table 4. Modal analysis using 10 mPa for load pressure 
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Appendix F. Chamber Dimensions 

 Below is a rough sketch of half the chamber with all dimensions shown measured 

in inches. This is the back half of the chamber which houses the expansion volume. It is 

machined entirely out of a single block of stainless steel. The cantilever and 1x1 in2 

silicon handle sits on the right side of the block, in the recess. 

 

Figure 50. Drawing of the back half of the test chamber. This half of the chamber houses 
the expansion volume and is machined from a single block of stainless steel.  
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