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Chapter 1

Summary

The key insight underlying this thesis is that the right kind of interaction is the key to making
the intractable tractable. This work specifically investigates this insight in the context of learn-
ing theory. While much of the learning theory literature has traditionally focused on protocols
that are either non-interactive or involving unrealistically strong forms of interaction, there have
recently been several exciting advances in the design and analysis of methods for realistic inter-
active learning protocols.

Perhaps one of the most interesting of these is active learning. In active learning, a learning
algorithm is given access to a large pool of unlabeled examples, and is allowed to sequentially
request their labels so as to learn how to accurately predict the labels of new examples. This
thesis contains a number of interesting advances in our understanding of the capabilities of active

learning methods. Specifically, I summarize the main contributions below.

1.1 Bayesian Active Learning

While most of the recent advances in our understanding of active learning have focused on the
traditional PAC model (or noisy variants thereof), similar advnaces specific to the Bayesian learn-

ing setting have largely been lacking. Specifically, suppose that in addition to the data itself, the
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learner additionally has access to a prior distribution for the target function, and we are inter-
ested in achieving a guarantee of low expected error rate, where the expectation is over both the
draw of the data and the draw of the target concept from the given prior. This setting has been
studied in depth for the passive learning protocol, but aside from the well-known work on the
query-by-committee algorithm, little was known about this setting for the active learning proto-
col. This lack of knowledge is particularly troubling in light of the fact that most of the active
learning methods used in practice have Bayesian interpretations, selecting their label requests
based on Bayesian notions such as label entropy, expected error reduction, or reduction in the

total probability mass of the version space.

1.1.1 Arbitrary Binary-Valued Queries

In this thesis, we present work that makes progress in understanding the Bayesian active learning
setting. To begin, we study the most basic question: how many queries are necessary if we
are able to ask arbitrary binary-valued queries. While label requests are only a special type of
binary-valued query, a general lower bound for arbitrary binary-valued queries will also hold for
label request queries, and thus provides a lower bound on the intrinsic query complexity of the
learning problem. Not surprisingly, we find that the number of binary-valued queries necessary
for learning is characterized by a kind of entropy quantity: namely, the entropy of the Voronoi

partition induced by a maximal e-packing.

1.1.2 Self-Verifying Active Learning

Our next contribution is a study of a special type of active learning, characterized by the stopping-
criterion used in the learning algorithm. Specifically, consider a protocol in which the input to
the active learning algorithm is the desired error rate guarantee ¢, and the algorithm then makes
a number of queries and then halts. For the algorithm to be considered “correct”, it must have

the guarantee that the expected error rate of the classifier it produces after halting is at most
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the value of e provided as input. We refer to this family of algorithms as self-verifying. The
label complexity of learning in this protocol is generally higher than in some other protocols
(e.g., budget-based), since the algorithm must not only find a classifier with good error rate, but
must also somehow be self-aware of the fact that it has found such a good classifier. Indeed, it
is known that prior-independent self-verifying algorithms may often have label complexities no
better than that of passive learning, which is ©(1/¢) for VC classes. However, we prove that
in Bayesian active learning, for any VC class and prior, there is a prior-dependent method that
always achieves an expected label complexity that is o(1/€). Thus, this represents a concrete

result on the advantages of having access to the target’s prior distribution.

1.2 Active Testing

One of the major challenges facing active learning is that of model selection. Specifically, given
a number of hypothesis classes, how does one decide which one to use? In passive learning, the
solution is simple: try them all, and then pick from among the resulting hypotheses using cross-
validation. But such solutions are not available to active learning, since the methods tailored to
each hypothesis class will generally make very different label requests, so that the label com-
plexity of producing a hypothesis from all of the classes is close to the sum of their individual
label complexities.

Thus, to avoid this problem, there is a need for procedures that quickly dermine whether the
target concept is within (or approximated by) a given concept class, by asking a much smaller
number of label requests than required for learning with that class: that is, for testing methods
that operate in the active learning protocol, which we therefore refer to as active testing. This
way, we can simply go through each class and test whether the target is in the class or not, and
only run the full learning method on some simplest class that passes the test. The questions then
become how many fewer queries are required for testing compared to learning, as this quantifies

the savings from using this approach. Following the traditional literature on property testing,
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the primary focus of such an analysis is on the dependence of the query complexity on the VC
dimension of the hypothesis class being tested. Since learning typically required a number of
queries linear in the VC dimension, a sublinear dependence is considered an improvement, while
a query complexity independent of the VC dimension is considered superb.

There is much existing literature on property testing. However, the standard model of prop-
erty testing makes use of membership queries, which are effectively label requests for feature
vectors of our own construction, rather than feature vectors from a given polynomial-sized sam-
ple of unlabeled examples from the data distribution. Such methods are unrealistic for our model
selection purposes, since it is well-known in the machine learning community that the feature
vectors constructed by membership queries are often unintelligible by the human experts charged
with labeling the examples. However, the results from this literature on membership queries do
provide us a useful additional reference point, since we are certain that the query complexity of
active testing is no smaller than that of testing with membership queries, and no larger than that
of testing from random labeled examples (passive testing).

In our work on active testing, we study a number of interesting concept classes, and find
that in some cases the query complexity is nearly the same as that of testing with membership
queries, while other times it is closer to that of passive testing. However, in most (though not all)
cases, we do find that the query complexity of active testing is significantly smaller than that of
active learning, so that this approach to model selection can indeed be quite effective at reducing

the total query complexity.

1.3 Theory of Transfer Learning

Given the positive results mentioned above on the advantages of active learning with access to
the target’s prior distribution, the next natural quesiton is, “How does one gain access to the
target’s prior distribution?” Traditionally, there have been a variety of answers to this question

given by the Bayesian Statistics community, ranging from subjective beliefs, to computationally-
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motivated assumptions, to estimation. Perhaps one of the most appealing, from a practical per-
spective, it the Empirical Bayes perspective, which says that we gain access to an approximation
of the prior based on analysis of past experience. In the learning context, this idea of gaining in-
sights for a new learning problem, based on experience with past learning problems, goes by the
name Transfer Learning. The specific model of transfer learning relevant to this Empirical Bayes
setting is the following. We suppose that we are tasked with a sequence of 7" learning problem:s,
or tasks. For each task, the unlabeled data are sampled i.i.d. according to some distribution D,
independently across the tasks. Furthermore, for each task the target function is sampled accord-
ing to some prior distribution 7, again independently across tasks. We then approach each task as
usual, making a number of label requests and then halting with guaranteed expected error rate at
most €. The hope is that, after solving a number of learning problems ¢ < 7', the label complexity
of solving task ¢ + 1 should be smaller than that of solving the first task, due to gaining some

information about the distribution 7.

The challenge in this problem is that we do not get direct observations of the target functions
from each task. Rather, we may only observe a small number of labeled examples. So the
question is how to extract useful information about 7 from these limited observations. This
situation is further complicated by the fact that we are interested in minimizing the number of
samples per-task, and that the active learning method’s queries might be highly task-specific.
Indeed, in many transfer learning settings, each task is approached by a different agent, who may
be non-altruistic with respect to the other agents; thus, she may be unwilling to make very many

additional label requests merely to aid the learners that will solve future tasks.

In our work, we show that it is possible to gain benefits from transfer learning, while limiting
the number of additional queries (other than those used directly for learning) required from each
task. Specifically, we use a number of extra queries per task equal the VC dimension of the
concept class. Using these queries, we are able to consistently estimate 7, assuming only that

it resides in a known totally bounded class of distributions. We are then able to use this esti-
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mate in the context of a prior-dependent learning method to asymptotically achieve an average
label complexity equal to that of learning with direct knowledge of 7. Thus, we have realized
the aforementioned benefits of having knowledge of the target’s prior, including the guaranteed
o(1/€) expected label complexity for self-verifying active learning. We further show that no
method taking fewer than VC dimension number of samples per task can match this guarantee at
this level of generality.

Interestingly, under smoothness conditions on 7, we also provide explicit bounds on the rate
of convergence of our estimator to 7, and we additionally derive lower bounds on the minimax
rate of convergence. This has implications for non-asymptotic guarantees on the benefits of
transfer learning.

We also extend these results to real-valued functions, where the VC dimension is replaced
by the pseudo-dimension of the function class. In addition to transfer learning, we also find that
this technique for estimating a prior distribution over real-valued functions has applications to

the preference elicitation problem in a certain type of combinatorial auction.

1.4 Active Learning with Drifting Distributions and Targets

In addition to the work on Bayesian active learning, I have additionally studied the setting of
active learning without access to a prior. Work in this area is presently more mature, so that
there are known methods that are robust to noise, and have well-understood label complexities.
However, all of the previous theoretical work on active learning supposed the data were sampled
i.i.d. from some fixed (though unknown) distribution. But many realistic applications of active
learning involve distributions that change over time, so that we require some understanding of
how active learning methods behave under drifting distributions.

In my work on this topic, I study a model of distribution drift in which the conditional distri-
bution of label given features remains fixed (i.e., no target drift), while the marginal distribution

over the feature vectors can change arbitrarily within a given totally bounded family of distribu-
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tions from one observation to the next. I then analyze a stream-based active learning setting, in
which the learner is at each time required to make a prediction for the label of a new example,
and then decide whether to request the label or not. We are then interested in the expected num-
ber of mistakes and number of label requests, as a function of how many data points have been

observed.

Interestingly, 1 find that even with such drifting distributions, it is still possible to guarantee
a number of mistakes on par with fully-supervised learning, while only requesting a sublinear
number of labels, as long as the disagreement coefficient is sublinear in the reciprocal of its
argument under all distributions in the given family. I prove this, both under the realizable case,
and under Tsybakov noise conditions. I further provide a more detailed analysis of the frequency
of label requests and mistakes, as a function of the Tsybakov noise parameters, the supremum of
the disagreement coefficient over the given family of distributions, and the covering numbers of
the family of distributions. To complement this, I also provide lower bounds on the number of
label requests required of any active learning method whose number of mistakes is on par with

the optimal performance of fully-supervised learning.

We have also studied the related problem of active learning with a drifting target concept, in
which the target function itself changes over time. In this setting, the distribution over unlabeled
samples remains fixed, while the function providing labels changes over time at a specified rate.
We then express bounds on the expected number of mistakes and queries, as a function of this

rate of change and the number of samples.

In any learning context, the problem of efficient learning in the presence of noise is a constant
challenge. Toward addressing this challenge, we have proposed an active learning algorithm that
makes use of a convex surrogate loss function, in place of the 0-1 loss, while still providing
guarantees on the obtained error rate (under the 0-1 loss) and number of queries made in the
active learning context, under the assumption that the surrogate loss is classification-calibrated,

and the minimizer of the surrogate loss resides in the function class used by the algorithm.
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1.5 Efficiently Learning DNF with Representation-Specific Queries

In addition to the basic active learning protocol, based on label requests, we have also studied
an interesting new type of learning protocol, in which the algorithm is allowed queries regarding
specific aspects of the representation of the target function. This setting is motivated by appli-
cations in which there are essentially sub-labels for the examples, which may be difficult for an
expert to explicitly produce, but for which they can easily recognize commonality. For instance,
in fraud detection, we may be able to ask an expert whether two given examples of fraudulent
transactions are representative of the same fype of fraud.

To study this idea in formality, we specifically look at the classic problem of efficiently
learning a DNF formula. Certain variants of this problem are known to be NP-Hard if we are
permitted only labeled data (e.g., proper learning), and there are no known efficient methods for
the general problem of learning DNF, even with membership queries. In fact, under the uniform
distribution, there are no such general results known even for the problem of learning monotone
DNF from labeled data alone. Thus, there is a real need for new ideas to approach the problem

of learning DNF if the class of DNF functions is to be used for practical applications.

In our work, we suppose access to a polynomial-sized sample of labeled examples, and for
any pair of positive examples from that sample, we allow queries of the type, “Do these two
examples satisfy a term in common in the target DNF?” It turns out that the problem of learning
arbitrary DNF under arbitrary distributions is no easier with this type of query than with labeled
examples alone. However, using queries of this type, we are able to efficiently learn several
interesting sub-families of DNF, including solving some problems known to be NP-Hard from
labeled data alone (properly learning 2-term DNF). Additionally, under the uniform distribu-
tion, we find many more interesting families of DNF that are efficient learnable with queries of
this type, including the well-studied family of O(log(n))-juntas, and any DNF for which each

variable appears in at most O(log(n)) terms.

We further study several generalizations of this type of query. In particular, if we allow the
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algorithm to ask “How many terms do these two examples satisfy in common in the target DNF?”
then we can significantly broaden the collection of subfamilies of DNF that are efficiently learn-
able. In particular, O(log(n))-juntas become efficiently learnable under arbitrary distributions,
as does the family of DNF with O(log(n)) terms.

With a further strengthening to allow the query to involve an arbitrary number of examples,
rather than just two, we find we can efficiently (properly) learn an arbitrary DNF under an arbi-
trary distribution. This is also the case if we restrict to just two examples in the query, but we
allow the algorithm to construct the feature vectors for those two examples, rather than selecting
them from a polynomial-sized sample.

Overall, we feel this is an important topic, in that it makes real progress on the practically-
important problem of efficiently learning DNF, which has otherwise been essentially stagnant for

a number of years.

1.6 Online Allocation with Economies of Scale

In addition to all of the above work on computational learning theory, this dissertation also in-
cludes work on allocations problems in which the cost of allocating each additional copy of a
good is decreasing in the number of copies already allocated. This model captures the natural
economies of scale that arise in many real-world contexts. In this context, we derive meth-
ods capable of allocating goods to a set of customers in a unit-demand setting, while achieving
near-optimal cost guarantees. We study this problem both in an offline setting, in which all of
the customer valuation functions are known in advance, and also in a type of online setting, in
which the customers arrive one-at-a-time, so that we do not know in advance what their valuation
functions will be. In the online variant of the problem, working under the assumption that the
valuation functions are i.i.d. samples, we make use of generalization guarantees from statistical
learning theory, in combination to the algorithmic solutions to the offline problem, to obtain the

approximation guarantees.



Chapter 2

Active Testing

Abstract

! One of the motivations for property testing of boolean functions is the idea that testing can
serve as a preprocessing step before learning. However, in most machine learning applications,
the ability to query functions at arbitrary points in the input space is considered highly unrealistic.
Instead, the dominant query paradigm in applied machine learning, called active learning, is one
where the algorithm may ask for examples to be labeled, but only from among those that exist
in nature. That is, the algorithm may make a polynomial number of draws from the underlying
distribution D and then query for labels, but only of points in its sample. In this work, we bring
this well-studied model in learning to the domain of testing, calling it active testing.

We show that for a number of important properties, testing can still yield substantial benefits
in this setting. This includes testing unions of intervals, testing linear separators, and testing
various assumptions used in semi-supervised learning. For example, we show that testing unions
of d intervals can be done with O(1) label requests in our setting, whereas it is known to require
Q(\/c_l) labeled examples for passive testing (where the algorithm must pay for labels on every

example drawn from D) and Q(d) for learning. In fact, our results for testing unions of intervals

1Joint work with Maria-Florina Balcan, Eric Blais, and Avrim Blum.
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also yield improvements on prior work in both the membership query model (where any point
in the domain can be queried) and the passive testing model [Kearns and Ron, 2000] as well. In
the case of testing linear separators in R", we show that both active and passive testing can be
done with O(y/n) queries, substantially less than the {2(n) needed for learning and also yielding
a new upper bound for the passive testing model. We also show a general combination result that
any disjoint union of testable properties remains testable in the active testing model, a feature
that does not hold for passive testing.

In addition to these specific results, we also develop a general notion of the testing dimension
of a given property with respect to a given distribution. We show this dimension characterizes
(up to constant factors) the intrinsic number of label requests needed to test that property; we do
this for both the active and passive testing models. We then use this dimension to prove a number
of lower bounds. For instance, interestingly, one case where we show active testing does not help
is for dictator functions, where we give (2(logn) lower bounds that match the upper bounds for
learning this class.

Our results show that testing can be a powerful tool in realistic models for learning, and
further that active testing exhibits an interesting and rich structure. Our work in addition develops

new characterizations of common function classes that may be of independent interest.

2.1 Introduction

One of the motivations for property testing of boolean functions is the idea that testing can serve
as a preprocessing step before learning — to determine whether learning with a given hypothesis
class is worthwhile [Goldreich, Goldwasser, and Ron, 1998]. Indeed, query-efficient testers have
been designed for many common hypothesis classes in machine learning such as linear thresh-
old functions [Matulef, O’Donnell, Rubinfeld, and Servedio, 2009], unions of intervals [Kearns
and Ron, 2000], juntas [Blais, 2009, Fischer, Kindler, Ron, Safra, and Samorodnitsky, 2004],

DNFs [Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedio, and Wan, 2007], and decision
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trees [Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedio, and Wan, 2007]. (See Ron’s

survey [Ron, 2008] for much more on the connection between learning and property testing.)

Most property testing algorithms, however, rely on the ability to query functions on arbitrary
points — an assumption that is unrealistic in most machine learning applications. For example,
in classifying documents by topic, while selecting an existing document on the web and asking
a user “is this about sports or business?” may make perfect sense, taking an existing sports
document (represented in R" as a vector of word-counts), corrupting a random fraction of the
entries, and asking “is this still about sports?” does not. Early experiments yielded similar
failures for membership-query learning algorithms in vision applications when asking human
users about corrupted images [Baum and Lang, 1993]. As a result, the dominant query paradigm
in machine learning has instead been the model of active learning where the algorithm may
query for labels of examples of its choosing, but only among those that exist in nature [Balcan,
Beygelzimer, and Langford, 2006, Balcan, Broder, and Zhang, 2007a, Balcan, Hanneke, and
Wortman, 2008, Beygelzimer, Dasgupta, and Langford, 2009, Castro and Nowak, 2007, Cohn,
Atlas, and Ladner, 1994a, Dasgupta, 2005, Dasgupta, Hsu, and Monteleoni, 2007b, Hanneke,

2007a, Seung, Opper, and Sompolinsky, 1992, Tong and Koller., 2001].

In this work, we bring this well-studied model in learning to the domain of festing. In par-
ticular, we assume that as in active learning, our algorithm can make a polynomial number of
draws of unlabeled examples from the underlying distribution D (these unlabeled examples are
viewed as cheap), and then can make a small number of label queries but only over the unlabeled
examples drawn (these label queries are viewed as expensive). The question we ask is whether
testing in this setting is sufficient to still yield significant benefit in terms of label requests over

the number of labeled examples needed for learning.

What we show is that for a number of interesting properties relevant to learning, this capa-
bility indeed allows for a substantial reduction in the number of labels required. This includes

testing unions of intervals, testing linear separators, and testing various assumptions about the
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separation of data used in semi-supervised learning. For example, we show that testing unions
of d intervals can be done with O(1) label requests in our setting, whereas it is known to require
Q(\/ZZ) labeled examples for passive testing (where the algorithm must pay for labels on every
example drawn from D) and Q(d) for learning. In the case of testing linear separators in R",
we show that both active and passive testing can be done with O(4/n) queries, substantially less
than the 2(n) needed for learning and also yielding a new upper bound for the passive testing
model as well. These results use a generalization of Arcones Theorem on the concentration of
U-statistics. For the case of unions of intervals, our results even improve on prior work in the
membership query and passive models of testing [Kearns and Ron, 2000], and are based on a
characterization of this class in terms of noise sensitivity that may be of independent interest.
We also show that any disjoint union of testable properties remains testable in the active testing
model, allowing one to build testable properties out of simpler components; this is a feature that
does not hold for passive testing.

In addition to the above results, we also develop a general notion of the testing dimension of a
given property with respect to a given distribution. We show this dimension characterizes (up to
constant factors) the intrinsic number of label requests needed to test that property; we do this for
both passive and active testing models. We then make use of this notion of dimension to prove
a number of lower bounds. For instance, one interesting case where we show active testing does
not help is for dictator functions, a classic property where membership queries can allow testing
with O(1) label requests, but where we show active testing requires 2(logn) labels, matching
the bounds for learning.

Our results show that a number of important properties for learning can be tested with a
small number of label requests in a realistic model, and furthermore that active testing exhibits
an interesting and rich structure. We further point out that unlike the case of passive learning,
there are no known strong Structural Risk Minimization bounds for active learning, which makes

the use of testing in this setting even more compelling.? Our techniques are quite different from

’In passive learning, if one has a collection of algorithms or hypothesis classes to try, there is little advantage
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those used in the active learning literature.

2.1.1 The Active Property Testing Model

Before discussing our results in more detail, let us first introduce the model of active testing. A
property P of boolean functions is simply a subset of all boolean functions. We will also refer
to properties as classes of functions. The distance of a function f to the property P over a distri-
bution D on the domain of the function is distp(f, P) := mingep Pr,p[f(z) # g(z)]. A tester
for P is a randomized algorithm that must distinguish (with high probability) between functions
in P and functions that are far from P. In the standard property testing model introduced by
Rubinfeld and Sudan [Rubinfeld and Sudan, 1996], a tester is allowed to query the value of the
function on any input in order to make this decision. We consider instead a model in which we

add restrictions to the possible queries:

Definition 2.1 (Property tester). An s-sample, g-query e-tester for P over the distribution D is a
randomized algorithm A that draws s samples from D, sequentially queries for the value of f on
q of those samples, and then

1. Accepts w.p. at least % when f € P, and

2. Rejects w.p. at least % when distp(f,P) > e

We will use the terms “label request” and “query” interchangeably. Definition 2.1 coincides
with the standard definition of property testing when the number of samples is unlimited and the
distribution’s support covers the entire domain. In the other extreme case where we fix ¢ = s, our
definition then corresponds to the passive testing model, where the inputs queried by the tester
are sampled from the distribution. Finally, by setting s to be polynomial in some appropriate
measure of the input domain, we obtain the active festing model that is the focus of this paper:
asymptotically to being told which of these is best in advance, since one can simply apply all of them and use an

appropriate union bound. In contrast, this is much less clear for active learning algorithms that each might ask for

labels on different examples.
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Definition 2.2 (Active tester). A randomized algorithm is a g-query active e-tester for P C
{0,1}™ — {0, 1} over D if it is a poly(n)-sample, q-query e-tester for P over D.

Remark 2.1. We emphasize that the name active tester is chosen to reflect the connection with
active learning. It is not meant to imply that this model of testing is somehow “more active” than

the standard property testing model.

In some cases, the domain of our functions is not {0, 1}". In those cases, we require s to be

polynomial in some other appropriate measure of complexity that we specify explicitly.

Note that in Definition 2.1, since we do not have direct membership query access (at arbitrary
points), our tester must accept w.p. at least % when f is such that distp(f, P) = 0, even if f does
not satisfy P over the entire input space. This, in fact, is one crucial difference between our
model and the distribution-free testing model introduced by Halevy and Kushilevitz [Halevy and
Kushilevitz, 2007] and further studied in [Dolev and Ron, 2010, Glasner and Servedio, 2009,
Halevy and Kushilevitz, 2004, 2005]. In the distribution-free model, the tester can sample inputs
from some unknown distribution and can query the target function on any input of its choosing.
It must then distinguish between the case where f € P from the case where f is far from the
property over the distribution. Most testers in this model strongly rely on the ability to query any
input® and, therefore, these algorithms are not valid active testers.

In fact, the case of dictator functions, functions f : {0,1}" — {0,1} such that f(z) = z;
for some i € [n], helps to illustrate the distinction between active testing and the standard
(membership query) testing model. The dictatorship property is testable with O(1) member-
ship queries [Bellare, Goldreich, and Sudan, 1998, Parnas, Ron, and Samorodnitsky, 2003]. In

contrast, with active testing, the query complexity is the same as needed for learning:
Theorem 2.3. Active testing of dictatorships under the uniform distribution requires Q)(logn)

queries. This holds even for distinguishing dictators from random functions.

3Indeed, Halevy and Kushilevitz’s original motivation for introducing the model was to better model PAC learn-

ing in the membership query model [Halevy and Kushilevitz, 2007].
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This result, which we prove in Section 2.5.1 as an application of the active testing dimension
defined in Section 2.5, points out that the constraints imposed by active testing present real
challenges. Nonetheless, we show that for a number of interesting properties we can indeed
perform active testing with substantially fewer queries than needed for learning or passive testing.

In some cases, we will even provide improved bounds for passive testing in the process as well.

2.1.2 Our Results

We have two types of results. Our first results, on the testability of unions of intervals and linear
threshold functions, show that it is indeed possible to test properties of interest to the learning
community efficiently in the active model. Our next results, concerning the testing of disjoint
unions of properties and a new notion of testing dimension, examine the active testing model
from a more abstract point of view. We describe these results and some of their applications

below.

Testing Unions of Intervals. The function f : [0, 1] — {0, 1} is a union of d intervals if there
are at most d non-overlapping intervals (€1, u1), ..., (€4, uq) such that f(z) = 1iff {; <z <,
for some i € [d]. The VC dimension of this class is 2d, so learning a union of d intervals requires
at least (d) queries. By contrast, we show that testing unions of d intervals can be done with a
number of label requests that is independent of d, for any distribution D:

Theorem 2.4. Testing unions of d intervals in the active testing model can be done using only
O(1/€) queries. In the case of the uniform distribution, we further need only O(v/d/€) unla-
beled examples.

We note that Theorem 2.4 not only gives the first result for testing unions of intervals in the
active testing model, but it also improves on the previous best results for testing this class in the
membership query and passive models. Previous testers used O(1) queries in the membership
query model and O(\/c_l) samples in the passive model, but applied only to a relaxed setting

in which only functions that were e far from unions of d = d/e intervals had to be rejected
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with high probability [Kearns and Ron, 2000]. Our tester immediately yields the same query
bound as a function of d (active testing with O(\/ﬁ) unlabeled examples directly implies passive
testing with O(\/E) labeled examples) but rejects any function that is e-far from unions of d’ = d
intervals. Note also that Kearns and Ron [Kearns and Ron, 2000] show that (+/d) samples are
required to test unions of d intervals in the passive model, and so our bound on the number of
unlabeled examples in Theorem 2.4 is optimal in terms of d.

The proof of Theorem 2.4 relies on a new noise sensitivity characterization of the class of
unions of d intervals. That is, we show that all unions of d intervals have low noise sensitivity
while all functions that are far from this class have noticeably larger noise sensitivity and intro-
duce a tester that estimates the noise sensitivity of the input function. We describe these results

in Section 2.2.

Testing Linear Threshold Functions. We next study the problem of testing linear threshold
functions (or LTFs), namely the class of boolean functions f : R" — {0, 1} of the form f(x) =
sgn(wyxy + - - - + wyx, — 0) where wy, ..., w,, 0 € R. LTFs can be tested with O(1) queries in
the membership query model [Matulef, O’Donnell, Rubinfeld, and Servedio, 2009]. While we
show this is not possible in the active testing model, we nonetheless show we can substantially
improve over the number of label requests needed for learning. In particular, learning LTFs
requires ©(n) labeled examples, even over the Gaussian distribution [Long, 1995]. We show
that the query and sample complexity for testing LTFs is significantly better:
Theorem 2.5. We can efficiently test LTF's under the Gaussian distribution with O(\/ﬁ) labeled
examples in both active and passive testing models. Furthermore, we have lower bounds of
Q(n'/3) and Q(\/n) on the number of labels needed for active and passive testing respectively.
The proof of the upper bound in the theorem relies on a recent characterization of LTFs by the
Hermite weight distribution of the function [Matulef, O’Donnell, Rubinfeld, and Servedio, 2009]
as well as a new concentration of measure result for U-statistics. The proof of the lower bound

involves analyzing the distance between the label distribution of an LTF formed by a Gaussian
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weight vector and the label distribution of a random noise function. See Section 2.3 for details.

Testing Disjoint Unions of Testable Properties. Given a collection of properties P;, a natural
way to combine them is via their disjoint union. E.g., perhaps our data falls into N well-separated
regions, and while we suspect our data overall may not be linearly separable, we believe it may
be linearly separable (by a different separator) in each region. We show that if each individual
property P; is testable (in this case, P; is the LTF property) then their disjoint union P is testable
as well, with only a very small increase in the total number of queries. It is worth noting that this
property does not hold for passive testing. We present this result in Section 2.4, and use it inside

our testers for semi-supervised learning properties discussed below.

Testing Semi-Supervised Learning Assumptions. Two common assumptions considered in
semi-supervised learning [Chapelle, Schlkopf, and Zien, 2006] and active learning [Dasgupta,
2011] are (a) if data happens to cluster then points in the same cluster should have the same label,
and (b) there should be some large margin v of separation between the positive and negative
region (but without assuming the target is necessarily a linear threshold function). Here, we
show that for both properties, active testing can be done with O(1) label requests, even though
these classes contain functions of high complexity so learning (even semi-supervised or active)
requires substantially more labeled examples. Our results for the margin assumption use the
cluster tester as a subroutine, along with analysis of an appropriate weighted graph defined over
the data. We present our results in Section 2.4 but for space reasons, defer analysis to Appendix

2.11.

General Testing Dimensions. We develop a general notion of the festing dimension of a given
property with respect to a given distribution. We do this for both passive and active testing
models. We show these dimensions characterize (up to constant factors) the intrinsic number of
label requests needed to test the given property with respect to the given distribution in the corre-

sponding model. For the case of active testing we also provide a simpler notion that characterizes
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whether testing with O(1) label requests is possible. We present the dimension definitions and
analysis in Section 2.5.

The lower bounds in this paper are given by proving lower bounds on these dimension quan-
tities. In Section 2.5.1, we prove (as mentioned above) that for the class of dictator functions,
active testing cannot be done with fewer queries than the number of examples needed for learn-
ing, even for the problem of distinguishing dictator functions from truly random functions. This
result additionally implies that any class that contains dictator functions (and is not so large as
to contain almost all functions) requires 2(logn) queries to test in the active model, including
decision trees, functions of low Fourier degree, juntas, DNFs, etc. In Section 2.5.2, we complete
the proofs of the lower bounds in Theorem 2.5 on the number of queries required to test linear

threshold functions.

2.2 Testing Unions of Intervals

In this section, we prove Theorem 2.4 that we can test unions of d intervals in the active testing
model using only O(1/€*) label requests, and furthermore, over the uniform distribution, using
only O(\/E /€°) unlabeled samples. We begin with the case that the underlying distribution is
uniform over [0, 1], and afterwards show how to generalize to arbitrary distributions. Our tester

exploits the fact that unions of intervals have a noise sensitivity characterization.

Definition 2.6. Fix 6 > 0. The local d-noise sensitivity of the function f : [0,1] — {0,1} at
x € [0,1] is NS5(f, x) = Pry.[f(x) # f(y)], where y ~; x represents a draw of y uniform in

(x — 0,2+ &) N[0, 1]. The noise sensitivity of f is

NSs(f) = Pr [f(x) # f(y)]

:E7yN6"L’

or, equivalently, NSs(f) = E,NSs(f, x).

A simple argument shows that unions of d intervals have (relatively) low noise sensitivity:
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Proposition 2.7. Fix 6 > 0 and let [ : [0,1] — {0, 1} be a union of d intervals. Then NS;(f) <
df.

Proof sketch. Draw z € [0, 1] uniformly at random and y ~; . The inequality f(z) # f(y) can
only hold when a boundary b € [0, 1] of one of the d intervals in f lies in between = and y. For
any point b € [0, 1], the probability that x < b < y or y < b < x is at most %, and there are at

most 2d boundaries of intervals in f, so the proposition follows from the union bound. ]

Interestingly, the converse of the proposition statement is approximately true: for ¢ small
enough, every function that has noise sensitivity not much larger than dd is close to being a

union of d intervals. (Full proof in Appendix 2.7).

Lemma 2.8. Fix = %. Let f : [0,1] — {0, 1} be a function with noise sensitivity bounded by

NS;s(f) < dd(1+ ). Then f is e-close to a union of d intervals.

Proof outline. The proof proceeds in two steps. First, we construct a function g : [0, 1] — {0, 1}
that is $-close to f and is a union of at most d(1 + §) intervals. We then show that g — and every
other function that is a union of at most d(1 + {) intervals — is $-close to a union of d intervals.

To construct the function g, we consider the “smoothed” function f5 : [0, 1] — [0, 1] obtained
by taking the convolution of f and a uniform kernel of width 26. We define 7 to be some
appropriately small parameter. When fs(x) < 7, then this means that nearly all the points in the
d-neighborhood of x have the value 0 in f, so we set g(z) = 0. Similarly, when fs(z) > 1 — 7,
then we set g(z) = 1. (This procedure removes any “local noise” that might be present in f.)
This leaves all the points x where 7 < fs(x) < 1 — 7. Let us call these points undefined. For
each such point = we take the largest value y < x that is defined and set g(x) = g(y).

The key technical part of the proof involves showing that the construction described above
yields a function g that is e-close to f and that is a union of d(1 + {) intervals. This is done with
standard tools from function analysis and probability theory. Due to space constraints, we defer

the details to Appendix 2.7. O
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The noise sensitivity characterization of unions of intervals obtained by Proposition 2.7 and
Lemma 2.8 suggest a natural approach for building a tester: design an algorithm that estimates
the noise sensitivity of the input function and accepts iff this noise sensitivity is small enough.

This is indeed what we do:

UNION OF INTERVALS TESTER( f, d, €)

r=0(e3).

1. Forrounds:=1,...,r,

2

Y
Parameters: § = 55,

1.1 Draw z € [0, 1] uniformly at random.

1.2 Draw samples until we obtain y € (x — J,x + §).

1.3 Set Z; = 1[f(x) # f(y)].

2. Acceptiff 1> Z; < do(1+%).

The algorithm makes 2rr = O(e~3) queries to the function. Since a draw in Step 1.2 is in the
desired range with probability 29, the number of samples drawn by the algorithm is a random
variable with very tight concentration around r(1 4 55) = O(d/¢”). The draw in Step 1.2 also
corresponds to choosing y ~s x. As a result, the probability that f(z) # f(y) in a given round is
exactly NSs(f), and the average 1 >~ Z; is an unbiased estimate of the noise sensitivity of f. By
Proposition 2.7, Lemma 2.8, and Chernoff bounds, the algorithm therefore errs with probability

less than % provided that r > ¢ - 1/dde = ¢ - 32/¢> for some suitably large constant c.

Improved unlabeled sample complexity: Notice that by changing Steps 1.1-1.2 slightly to
pick the first pair (z,y) such that |z — y| < ¢, we immediately improve the unlabeled sample
complexity to O(\/E /€%) without affecting the analysis. In particular, this procedure is equivalent
to picking z € [0,1] then y ~;5 z.* As a result, up to poly(1/¢) terms, we also improve over
the passive testing bounds of Kearns and Ron [Kearns and Ron, 2000] which are able only to

distinguish the case that f is a union of d intervals from the case that f is e-far from being a

“Except for events of O(J) probability mass at the boundary.
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union of d/e intervals. (Their results use O(v/d/e"%) examples.) Kearns and Ron [Kearns and
Ron, 2000] show that Q(\/E) examples are necessary for passive testing, so in terms of d this is

optimal.

Active Tester Over Arbitrary Distributions: We can reduce the problem of testing over general
distributions to that of testing over the uniform distribution on [0, 1] by using the CDF of the
distribution D. In particular, given point x, define p, = Pr,..ply < z]. So, for  drawn from D,
p, is uniform in [0, 1].> As a result we can just replace Step 1.2 in the tester with sampling until
we obtain y such that p, € (p, — 0, p, + 6). The only issue is that we do not know the p, and
py values exactly. However, VC-dimension bounds for initial intervals on the line imply that if
we sample O(e~95~2) unlabeled examples, with high probability the estimates p,, computed with
respect to the sample (the fraction of points in the sample that are < x) will be within O(e*6) of
the correct p, values for all points z. This in turn implies that the noise-sensitivity estimates are
sufficiently accurate that the procedure works as before.

Putting these results together, we have Theorem 2.4.

2.3 Testing Linear Threshold Functions

In the last section, we saw how unions of intervals are characterized by a statistic of the function
— namely, its noise sensitivity — that can be estimated with few queries and used this to build
our tester. In this section, we follow the same high-level approach for testing linear threshold
functions. In this case, however, the statistic we will estimate is not noise sensitivity but rather
the sum of squares of the degree-1 Hermite coefficients of the function.
Definition 2.9. The Hermite polynomials are a set of polynomials ho(z) = 1, hy(x) = z, ho(z) =
\%(mz —1), ... that form a complete orthogonal basis for (square-integrable) functions f : R —
R over the inner product space defined by the inner product (f,q) = E,[f(x)g(x)], where
SWe are assuming here that D is continuous and has a pdf. If D has point masses, then instead define pL =

Pr,[y < 2] and p¥ = Pr,[y < z] and select p,, uniformly in [pZ, pY].
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the expectation is over the standard Gaussian distribution N'(0,1). For any S € N", define
Hg =[], hs,(z;). The Hermite coefficient of f : R™ — R corresponding to S is f(S) =
(f,Hs) = E;[f(x)Hs(x)] and the Hermite decomposition of f is f(z) = > ¢cyn f(S)Hs(x).
The degree of the coefficient f(S) is |S| :== 31, S..

The connection between linear threshold functions and the Hermite decomposition of func-

tions is revealed by the following key lemma of Matulef et al. [Matulef, O’Donnell, Rubinfeld,
and Servedio, 2009].
Lemma 2.10 (Matulef et al. [Matulef, O’Donnell, Rubinfeld, and Servedio, 2009]). There is an
explicit continuous function W : R — R with bounded derivative ||W'||» < 1 and peak value
W (0) = 2 such that every linear threshold function f : R" — {—1,1} satisfies 3, fle)? =
W (E,.f). Moreover, every function g : R™ — {—1, 1} that satisfies |, §(e;)* — W(E,g)| <
4¢3, is e-close to being a linear threshold function.

In other words, Lemma 2.10 shows that f (e;)? characterizes linear threshold functions.
To test LTFs, it suffices to estimate this value (and the expected value of the function) with
enough accuracy. Matulef et al. [Matulef, O’Donnell, Rubinfeld, and Servedio, 2009] showed
that ). f (e;)? can be estimated with a number of queries that is independent of n by querying f
on pairs x,y € R"™ where the marginal distributions on x and y are both the standard Gaussian
distribution and where (x,y) = n for some small (but constant) » > 0. Unfortunately, the
same approach does not work in the active testing model since with high probability, all pairs
of samples that we can query have inner product |(x,y)| < O(\/Lﬁ) Instead, we rely on the
following result.

Lemma 2.11. For any function f : R" — R, we have ), fle)? = Euy[f (@) f(y) (z,y)]

where (x,y) = > ., x;y; is the standard vector dot product.

Proof. Applying the Hermite decomposition of f and linearity of expectation,

Eoylf(@)f() (x,)] =D > FS) (D) E[Hs ()| By[Hr(y)y].

i=1 S,TeNn
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By definition, z; = hy(z;) = H,,(x). The orthonormality of the Hermite polynomials therefore

guarantees that E,[Hg(x)H,, (v)] = 1[S=¢;]. Similarly, E,[Hr(y)y;] = 1[T' =¢;]. O

A natural idea for completing our LTF tester is to simply sample pairs x,y € R" indepen-
dently at random and evaluating f(z)f(y) (x,y) on each pair. While this approach does give
an unbiased estimate of E, ,[f () f(y) (x, )], it has poor query efficiency: To get enough accu-
racy, we need to repeat this sampling strategy €2(n) times. (That is, the query complexity of this
sampling approach is the same as that of learning LTFs.)

We can improve the query complexity of the sampling strategy by instead using U-statistics.
The U-statistic (of order 2) with symmetric kernel function g : R” x R" — R is

-1
Ur(a!,...,a™) = <Tg> Z g(a', 7).
1<i<j<m
Tight concentration bounds are known for U-statistics with well-behaved kernel functions. In
particular, by setting g(z,y) = f(x)f(y) (z,y) 1[|(z,y)| < 7] to be an appropriately truncated
kernel for estimating E[f(x)f(y) (x,y)], we can apply a Bernstein-type inequality due to Ar-
cones [Arcones, 1995] to show that O(y/n) samples are sufficient to estimate 3, f(e;)? with

sufficient accuracy. As a result, the following algorithm is a valid tester for LTFs.
LTF TESTER( f, €)

Parameters: 7 = \/4n log(4n/e3), m = 8007 /> + 32/¢S.

1. Draw z!, 22

. Query f(z), f(2?),..., f(a™).
3. Setjp=L3" f(a).
4. Seti = (7)o, F) @) (o, 29) - 1] (e, 09)] < 7],

. Accept iff |7 — W ()| < 263

,...,2™ independently at random from R".

N

9,

The algorithm queries the function only on inputs that are all independently drawn at random

from the n-dimensional Gaussian distribution. As a result, this tester works in both the active
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and passive testing models. For the complete proof of the correctness of the algorithm, see

Appendix 2.8.

2.4 Testing Disjoint Unions of Testable Properties

We now show that active testing has the feature that a disjoint union of testable properties is
testable, with a number of queries that is independent of the size of the union; this feature does
not hold for passive testing. In addition to providing insight into the distinction between the
two models, this fact will be useful in our analysis of semi-supervised learning-based properties
mentioned below and discussed more fully in Appendix 2.11.

Specifically, given properties Pi, ..., Py over domains Xy, ..., Xy, define their disjoint
union P over domain X = {(i,z) : i € [N],z € X;} to be the set of functions f such that
f(i,z) = fi(x) for some f; € P;. In addition, for any distribution D over X, define D; to be the
conditional distribution over X; when the first component is <. If each P; is testable over D, then
P is testable over D with only small overhead in the number of queries:

Theorem 2.12. Given properties Py, ..., Py, if each P; is testable over D; with q(¢) queries and
U (€) unlabeled samples, then their disjoint union P is testable over the combined distribution D

with O(q(e/2) - (log® L)) queries and O(U(€/2) - (X log® 1)) unlabeled samples.
Proof. See Appendix 2.9. [l

As a simple example, consider P; to contain just the constant functions 1 and 0. In this case,
P is equivalent to what is often called the “cluster assumption,” used in semi-supervised and
active learning [Chapelle, Schlkopf, and Zien, 2006, Dasgupta, 2011], that if data lies in some
number of clearly identifiable clusters, then all points in the same cluster should have the same
label. Here, each P; individually is easily testable (even passively) with O(1/¢) labeled samples,
so Theorem 2.12 implies the cluster assumption is testable with poly(1/¢) queries.> However, it

®Since the P; are so simple in this case, one can actually test with only O(1/¢) queries.
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is not hard to see that passive testing with poly(1/€) samples is not possible and in fact requires
Q(v/'N /e) labeled examples.”

We build on this to produce testers for other properties often used in semi-supervised learning.
In particular, we prove the following result about testing the margin property (See Appendix 2.11
for definitions and analysis).
Theorem 2.13. For any vy, v' = (1 — 1/c) for constant ¢ > 1, for data in the unit ball in R? for
constant d, we can distinguish the case that D has margin vy from the case that Dy is e-far from

margin ' using Active Testing with O(1/(v*€?)) unlabeled examples and O(1/¢) label requests.

2.5 General Testing Dimensions

The previous sections have discussed upper and lower bounds for a variety of classes. Here,
we define notions of testing dimension for passive and active testing that characterize (up to
constant factors) the number of labels needed for testing to succeed, in the corresponding testing
protocols. These will be distribution-specific notions (like SQ dimension in learning), so let us
fix some distribution D over the instance space X, and furthermore fix some value ¢ defining our
goal. Le., our goal is to distinguish the case that distp(f, P) = 0 from the case distp(f,P) > e.

For a given set .S of unlabeled points, and a distribution 7 over boolean functions, define 7g
to be the distribution over labelings of S induced by 7. That is, for y € {0,1}/ let 75(y) =
Prs.[f(S) = y]. We now use this to define a distance between distributions. Specifically, given

a set of unlabeled points S and two distributions 7 and 7’ over boolean functions, define

/ /
Dg(m,7') = (1/2) Z [ms(y) — ms(y)l,
ye{0,1}15]
’Specifically, suppose region 1 has 1 — 2¢ probability mass with f; € Py, and suppose the other regions equally
share the remaining 2¢ probability mass and either (a) are each pure but random (so f € P) or (b) are each 50/50
(so f is e-far from P). Distinguishing these cases requires seeing at least two points with the same index 7 # 1,

yielding the Q(v/N /¢) bound.
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to be the variation distance between 7 and 7’ induced by S. Finally, let I, be the set of all
distributions 7 over functions in P, and let set II. be the set of all distributions 7’ in which a
1 — o(1) probability mass is over functions at least e-far from P. We are now ready to formulate
our notions of dimension.

Definition 2.14. Define the passive testing dimension, dpqssive, as the largest ¢ € N such that,

sup sup Pr (Dg(m,7') > 1/4) < 1/4.

relly n/ €Tl S~

That is, there exist distributions 7 and 7’ such that a random set .S' of d,4ssive €xamples has a

reasonable probability (at least 3/4) of having the property that one cannot reliably distinguish

a random function from 7 versus a random function from 7’ from just the labels of S. From the

definition it is fairly immediate that Q(dpussive) €xamples are necessary for passive testing; in
fact, O(dpassive) are sufficient as well.

Theorem 2.15. The sample complexity of passive testing is O(dpassive)-
Proof. See Appendix 2.10. [

For the case of active testing, there are two complications. First, the algorithms can examine
their entire poly(n)-sized unlabeled sample before deciding which points to query, and secondly
they may in principle determine the next query based on the responses to the previous ones (even
though all our algorithmic results do not require this feature). If we merely want to distinguish
those properties that are actively testable with O(1) queries from those that are not, then the
second complication disappears and the first is simplified as well, and the following coarse notion
of dimension suffices.

Definition 2.16. Define the coarse active testing dimension, d.oqrse, as the largest ¢ € N such
that,

sup sup Pr (Dg(m,n’) > 1/4) < 1/n%.
melly o' el S~D1

Theorem 2.17. If dooorse = O(1) the active testing of P can be done with O(1) queries, and if

deoarse = w(1) then it cannot.

27



Proof. See Appendix 2.10. [l

To achieve a more fine-grained characterization of active testing we consider a slightly more
involved quantity, as follows. First, recall that given an unlabeled sample U and distribution 7
over functions, we define 7y as the induced distribution over labelings of U. We can view this as
a distribution over unlabeled examples in {0, 1}/Vl. Now, given two distributions over functions
m, ', define Fair(m, 7/, U) to be the distribution over labeled examples (y, ) defined as: with
probability 1/2 choose y ~ 7, £ = 1 and with probability 1/2 choose y ~ 77;, ¢ = 0. Thus, for
a given unlabeled sample U, the sets 11, and II. define a class of fair distributions over labeled
examples. The active testing dimension, roughly, asks how well this class can be approximated
by the class of low-depth decision trees. Specifically, let DT, denote the class of decision trees
of depth at most k. The active testing dimension for a given number u of allowed unlabeled

examples is as follows:

Definition 2.18. Given a number u = poly(n) of allowed unlabeled examples, we define the

active testing dimension, dgciive(u), as the largest g € N such that

sup sup Pr (err™(DT,, Fair(m, 7', U)) < 1/4) < 1/4,

mwellg n’ elle U~D

where err*(H, P) is the error of the optimal function in H with respect to data drawn from

distribution P over labeled examples.

Theorem 2.19. Active testing with failure probability % using u unlabeled examples requires
Qdyetive(w)) label queries, and furthermore can be done with O(u) unlabeled examples and

O(dyetive(u)) label queries.

Proof. See Appendix 2.10. [

We now use these notions of dimension to prove lower bounds for testing several properties.
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2.5.1 Application: Dictator functions

We now prove Theorem 2.3 that active testing of dictatorships over the uniform distribution re-
quires §2(log n) queries by proving a 2(log n) lower bound on dgtiye(u) for any u = poly(n); in
fact, this result holds even for the specific choice of 7’ as random noise (the uniform distribution

over all functions).

Proof of Theorem 2.3. Define m and 7’ to be uniform distributions over the dictator functions and
over all boolean functions, respectively. In particular, 7 is the distribution obtained by choosing
i € [n] uniformly at random and returning the function f : {0,1}" — {0, 1} defined by f(z) =
x;. Fix S to be a set of ¢ vectors in {0, 1}". This set can be viewed as a ¢ X n boolean-valued
matrix. We write ¢;(5), ..., ¢,(5) to represent the columns of this matrix. For any y € {0, 1}9,

i) s ai(S) = v}

n

ms(y) and  mg(y) =277

By Lemma 2.21, to prove that dyeive > 3 logn, it suffices to show that when ¢ < %logn
and U is a set of n® vectors chosen uniformly and independently at random from {0, 1}", then
with probability at least 2, every set S C U of size |S| = ¢ and every y € {0,1} satisfy
ms(y) < §2*‘1. (This is like a stronger version of d..q-sc Where Dg(m, 7') is replaced with an L,
distance.)

Consider a set S of ¢ vectors chosen uniformly and independently at random from {0, 1}".

For any vector y € {0, 1}9, the expected number of columns of S that are equal to y is n27%.

Since the columns are drawn independently at random, Chernoff bounds imply that
Pr [ms(y) > 8279] < (V213 < o2,

By the union bound, the probability that there exists a vector y € {0, 1}? such that more than
§n2_‘1 columns of S are equal to y is at most Qe 75n2 7 Furthermore, when U is defined as
above, we can apply the union bound once again over all subsets S C U of size | S| = ¢ to obtain

Pr(3S,y : ws(y) > 8279] < n .20 ¢~ ", When ¢ < 1logn, this probability is bounded
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c 2 1 _ 1 . . .
above by ez o8 "tz logn—7vn which is less than }L when n is large enough, as we wanted to

show. L]

2.5.2 Application: LTFs

The testing dimension also lets us prove the lower bounds in Theorem 2.5 regarding the query
complexity for testing linear threshold functions. Specifically, those bounds follow directly from

the following result.

Theorem 2.20. For linear threshold functions under the standard n-dimensional Gaussian dis-
tribution, dpqssive = S2(\/1/log(n)) and dgerive = Q((n/log(n))?).

Let us give a brief overview of the strategies used to obtain the d,qssive and dgcrive bounds.
The complete proofs for both results, as well as a simpler proof that deearse = Q((n/logn)/?),
can be found in Appendix 2.10.4.

For both results, we set 7 to be a distribution over LTFs obtained by choosing w ~ N(0, I,,x,,)
and outputting f(z) = sgn(w - x). Set 7’ to be the uniform distribution over all functions—i.e.,
for any = € R”, the value of f(x) is uniformly drawn from {0, 1} and is independent of the value
of f on other inputs.

To bound d,ssive, We bound the total variation distance between the distribution of Xw/ vn
given X, and the standard normal N (0, I,,«,,). If this distance is small, then so must be the
distance between the distribution of sgn(Xw) and the uniform distribution over label sequences.

Our strategy for bounding d ;v 1S very similar to the one we used to prove the lower bound
on the query complexity for testing dictator functions in the last section. Again, we want to
apply Lemma 2.21. Specifically, we want to show that when ¢ < o((n/log(n))*?) and U is a
set of n¢ vectors drawn independently from the n-dimensional standard Gaussian distribution,
then with probability at least %, every set S C U of size |S| = ¢ and almost all z € R?, we have
ms(z) < gQ‘q. The difference between this case and the lower bound for dictator functions is

that we now rely on strong concentration bounds on the spectrum of random matrices [ Vershynin,
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2012] to obtain the desired inequality.

2.6 Proof of a Property Testing Lemma

The following lemma is a generalization of a lemma that is widely used for proving lower bounds
in property testing [Fischer, 2001, Lem. 8.3]. We use this lemma to prove the lower bounds on
the query complexity for testing dictator functions and testing linear threshold functions.

Lemma 2.21. Let 7 and 7' be two distributions on functions X — R. Fix U C X to be a set

of allowable queries. Suppose that for any S C U, |S| = q, there is a set Es C R? (possibly

empty) satisfying ms(Es) < $27% such that

rs(y) < Brs(y) for everyy € BRI\ B,
Then err*(DT,, Fair(m, 7', U)) > 1/4.

Proof. Consider any decision tree A of depth ¢q. Each internal node of the tree consists of a
query y € U and a subset 7' C R such that its children are labeled by 7" and R \ T', respectively.
The leaves of the tree are labeled with either “accept” or “reject”, and let L be the set of leaves
labeled as accept. Each leaf ¢ € L corresponds to a set S, C U? of queries and a subset T, C RY,
where f : X — R leads to the leaf ¢ iff f(S;) € T,. The probability that A (correctly) accepts

an input drawn from 7 is
MZZ/m@W
ter, YT

Similarly, the probability that A (incorrectly) accepts an input drawn from 7’ is

ag = Z/n s, (y)dy.

lel

The difference between the two rejection probabilities is bounded above by

Z / TS, (y)dy
TZHESZ

a; — as < Z/ s, (y) — ﬂ-fgg(y)dy +
Ti\Es, el

el
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The conditions in the statement of the lemma then imply that
al_a2<z/ Ly dy+62/ ro(y)dy < L
teL

To complete the proof, we note that .4 errs on an input drawn from Fair (7, 7', U) with probability

(1 —ay) + 30 = 3 — 3(a1 — az) > 3. O

2.7 Proofs for Testing Unions of Intervals

In this section we complete the proofs of the technical results in Section 2.2.

Proposition 2.7 (Restated). Fix 6 > 0 and let f : [0,1] — {0, 1} be a union of d intervals. Then
NSs(f) < do.

Proof. For any fixed b € [0, 1], the probability that + < b < y when z ~ U(0,1) and y ~
U(x —d,z+9)is

5
Priz <b<y] = / Pr bjdt = / —dt
2.y 0 y~U(b—t—6,b—t+6

Similarly, Pr, [y < b < z| = %. So the probability that b lies between = and y is at most %.
When f is the union of d intervals, f(x) # f(y) only if at least one of the boundaries

bi,...,byq of the intervals of f lies in between = and y. So by the union bound, Pr[f(z) #

f(y)] < 2d(§/2) = db. Note that if b is within distance § of 0 or 1, the probability is only

lower. L]

Lemma 2.8 (Restated). Fix 0 = 355. Let f : [0,1] — {0, 1} be any function with noise sensitivity

NS;s(f) < dd(1+ ). Then f is e-close to a union of d intervals.

Proof. The proof proceeds in two steps: We first show that f is $-close to a union of d(1 + §)

intervals, then we show that every union of d(1 + §) intervals is §-close to a union of d intervals.
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Consider the “smoothed” function f;s : [0, 1] — [0, 1] defined by

z+d
() = Bysnf0) = 35 [ )

The function fs is the convolution of f and the uniform kernel ¢ : R — [0, 1] defined by
o(x) = F1a] <.
Fix 7 = INS;(f). We introduce the function g* : [0, 1] — {0, 1, x} by setting

(
1 when fs(z) >1—r,

9" () =40 when fs(z) < 7,and

* otherwise

\
for all z € [0, 1]. Finally, we define ¢ : [0, 1] — {0, 1} by setting g(x) = g*(y) where y < x is

the largest value for which g(y) # *. (If no such y exists, we fix g(z) = 0.)

We first claim that dist(f, g) < §. To see this, note that

dist(f,g) = F;r[f@) # g()]

Prig(z) = +| + Pr[f(z) = 0 A g"(x) = 1] + Pr[f(z) = 1 A g*(z) = 0]

T x

IN

I:;I‘[T < fs(x) <1l—1]+ I—;r[f(:c) =0A fs(z)>1—1] —|—P;r[f(x) =1A fs(z) <7].

We bound the three terms on the RHS individually. For the first term, we observe that NSs(f, x) =
min{ fs(z), 1 — fs(z)} and that E,NSs(f, x) = NSs(f). From these identities and Markov’s in-

equality, we have that

Pr[r < fs(x) < 1—7] = PrNSs(f,2) > 7] < Ngjm = ;1

For the second term, let S C [0, 1] denote the set of points  where f(z) = 0 and fs(z) > 1 — 7.
Let I' C S represent a d-net of S. Clearly, |I'| < %. Forz € I',let B, = (x — 6,z + J) be a
ball of radius ¢ around z. Since fs(x) > 1 — 7, the intersection of S and B, has mass at most

|S' N B,| < 76. Therefore, the total mass of S is at most |S| < |['|7d = 7. By the bounds on the
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noise sensitivity of f in the lemma’s statement, we therefore have

Prif(x) =0A fs(z) >1—7] <7<

xT

oo|m

Similarly, we obtain the same bound on the third term. As a result, dist(f,g) < {4+ g+ § =

N
M

as we wanted to show.

We now want to show that g is a union of m < dd(1 + §) intervals. Each left boundary of an
interval in g occurs at a point x € [0, 1] where ¢g*(z) = *, where the maximum y < x such that
g*(y) # = takes the value g*(y) = 0, and where the minimum z > x such that g*(z) # * has
the value ¢*(z) = 1. In other words, for each left boundary of an interval in g, there exists an
interval (y, z) such that fs(y) < 7, fs(z) > 1 — 7, and foreachy < x < z, f5(z) € (1,1 — 7).
Fix any interval (y, z). Since fs is the convolution of f with a uniform kernel of width 24, it
is Lipschitz continuous (with Lipschitz constant ). So there exists © € (y,z) such that the
conditions f5(z) = 3,z —y > 26(5 — 7), and z — z > 26(5 — 7) all hold. As a result,

[Nsstrnae= [ONssrnacs [Nz 26 - 2
Yy Y

Similarly, for each right boundary of an interval in g, we have an interval (y, z) such that

/Z NSs(f,t)dt > 25(3 — 7)°

Y

The intervals (y, z) for the left and right boundaries are all disjoints, so

2m P
NS;(f) > Z/ NSs(f,t)dt > ng(l —27)%
i=1 7Y

This means that

dé(1+¢€/4) .
m < m < d(l + 5)

and g is a union of at most d(1 + §) intervals, as we wanted to show.

Finally, we want to show that any function that is the union of m < d(1 + §) intervals is §-

close to a union of d intervals. Let (4, ..., ¢,, represent the lengths of the intervals in g. Clearly,
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0y + -+ ¢, <1,sothere must be a set S of m — d < de/2 intervals in f with total length

i€s m d( 2)

Consider the function A : [0,1] — {0, 1} obtained by removing the intervals in S from ¢ (i.e.,
by setting h(x) = 0 for the values x € [by;_1, by;] for some i € S). The function & is a union
of d intervals and dist(g,h) < 5. This completes the proof, since dist(f,h) < dist(f,g) +

dist(g,h) < e. O

2.8 Proofs for Testing LTF's

We complete the proof that LTFs can be tested with O(y/n) samples in this section.
For a fixed function f : R" — R, define g : R” x R" — Rtobe g(x,y) = f(z)f(y) (z,y).
Let g* : R™ x R™ — R be the truncation of g defined by setting
f@)f(y) {z,y) if[(z,y)| < /4nlog(4n/e?)

g (z,y) =
0 otherwise.

Our goal is to estimate Eg. The following lemma shows that [£g* provides a good estimate of

this value.

Lemma 2.22. Let g,g* : R" X R" — R be defined as above. Then |Eg — Eg*| < %63.

Proof. For notational clarity, fix 7 = y/4nlog(4n/e?). By the definition of g and ¢* and with

the trivial bound | f(x) f(y) (x,y) | < n we have

Eg—Eg'| = |Pr [|{z.9)| > 7] - Evy [f@)f ) () | (9] > 7]

Sn-Pr[|<x,y>| >T}.
Y

The right-most term can be bounded with a standard Chernoff argument. By Markov’s inequality

and the independence of the variables x4, ..., 2., Y1, .., Un,

E t<.’E,y> ’I’L E tTiy;
Pr [<$, y> > T] = Pr [€t<m7y) > etT] < € t _ Hz:l ; e '
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The moment generating function of a standard normal random variable is Ee® = ¢!*/2, so
Exi,yi [etxiyl} = Exl [Eyz etxiyi} — ]Exie(tQ/Q)zf.

When z ~ N(0, 1), the random variable z? has a x? distribution with 1 degree of freedom. The

moment generating function of this variable is Eet®® = @/ﬁ = 4/1+ % for any t < %
Hence,
(t2/2)2 2 ? oo
E,.e i <4 /1+ [ < e20-t9)

for any ¢ < 1. Combining the above results and setting ¢ = 5~ yields

ﬁ—t 2 3
E?IJ. |:<-r7 y> > T:| S 62(17752) T S e 4n — Z—n
The same argument shows that Pr{(z,y) < —7| < % as well. =

The reason we consider the truncation ¢g* is that its smaller /., norm will enable us to apply
a strong Bernstein-type inequality on the concentration of measure of the U-statistic estimate of
Eg*.
Lemma 2.23 (Arcones [Arcones, 1995]). For a symmetric function h : R x R® — R, let ¥.? =
E.[E,[h(z,y)]?] — Epy[h(z,y)]? let b = ||h — Ehl|w, and let U,,(h) be a random variable ob-
tained by drawing z*, . .., x™ independently at random and setting U,,(h) = () - D ic; (@t @),

Then for every t > 0,

Pr[|Un(h) — Eh| > t] < 4 __m
" =P8y 1006 )

We are now ready to complete the proof of the upper bound of Theorem 2.5.
Theorem 2.24 (Upper bound in Theorem 2.5, restated). Linear threshold functions can be tested

over the standard n-dimensional Gaussian distribution with O(\/nlogn) queries in both the

active and passive testing models.
Proof. Consider the LTF-TESTER algorithm. When the estimates j: and v satisfy

i—Efl<e  and |7 —E[f(2)f(y) (z,9)]] < €,
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Lemmas 2.10 and 2.11 guarantee that the algorithm correctly distinguishes LTFs from functions
that are far from LTFs. To complete the proof, we must therefore show that the estimates are
within the specified error bounds with probability at least 2/3.

The values f(z'),..., f(z™) are independent {—1, 1}-valued random variables. By Hoeffd-
ing’s inequality,

Pr(|fi — Ef| < ¥ > 1 —2¢ ™% =1 —2¢700W™),

The estimate v is a U-statistic with kernel ¢g* as defined above. This kernel satisfies
197 = Eg™llec < 2/[g"[lsc = 2v/4nlog(4n/€?)

and
2? <Ey[E[g" (2, 9))?] = By [Eo[f(2) f(y) (w,) 1|(w,9)] < 7))
For any two functions ¢,¢ : R* — R, when v is {0, 1}-valued the Cauchy-Schwarz in-

equality implies that E,[¢(x)1(2)]? < E.[d(x)|E.[p(x)(2)?] = E,lp(2)]|E.[o(z)y(x)] and
s0 E, [¢p(z)y(z)]* < E.[d(x)]. Applying this inequality to the expression for ¥.? gives

2 < B, [E.[f(2) f(y) (x, Zf Y)Y Zfez E,[y:y;] = Z

By Parseval’s identity, we have 3. f(e;)2 < ||f]|2 = || f|I2 = 1. Lemmas 2.22 and 2.23 imply

that

mt2

Prl|7 — Bg| < €¥] = Prli — Eg*| < Le¥] > 1 — de sraoovmtontonran > 1.

The union bound completes the proof of correctness. [

2.9 Proofs for Testing Disjoint Unions

Theorem 2.12 (Restated). Given properties Py, . .., Py, if each P; is testable over D; with q(€)
queries and U (€) unlabeled samples, then their disjoint union P is testable over the combined

distribution D with O(q(e/2) - (log® 1)) queries and O(U(e/2) - (X log® 1)) unlabeled samples.
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Proof. Let p = (p1,...,pn) denote the mixing weights for distribution D; that is, a random
draw from D can be viewed as selecting ¢ from distribution p and then selecting x from D;. We
are given that each P; is testable with failure probability 1/3 using using ¢(€) queries and U (e)
unlabeled samples. By repetition, this implies that each is testable with failure probability  using
¢s(€) = O(q(€)log(1/0)) queries and Us(e) = O(U(e€)log(1/0)) unlabeled samples, where we

will set § = €2. We now test property P as follows:

Fore =1/2,1/4,1/8,...,¢/2 do:

Repeat O(% log(1/€)) times:
1. Choose a random (i, z) from D.
2. Sample until either Us(¢’) samples have been drawn from D; or (8N/¢)Us(¢')
samples total have been drawn from D, whichever comes first.

3. In the former case, run the tester for property P; with parameter ¢/, making

qs(€') queries. If the tester rejects, then reject.

If all runs have accepted, then accept.

First to analyze the total number of queries and samples, since we can assume ¢(¢) > 1/e and
U(e) > 1/¢, we have gs(€')e' /e = O(qs(€/2)) and Us(€')e' /e = O(Us(€/2)) for € > €/2. Thus,

the total number of queries made is at most

S as(e/2)1og(1/6) = 0 (ate/2) 1o’ 1 )

and the total number of unlabeled samples is at most

5 S vste/20(1/6) = 0 (U(e/2 Y 10 1.

E/

Next, to analyze correctness, if indeed f € P then each call to a tester rejects with probability
at most & so the overall failure probability is at most (d/€)log®(1/€) < 1/3; thus it suffices to

analyze the case that distp(f,P) > e.
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If distp(f,P) > ethen}_, - unypi- distp,(fi, P;) > 3€/4. Moreover, for indices ¢ such that
pi > €/(4N), with high probability Step 2 draws Us(€¢’) samples, so we may assume for such
indices the tester for P; is indeed run in Step 3. Let I = {i : p; > ¢/(4N) and distp,(fi, P;) >

€¢/2}. Thus, we have

el
Let [ = {i € I : distp,(f;,P;) € [€/,2€]}. Bucketing the above summation by values ¢’ in this

way implies that for some value €’ € {€/2,¢€,2¢,...,1/2}, we have:

Zpi > ¢/(8€¢ log(1/€)).

i€l

This in turn implies that with probability at least 2/3, the run of the algorithm for this value of €’

will find such an 7 and reject, as desired. [

2.10 Proofs for Testing Dimensions

2.10.1 Passive Testing Dimension (proof of Theorem 2.15)

Lower bound: By design, dpussive 15 @ lower bound on the number of examples needed for
passive testing. In particular, if Dg(7, ') < 1/4, and if the target is with probability 1/2 chosen
from 7 and with probability 1/2 chosen from 7/, even the Bayes optimal tester will fail to identify
the correct distribution with probability 1 > yetonyis min(ms(y), ms(y)) = :(1 = Dg(m, 7)) >
3/8. The definition of dpssive implies that there exist m € Ily, 7’ € II, such that Prg(Dg(m, ') <
1/4) > 3/4. Since 7’ has a 1 — o(1) probability mass on functions that are e-far from P, this
implies that over random draws of S and f, the overall failure probability of any tester is at least
(1—0(1))(3/8)(3/4) > 1/4. Thus, at least dp,ssive + 1 random labeled examples are required if

we wish to guarantee error at most 1/4. This in turn implies ©(d,4ssive) €xamples are needed to

guarantee error at most 1/3.
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Upper bound: We now argue that O(d,,ssive) €xamples are sufficient for testing as well. Toward
this end, consider the following natural testing game. The adversary chooses a function f such
that either f € P or distp(f,P) > €. The tester picks a function A that maps labeled samples
of size k to accept/reject. That is, A is a deterministic passive testing algorithm. The payoff to
the tester is the probability that A is correct when S is chosen iid from D and labeled by f.

If £ > dpassive then (by definition of d,qssi0c) We know that for any distribution 7 over f € P
and any distribution 7’ over f that are e-far from P, we have Prg_pr(Dg(m,7’) > 1/4) > 1/4.
We now need to translate this into a statement about the value of the game. The key fact we can
use is that if the adversary uses distribution ar + (1 — «)7’ (i.e., with probability « it chooses
from 7 and with probability 1 — « it chooses from 7’), then the Bayes optimal predictor has error

exactly

while

S min(ms(y), 7h(y) = 1 - (1/2) Zm ()] = 1 - Dy(m, "),

so that the Bayes risk is at most max (o, 1 — «)(1 — Dg(7,#’)). Thus, for any o € [7/16,9/16],
if Dg(m,7") > 1/4, the Bayes risk is less than (9/16)(3/4) = 27/64. Furthermore, any o ¢
[7/16,9/16] has Bayes risk at most 7/16. Thus, since Dg(7, 7") > 1/4 with probability > 1/4
(and if Dg(m,n’) < 1/4 then the error probability of the Bayes optimal predictor is at most
1/2), for any mixed strategy of the adversary, the Bayes optimal predictor has risk less than
(1/4)(7/16) + (3/4)(1/2) = 31/64.

Now, applying the minimax theorem we get that for £ = d,qssive + 1, there exists a mixed
strategy A for the tester such that for any function chosen by the adversary, the probability the
tester is correct is at least 1/2 + ~ for a constant v > 0 (namely, 1/64). We can now boost the
correctness probability using a constant-factor larger sample. Specifically, let m = ¢-(dpassive+1)

for some constant ¢, and consider a sample S of size m. The tester simply partitions the sample
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S into ¢ pieces, runs A separatately on each piece, and then takes majority vote. This gives us
that O(dpassive) €xamples are sufficient for testing with any desired constant success probability

in (1/2,1).

2.10.2 Coarse Active Testing Dimension (proof of Theorem 2.17)

Lower bound: First, we claim that any nonadaptive active testing algorithm that uses < d pqrs¢/C
label requests must use more than n¢ unlabeled examples (and thus no algorithm can succeed
using o(deoarse) labels). To see this, suppose algorithm A draws n¢ unlabeled examples. The
number of subsets of size depqrse/c is at most ndeoarse /6 (for deoarse/c > 3). So, by definition of
dcoarse and the union bound, with probability at least 5/6, all such subsets S satisfy the property
that Dg (7, 7") < 1/4. Therefore, for any sequence of such label requests, the labels observed will
not be sufficient to reliably distinguish 7 from 7’/. Adaptive active testers can potentially choose
their next point to query based on labels observed so far, but the above immediately implies that

even adaptive active testers cannot use an 0(10g(deoqarse)) queries.

Upper bound: For the upper bound, we modify the argument from the passive testing dimension
analysis as follows. We are given that for any distribution 7 over f € P and any distribution 7’
over f that are e-far from P, for k = dparse+1, we have Prg. pr (Dg(m, 7') > 1/4) > n~*. Thus,
we can sample U ~ D™ with m = ©(k-n*), and partition U into subsamples Sy, Ss, . . ., S, of
size k each. With high probability, at least one of these subsamples .S; will have Dg(m, 7) > 1/4.
We can thus simply examine each subsample, identify one such that Dg(7, ') > 1/4, and query
the points in that sample. As in the proof for the passive bound, this implies that for any strategy
for the adversary in the associated testing game, the best response has probability at least 1/2+~
of success for some constant v > (. By the minimax theorem, this implies a testing strategy with
success probability 1/2 -+~ which can then be boosted to 2/3. The total number of label requests
used in the process is only O(d oarse)-

Note, however, that this strategy uses a number of unlabeled examples (ndecers<*1) Thus,
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this only implies an active tester for d.oqrse = O(1). Nonetheless, combining the upper and lower

bounds yields Theorem 2.17.

2.10.3 Active Testing Dimension (proof of Theorem 2.19)

Lower bound: for a given sample U, we can think of an adaptive active tester as a decision
tree, defined based on which example it would request the label of next given that the previous
requests have been answered in any given way. A tester making % queries would yield a decision
tree of depth k. By definition of d v (u), with probability at least 3/4 (over choice of U), any
such tester has error probability at least (1/4)(1 — o(1)) over the choice of f. Thus, the overall

failure probability is at least (3/4)(1/4)(1 — o(1) > 1/8.

Upper bound: We again consider the natural testing game. We are given that for any mixed
strategy of the adversary with equal probability mass on functions in P and functions e-far from
P, the best response of the tester has expected payoff at least (1/4)(3/4) + (3/4)(1/2) = 9/16.
This in turn implies that for any mixed strategy at all, the best response of the tester has expected
payoff at least 33/64 (if the adversary puts more than 17/32 probability mass on either type
of function, the tester can just guess that type with expected payoff at least 17/32, else it gets
payoff at least (1 — 1/16)(9/16) > 33/64). By the minimax theorem, this implies existence of
a randomized strategy for the tester with at least this payoff. We then boost correctness using
¢ - u samples and ¢ - dyeive (1) queries, running the tester ¢ times on disjoint samples and taking

majority vote.

2.10.4 Lower Bounds for Testing LTFs (proof of Theorem 2.20)

We complete the proofs for the lower bounds on the query complexity for testing linear threshold
functions in the active and passive models. This proof has three parts. First, in Section 2.10.4, we
introduce some preliminary (technical) results that will be used to prove the lower bounds on the

passive and coarse dimensions of testing LTFs. In Section 2.10.4, we introduce some more pre-
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liminary results regarding random matrices that we will use to bound the active dimension of the

class. Finally, in Section 2.10.4, we put it all together and complete the proof of Theorem 2.20.

Preliminaries for d,,,ssi,c and deoqrse

Fix any K. Let the dataset X = {x1, 9, -, 7k} be sampled iid according to the uniform
distribution on {—1,+1}" and let X € R**" be the corresponding data matrix.

Suppose w ~ N (0, I,,x,,). We let

z = XWw,

and note that the conditional distribution of z given X is normal with mean 0 and (X -dependent)
covariance matrix, which we denote by X. Further applying threshold function to z gives y as

the predicted label vector of an LTF.

Lemma 2.25. For any matrix B, log(det(B)) = Tr(log(B)), where log(B) is the matrix expo-

nential of B.

Proof. From [Higham, 2008], we know since every eigenvalue of A corresponds to the eigen-

value of exp(A), thus
det(exp(A)) = exp(Tr(A)) (2.1)
where exp(A) is the matrix exponential of A. Taking logarithm of both sides of (2.1), we get
log(det(exp(A))) = Tr(A) (2.2)
Let B = exp(A) (thus A = log(B)). Then (2.2) can rewritten as log(det(B)) = Tr(log B). O

Lemma 2.26. For sufficiently large n, and a value K = Q(\/n/log(K/0d)), with probability at

least 1 — 6 (over X),

1P ymyx — N, I)|| < 1/4.
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Proof. Let [ be the feature index. For a pair x; and x,
n nlog 2
P(|I{: wa = 2}l - 5] >4/ =22 <6
2 2
By Hoeffding Inequality, with probability 1 — 9,

x{x; = Hl:za=xp}| - [{l:aq # 3}

nlog 2 nlog 2
= 2{l:xy=x}| —ne€ —2\/ 2g5,2\/ 2g5

By union bound,
2K? 2K? )
P <E|i,j, such that X;TFXj g [—\/2n log 5 \/Zn log T]) < K2ﬁ =9 (2.3)

For the remainder of the proof we suppose the (probability 1 — §) event

Vi, j, X1 x; € [—\/inog(ZKz/é), V/2n log(2K2/5)} occurs.

Cov(zi/\/n, 2;//n|X) = E[nﬂ

— %E (sz-%l)(zwl'%lﬂX]

n,n

= —-E E W Wi Tig T i | X

Ll,m=1,1

[ 1
= —E ;w?xilm'jl’X] :EE ;l’iliﬁjﬂX]
1 1 210g(2K2/8)  [2log(2K2/§
= —Z%ﬂjl = —XZTXj € [—\/ og / )?\/ og( / )‘
e n n n

because E[wjw,,] = 0 (for [ # m) and E[w}?] = 1. Let § = %KZ/‘S). Thus Yisa K x K

matrix, with ¥;; = 1fori=1,--- , K and 3;; € [0, 5] for all i # j.
Let P, = N(0,25%K) and P, = N(0, I**K). As the density

1 1 ey
pi(z) = GRS eXp(—gz ¥ 'z)
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and the density
1 1 5

p2(z) = WGXP(_ﬁz z)

Then L; distance between the two distributions P; and P,

|dP, — dPy| < 2\/K(P1, P,) = 21/(1/2) log det(%),

where this last equality is by [Davis and Dhillon, 2006]. By Lemma 2.25, log(det(X)) =
Tr(log(X)). Write A = 3 — I. By the Taylor series

[e.e]

log(f+z4)=—zl(l’— I+ A)) i—

- 2
=1

}_;

[e o]

Thus  Tr(log(I+A) = > %Tr((—A)i). (2.4)

Every entry in A’ can be expressed as a sum of ia:tlmost K ! terms, each of which can

be expressed as a product of exactly 7 entries from A. Thus, every entry in A’ is in the range

[— K", K'"'3%]. This means Tr(A") < K'B". Therefore, if K3 < 1/2, since Tr(A) = 0,
the expansion of 7r(log( + A)) <> =, K'3' =0 <K2M>'

In particular, for some K = Q(y/n/log(K/d)), Tr(log(I + A)) is bounded by the appropri-

ate constant to obtain the stated result. L]

Preliminaries for d, ;..

Given an n x m matrix A with real entries {a; }ie[n], je[m]» the adjoint (or transpose — the two are
equivalent since A contains only real values) of A is the m x n matrix A* whose (3, j)-th entry
equals a;;. Let us write Ay > Ay > --- > ), to denote the eigenvalues of v/ A* A. These values
are the singular values of A. The matrix A*A is positive semidefinite, so the singular values of
A are all non-negative. We write Apax(A) = A and Ayin(A) = Ay, to represent its largest and

smallest singular values. Finally, the induced norm (or operator norm) of A is

[Azl> _

zeRm\{0} ||z]la  cckm:|z|2=1

1Al = [Az]l2.
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For more details on these definitions, see any standard linear algebra text (e.g., [Shilov, 1977]).
We will also use the following strong concentration bounds on the singular values of random
matrices.
Lemma 2.27 (See [Vershynin, 2012, Cor. 5.35]). Let A be an n x m matrix whose entries are
independent standard normal random variables. Then for any t > 0, the singular values of A
satisfy

V= Vm —t < Apin(A) < Apax(A) <V +Vm +t (2.5)

with probability at least 1 — 2¢~*/2,

The proof of this lemma follows from Talagrand’s inequality and Gordon’s Theorem for
Gaussian matrices. See [Vershynin, 2012] for the details. The lemma implies the following
corollary which we will use in the proof of our theorem.

Corollary 2.28. Let A be an n X m matrix whose entries are independent standard normal

. 1 A% . . ..
random variables. For any 0 < t < \/n—-+/m, the mxm matrix . A* A satisfies both inequalities

[ WD vt
H%A*A_IHS?’\/EJFt and det (1A*A) > e ( o +2ﬁ+>

NG

with probability at least 1 — 2e

(2.6)

—t2/2

Proof. When there exists 0 < z < 1 such that 1 — z < \/iﬁ)\max(A) < 1+ z, the identity

\/Lg)\max(A) = H\/LEAH = maXHx”%:l H\/LEA.Z'HQ 1mplles that

1-22<(1-2)*< max

2
LAxH <(1+2)?2<1+ 32
_x||§=1H“ﬁ , Sras

These inequalities and the identity || A*A — I = Max] ;|21 ||\/iﬁAx||§ — 1 imply that —2z <

|+A*A — I| < 3z. Fixing z = ‘/jgt and applying Lemma 2.27 completes the proof of the first
inequality.

Recall that A\; < --- < )\, are the eigenvalues of v/ A*A. Then

det(L1A"A) >

n n n n

SR Gl (2)" (P
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Lemma 2.27 and the elementary inequality 1 +x < e” complete the proof of the second inequal-

ity. [

Proof of Theorem 2.20

Theorem 2.20 (Restated). For linear threshold functions under the uniform distribution on

{—1,1}", dpassive = Q(y/n/ log(n)) and dacsive = Q((n/ log(n))/3).

Proof. Let K be as in Lemma 2.26 for 6 = 1/4. Let D = {(z1,v%1),...,(Zk,yx)} denote
the sequence of labeled data points under the random LTF based on w. Furthermore, let D' =
{(z1,v}), .., (xK,ys)} denote the sequence of labeled data points under a target function that
assigns an independent random label to each data point. Also let z; = (1/y/n)w’z;, and let
z' ~ N(0,Igxk). Let E = {(x1,21),...,(xk,2Kx)} and E' = {(z1,2}), ..., (vk, 2% )}. Note
that we can think of y; and gy} as being functions of z; and z, respectively. Thus, letting X =

{z1,..., 2k}, by Lemma 2.26, with probability at least 3/4,
IPpix — Poix|| < |[Peix — Perx|] < 1/4.

This suffices for the claim that dpssi0e = Q(K) = Q(y/n/ log(n)).

Next we turn to the lower bound on dgcive. Let us now introduce two distributions Dy
and D, over linear threshold functions and functions that (with high probability) are far from
linear threshold functions, respectively. We draw a function f from D by first drawing a
vector w ~ N (0, I,,«,,) from the n-dimensional standard normal distribution. We then define
fro— sgn(\/iﬁx -w). To draw a function g from D,,,, we define g(z) = sgn(y,) where each
y. variable is drawn independently from the standard normal distribution A/ (0, 1).

Let X € R"*? be a random matrix obtained by drawing ¢ vectors from the n-dimensional
normal distribution A/(0, I,,,,) and setting these vectors to be the columns of X. Equivalently, X
is the random matrix whose entries are independent standard normal variables. When we view X

as a set of ¢ queries to a function f ~ Dy or a function g ~ D,,,, we get f(X) = sgn(\/iﬁXw)
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and g(X) = sgn(yx). Note that \/LEXW ~ N(0,2X*X) and yx ~ N(0,I;x,). To apply

Lemma 2.21 it suffices to show that the ratio of the pdfs for both these random variables is
6 1 s

bounded by 2 for all but > of the probability mass.

The pdf p : R? — R of a g-dimensional random vector from the distribution N, (0, %) is

1

p(z) = (27r)_g det(E)_%e_fxTE_lw.

N

Therefore, the ratio function r : R? — R between the pdfs of \%Xw and of yx is
r(z) = det(%X*X)_%e%xT((%X*X)il_I)x.
Note that
e ((XX) T = D < |GXX) T = |l = [15X5X - 1],

so by Lemma 2.27 with probability at least 1 — 2¢1*/2 we have

(2 < S(EEE G
By a union bound, for U ~ N(0, I,x,,)", u € N with u > ¢, the above inequality for r(x) is true
for all subsets of U of size ¢, with probability at least 1 — u?2¢*/2. Fix ¢ = n3 /(50(In(u))?)
and t = 21/qIn(u). Then u?2e~*"/2 < 2u~9, which is < 1/4 for any sufficiently large n. When
|lz]|2 < 3¢ then for large n, r(z) < e™/6% < g. To complete the proof, it suffices to show that
when 2 ~ N(0, I,,), the probability that ||z||3 > 3¢ is at most £27%. The random variable ||z |3
has a x? distribution with ¢ degrees of freedom and expected value E|[z||3 = > 7 Ex? = gq.

Standard concentration bounds for y? variables imply that

Pr z||2 >3 <e_%q<l
B el >3 < e <

271
as we wanted to show. Thus, Lemma 2.21 implies err*(DT,, Fair(7, 7/, U)) > 1/4 holds when-
ever this r(x) inequality is satisfied for all subsets of U of size ¢; we have shown this happens

with probabiliity greater than 3/4, so we must have dyciive > q- O
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If we are only interested in bounding d.q;se, the proof can be somewhat simplified. Specifi-

cally, taking § = n~ % in Lemma 2.26 implies that with probability at least 1 — n =%,

IPoix — Pox|| < ||Peix — Pex|| < 1/4,

which suffices for the claim that d g5 = Q(K), where K = Q(y/n/K log(n)): in particular,

dcoarse = Q((n/ log(n))l/B)

2.11 Testing Semi-Supervised Learning Assumptions

We now consider testing of common assumptions made in semi-supervised learning [Chapelle,
Schlkopf, and Zien, 2006], where unlabeled data, together with assumptions about how the target
function and data distribution relate, are used to constrain the search space. As mentioned in
Section 2.4, one such assumption we can test using our generic disjoint-unions tester is the
cluster assumption, that if data lies in N identifiable clusters, then points in the same cluster
should have the same label. We can in fact achieve the following tighter bounds:

Theorem 2.29. We can test the cluster assumption with active testing using O(N/€) unlabeled

examples and O(1/¢€) queries.

Proof. Let p;; and p;y denote the probability mass on positive examples and negative examples
respectively in cluster ¢, S0 p;; + Py is the total probabilty mass of cluster 7. Then dist(f,P) =
>, min(p;1, pio). Thus, a simple tester is to draw a random example x, draw a random example
y from z’s cluster, and check if f(z) = f(y). Notice that with probability exactly dist(f,P),
point x is in the minority class of its own cluster, and conditioned on this event, with probability
at least 1/2, point y will have a different label. It thus suffices to repeat this process O(1/e)
times. One complication is that as stated, this process might require a large unlabeled sample,
especially if = belongs to a cluster ¢ such that p;y 4 p;; is small, so that many draws are needed to
find a point y in x’s cluster. To achieve the given unlabeled sample bound, we initially draw an

unlabeled sample of size O(N/¢) and simply perform the above test on the uniform distribution
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U over that sample, with distance parameter ¢/2. Standard sample complexity bounds [Vapnik,
1998] imply that O(NN/¢) unlabeled points are sufficient so that if distp(f, P) > € then with
high probability, disty (f, P) > €/2. O

We now consider the property of a function having a large margin with respect to the un-
derlying distribution: that is, the distribution D and target f are such that any point in the
support of D|;_; is at distance  or more from any point in the support of D|;—o. This is a
common property assumed in graph-based and nearest-neighbor-style semi-supervised learning
algorithms [Chapelle, Schlkopf, and Zien, 2006]. Note that we are not additionally requiring
the target to be a linear separator or have any special functional form. For scaling, we assume
that points lie in the unit ball in R, where we view d as constant and 1/~ as our asymptotic
parameter.® Since we are not assuming any specific functional form for the target, the number
of labeled examples needed for learning could be as large as Q(1/4¢) by having a distribution
with support over (1/4%) points that are all at distance v from each other (and therefore can
be labeled arbitrarily). Furthermore, passive testing would require $2(1/7%2) samples as this
specific case encodes the cluster-assumption setting with N = (1/~%) clusters. We will be able
to perform active testing using only O(1/¢) label requests.

First, one distinction between this and other properties we have been discussing is that it
is a property of the relation between the target function f and the distribution D; i.e., of the
combined distribution D; = (D, f) over labeled examples. As a result, the natural notion of
distance to this property is in terms of the variation distance of Dy to the closest D, satisfying

the property.” Second, we will have to also allow some amount of slack on the ~ parameter as

8 Alternatively points could lie in a d-dimensional manifold in some higher-dimensional ambient space, where the
property is defined with respect to the manifold, and we have sufficient unlabeled data to “unroll” the manifold using
existing methods [Chapelle, Schlkopf, and Zien, 2006, Roweis and Saul, 2000, Tenenbaum, Silva, and Langford,

2000].
9As a simple example illustrating the issue, consider X = [0, 1], a target f that is negative on [0,1/2) and

positive on [1/2,1], and a distribution D that is uniform but where the region [1/2,1/2 + ~] is downweighted to
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well. Specifically, our tester will distinguish the case that D indeed has margin v from the case
that the Dy is e-far from having margin 7' where 7 = (1 — 1/c) for some constant ¢ > 1; e.g.,
think of v/ = ~/2. This slack can also be seen to be necessary (see discussion following the

proof of Theorem 2.13). In particular, we have the following.

Theorem 2.13 (Restated). For any v, v' = (1 — 1/c) for constant ¢ > 1, for data in the unit
ball in R? for constant d, we can distinguish the case that D ; has margin ~ from the case that D¢
is e-far from margin ' using Active Testing with O(1/(v*€?)) unlabeled examples and O(1/¢)

label requests.

Proof. First, partition the input space X (the unit ball in R?) into regions Ry, Ry, ..., Ry of
diameter at most v/(2c¢). By a standard volume argument, this can be done using N = O(1/~%)
regions (absorbing “c” into the O()). Next, we run the cluster-property tester on these N regions,
with distance parameter ¢/4. Clearly, if the cluster-tester rejects, then we can reject as well.
Thus, we may assume below that the total impurity within individual regions is at most €/4.

Now, consider the following weighted graph GG,. We have IV vertices, one for each of the N
regions. We have an edge (i, j) between regions R; and R; if diam(R; U R;) < . We define
the weight w(i, j) of this edge to be min(D[R;], D[R,]|) where D[R] is the probability mass in
R under distribution D. Notice that if there is no edge between region R; and I?;, then by the
triangle inequality every point in R; must be at distance at least 7’ from every point in ;. Also,
note that each vertex has degree O(c?) = O(1), so the total weight over all edges is O(1). Finally,
note that while algorithmically we do not know the edge weights precisely, we can estimate all
edge weights to +¢/(4M), where M = O(N) is the total number of edges, using the unlabeled
sample size bounds given in the Theorem statement. Let w(4, ) denote the estimated weight of
edge (7,7).

Let Eyimess be the set of edges (4, j) such that one endpoint is majority positive and one is

have total probability mass only 1/2". Such a D is 1/2™-close to the property under variation distance, but would

be nearly 1/2-far from the property if the only operation allowed were to change the function f.
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majority negative. Note that if D satisfies the y-margin property, then every edge in Einess
has weight 0. On the other hand, if Dy is e-far from the y’-margin property, then the total weight
of edges in Fyiess 1s at least 3¢/4. The reason is that otherwise one could convert D ¢ to D’f
satisfying the margin condition by zeroing out the probability mass in the lightest endpoint of
every edge (i, 7) € Fuyimess» and then for each vertex, zeroing out the probability mass of points
in the minority label of that vertex. (Then, renormalize to have total probability 1.) The first step
moves distance at most 3¢/4 and the second step moves distance at most €/4 by our assumption
of success of the cluster-tester. Finally, if the true total weight of edges in Epess 1S at least 3¢ /4
then the sum of their estimated weights w(, j) is at least €/2. This implies we can perform our

test as follows. For O(1/¢) steps, do:

1. Choose an edge (7, j) with probability proportional to w(i, 7).

2. Request the label for a random = € R; and y € R;. If the two labels disagree, then reject.

If Dy is e-far from the +/-margin property, then each step has probability @W(Eyitness)/W(E) =
O(e) of choosing a witness edge, and conditioned on choosing a witness edge has probability at
least 1/2 of detecting a violation. Thus, overall, we can test using O(1/¢) labeled examples and

O(1/(v*¥€*)) unlabeled examples. O

On the necessity of slack in testing the margin assumption: Consider an instance space X =
[0, 1] and two distributions over labeled examples D; and D,. Distribution D; has probability
mass 1/2""! on positive examples at location (0,i/2") and negative examples at (/,/2") for
eachi = 1,2,...,2", for v/ = (1 — 1/2?"). Notice that D; is 1/2-far from the -margin
property because there is a matching between points in the support of D;|;—; and points in the
support of D;|;—o where the matched points have distance less than . On the other hand, for
eachi = 1,2,...,2", distribution D, has probability mass 1/2™ at either a positive point (0,7/2")
or a negative point (7,7/2"), chosen at random, but zero probability mass at the other location.

Distribution D, satisfies the v-margin property, and yet D and D, cannot be distinguished using
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a polynomial number of unlabeled examples.
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Chapter 3

Testing Piecewise Real-Valued Functions

Abstract

This chapter extends the model of the previous chapter to the setting of testing properties of real-
valued functions. Specifically, it establishes a technique for testing d-piecewise constantness of

a real-valued function.

3.1 Piecewise Constant

For this section, let NS; = NS} = [} NS}(z)dz, where NS}(z) = f;f;]l[f(a:) # f(y)]dy
Proposition 3.1. Fix 6 > 0 and let f : [0,1] — R be a d-piecewise constant function. Then

NS;(f) < (d—1)3.

Proof. For any fixed b € [0, 1], the probability that z < b < y when x ~ U(0,1) and y ~
U(x —d,z+9)is

5
Priz <b<y]= / Pr bjdt = / —dt
zy 0 y~U(b—t—5,b—t+5

Similarly, Pr, ,[y < b < z| = g. So the probability that b lies between = and y is at most g
When f is a d-piecewise constant function, f(x) # f(y) only if at least one of the boundaries

bi,...,bg—1 of the regions of f lie in between = and y. So by the union bound, Pr[f(z) #
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f(y)] < (d —1)(6/2). Note that if b is within distance ¢ of 0 or 1, the probability is only

lower. L]

Lemma 3.2. Fix § = %. Let f : [0,1] — R be any function with noise sensitivity NS;(f) <

(d—1)%(1+ ). Then f is e-close to a d-piecewise constant function.

Proof. The proof proceeds in two steps: We first show that f is §-close toa (14 (d—1)(1+5))-
piecewise constant function, and then we show that every (14 (d—1)(145))-piecewise constant
function is $-close to a d-piecewise constant function.

For eacy y € R, consider the function f{ : [0, 1] — [0, 1] defined by

1 [o+s
f@) =55 [ 10 =yl

The function f{ is the convolution of f¥ = I[f = y| and the uniform kernel ¢ : R — [0, 1]
defined by ¢(z) = 5 1[|z| < 4].

Note that for any z, there is at most one value y € R for which f{(z) > 1/2. Fix 7 =
ANSs(f). We introduce the function g* : [0, 1] — R U {*} by setting

argmax, . fi () whensup,cp ff(v) >1 -7,

g (z) =
* otherwise

for all z € [0, 1]. Finally, we define ¢ : [0, 1] — {0, 1} by setting g(z) = ¢*(z) where z < z is
the largest value for which ¢*(z) # *. (If no such z exists, we let g(z) = g*(z) for the smallest
value z > x with g*(z) # *; if that does not exist, then for completeness define g(x) = 0

everywhere, though this case will not come up).

We first claim that dist(f, g) < <. To see this, note that

£
1

dist(f,g) = Prlf(z) # g(x)]
Prig*(z) = #| + Prlx # g*(x) # f(2)]

IN

= Prfsup f{(z) <1—7]+Pr[ sup f{(z)>1—r7].
¥ yeR T yeR\{f (=)}
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Because 7 < 1/2, at most one y can have f;(x) > 1 — 7, so that both sup,g f§(z) < 1 -7
and sup,cp\ { f(2)} fi(x) > 1 — 7 imply f({(m)(s) < 1 — 7; thus, since these events are disjoint,

the above sum of probabilities is at most
Pr| g(z)(a:) <1-—r7].
Now observe that NS;(f,z) = 1 — g(w)(x) and that E,NS;(f,z) = NS;(f). From these

identities and Markov’s inequality, we have that

P/ () < 1) = Pl — {9 a) > 7] = PalNS, (1) > 7] < o) = &

We now want to show that g is m-piecewise constant, for some m < d(1+ ). Since each f
is the convolution of I[f = y| with a uniform kernel of width 24, it is Lipschitz continuous (with
Lipschitz constant 2—15). Also recall that 7 < 1/2, and at most one value y can have f}(z) > 1—7
for any given x. Thus, if we consider any two points z, z € [0, 1] with x # g*(x) # ¢*(2) # *
and z < z, it must be that |z — z| > 262(3 — 7), and that there is at least one point ¢ € (z, 2)
with sup,cp f7(t) = 1/2. Since each f{ is 55-Lipschitz, so is sup,p f7, so that we have

t+26(3—7) t+25(5—7)
/ 9 (s)ds < / sup f¢(s)ds
t

—26(L—1 t—26(L—7) yeR
2 2

25(1-7)
gz/ i Sas =0t -,
0

2 20 2 2
Therefore,
[ st = [0 {060 - ) 255 -G - )
= 252(% —T) - 25(% - T)(g —7)= 25(% - T)(% +7)) = 25(% — 7).

Since any z with ¢*(z) # * has g(x) = g*(x), and since ¢ is defined to be continuous from
the right on [0, 1], for every transition point x > 0 for g (i.e., a point = for which there exist

arbitrarily close points z having g(z) # g(x)), there is a point z < z such that every t € (z,x)
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has g(t) = g*(z) # g*(z) = g(z); combined with the above, we have that [ NS;(f, s)ds >

26(1 — 72). Altogether, if g has m such transition points, then

NS;(f) = /0 NS, (f, 5)ds > m25(%1 -y

By assumption, NS;(f) < (d — 1)2(1 + £). Therefore, we must have

e (d—1)0(1+%)
- 45(}l —72)

1+ ¢ €
mg(d—l)(l—k?.

In particular, this means g is (m + 1)-piecewise constant, for anm < (d — 1)(1 + 5).
Finally, we want to show that any (m+1)-piecewise constant function, for m < (d—1)(1+5),
is 5-close to a d-piecewise constant function. Let ¢y,. ..,/ represent the lengths of the m

regions in g. Clearly, ¢; + - - - + £,,41 = 1, so there must be a set S of (m +1) —d < (d — 1)¢/2

regions in g with total length

(m+1)—d (d—1)e/2 €
D bi< (m+1) = 1+ (d-1)(1+ %) <3

i€S
Consider the function A : [0,1] — {0, 1} obtained by removing the regions in S from g (i.e.,
for each z in a region indexed by i € S, setting h(z) = h(z) for z a point in the nearest region

to x that is not indexed by some j € S). The function h is then d-piecewise constant, and

dist(g, h) < 5. This completes the proof, since dist(f, h) < dist(f,g) + dist(g,h) < e. O

With these results, applying the same technique as used in the unions of intervals method in

the previous chapter yields a tester for d-piecewise constant functions.
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Chapter 4

Learnability of DNF with

Representation-Specific Queries

Abstract

"We study the problem of PAC learning the space of DNF functions with a type of query specific
to the representation of the target DNF. Specifically, given a pair of positive examples from a
polynomial-sized sample, our query asks whether the two examples satisfy a term in common in
the target DNF. We show that a number of interesting special types of DNF targets are efficiently
properly learnable with this type of query, though the general problem of learning an arbitrary
DNF target under an arbitrary distribution is no easier than in the traditional PAC model. Specif-
ically, we find that 2-term DNF are efficiently properly learnable under arbitrary distributions, as
are disjoint DNF. We further study the special case of learning under the uniform distribution,
and find that several other general families of DNF functions are efficiently properly learnable
with these queries, including functions with O(log(n)) relevant variables, and monotone DNF
functions for which each variable appears in at most O(log(n)) terms.

We also study a variety of generalizations of this type of query. For instance, consider in-

Joint work with Avrim Blum and Jaime Carbonell.
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stead the ability to ask how many terms a pair of examples satisfy in common, where the exam-
ples are again taken from a polynomial-sized sample. In this case, we can efficiently properly
learn several more general classes of DNF, including DNF having O(log(n)) terms, DNF having
O(log(n)) relevant variables, DNF for which each example can satisfy at most O(1) terms, all
under arbitrary distributions. Other possible generalizations of the query include allowing the
algorithm to ask the query for an arbitrary number of examples from the sample at once (rather
than just two), or allowing the algorithm to ask the query for examples of its own construction;
we show that both of these generalizations allow for efficient proper learnability of arbitrary DNF

functions under arbitrary distributions.

4.1 Introduction

Consider a bank aiming to use machine learning to identify instances of financial fraud. To
do so, the bank would have experts label past transactions as fraudulent or not, and then run a
learning algorithm on the resulting labeled data. However, this learning problem might be quite
difficult because of the existence of multiple intrinsic types of fraud, with each positive example
perhaps involving multiple types. That is, the target might be a DNF formula, a class for which
no efficient algorithms are known.

Yet in such a case, perhaps the experts performing the labeling could be called on to provide a
bit more information. In particular, suppose that given two positive examples of fraud, the experts
could indicate whether or not the two examples are similar in the sense of having at least one
intrinsic type of fraud (at least one term) in common. Or perhaps the experts could indicate how
similar the examples are (how many terms in common they satisfy). This is certainly substantially
more information. Can it be used to learn DNF formulas and their natural subclasses efficiently?

In our work, we study the problem of learning DNF formulas and other function classes
using such pairwise, representation-dependent queries. Specifically, we consider queries of the

form, “Do these two positive examples satisfy at least one term in common in the target DNF
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formula?” (we call these boolean similarity queries) and “How many terms in common do these

two positive examples satisfy?” (we call these numerical similarity queries).

4.1.1 Our Results

We begin with a somewhat surprising negative result, that learning general DNF formulas under
arbitrary distributions from boolean similarity queries is as hard as PAC-learning DNF formulas
without them. This result uses the equivalence between group learning, weak learning, and
strong learning. In contrast, learning disjoint DNF (a class that contains decision trees) with
such queries is quite easy. We in addition show that it helps in a number of other important
cases, including properly learning “parsimonious” DNF formulas (formulas for which no term
can be deleted without appreciably changing the function) as well as any 2-term DNF, a class
known to be NP-Hard to properly learn from labeled data alone.

Under the uniform distribution, we can properly learn any DNF formula for which each vari-
able appears in O(log(n)) terms, as well as any DNF formula with O(log(n)) relevant variables.

If we are allowed to ask numerical similarity queries, then we show we can properly learn
any DNF formula having O(log(n)) terms, under arbitrary distributions, or any DNF formula
having O(log(n)) relevant variables, again under arbitrary distributions. If we are allowed to ask
“Do these k examples satisfy any term in common?” for arbitrary (poly-sized) &k, we can even
properly learn arbitrary DNF formulas under arbitrary distributions.

This topic of learning with representation-specific queries is interesting, even beyond the

DNF case, and we have explored a variety of other learning problems of this type as well.

4.2 Learning DNF with General Queries: Hardness Results

Theorem 4.1. Learning DNF from random data under arbitrary distributions with boolean sim-

ilarity queries is as hard as learning DNF from random data under arbitrary distributions with
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only the labels (no queries).

Proof. [Kearns, 1989] and [Kearns, Li, and Valiant, 1994] proved that “group learning” is equiv-
alent to “weak learning”.

In group learning, at each round we are given poly(n) examples that are either all iid from
D+ or all iid from D— (i.e. all positive or all negative) and our goal is to figure out which
case it is. Later, of course, Schapire [Schapire, 1990] proved that weak-learning is equivalent to
strong-learning. So, if DNF is hard to PAC-learn, then DNF is also hard to group-learn.

Now, consider the following reduction from group-learning DNF in the standard model to
learning DNF in the extended queries model. In particular, given an algorithm A for learning
from a polynomial number of examples in the extended queries model, we show how to use A to
group-learn as follows:

Given a set S of m = poly(n) examples x1, xo, ..., ,, (We will use m = tn where t is the
number of terms in the target), construct a new example by just concatenating them together. So
overall we now have nim variables. We present this concatenated example to A with label equal
to the label of S. If A makes a similarity query between two positive examples (1, 2, .oy Ty

and [x], 2}, ..., 2 |, we simply output yes (i.e., that they do indeed share a term in common).

We now argue that with high probability, the labels and our responses to A are all fully
consistent with some DNF formula of size mt. In particular, we claim they will be consistent
with a target function that is just the AND of m copies of the original target function.

First of all, note that the AND of m copies of the original target function will produce the
correct labels since by assumption either all z; € S are positive or all x; € S are negative.
Next, we claim that whp, any two of these concatenated positive examples will share a term
in common. Specifically, if the original DNF formula has ¢ terms, then for two random positive
examples from D there is probability at least 1 /¢ that they share a common term. So, the chance

of failure for two concatenated examples is at most (1 — 1/¢)™. (Because the only way that two

of these big concatenated examples [z, za, ..., T,] and |27, 25, ..., 2/, | can fail to share a term in
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common is if x; and ) fail, 25 and 2, fail, etc.). Setting m = tn, the probability of failure for
any given query is at most 1/e". Applying the union bound over all polynomially-many pairs of
positive examples in A’s sample yields that with high probability all our responses are consistent.
Therefore, by assumption, A will produce a low-error hypothesis under the distribution over

concatenated examples, which yields a low-error hypothesis for the group-learning problem. [

We can extend the above result to “approximate numerical” queries that give the correct
answer up to 1 &+ 7 for some constant 7 > 0 (or even 7 > 1/poly(n)).
Theorem 4.2. Learning DNF from random data under arbitrary distributions with approximate-
numerical-valued queries is as hard as learning DNF from random data under arbitrary distri-

butions with only the labels (no queries).

Proof. Assume we have an algorithm A that learns to error €/2 given a similarity oracle that tells
us how many terms two examples have in common, up to a multiplicative factor 7. Specifically, if
C'is the number of terms in common, the oracle returns a value in the range [(1—7)C, (14 7)C].

Now we do the reduction from group learning as before, forming higher-dimensional ex-
amples by concatenating groups x1,--- ,Z,,, all of the same class, but this time with m =
2n(t*)(1 4+ 7/2)?/72. Suppose, for now, that we know for the original DNF formula, the ex-
pected number of terms « that two that two random positive examples would have in common
(we discharge this assumption later). In that case, when queried by A for the similarity between
two positive examples x, z', we simply answer with the closest integer to am. As before, we
argue that with high probability, our answers are consistent with a DNF formula g consisting of
just m shifted copies of the original DNF.

Note that for a random pair of the concatenatedl examples composed of positive sub-examples,
the expected number of terms in common in g is ma. Furthermore, the number of terms in com-
mon is a sum of m independent samples of the original random variable (the one with mean «),
each of which is bounded in the range [0, ¢]. So Hoeffding’s inequality implies that with probabil-

ity 1 — 2e~2m*e?(7/2?/(m(#)(14+7/2)%) — 1 — 9¢~" (since a > 1/t), the number C' of terms in com-
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mon satisfies |C' —ma| < ma(7/2)/(1+7/2), which implies (1 —7/2)C < ma < (147/2)C.

Thus, for a poly(n)-sized sample of data points, with high probability, all of the pairs of
positive concatenated examples have the nearest integer to ma within these factors of their true
number of terms in common. It therefore suffices to respond to .A’s similarity queries with the
nearest integer to ma.

Now the only trouble is that we do not know . So we just try all positive integers ¢ from
1 to mt and then use a validation set to select among the hypotheses produced. That is, we
run A on the constructed data set and respond to all similarity queries with a single value 4,
getting back a classifier for these concatenated examples, and then repeat for each i. Then we
take O((1/e€)log(mt/d)) additional higher-dimensional samples (with labels) and choose the
classifier among these mt returned classifiers, having the smallest number of mistakes there-on.
At least one of these mt values of i is the closest integer to ma, so at least one of these mt
classifiers is €/2-good, and our validation set will identify one whose error is at most €. So we
can use this classifier to identify whether a random m-sized group of examples is composed of
all positives or all negatives, with error rate epsilon: i.e., we can do group learning.

If the algorithm A only has a “high probability” guarantee on success, we can repeat this sev-
eral times with independent data sets, to boost the confidence that there will be a good classifier
among those we choose from at the end, and slightly increase the size of the validation set to

compensate for this larger number of classifiers. U

4.3 Learning DNF with General Queries : Positive

4.3.1 Methods
The Neighborhood Method

We refer to the following simple procedure as the “neighborhood method”. Take m = poly(n, 1/¢,log(1/6))

samples. First, among the positive examples, query all pairs (with the binary-valued query) to
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construct a graph, in which examples are adjacent if they satisfy a term in common. For each
positive example, construct a minimal conjunction consistent with that example and all of its
neighbors (i.e., the consistent conjunction having largest number of literals in it). Next, discard
any of these conjunctions that make mistakes on any negative examples. Then sequentially re-
move any conjunction c¢; such that some other remaining conjunction ¢, subsumes it (contains a
subset of the variables). Form a DNF from the remaining conjunctions. Produce this resultant

DNF as the output hypothesis.

Lemma 4.3. Suppose the target DNF has t = poly(n) terms. For an appropriate (t-dependent)
polynomial sample size m, the neighborhood method will, with probability at least 1 — delta,
produce an e-accurate DNF if, for each term T} in the target DNF having a probability of satis-
faction at least €/2t, there is at least a p = 1/poly(n, 1/€) probability that a random example

satisfies term T; and no other term (we call such an example a “nice seed” for T;).

Proof. Under these conditions, m = O((1/p)log(t/d) + (t/€)log(1/ed)) samples suffice to
guarantee each 7; with probability of satisfaction at least €/2¢ has at least one nice seed, with
probability at least 1 — /2.

In the second phase, we remove any conjunction inconsistent with the negative examples. The
conjunctions guarnateed by the above argument survive this pruning due to their minimality, and
the fact that they are learned from a set of examples that actually are consistent with some term
in the target DNF (due to the nice seed). The final pruning step, which removes any redundancies
in the set of conjunctions, leaves at most ¢ conjunctions.

The terms that do not have nice seeds compose at most €/2 total probability mass, and m is
large enough so that with probability at least 1 — ¢ /4, at most an e/4-fraction of the data satisfy
these terms. Thus, since the result of the neighborhood method is a DNF formula with at most
t terms, which correctly labels a 1 — €/2 fraction of the m examples, the standard PAC bounds
imply that with probability at least 1 — §/4, the resulting DNF has error rate at most €. A union

bound over the above events implies this holds with probability at least 1 — 0. ]
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The Common Profile Approach

In the case of numerical queries, we have some additional flexibility in designing a method. In

this context, we refer to the following procedure as the “common profiles approach”.

Consider a sample of m = poly(n, 1/¢,log(1/§)) random labeled examples, and for each
pair of positive examples z, y, we request the number K (x,y) of terms they satisfy in common;
we additionally request K (z, x) for each positive example x. For each positive example z, we
identify the set S of examples y such that the numerical value of K (z,y) is equal K (x,z). So
these points satisfy at least all the terms z satisfies. For each such set S, we learn a minimal
conjunction consistent with these examples. Then for each of these conjunctions, if it is a spe-
cialization of some other one of the conjunctions, we discard it. Then we form our hypothesis

DNF with the remaining conjunctions as the terms.

For any example z, relative to a particular target DNF, we refer to the “profile” of x as the set

of terms T in the target DNF satisfied by .

Lemma 4.4. If the target DNF has at most p = poly(n) possibel profiles, then the common
profile approach, with an appropriate (p-dependent) sample size m, will with probability at least

1 — 0, produce a DNF having error rate at most €.

Proof. Note that this procedure produces a DNF that correctly labels the entire data set, since
K(z,y) = K(z,z) implies x and y have the same profiles, so that in particular the set S has some
term in common to all the examples. If there are only a poly(n) number of possible profiles,
then the above will only produce at most as many distinct terms in its hypothesis DNF, so that a
sufficiently large poly(n)-sized data set will be sufficient to guarantee good generalization error.
Specifically, m = O((pn/e)log(1/ed)) examples are enough to guarantee with probability at
least 1 — 0, any DNF consistent with the data having at most p terms will have error rate at most

€, so this is sufficient for the common profile approach. [
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4.3.2 Positive Results

Theorem 4.5. With numerical-valued queries, we can properly learn any DNF having O(log(n))

relevant variables, under arbitrary distributions.

Proof. These targets have poly(n) possible profiles, so the common profiles approach will be

successful. OJ

Theorem 4.6. If the target DNF has only O(log(n)) terms, then we can efficiently properly learn

Jfrom random data under any distribution using numerical-valued queries.

Proof. There are only poly(n) number of possible profiles, so the “common profiles” approach

will work. n

The above result is interesting particularly because proper learning (even for 2-term DNF) is
known to be hard from labeled data alone.
Theorem 4.7. If the target DNF has t = poly(n) terms, and is such that any example can satisfy
at most O(1) terms, then we can efficiently properly learn from random data using numerical-

valued queries.

Proof. There are at most poly(¢) = poly(n) possible profiles, so the “common profiles” ap-

proach will work. ]

Corollary 4.8. We can properly learn any k-term DNF with numerical-valued queries, where k

is constant.
Proof. This follows from either Theorem 4.6 or Theorem 4.7. 0

Corollary 4.9. If the DNF is such that any example can satisfy at most 1 term (a so-called
“disjoint” DNF), then we can efficiently properly learn from random data using binary-valued
queries.

Proof. A numerical query whose value can be at most 1 is just a binary query anyway. O]
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In particular, Decision Trees can be thought of as a DNF where each example satisfies at
most 1 term.
Lemma 4.10. If it happens that the target DNF is parsimonious (no redundant terms) for some
random Q((tn/e)log(1/e) + (1/€)log(1/d))-sized data set (for any distribution), then we can

efficiently produce a DNF consistent with it having at most t terms using binary-valued queries.

Proof. (Sketch) Parsimonious, in this case, means that we cannot remove any terms without
changing some labels. But this means that every term has some example that satisfies only that
term (i.e., a nice seed). So as described in the proof of Lemma 4.3 above, the “neighborhood
method,” produces a DNF with terms for the neighborhoods of each of these nice seeds, which

in the parsimonious case, covers all of the positive examples. ]
Theorem 4.11. We can properly learn 2-term DNF with binary queries.

Proof. Take O((n/e€)log(1/€) 4+ (1/€)log(1/6)) random labeled examples and make the binary
query for all pairs of positive examples. First, find a minimal conjunction consistent with all
of the positive examples; if this conjunction does not misclassify any negative examples, return
it. By classic PAC bounds, a conjunction consistent with this many random labeled examples
will, with probabiliy at least 1 — J, have error rate at most €. Otherwise, if this conjunction
misclassifies some negatives, then we are assured the target DNF is parsimonious for this data
set, and thus Lemma 4.10 guarantees we can efficiently identify a 2-term DNF consistent with it
using the binary-valued queries. Again, the classic PAC bounds imply the sample size is large
enough to, with probability at least 1 — 9, guarantee that any consistent 2-term DNF has error

rate at most e. ]

Theorem 4.11 gives a concrete result where using this type of query overturns a known hard-
ness result for supervised learning.
Open problem Can this idea be extended to learning 3-term DNF or higher, still using only

the binary-valued queries? Or is there a hardness result for properly learning 3-term DNF with
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these binary-valued pairwise queries?

4.4 Learning DNF under the Uniform Distribution

In this section, we investigate the problem of learning DNF under a uniform distribution on
{0, 1}", using the binary-valued queries.

Definition 4.12. Fix a constant ¢ € (0,00). We say a term t in the target DNF is “relatively
distinct” if it contains a variable v which occurs in at most clog(n) other terms. We say v is a
witness to t being relatively distinct.

Definition 4.13. For a term t in the target DNF, and a variable v in t, we say v is “sometimes
nonredundant” for t if, given a random example that satisfies t, there is at least an € probability
that every term in the target DNF that the example satisfies also contains v.

Theorem 4.14. Suppose no term in the target DNF is logically entailed from any other term
in the target DNF, every term t is relatively distinct, and that some variable v that is a witness
to t being relatively distinct is sometimes nonredundant for t. Then we can properly learn any

monotone DNF of this type under a uniform distribution on {0, 1}" with binary pairwise queries.

Proof. By Lemma 4.3, it suffices to show that every term having at least €/(27") probability of
being satisfied will, with high probability, have some example satisfying only that term, given a
polynomial-sized data set.

Consider a given term ¢ in the target DNF, and choose the v that witnesses relative distinctness
which is sometimes nonredundant. Note that every other term in the target DNF contains some
variable not present in ¢, and in particular this is true for the (at most) clog(n) terms containing
v. So under the conditional distribution given that ¢ is satisfied and that v is nonredundant, with
probability at least 27¢1°6(") = 5,=¢_ none of these other terms containing v are satisfied, so that ¢
is the only term satisfied. Thus, since ¢ has probability at least ¢ /(27") of being satisfied, and v has

probability at least € of being nonredundant given that ¢ is satisfied, we have that with probability
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at least (¢2/T)n~¢, a random example satisfies ¢ and no other terms in the target DNF.
Since this is the case for all terms in the target, a sample of size O((T'/¢*)n®log(T/§)) guar-

antees every term has some example satisfying only that term, with probability at least 1 —¢. [

We can also consider the class of DNF function having only a small number of relevant
variables. In this context, it is interesting to observe that if the i*™® variable is irrelevant, then
P(K(z,y) = land z; # y;) = P(K(z,y) = 1and x; = y;), where = and y are independent
uniformly-distributed samples, and K (z,y) = 1 iff x and y are positive examples that satisfy at
least one term in common. However, as the following lemma shows, this is not true for relevant
variables.

Lemma 4.15. For x and y independent uniformly-distributed samples, if the target function has

r relevant variables, and the i'" variable is relevant in the target function, then P(K (z,y) =

land x; = y;) — P(K(z,y) = land x; # y;) > (1/4)".

Proof. For each pair (z,y) with z; # y;, there is a unique corresponding pair (', y) with 2, = x;
for j # i, and x; = y;. Let M, be the number of z, y pairs with z; # y; and K (x,y) = 1. Then
note that for every x,y pair with x; # y; and K(z,y) = 1, we also have K (2’,y) = 1, since
whatever term x and y satisfy in common cannot contain variable ¢ anyway, so flipping that
feature in x does not change whether = and y share a term or not. In particular, this implies
the number of z,y pairs with z; = y; and K(z,y) = 1 is at least M;. However, we can also
argue it is strictly larger, as follows. By definition of “relevant”, each of the 2" settings of the
relevant variables corresponds to an equivalence class of feature vectors, all of which have the
same label, and if that label is positive, then all of which have the same profile. Since variable ¢
is relevant, at least one of the 2" settings of the relevant variables yields an equivalence class of
positive examples whose profile contains only terms with variable 7 in them (these are positive
examples such that flipping variable : makes them negative). The probability that both x and y
(chosen at random) are in this equivalence class is (1/4)". Note that for the (x,y) pairs of this

type, we have K (x,y) = 1; however, if we flip feature x;, then = would become negative, and

69



hence K (z,y) would no longer be 1; this means this (z, y) pair is not included among those M
pairs constructed above by flipping z; starting from some (z,y) with z; # y; and K (z,y) = 1.
So P(K(z,y) =1and z; = y;) — P(K(z,y) = 1 and z; # y;) = (M; /4" + (1/4)") — M; /4" =
(1/4)". O

Theorem 4.16. Under the uniform distribution, with binary pairwise queries, we can properly

learn any DNF having O(log(n)) relevant variables.

Proof. We can use the property in Lemma 4.15 to design an algorithm as follows. For each 1,
sample (8" log(n/d)) random pairs (x,y), and evaluate K (z,y) for each pair. Then calculate
the difference of empirical probabilities (fraction of pairs (x,y) for which K(z,y) = 1 and
x; = y; minus fraction of pairs (x,y) for which K(x,y) = 1 and z; # y;). If this difference
is > (1/2)(1/4)", decide variable i is relevant, and otherwise decide variable 7 is irrelevant.
By Hoeffding and union bounds, with probability 1 — ¢/2, this will find exactly the r relevant
variables. Now enumerate all 2" = poly(n) possible conjunctions that can be formed from
using all of these r relevant variables. Considering this as a 2"-dimensional feature space, take
Q((2"/e)log(1/6)) random labeled data points and learn a disjunction over this 2"-dimensional
feature space; since the VC dimension of this set of disjunctions is 2", the usual PAC analysis
implies this will learn an e-good disjunction with probability 1 — §/2. A union bound implies

both stages (finding variables and learning the disjunction) will succeed with probability at least

1—94. []

An alternative approach to the second stage in the proof would be to take (2" log(2"/9))
random samples, so that with probability at least 1—¢§ /2, we have at least one data point satisfying
each of the 2" possible conjunctions on the relevant variables; then for each of the conjunctions,
we check the label of the example that satisfies it, and if that label is positive, we include that
conjunction as a term in our DNF, and otherwise we do not include it. This has the property that,

altogether, with probability 1 — d, we construct a DNF that has error rate zero.
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Another family of DNF studied in the literature are those with a sublinear number of terms.
Specifically, [Servedio, 2004] proved that the class of 2°(V1°2™)_term monotone DNF are learn-
able under the uniform distribution from labeled data alone. As the following theorem states,
we can extend this result to include general 2°(v%°9")_term DNF (including non-monotone) given

access to our binary pairwise queries.

Theorem 4.17. Under the uniform distribution, with binary pairwise queries, we can learn any

20(VIogn)_torm DNF (supposing € to be a constant).

First, we review some known results from [Servedio, 2004]. For any function ¢ : {0,1}" —
{—=1,+1}, define the g;; and g;c functions by the property that any = with z; = 1 has g;1(x) =
g(z), and g;o(x) = g(y), where y; = x; for j # i and y; = 0. Then define the influence
function I;(g) = P(gio(x) # ¢i1(x)). [Servedio, 2004] developed a procedure, FindVariable,
which uses a poly(n, 1/v,log(1/n)) number of random labeled samples, labeled according to
any monotone DNF ¢ having at most ¢ terms, and with probability 1 — 7, returns a set S of

variables (indices in {1,...,n}) such that every i ¢ S has [;(g) < = and every i € S has

I;(g) > 7/2 and the i*" variable is contained in some term in g with at most log 32% variables in
it.

Furthermore, [Servedio, 2004] showed that, for any ¢-term DNF f, if we are provided with
aset Sy C {1,...,n} such that every i ¢ Sy has [;(f) < €/4n, then we can learn f in time
polynomial in n, |S;|00°8 <18 <) and log(1/8). In particular, for |Sf| = O(tlog ™) and t =
20(V1ogn) this is polynomial in n (though not necessarily in €). Given the set .S 7, the learning

procedure simply estimates the Fourier coefficients for small subsets of S.

Proof of Theorem 4.17. To prove Theorem 4.17, we consider the following procedure. First

sample m labeled examples :L‘(l), o ,x(m) at random. Then, for each 7 < m, define K J() =

K(:I:(j), -). Now note that, if we define v;(y) = (©;1(y),-..,ein(y)) by w;ily) = 21y, =

a:z(j)] — 1, then we can represent K;(-) = (K (;(-)) +1)/2, where K7, is a monotone DNF (map-

ping into {—1, +1}); specifically, the terms in K correspond to the terms in the target satisfied
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by 1), except none of the literals are negated. We then run FindVariable for each of these K,
with 7 = ¢/m and n = §/2m. Let Sy denote the union (over j < m) of the returned sets of vari-
ables. It remains only to show this Sy satisfies the requirements for the procedure of [Servedio,
2004], including the size requirement.

Taking m = Q(< log £), with probability at least 1 — ¢/4, every term in the target having
probability at least ¢/2ct will have at least one of the m examples satisfying it. Suppose this

event happens. In particular, this means error(max; K;) < €/2c. Note that

Li(f) = P(fio(x) # fia(2)) < 2P(max Kj(x) # f(z)) + P((max K)io(x) # (max K)i, ()

<e€fc+ ZP((KJ/)zo(l’) # (K)ia(z)) =¢/c+ Z[j(KJI')-

J

Thus, by a union bound, with probability 1 — ¢/2, any variable ¢ ¢ S has I;(f) < €/c + m~,

and any variable i € Sy appears in a term in some K of size at most log 32%, and therefore
also appear in a corresponding term of this size in f. Suppose this happens. Letting ¢ = 8n and
v = €/8nm, we have that any i ¢ Sy has [;(f) < e¢/4n, while any i € Sy appears in a term of
size at most log m = O(log M). In particular, this implies |Sy| = O(t log M),
and S satisfies the requirements of the method of [Servedio, 2004].

Thus, running the procedure from [Servedio, 2004] with confidence parameter /4, a union
bound implies the total probability of successfully producing an e-good classifier is at least 1 — 9.
The above process of constructing S is clearly polynomial-time. Then, if ¢ = 20(VIogn) ' the
procedure of [Servedio, 2004] runs in time polynomial in n, log(1/4), and |S|O(ce(t/e)los(l/€)

which is polynomial in n and log(1/¢) (though not necessarily in €). [

4.5 More Powerful Queries

Theorem 4.18. If we can construct our own feature vectors in addition to getting random data,

then under any distribution we can efficiently properly learn DNF using binary-valued queries.
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Proof. Suppose we can adaptively construct our own examples. Suppose the target DNF has
T = poly(n) terms. Oracle(x, ') gives the number of terms that = and 2’ have in common. For

any z, let x_; be x but with the ith bit flipped. Let z be the negative of z.

Below is an algorithm. Move(z, ©') moves =’ away from x by one bit, while trying to main-

tain at least one common term. LearnTerm(z) returns a term in the target function.

0. Move(z, ')

. 2/« =

2. Fori=12,... ,nstz =2

3. If (Oracle(z, z") < Oracle(zx, 2’ ,))
4. R

5. Return z”

0. LearnTerm(x)

1. Replicate x to get 2’

2. While (Oracle(z, Move(z, 2')) | = )

3. x' < Move(z, x')

4. Let] <« {i:Oracle(z,2" ;) =0}

5.  Return z; (i.e. a conjunction with the literals indexed by I, either positive or negative so

that x satisfies it)

0. LearnDNF
1. Initialize all-negative DNF /

2. Take M = poly(n) > nT random examples S
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3. Foreachz € S

4. If Oracle(x,x) > 0 (positive example) and ﬁ(x) = negative
5. Add term LearnTerm(x) to h
6. Return h (a DNF with at most 7" terms, consistent with all M examples)

When we reach z’ such that we can’t flip any more bits (not already flipped) without making
it so they don’t satisfy any terms in common anymore, then the bits these two have in common
must form a term in the target DNF, so LearnTerm(z) should still find a term in the target DNF.

]

If we can ask about k-tuples of examples (do they all jointly satisfy a term in common?), we
have the following result:
Theorem 4.19. If we can use query sets of arbitrary sizes (instead of just 2 points), then under
any distribution we can efficiently properly learn DNF using binary-valued queries from random

data.

Proof. We take any set of examples and ask the oracle the number of terms all examples in the
set have in common. Let S be the query set. The idea is to greedily add the examples to S while
keeping some terms in common.

Algorithm:

0. Input : dataset D

1. Initialize S to be an empty set

2. Do{

3. Do{

4 Tmax < 0

5. For each example x in the dataset D
6 add z to the set S
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7. query the combined set S, and let r = Oracle(S), roax < max{rmax, 7'}

8. If r = 0, remove x from .S, and otherwise leave it in S and remove x from D
9. } Until(r,,,4, = 0)

10. Learn a “most-specific” conjunction from .S and add that term to the hypothesis DNF
11. Reset S to empty set

12. }Until (|D| = 0)

Each time we add a term to the DNF, the examples in S satisfy some term in the target DNF,
because we only add each example if by adding it .S still has at least one term in common. So the
“most-specific” conjunction consistent with S (i.e., the one with most literals in it, still labeling
all of S positive) will not misclassify any negative point as positive. Since whenever we add a
new term, there were no additional examples in D that could have satisfied a term in common
with the examples in .S, after adding the term we have removed from D all examples that satisfy
the term S has in common. Therefore, the number of terms in our learnt DNF is at most the
number of terms 7" in the true DNF. If the total number of examples is > nl" (and say 7' is
poly(n)), it will get us a DNF that has at most T terms and correctly labels a poly(n) > nT
sized dataset. Since the training dataset size is much larger than the size of the classifier, by the

Occam bound, the learnt DNF will have small generalization error.

4.6 Learning DNF with General Queries: Open Questions

¢ s it possible to efficiently learn an arbitrary DNF from random data under arbitrary distri-

butions with numerical-valued queries?

e Is it possible to efficiently learn a DNF with O(1) terms from random data under arbitrary

distributions with binary-valued queries?
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¢ Is it possible to efficiently learn a monotone DNF from random data under a uniform

distribution with numerical-valued queries? If so, what about binary-valued queries?

4.7 Generalizations

4.7.1 Learning Unions of Halfspaces

Several of the above results generalize nicely to the more general problem of learning unions of
halfspaces. Specifically, the queries are of the type “do these two examples satisfy a halfspace in
common?” or “how many halfspaces do these two examples satisfy in common?” The general-
ized forms of Theorem 4.19 and Lemma 4.10 follow by the exact same arguments. In each case,
the algorithm finds sets of examples that satisfy some halfspace, such that none of the remaining
examples satisfy that halfspace, so for each such set we simply find a linear separator to separate
those examples from the rest, and take their union to form our final classifier. A sufficiently
large (poly(n,1/¢)-sized) set suffices to guarantee this works. It is not so clear how to generalize
Theorem 4.7, since it is not clear how to use the sets of examples with the common profiles to
learn the halfspaces. The generalized version of Theorem 4.6 actually follows from the result
below on learning Voronoi diagrams. The generalized version of Theorem 4.18 is simple, since

it is even known that labeled data plus membership queries are sufficient.

4.7.2 Learning Voronoi with General Queries

Consider the space of Voronoi diagrams (vector quantizers); specifically, the target function is
constant within each cell of the Voronoi diagram, and there are poly(n) such cells for a given
target function. We define a “same cell” query as asking, for a pair of examples = and y, whether
2 and y occur in the same cell of the target function. With this type of query, we can efficiently
properly learn Voronoi partitions from random data, under arbitrary distributions. To prove this,

we simply group the examples in a sufficiently large sample into equivalence classes based on
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these same-cell queries. For each pair of such equivalence classes, we find a linear separator that
separates them. For each test point, we evaluate these linear separators, which thereby associates
the test point with one of the equivalence classes from the training data, and we predict as a label
for that point the label associated with that equivalence class. If we have a sufficiently large
training set, then there is only a small probability the test point gets placed into a different set of

points from those in its own cell.
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Chapter 5

Bayesian Active Learning with Arbitrary

Binary Valued Queries

Abstract

"We investigate the minimum expected number of bits sufficient to encode a random variable X
while still being able to recover an approximation of X with expected distance from X at most
D: that is, the optimal rate at distortion D, in a one-shot coding setting. We find this quantity is

related to the entropy of a Voronoi partition of the values of X based on a maximal D-packing.

5.1 Introduction

In this work, we study the fundamental complexity of lossy coding. We are particularly interested
in identifying a key quantity that characterizes the expected number of bits (called the rate)
required to encode a random variable so that we may recover an approximation within expected
distance D (called the distortion). This topic is a generalization of the well-known analysis of

exact coding by Shannon [Shannon, 1948], where it is known that the optimal expected number

1Joint work with Jaime Carbonell and Steve Hanneke.
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of bits is precisely characterized by the entropy. There are many problems in which exact coding
is not practical or not possible, so that lossy coding becomes necessary: particularly for random
variables taking values in uncountably infinite spaces. The topic of code lengths for lossy coding
is interesting, both for its direct applications to compression, and also as a general setting in

which to derive lower bounds for specializations of the setting.

There is much existing work on lossy binary codes. In the present work, we are interested
in a “one-shot” analysis of lossy coding [Kieffer, 1993], in which we wish to encode a single
random variable, in contrast to the analysis of “asymptotic” source coding [Cover and Thomas,
2006], in which one wishes to simultaneously encode a sequence of random variables. Of par-
ticular relevance to the one-shot coding problem is the analysis of quantization methods that
balance distortion with entropy [Gersho, 1979, Kieffer, 1993, Zador, 1982]. In particular, it is
now well-known that this approach can yield codes that respect a distortion contraint while nearly
minimizing the rate, so that there are near-optimal codes of this type [Kieffer, 1993]. Thus, we
have an alternative way to think of the optimal rate, in terms of the rate of the best distortion-
constrained quantization method. While this is interesting, in that it allows us to restrict our focus
in the design of effective coding techniques, it is not as directly helpful if we wish to understand
the behavior of the optimal rate itself. That is, since we do not have an explicit description of the
optimal quantizer, it may often be difficult to study the behavior of its rate under various interest-
ing conditions. There exist classic results lower bounding the achievable rates, most notably the
famous Shannon lower bound [Shannon, 1959], which under certain restrictions on the source
and the distortion metric, is known to be fairly tight in the asymptotic analysis of source coding
[Linder and Zamir, 1994]. However, there are few general results explicitly and tightly charac-
terizing the (non-asymptotic) optimal rates for one-shot coding. In particular, to our knowledge,
only a few special-case calculations of the exact value of this optimal rate have been explicitly
carried out, such as vectors of independent Bernoulli or Gaussian random variables [Cover and

Thomas, 2006].
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Below, we discuss a particular distortion-constrained quantizer, based on a Voronoi partition
induced by a maximal packing. We are interested in the entropy of this quantizer, as a quantity
used to characterize the optimal rate for codes of a given distortion. While it is clear that this
entropy upper bounds the optimal rate, as this is the case for any distortion-constrained quantizer
[Kieffer, 1993], the novelty of our analysis lies in noting the remarkable fact that the entropy
of any quantizer constructed in this way also lower bounds the optimal rate. In particular, this
provides a method for approximately calculating the optimal rate without the need to optimize
over all possible quantizers. Our result is general, in that it applies to an arbitrary distribution
and an arbitrary distortion measure from a general class of finite-dimensional pseudo-metrics.
This generality is noteworthy, as it leads to interesting applications in statistical learning theory,

which we describe below.

Our analysis is closely related to various notions that arise in the study of e-entropy [Posner
and Rodemich, 1971, Posner, Rodemich, and Rumsey, Jr., 1967], in that we are concerned with
the entropy of a Voronoi partition induced by an e-cover. The notion of e-entropy has been
related to the optimal rates for a given distortion (under a slightly different model than studied
here) [Posner and Rodemich, 1971, Posner, Rodemich, and Rumsey, Jr., 1967]. However, there
are some important distinctions, perhaps the most significant of which is that calculating the
e-entropy requires a prohibitive optimization of the entropy over all e-covers; in contrast, the
entropy term in our analysis can be calculated based on any maximal e-packing (which is a
particular type of e-cover). Maximal e-packings are easy to construct by greedily adding arbitrary
new elements to the packing that are e-far from all elements already added; thus, there is always

a straightforward algorithmic approach to applying our results.
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5.2 Definitions

We suppose X'* is an arbitrary (nonempty) set, equipped with a separable pseudo-metric p :
X*xX* — [0,00). 2 We suppose X'* is accompanied by its Borel o-algebra induced by p. There
is additionally a (nonempty, measurable) set X C X*, and we denote by p = sup p(hy, hs).
Finally, there is a probability measure 7w with 7(&X’) = 1, and an X'-valued rarill(li’gilff/ariable X
with distribution 7, referred to here as the “target.” As the distribution is essentially arbitrary, the
results below will hold for any 7.

A code is a pair of (measurable) functions (¢, ¢)). The encoder, ¢, maps any element x € X
to a binary sequence ¢(z) € |J,2,{0,1}7 (the codeword). The decoder, 1), maps any element
¢ € J,2010,1}7 to an element ¢(c) € X*. Forany ¢ € {0,1,...} and ¢ € {0, 1} let |c] = ¢
denote the length of c. A prefix-free code is any code (¢, ) such that no x1,z, € X have
¢ = ¢(21) and @ = ¢(z5) with ¢ £ @ but Vi < |c@)], 2 = ¢!V: that is, no codeword is
a prefix of another (longer) codeword. Let PF' denote the set of all prefix-free binary codes.

Here, we consider a setting where the code (¢, 1)) may be lossy, in the sense that for some
values of x € X, p(v(¢(x)), z) > 0. Our objective is to design the code to have small expected
loss (in the p sense), while maintaining as small of an expected codeword length as possible.
Formally, we have the following definition, which essentially describes a notion of optimality

for a lossy code.

Definition 5.1. For any D > 0, define the optimal rate at distortion D

R(D) = inf {E[|¢(X)|] : (¢,) € PF with
E |p(v(6(x), X)| <D},

where the random variable in both expectations is X ~ T.
For our analysis, we will require a notion of dimensionality for the pseudo-metric p. For this,

2The set X'* will not play any significant role in the analysis, except to allow for improper learning scenarios to

be a special case of our setting.
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we adopt the well-known doubling dimension [Gupta, Krauthgamer, and Lee, 2003].

Definition 5.2. Define the doubling dimension d as the smallest value d such that, for any x € X,

and any € > 0, the size of the minimal € /2-cover of the e-radius ball around x is at most 2¢.

That is, for any x € X and € > 0, there exists a set {x; 1221 of 2% elements of X such that

od

{2' € X :p(a,x) < e} C U{x’ € X :pa', x;) <e/2}.

i=1

Note that, as defined here, d is a constant (i.e., has no dependence on the x or € in its defini-
tion). In the analysis below, we will always assume d < oo. The doubling dimension has been
studied for a variety of spaces, originally by Gupta, Krauthgamer, & Lee [Gupta, Krauthgamer,
and Lee, 2003], and subsequently by many others. In particular, Bshouty, Li, & Long [Bshouty,
Li, and Long, 2009] discuss the doubling dimension of spaces X of binary classifiers, in the

context of statistical learning theory.

5.2.1 Definition of Packing Entropy

Our main result concerns the relation between the optimal rate at a given distortion with the

entropy of a certain quantizer. We now turn to defining this latter quantity.

Definition 5.3. For any D > 0, define Y(D) C X as a maximal D-packing of X. That is,
Vi, xe € Y(D), p(x1,22) > D, and Vo € X'\ Y(D), ming cym) p(x, z') < D.

For our purposes, if multiple maximal D-packings are possible, we can choose to define
Y(D) arbitrarily from among these; the results below hold for any such choice. Recall that any
maximal D-packing of X is also a D-cover of X, since otherwise we would be able to add to
Y(D) the x € X that escapes the cover. That is, Vo € X, 3y € V(D) s.t. p(x,y) < D.

Next we define a complexity measure, a type of entropy, which serves as our primary quantity
of interest in the analysis of R(D). It is specified in terms of a partition induced by (D), defined

as follows.
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Definition 5.4. For any D > 0, define
Q(D) = {{x eX:z= argminp(x,y)} 1z € y(D)} :
yeY(D)
where we break ties in the argmin arbitrarily but consistently (e.g., based on a predefined pref-
erence ordering of Y(D)).
Definition 5.5. For any finite (or countable) partition S of X into measurable regions (subsets),

define the entropy of S
H(S) ==Y 7(S)log, m(S).

ses
In particular, we will be interested in the quantity H(Q(D)) in the analysis below.

5.3 Main Result

Our main result can be summarized as follows. Note that, since we took the distribution 7 to be
arbitrary in the above definitions, this result holds for any given 7.

Theorem 5.6. If d < oo and p < oo, then there is a constant ¢ = O(d) such that VD € (0, p/2),
H (Q(Dlogy(p/D))) —c <R(D) < H(Q(D)) + 1.

It should not be surprising that entropy terms play a key role in this result, as the entropy is
essential to the analysis of exact coding [Shannon, 1948]. Furthermore, R(D) is tightly charac-
terized by the minimum achievable entropy among all quantizers of distortion at most D [Kieffer,
1993]. The interesting aspect of Theorem 5.6 is that we can explicitly describe a particular quan-
tizer with near-optimal rate, and its entropy can be explicitly calculated for a variety of scenarios
(X, p,m). As for the behavior of R(D) within the range between the upper and lower bounds
of Theorem 5.6, we should expect the upper bound to be tight when high-probability subsets of
the regions in Q(D) are point-wise well-separated, while R(D) may be much smaller (perhaps
closer to the lower bound) when this is violated to a large degree, for reasons described in the

proof below.
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Figure 5.1: Plots of #(Q(D)) as a function of 1/D, for various distributions 7 on X = R.

Although this result is stated for bounded psuedo-metrics p, it also has implications for un-
bounded p. In particular, the proof of the upper bound holds as-is for unbounded p. Furthermore,
we can always use this lower bound to construct a lower bound for unbounded p, simply restrict-
ing to a bounded subset of X with constant probability and calculating the lower bound for that
region. For instance, to get a lower bound for 7 as a Gaussian distribution on R, we might note
that 7([—1/2,1/2]) times the expected loss under the conditional 7(-|[—1/2,1/2]) lower bounds
the total expected loss. Thus, calculating the lower bound of Theorem 5.6 under the conditional
7(-|[—1/2,1/2]) while replacing D with D/7([—1/2,1/2]) provides a lower bound on R(D).

To get a feel for the behavior of  (Q (D)), we have plotted it as a function of 1/D for several

distributions, in Figure 5.1.

5.4 Proof of Theorem 5.6

We first state a lemma, due to Gupta, Krauthgamer, & Lee [Gupta, Krauthgamer, and Lee, 2003],

which will be useful in the proof of Theorem 5.6.

Lemma 5.7. [Gupta, Krauthgamer, and Lee, 2003] For any v € (0,0), § € [y,00), and x € X,

d
(e € V() : plel ) < 5} < (475) .

In particular, note that this lemma implies that the minimum of p(z,y) over y € Y(D) is

always achieved in Definition 5.4, so that Q(D) is well-defined.
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We are now ready for the proof of Theorem 5.6.

Proof of Theorem 5.6. Throughout the proof, we will consider a set-valued random quantity
Qp(X) with value equal to the set in Q(D) containing X, and a corresponding X'-valued random
quantity Yp(X) with value equal the sole point in Qp(X) N Y(D): that is, the target’s nearest
representative in the D-packing. Note that, by Lemma 5.7, |Y(D)| < oo forall D € (0,1). We
will also adopt the usual notation for entropy (e.g., H(Qp(X))) and conditional entropy (e.g.,
H(Qp(X)|Z)) [Cover and Thomas, 2006], both in base 2.

To establish the upper bound, we simply take ¢ as the Huffman code for the random quantity
@p(X) [Cover and Thomas, 2006, Huffman, 1952]. It is well-known that the expected length
of a Huffman code for ()p(X) is at most H(Gp(X)) + 1 (in fact, is equal H(Qp (X)) when
the probabilities are powers of 2) [Cover and Thomas, 2006, Huffman, 1952], and each possible
value of Qp(X) is assigned a unique codeword so that we can perfectly recover Qp(X) (and thus
also Yp(X)) based on ¢(X). In particular, define )(¢(X)) = Yp(X). Finally, recall that any
maximal D-packing is also a D-cover. Thus, since every element of the set Qp (X)) has Yp(X) as
its closest representative in J(D), we must have p(X, ¥(¢(X))) = p(X,Yp(X)) < D. In fact,
as this proof never relies on p < oo, this establishes the upper bound even in the case p = co.

The proof of the lower bound is somewhat more involved, though the overall idea is simple
enough. Essentially, the lower bound would be straightforward if the regions of Q(Dlog,(p/D))
were separated by some distance, since we could make an argument based on Fano’s inequality
to say that since any X = t(¢(X)) is “close” to at most one region, the expected distance
from X is at least as large as half this inter-region distance times a quantity proportional to the
conditional entropy H(Qp(X)|¢(X)), so that H(4(X)) can be related to H(Qp(X)).

However, the general case is not always so simple, as the regions can generally be quite close
to each other (even adjacent), so that it is possible for X to be close to multiple regions. Thus, the
proof will first “color” the regions of Q(D log,(p/D)) in a way that guarantees no two regions of

the same color are within distance D log,(p/D) of each other. Then we apply the above simple
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argument for each color separately (i.e., lower bounding the expected distance from X under the
conditional given the color of Qp1eg,(5/p)(X) by a function of the conditional entropy under the
conditional), and average over the colors to get a global lower bound. The details follow.

Fix any D € (0,p/2), and for brevity let « = Dlog,(p/D). We suppose (¢, 1)) is some
prefix-free binary code.

Define a function K : Q(a) — N such that VQ1, Q2 € Q(«),

K(Q1) = K(Q2) = inf  p(z1,72) > @, (5.1

1€Q1,22€Q2
and suppose C has minimum H (}C(Q,(X))) subject to (5.1). We will refer to K(Q) as the color
of Q).
Now we are ready to bound the expected distance from X. Let X = 1(4(X)), and let
Q. (X K) denote the set Q € Q(a) having K(Q) = K with smallest inf,cq p(z, X) (breaking

ties arbitrarily). We know
E[p(X, X)] = E [E[p(X, X)|K(Qa(X))]] (52)

Furthermore, by (5.1) and a triangle inequality, we know no X can be closer than « /2 to more

than one ) € Q(«) of a given color. Therefore,
E[p(X, X)|K(Qa(X))]
> SP(Qu(X5K(Qu(X))) # Qu(X)|K(Qu(X))). (53)

By Fano’s inequality, we have

E |P(Qa(X; K(Qu(X))) # Qa(X)K(Qa(X)))

> H(Qa(X)|¢(X)7IC(Qa<X))) —1
B log, [V(a)] '

(5.4)

It is generally true that, for a prefix-free binary code ¢(X), ¢(X) is a lossless prefix-free
binary code for itself (i.e., with the identity decoder), so that the classic entropy lower bound on

average code length [Cover and Thomas, 2006, Shannon, 1948] implies H(¢p(X)) < E[|¢(X)]].
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Also, recalling that )(«) is maximal, and therefore also an a-cover, we have that any @1, Q2 €

Q(«) with Qinf 0 p(x1,9) < a have p(Y,(z1), Ya(z2)) < 3a (by a triangle inequality).
T1€W1,72€(2

Therefore, Lemma 5.7 implies that, for any given Q; € Q(«), there are at most 12¢ sets Q, €

Q(«) with Qinf 0 p(z1,5) < . We therefore know there exists a function K’ : Q(a) — N
T1€W1,72€(2

satisfying (5.1) such that Qlélg()é) K'(Q) < 127 (i.e., we need at most 12¢ colors to satisfy (5.1)).
That is, if we consider coloring the sets ) € Q(«) sequentially, for any given (); not yet colored,
there are < 127 sets Qo € Q(a) \ {Q;} within « of it, so there must exist a color among
{1,...,129} not used by any of them, and we can choose that for K'(Q1). In particular, by our

choice of K to minimize H (/K (Q,(X))) subject to (5.1), this implies
H(K(Qa(X))) < H(K'(Qa(X))) < logy(129) < 4d.

Thus,

H(Qa(X)|o(X), £(Qa(X)))
= H(Qa(X), o(X), K(Qa(X)))
— H(p(X)) = H(K(Qa(X))|o(X))
> H(Qa(X)) = H(P(X)) — H(K(Qa(X)))
> H(Qu(X)) — E[l¢(X)]] — 4d
=H(Q(a)) — E[|p(X)]] — 4d. (53)

Thus, combining (5.2), (5.3), (5.4), and (5.5), we have

A aM(Qa)) —E[[¢(X)[] —4d -1
Elp(X,X)] > =
L 0 H(Q(a) ~E[|g(X)[) — 4d — 1
T2 dlogy(4p/c) ’
where the last inequality follows from Lemma 5.7.
Thus, for any code with
logy(4p/D)
E |[|p(X H —4d -1 —-2d—————,
16()]] < H(Q(a)) ou, (/D)
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we have E[p(X, X)] > D, which implies

log,(4p/D)

R(D) 2 H(Q(a)) — 4d — 1 — 23 & B

Since log,(4p/D)/log,(p/D) < 3, we have

R(D) = #(Q(a)) — O(d).

5.5 Application to Bayesian Active Learning

As an example, in the special case of the problem of learning a binary classifier, as studied by
[Haussler, Kearns, and Schapire, 1994a] and [Freund, Seung, Shamir, and Tishby, 1997], X* is
the set of all measurable classifiers h : Z — {—1,+1}, & is called the “concept space,” X is
called the “target function,” and p( X, Xo) = P(X1(Z) # X2(Z)), where Z is some Z-valued
random variable. In particular, p(X;, X) is called the “error rate” of Xj.

We may then discuss a learning protocol based on binary-valued queries. That is, we sup-
pose some learning machine is able to pose yes/no questions to an oracle, and based on the
responses it proposes a hypothesis X. We may ask how many such yes/no questions must the
learning machine pose (in expectation) before being able to produce a hypothesis X € X* with
E[p(X, X)] < e, known as the query complexity.

If the learning machine is allowed to pose arbitrary binary-valued queries, then this setting is
precisely a special case of the general lossy coding problem studied above. That is, any learning
machine that asks a sequence of yes/no questions before terminating and returning some Xex
can be thought of as a binary decision tree (no = left, yes = right), with the return X values stored
in the leaf nodes. Transforming each root-to-leaf path in the decision tree into a codeword (left
= 0, right = 1), we see that the algorithm corresponds to a prefix-free binary code. Conversely,

given any prefix-free binary code, we can construct an algorithm based on sequentially asking
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queries of the form “what is the first bit in the codeword ¢(.X ) for X ?”, “what is the second bit in
the codeword ¢(X) for X ?”, etc., until we obtain a complete codeword, at which point we return

the value that codeword decodes to. From this perspective, the query complexity is precisely

R(e).

This general problem of learning with arbitrary binary-valued queries was studied previously
by Kulkarni, Mitter, & Tsitsiklis [Kulkarni, Mitter, and Tsitsiklis, 1993], in a minimax analysis
(studying the worst-case value of X). In particular, they find that for a given distribution for
Z, the worst-case query complexity is essentially characterized by log |)(¢)|. The techniques
employed are actually far more general than the classifier-learning problem, and actually apply
to any pseudo-metric space. Thus, we can abstractly think of their work as a minimax analysis

of lossy coding.

In addition to being quite interesting in their own right, the results of Kulkarni, Mitter, &
Tsitsiklis [Kulkarni, Mitter, and Tsitsiklis, 1993] have played a significant role in the recent
developments in active learning with label request queries for binary classification [Dasgupta,
2005, Hanneke, 2007a,b], in which the learning machine may only ask questions of the form,
“What is the value X (z)?” for certain values z € Z. Since label requests can be viewed as
a type of binary-valued query, the number of label requests necessary for learning is naturally
lower bounded by the number of arbitrary binary-valued queries necessary for learning. We
therefore always expect to see some term relating to log | (¢)| in any minimax query complexity
results for active learning with label requests (though this factor is typically represented by its

upper bound: & V' - log(1/€), where V' is the VC dimension).

Similarly to how the work of Kulkarni, Mitter, & Tsitsiklis [Kulkarni, Mitter, and Tsitsiklis,
1993] can be used to argue that log |} (¢)| is a lower bound on the minimax query complexity of
active learning with label requests, Theorem 5.6 can be used to argue that H(Q(elog,(1/¢€))) —
O(d) is a lower bound on the query complexity of learning relative to a given distribution for

X (called a prior, in the language of Bayesian statistics), rather than the worst-case value of X.
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Furthermore, as with [Kulkarni, Mitter, and Tsitsiklis, 1993], this lower bound remains valid for
learning with label requests, since label requests are a type of binary-valued query. Thus, we
should expect a term related to H(Q(¢)) or H(Q(elog,(1/€))) to appear in any tight analysis of

the query complexity of Bayesian learning with label requests.

5.6 Open Problems

In our present context, there are several interesting questions, such as whether the log(p/D) factor
in the entropy argument of the lower bound can be removed, whether the additive constant in the
lower bound might be improved, and in particular whether a similar result might be obtained
without assuming d < oo (e.g., in the statistical learning special case, by making a VC class

assumption instead).
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Chapter 6

The Sample Complexity of Self-Verifying

Bayesian Active Learning

Abstract

"We prove that access to a prior distribution over target functions can dramatically improve the
sample complexity of self-terminating active learning algorithms, so that it is always better than
the known results for prior-dependent passive learning. In particular, this is in stark contrast to
the analysis of prior-independent algorithms, where there are simple known learning problems

for which no self-terminating algorithm can provide this guarantee for all priors.

6.1 Introduction and Background

Active learning is a powerful form of supervised machine learning characterized by interaction
between the learning algorithm and supervisor during the learning process. In this work, we
consider a variant known as pool-based active learning, in which a learning algorithm is given

access to a (typically very large) collection of unlabeled examples, and is able to select any of

Joint work with Jaime Carbonell and Steve Hanneke.
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those examples, request the supervisor to label it (in agreement with the target concept), then after
receiving the label, selects another example from the pool, etc. This sequential label-requesting
process continues until some halting criterion is reached, at which point the algorithm outputs
a function, and the objective is for this function to closely approximate the (unknown) target
concept in the future. The primary motivation behind pool-based active learning is that, often,
unlabeled examples are inexpensive and available in abundance, while annotating those examples
can be costly or time-consuming; as such, we often wish to select only the informative examples
to be labeled, thus reducing information-redundancy to some extent, compared to the baseline of

selecting the examples to be labeled uniformly at random from the pool (passive learning).

There has recently been an explosion of fascinating theoretical results on the advantages of
this type of active learning, compared to passive learning, in terms of the number of labels re-
quired to obtain a prescribed accuracy (called the sample complexity): e.g., [Balcan, Broder, and
Zhang, 2007a, Balcan, Beygelzimer, and Langford, 2009, Balcan, Hanneke, and Vaughan, 2010,
Beygelzimer, Dasgupta, and Langford, 2009, Castro and Nowak, 2008, Dasgupta, 2004, 2005,
Dasgupta, Hsu, and Monteleoni, 2007b, Dasgupta, Kalai, and Monteleoni, 2009, Freund, Seung,
Shamir, and Tishby, 1997, Friedman, 2009, Hanneke, 2007a,b, 2009, 2011, K&iridinen, 2006,
Koltchinskii, 2010, Nowak, 2008, Wang, 2009]. In particular, [Balcan, Hanneke, and Vaughan,
2010] show that in noise-free binary classifier learning, for any passive learning algorithm for a
concept space of finite VC dimension, there exists an active learning algorithm with asymptoti-
cally much smaller sample complexity for any nontrivial target concept. In later work, [Hanneke,
2009] strengthens this result by removing a certain strong dependence on the distribution of the
data in the learning algorithm. Thus, it appears there are profound advantages to active learning

compared to passive learning.

However, the ability to rapidly converge to a good classifier using only a small number of
labels is only one desirable quality of a machine learning method, and there are other qualities

that may also be important in certain scenarios. In particular, the ability to verify the performance
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of a learning method is often a crucial part of machine learning applications, as (among other
things) it helps us determine whether we have enough data to achieve a desired level of accuracy
with the given method. In passive learning, one common practice for this verification is to hold
out a random sample of labeled examples as a validation sample to evaluate the trained classifier
(e.g., to determine when training is complete). It turns out this technique is not feasible in active
learning, since in order to be really useful as an indicator of whether we have seen enough la-
bels to guarantee the desired accuracy, the number of labeled examples in the random validation
sample would need to be much larger than the number of labels requested by the active learning
algorithm itself, thus (to some extent) canceling the savings obtained by performing active rather
than passive learning. Another common practice in passive learning is to examine the training er-
ror rate of the returned classifier, which can serve as a reasonable indicator of performance (after
adjusting for model complexity). However, again this measure of performance is not necessarily
reasonable for active learning, since the set of examples the algorithm requests the labels of is
typically distributed very differently from the test examples the classifier will be applied to after

training.

This reasoning indicates that performance verification is (at best) a far more subtle issue in
active learning than in passive learning. Indeed, [Balcan, Hanneke, and Vaughan, 2010] note that
although the number of labels required to achieve good accuracy is significantly smaller than
passive learning, it is often the case that the number of labels required to verify that the accuracy
is good is not significantly improved. In particular, this phenomenon can dramatically increase
the sample complexity of active learning algorithms that adaptively determine how many labels
to request before terminating. In short, if we require the algorithm both to learn an accurate
concept and to know that its concept is accurate, then the number of labels required by active

learning is often not significantly smaller than the number required by passive learning.

We should note, however, that the above results were proven for a learning scenario in which

the target concept is considered a constant, and no information about the process that generates
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this concept is known a priori. Alternatively, we can consider a modification of this problem, so
that the target concept can be thought of as a random variable, a sample from a known distribution
(called a prior) over the space of possible concepts. Such a setting has been studied in detail
in the context of passive learning for noise-free binary classification. In particular, [Haussler,
Kearns, and Schapire, 1994a] found that for any concept space of finite VC dimension d, for
any prior and distribution over data points, O(d/e) random labeled examples are sufficient for
the expected error rate of the Bayes classifier produced under the posterior distribution to be at
most €. Furthermore, it is easy to construct learning problems for which there is an Q(1/¢) lower
bound on the number of random labeled examples required to achieve expected error rate at most
€, by any passive learning algorithm; for instance, the problem of learning threshold classifiers

on [0, 1] under a uniform data distribution and uniform prior is one such scenario.

In the context of active learning (again, with access to the prior), [Freund, Seung, Shamir, and
Tishby, 1997] analyze the Query by Committee algorithm, and find that if a certain information
gain quantity for the points requested by the algorithm is lower-bounded by a value g, then the
algorithm requires only O((d/g) log(1/¢<)) labels to achieve expected error rate at most €. In par-
ticular, they show that this is satisfied for constant g for linear separators under a near-uniform
prior, and a near-uniform data distribution over the unit sphere. This represents a marked im-
provement over the results of [Haussler, Kearns, and Schapire, 1994a] for passive learning, and
since the Query by Committee algorithm is self-verifying, this result is highly relevant to the
present discussion. However, the condition that the information gains be lower-bounded by a
constant is quite restrictive, and many interesting learning problems are precluded by this re-
quirement. Furthermore, there exist learning problems (with finite VC dimension) for which the
Query by Committee algorithm makes an expected number of label requests exceeding Q2(1/¢).
To date, there has not been a general analysis of how the value of g can behave as a function of

g, though such an analysis would likely be quite interesting.

In the present paper, we take a more general approach to the question of active learning with
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access to the prior. We are interested in the broad question of whether access to the prior bridges
the gap between the sample complexity of learning and the sample complexity of learning with
verification. Specifically, we ask the following question.

Can a prior-dependent self-terminating active learning algorithm for a concept class of finite
VC dimension always achieve expected error rate at most ¢ using o(1/¢) label requests?

After some basic definitions in Section 6.2, we begin in Section 6.4 with a concrete example,
namely interval classifiers under a uniform data density but arbitrary prior, to illustrate the general
idea, and convey some of the intuition as to why one might expect a positive answer to this
question. In Section 6.5, we present a general proof that the answer is always “yes.” As the
known results for the sample complexity of passive learning with access to the prior are typically
o« 1/e [Haussler, Kearns, and Schapire, 1994a], and this is sometimes tight, this represents
an improvement over passive learning. The proof is simple and accessible, yet represents an
important step in understanding the problem of self-termination in active learning algorithms, and
the general issue of the complexity of verification. Also, as this is a result that does not generally
hold for prior-independent algorithms (even for their “average-case” behavior induced by the
prior) for certain concept spaces, this also represents a significant step toward understanding the

inherent value of having access to the prior.

6.2 Definitions and Preliminaries

First, we introduce some notation and formal definitions. We denote by X the instance space,
representing the range of the unlabeled data points, and we suppose a distribution D on X,
which we will refer to as the data distribution. We also suppose the existence of a sequence
X1,X5,... of i.i.d. random variables, each with distribution D, referred to as the unlabeled
data sequence. Though one could potentially analyze the achievable performance as a function
of the number of unlabeled points made available to the learning algorithm (cf. [Dasgupta,

2005]), for simplicity in the present work, we will suppose this unlabeled sequence is essentially
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inexhaustible, corresponding to the practical fact that unlabeled data are typically available in
abundance as they are often relatively inexpensive to obtain. Additionally, there is a set C of
measurable classifiers h : X — {—1,+41}, referred to as the concept space. We denote by d
the VC dimension of C, and in our present context we will restrict ourselves to spaces C with
d < oo, referred to as a VC class. We also have a probability distribution 7, called the prior,
over C, and a random variable h* ~ 7, called the target function; we suppose h* is independent
from the data sequence X, X5,.... We adopt the usual notation for conditional expectations
and probabilities [Ash and Doléans-Dade, 2000]; for instance, E[A|B] can be thought of as an
expectation of the value A, under the conditional distribution of A given the value of B (which
itself is random), and thus the value of E[A|B] is essentially determined by the value of B. For
any measurable h : X — {—1,+1}, define the error rate er(h) = D({x : h(z) # h*(z)}).
So far, this setup is essentially identical to that of [Freund, Seung, Shamir, and Tishby, 1997,

Haussler, Kearns, and Schapire, 1994a].

The protocol in active learning is the following. An active learning algorithm A4 is given as
input the prior 7, the data distribution D (though see Section 6.6), and a value ¢ € (0,1]. It
also (implicitly) depends on the data sequence X;, Xo, ..., and has an indirect dependence on
the target function h* via the following type of interaction. The algorithm may inspect the values
X, for any initial segment of the data sequence, select an index ¢ € N to “request” the label of;
after selecting such an index, the algorithm receives the value ~*(X;). The algorithm may then
select another index, request the label, receive the value of A* on that point, etc. This happens
for a number of rounds, N (A, h* e, D, ), before eventually the algorithm halts and returns a
classifier h. An algorithm is said to be correct if E [er (ﬁ)} < ¢ for every (¢, D, m); that is,
given direct access to the prior and the data distribution, and given a specified value ¢, a correct
algorithm must be guaranteed to have expected error rate at most €. Define the expected sample
complexity of A for (X,C,D, ) to be the function SC(,D,7) = E[N(A, h*,e,D,)]: the

expected number of label requests the algorithm makes.
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6.3 Prior-Independent Learning Algorithms

One may initially wonder whether we could achieve this o(1/¢) result merely by calculating
the expected sample complexity of some prior-independent method, thus precluding the need
for novel algorithms. Formally, we say an algorithm A is prior-independent if the conditional
distribution of the queries and return value of A(e, D, ) given { (X1, X (X1)), (X2, X (X32)), ...}
is functionally independent of 7. Indeed, for some C and D, it is known that there are prior-
independent active learning algorithms A that have E[N (A, X, e, D, 7)|X] = o(1/¢) (always);
for instance, threshold classifiers have this property under any D, homogeneous linear separators
have this property under a uniform D on the unit sphere in £ dimensions, and intervals with
positive width on X = [0, 1] have this property under D = Uniform([0, 1]) (see e.g., [Dasgupta,
2005]). It is straightforward to show that any such A will also have SC'(A,e,D,m) = o(1/e)
for every 7. In particular, the law of total expectation and the dominated convergence theorem
imply

lir% eSC(A,e,D,m) =limeE[E[N (A, X, e, D, )| X]]

e—0

— E [lim cE[N (4, X,g,D,w)|X]] ~0.

e—0

In these cases, we can think of SC' as a kind of average-case analysis of these algorithms. How-
ever, as we discuss next, there are also many C and D for which there is no prior-independent
algorithm achieving o(1/¢) sample complexity for all priors. Thus, any general result on o(1/¢)
expected sample complexity for m-dependent algorithms would indicate that there is a real ad-
vantage to having access to the prior, beyond the apparent smoothing effects of an average-case
analysis.

As an example of a problem where no prior-independent self-verifying algorithm can achieve
o(1/e) sample complexity, consider X = [0, 1], D = Uniform([0, 1]), and C as the concept space
of interval classifiers: C = {]Iab) :0 <a<b< 1}, where It () = +1ifz € (a,b) and

(a,b)

—1 otherwise. Note that because we allow a = b, there is a classifier h_ € C labeling all of X’
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negative. For 0 < a < b < 1, let (4 denote the prior with 7T(a7b)<{]li7b)}) = 1. We now show
any correct prior-independent algorithm has (1/¢) sample complexity for 7 ), following a
technique of [Balcan, Hanneke, and Vaughan, 2010]. Consider any ¢ € (0,1/144) and any
prior-independent active learning algorithm A with SC(A, e, D, 7o) < 5 = ﬁ. Then define

H. = {(12ie,12(i + 1)) : i € {0,1,..., | 1522 | }}. Let h(a) denote the classifier returned

12¢

by A(e,D,-) when queries are answered with X = Hi,b)’ for 0 < a < b <1, and let R,y
denote the set of examples (x,y) for which A(e, D, -) requests labels (including their y = X (x)
labels). The point of this construction is that, with such a small number of queries, for many
of the (a,b) € H., the algorithm must behave identically for X = ]Iab) as for X = ]I(io’o) (i.e.,
Ry = Ro,0), and hence ﬁ(a,b) = fz((),o)). These 7, ) priors will then witness the fact that A is

not a correct self-verifying algorithm. Formally,

max [E [D(m : il(a,b) (z) # Hab)(x))}

(a,b)eH,
> 3 B[P hian(a) £ T )]
! (a,b)eH.
1 ~
> H |]E Z D(x : hapy(z) # I, (7))
¢ _(a,b)engR(aﬂb):R(oyo)
1 ~
> H |]E Z (125 —min{D(z : hp(z) # —1), 125}) . (6.1)
€ _((L,b)EHEZR(a’b):R(Qyo)

Since the summation in (6.1) is restricted to (a,b) with R, = Ro,), these (a,b) must also

have fz(mb) = fz(oyo), so that (6.1) equals

1 ~
Al S (125 — min{D(z : ho(z) # —1), 125}) L (62
((L,b)EHEZR(a’b):R(Dyo)

Furthermore, for a given X, X, ... sequence, the only (a,b) € H. with R, # Ro,) are

those for which some (z,—1) € R has x € (a,b); since the (a,b) € H. are disjoint, the
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above summation has at least | H.| — |R(070)| elements in it. Thus, (6.2) is at least

E K'HE| - mirl‘%i(o’o)|’ |H€|}> (125 — min{D(x : hig(z) # —1), 125}>]

>E {]I (IR0 < 3s] T [D(w ooy (7) £ —1) < 65} <|H|l|q—_|3s> (126 — 65)}

> 3cP (\R(O,O)y < 35,D(x : hoo)(z) # —1) < 65) . 6.3)
By Markov’s inequality,
P (’R(070)| > 38) < EHR(0,0)H/(BS) = SC(A, £, D, W(O,O))/<3S) < 1/3,

and P <D(x : iz(ovo)(x) #—1) > 65) <E [D(x : hioo) (z) # —1)] /(6¢), and if A is a correct
self-verifying algorithm, then E [D(I ; ﬁ(ojo)(:c) # —1)} /(6¢) < 1/6. Thus, by a union bound,
(6.3)is atleast 3¢(1 —1/3—1/6) = (3/2)e > e. Therefore, .A cannot be a correct self-verifying

learning algorithm.

6.4 Prior-Dependent Learning: An Example

We begin our exploration of m-dependent active learning with a concrete example, namely inter-
val classifiers under a uniform data density but arbitrary prior, to illustrate how access to the prior
can make a difference in the sample complexity. Specifically, consider X = [0, 1], D uniform
on [0, 1], and the concept space C of interval classifiers specified in the previous section. For
each classifier h € C, define w(h) = D(z : h(z) = +1) (the width of the interval h). Note that
because we allow a = b in the definition of C, there is a classifier h_ € C with w(h_) = 0.

For simplicity, in this example (only) we will suppose the algorithm may request the label
of any point in X, not just those in the sequence {X;}; the same ideas can easily be adapted
to the setting where queries are restricted to {X;}. Consider an active learning algorithm that
sequentially requests the labels X () for points = at 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16,

3/16, etc., until (case 1) it encounters an example x with X (z) = +1 or until (case 2) the set of
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classifiers V' C C consistent with all observed labels so far satisfies E[w(X)|V] < e (which ever
comes first). In case 2, the algorithm simply halts and returns the constant classifier that always
predicts —1: call it A_; note that er(h_) = w(X). In case 1, the algorithm enters a second phase,
in which it performs a binary search (repeatedly querying the midpoint between the closest two
—1 and +1 points, taking 0 and 1 as known negative points) to the left and right of the observed
positive point, halting after log,(4/¢) label requests on each side; this results in estimates of the
target’s endpoints up to ¢ /4, so that returning any classifier among the set V' C C consistent
with these labels results in error rate at most ¢; in particular, if h is the classifier in V returned,
then Efer(h)|V] < e.

Denoting this algorithm by A, and h the classifier it returns, we have

o ()] = 5[ fr (1) ] <=

so that the algorithm is definitely correct.
Note that case 2 will definitely be satisfied after at most g label requests, and if w(X) > ¢,
2

then case 1 will definitely be satisfied after at most o) label requests, so that the algorithm never

makes more than ——2———
max{w(

meers! label requests before satisfying one of the two cases. Abbreviating

N(X) = N(Ap, X,e,D, ), we have

E[N(X)]

—E [N(X)]w(X) - o] P (w(X) = 0)
4 E [N(X)‘O <w(X) < \/E} P (0 < w(X) < V&)
+E [N(X)|w(X) > VE| P (w(X) > V5)

<E [N(X)‘w(X) = 0]]? (w(X) =0) + SIP’ (0 <w(X) <Ve)+ % + 21log, é (6.4)

The third and fourth terms in (6.4) are o(1/¢). Since P(0 < w(X) < /2) — 0 ase — 0, the
second term in (6.4) is o(1/¢) as well. If P(w(X) = 0) = 0, this completes the proof. We focus

the rest of the proof on the first term in (6.4), in the case that P(w(X) = 0) > 0: i.e., there is
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nonzero probability that the target X labels the space all negative. Letting V' denote the subset
of C consistent with all requested labels, note that on the event w(X) = 0, after n label requests
(for n + 1 a power of 2) we have maxyey w(h) < 1/n. Thus, for any value v € (0, 1), after at

most % label requests, on the event that w(X) = 0,

E [w(X)M < = < 6.5)

Now note that, by the dominated convergence theorem,

iy [2OOL00) <70) g

o wCOT[w(X) < 7

~y—0 Y

=0.

v—0

Therefore, E [w(X)I[w(X) < ~]] = o(y). If we define 7. as the largest value of v for which
Ew(X)[w(X) <~]] < eP(w(X) = 0) (or, say, half the supremum if the maximum is not
achieved), then we have . > €. Combined with (6.5), this implies
E [N(X)‘w(X) - o] < % = o(1/e).

Thus, all of the terms in (6.4) are o(1/¢), so that in total E[N (X)] = o(1/e).

In conclusion, for this concept space C and data distribution D, we have a correct active
learning algorithm A achieving a sample complexity SC(A, e, D, n) = o(1/¢) for all priors 7
on C.

6.5 A General Result for Self-Verifying Bayesian Active Learn-
ing

In this section, we present our main result for improvements achievable by prior-dependent
self-verifying active learning: a general result stating that o(1/¢) expected sample complexity
is always achievable for some appropriate prior-dependent active learning algorithm, for any
(X,C, D, ) for which C has finite VC dimension. Since the known results for the sample com-

plexity of passive learning with access to the prior are typically ©(1/¢) [Haussler, Kearns, and
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Schapire, 1994a], and since there are known learning problems (X', C, D, ) for which every pas-
sive learning algorithm requires 2(1/¢) samples, this o(1/¢) result for active learning represents
an improvement over passive learning.

The proof is simple and accessible, yet represents an important step in understanding the
problem of self-termination in active learning algorithms, and the general issue of the complexity
of verification. Also, since there are problems (X, C, D) where C has finite VC dimension but
for which no prior-independent correct active learning algorithm (of the self-terminating type
studied here) can achieve o(1/¢) expected sample complexity for every m, this also represents a
significant step toward understanding the inherent value of having access to the prior in active
learning.

First, we have a small lemma.

Lemma 6.1. For any sequence of functions ¢, : C — [0, 00) such that, Vf € C, ¢,(f) = o(1/n)
and¥n € N, ¢,(f) < ¢/n (for an f-independent constant ¢ € (0,00)), there exists a sequence

by, in [0, 00) such that

¢n=o0(1/n) and lim P (¢,(X) > ¢,) = 0.

n—o0

Proof. For any constant v € (0, 00), we have (by Markov’s inequality and the dominated con-

vergence theorem)

lim P (ngn(X) > 7) < = lim E [ngn(X)]

n—oo ’Y n—oo

n—00

1
— “E [lim ngbn(X)} —0.
Y
Therefore (by induction), there exists a diverging sequence n; in N such that

lim sup P (n¢,(X) >27") = 0.

Inverting this, let i,, = max{i € N : n; < n}, and define ¢,,(X) = (1/n)-27". By construction,

P (gzﬁn(X) > gz_Sn) — 0. Furthermore, n; — co =— 1,, — o0, so that we have

lim ng, = lim 27" =0,
n—oo n—oo
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implying ¢,, = o(1/n). O

Theorem 6.2. For any VC class C, there is a correct active learning algorithm A, that, for every

data distribution D and prior 7, achieves expected sample complexity
SC(A,,e,D,m) =o(1/e).

Our approach to proving Theorem 6.2 is via a reduction to established results about (prior-
independent) active learning algorithms that are not self-verifying. Specifically, consider a
slightly different type of active learning algorithm than that defined above: namely, an algo-
rithm A4, that takes as input a budget n € N on the number of label requests it is allowed to
make, and that after making at most n label requests returns as output a classifier h.,. Let us refer
to any such algorithm as a budget-based active learning algorithm. Note that budget-based active
learning algorithms are prior-independent (have no direct access to the prior). The following re-
sult was proven by [Hanneke, 2009] (see also the related earlier work of [Balcan, Hanneke, and
Vaughan, 2010]).

Lemma 6.3. [Hanneke, 2009] For any VC class C, there exists a constant ¢ € (0, 00), a function

E(n; f, D), and a budget-based active learning algorithm Ay, such that
VD,Vf € C,E(n; f,D) <c¢/nand E(n; f,D) = o(1/n),

and E [er (Ap(n)) ’X} < &(n; X, D) (always).?

That is, equivalently, for any fixed value for the target function, the expected error rate is
o(1/n), where the random variable in the expectation is only the data sequence X, X, . ... Our
task in the proof of Theorem 6.2 is to convert such a budget-based algorithm into one that is

correct, self-terminating, and prior-dependent, taking € as input.

Theorem 6.2. Consider A;, £, and ¢ as in Lemma 6.3, let fln denote the classifier returned by
Ay(n), and define
Ny = Min {n eN:E [er (ﬁnﬂ < 5} .
Furthermore, it is not difficult to see that we can take this £ to be measurable in the X argument.
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This value is accessible based purely on access to m and D. Furthermore, we clearly have (by
construction) [E [er (]Alnmﬂ < e. Thus, letting A, denote the active learning algorithm taking
(D, m,¢) as input, which runs A,(n..) and then returns ﬁnw, we have that A, is a correct
learning algorithm (i.e., its expected error rate is at most €).

As for the expected sample complexity SC(A,, €, D, 7) achieved by A,, we have SC'(A,, e, D, ) <
Ny e, sO that it remains only to bound n,.. By Lemma 6.1, there is a m-dependent function

E(n;m, D) such that

Tr({feC:&mn; f,D)>&En;m,D)}) =0

and E(n;m, D) = o(1/n).
Therefore, by the law of total expectation,
E [er <hn>] —E [E [er (hn> ‘X” < E[€(n; X, D)]
< ~r({f € C:E(ni £, D) > E(mim, D)}) + E(nim, D)

=o(1/n).

If n.. = O(1), then clearly n,. = o(1/¢) as needed. Otherwise, since n, . is monotonic in &,

we must have n, . 1 oo as ¢ | 0. In particular, in this latter case we have

lime-n,.
e—0 ’

<lime - (1 —|—max{n >Nee—1:E [er <izn>} > 8})

e—0

=lime- max nl [E [er <ﬁn>} /e > 1}

e—0 n>ng —1

<lime- max nE [er (ﬁnﬂ /e

e—0 n>nge—1
=lim max nE [er <izn>} = limsupnE [er <izn>} =0,
n—oo

e=0n>ny—1

so that n, . = o(1/¢), as required. O

Theorem 6.2 implies that, if we have direct access to the prior distribution of X, regardless of

what that prior distribution 7 is, we can always construct a self-verifying active learning algorithm
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A, that has a guarantee of E [er (A, (e, D, 7))] < ¢ and its expected number of label requests
is o(1/e). This guarantee is not possible for prior-independent self-verifying active learning

algorithms.

6.6 Dependence on D in the Learning Algorithm

The dependence on D in the algorithm described in the proof of Theorem 6.2 is fairly weak, and
we can eliminate any direct dependence on D by replacing er (ﬁn> by a 1—¢/2 confidence upper
bound based on M, = Q) (6% log %) i.i.d. unlabeled examples X7, Xy, ..., X}, independent from
the examples used by the algorithm (e.g., set aside in a pre-processing step, where the bound is
calculated via Hoeffding’s inequality and a union bound over the values of n that we check,
of which there are at most O(1/¢)). Then we simply increase the value of n (starting at some

constant, such as 1) until
1 &L )
=Y w({feC: o) £h(X)}) <e/2
¢ =1

The expected value of the smallest value of n for which this occurs is o(1/¢). Note that this
only requires access to the prior 7, not the data distribution D (the budget-based algorithm A,
of [Hanneke, 2009] has no direct dependence on D); if desired for computational efficiency, this
dependence may also be estimated by a 1 — £/4 confidence upper bound based on 2 (8% log %)
independent samples of X values with distribution 7, where for each sample we simulate the
execution of A,(n) for that (simulated) target function in order to obtain the returned classifier.
In particular, note that no actual label requests to the oracle are required during this process of

estimating the appropriate label budget n, ., as all executions of A, are simulated.
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6.7 Inherent Dependence on 7 in the Sample Complexity

We have shown that for every prior 7, the sample complexity is bounded by a o(1/¢) function.
One might wonder whether it is possible that the asymptotic dependence on ¢ in the sample
complexity can be prior-independent, while still being o(1/¢). That is, we can ask whether
there exists a (m-independent) function s(¢) = o(1/¢) such that, for every =, there is a correct
w-dependent algorithm .4 achieving a sample complexity SC(A, e, D, ) = O(s(¢)), possibly
involving m-dependent constants. Certainly in some cases, such as threshold classifiers, this is
true. However, it seems this is not generally the case, and in particular it fails to hold for the
space of interval classifiers.

For instance, consider a prior 7 on the space C of interval classifiers, constructed as follows.
We are given an arbitrary monotonic g(¢) = o(1/e); since g(¢) = o(1/e), there must exist
(nonzero) functions ¢;(7) and g2(7) such that lim; ,o ¢1(¢) = 0, lim; o ¢2(i) = 0, and Vi €
N, g(q1(7)/27%1) < qo(i) - 2°; furthermore, letting (i) = max{q;(¢), ¢2(7) }, by monotonicity of
g we also have Vi € N, g(q(7)/2") < ¢(i) - 2%, and lim;_,, ¢(i) = 0. Then define a function
p(i) with ). p(i) = 1 such that p(i) > ¢(¢) for infinitely many 7 € N; for instance, this can
be done inductively as follows. Let gy = 1/2; for each i € N, if ¢(i) > «;_1, set p(i) = 0
and «; = «a;_1; otherwise, set p(i) = a;_; and «o; = «;_1/2. Finally, for each i € N, and each
JE{0, 1,2 =1} define m ({TF, . 100y ) = (/2

We let D be uniform on X = [0,1]. Then for each i € N s.t. p(i) > ¢(i), there is a
p(i) probability the target interval has width 27, and given this any algorithm requires o 2
expected number of requests to determine which of these 27 intervals is the target, failing which
the error rate is at least 27, In particular, letting £; = p(i) /2", any correct algorithm has sample
complexity at least o< p(7) - 2° for € = ;. Noting p(i) - 2° > q(i) - 2* > g(q(s)/2""1) > g(&;), this
implies there exist arbitrarily small values of ¢ > 0 for which the optimal sample complexity is

at least < g(&), so that the sample complexity is not o(g(¢)).

For any s(¢) = o(1/e), there exists a monotonic g(¢) = o(1/¢) such that s(¢) = o(g(e)).
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Thus, constructing 7 as above for this g, we have that the sample complexity is not o(g(¢)),
and therefore not O(s(e)). So at least for the space of interval classifiers, the specific o(1/¢)
asymptotic dependence on ¢ is inherently m-dependent. This argument also illustrates that the
o(1/e) result in Theorem 6.2 is essentially the strongest possible at this level of generality (i.e.,

without saying more about C, D, or 7).
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Chapter 7

Prior Estimation for Transfer Learning

Abstract

"We explore a transfer learning setting, in which a finite sequence of target concepts are sampled
independently with an unknown distribution from a known family. We study the total number of
labeled examples required to learn all targets to an arbitrary specified expected accuracy, focusing
on the asymptotics in the number of tasks and the desired accuracy. Our primary interest is
formally understanding the fundamental benefits of transfer learning, compared to learning each
target independently from the others. Our approach to the transfer problem is general, in the

sense that it can be used with a variety of learning protocols.

7.1 Introduction

Transfer learning reuses knowledge from past related tasks to ease the process of learning to
perform a new task. The goal of transfer learning is to leverage previous learning and experience
to more efficiently learn novel, but related, concepts, compared to what would be possible with-

out this prior experience. The utility of transfer learning is typically measured by a reduction in

Joint work with Jaime Carbonell and Steve Hanneke
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the number of training examples required to achieve a target performance on a sequence of re-
lated learning problems, compared to the number required for unrelated problems: i.e., reduced
sample complexity. In many real-life scenarios, just a few training examples of a new concept
or process is often sufficient for a human learner to grasp the new concept given knowledge of
related ones. For example, learning to drive a van becomes much easier a task if we have already
learned how to drive a car. Learning French is somewhat easier if we have already learned En-
glish (vs Chinese), and learning Spanish is easier if we know Portuguese (vs German). We are
therefore interested in understanding the conditions that enable a learning machine to leverage
abstract knowledge obtained as a by-product of learning past concepts, to improve its perfor-
mance on future learning problems. Furthermore, we are interested in how the magnitude of
these improvements grows as the learning system gains more experience from learning multiple

related concepts.

The ability to transfer knowledge gained from previous tasks to make it easier to learn a new
task can potentially benefit a wide range of real-world applications, including computer vision,
natural language processing, cognitive science (e.g., fMRI brain state classification), and speech
recognition, to name a few. As an example, consider training a speech recognizer. After training
on a number of individuals, a learning system can identify common patterns of speech, such as
accents or dialects, each of which requires a slightly different speech recognizer; then, given a
new person to train a recognizer for, it can quickly determine the particular dialect from only a
few well-chosen examples, and use the previously-learned recognizer for that particular dialect.
In this case, we can think of the transferred knowledge as consisting of the common aspects of
each recognizer variant and more generally the distribution of speech patterns existing in the
population these subjects are from. This same type of distribution-related knowledge transfer

can be helpful in a host of applications, including all those mentioned above.

Supposing these target concepts (e.g., speech patterns) are sampled independently from a

fixed population, having knowledge of the distribution of concepts in the population may often
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be quite valuable. More generally, we may consider a general scenario in which the target con-
cepts are sampled i.i.d. according to a fixed distribution. As we show below, the number of
labeled examples required to learn a target concept sampled according to this distribution may
be dramatically reduced if we have direct knowledge of the distribution. However, since in many
real-world learning scenarios, we do not have direct access to this distribution, it is desirable to be
able to somehow learn the distribution, based on observations from a sequence of learning prob-
lems with target concepts sampled according to that distribution. The hope is that an estimate
of the distribution so-obtained might be almost as useful as direct access to the true distribution
in reducing the number of labeled examples required to learn subsequent target concepts. The
focus of this paper is an approach to transfer learning based on estimating the distribution of
the target concepts. Whereas we acknowledge that there are other important challenges in trans-
fer learning, such as exploring improvements obtainable from transfer under various alternative
notions of task relatedness [Ben-David and Schuller, 2003, Evgeniou and Pontil, 2004], or alter-
native reuses of knowledge obtained from previous tasks [Thrun, 1996], we believe that learning
the distribution of target concepts is a central and crucial component in many transfer learning

scenarios, and can reduce the total sample complexity across tasks.

Note that it is not immediately obvious that the distribution of targets can even be learned
in this context, since we do not have direct access to the target concepts sampled according to
it, but rather have only indirect access via a finite number of labeled examples for each task; a
significant part of the present work focuses on establishing that as long as these finite labeled
samples are larger than a certain size, they hold sufficient information about the distribution over
concepts for estimation to be possible. In particular, in contrast to standard results on consistent
density estimation, our estimators are not directly based on the target concepts, but rather are
only indirectly dependent on these via the labels of a finite number of data points from each
task. One desideratum we pay particular attention to is minimizing the number of extra labeled

examples needed for each task, beyond what is needed for learning that particular target, so that
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the benefits of transfer learning are obtained almost as a by-product of learning the targets. Our
technique is general, in that it applies to any concept space with finite VC dimension; also, the
process of learning the target concepts is (in some sense) decoupled from the mechanism of
learning the concept distribution, so that we may apply our technique to a variety of learning
protocols, including passive supervised learning, active supervised learning, semi-supervised
learning, and learning with certain general data-dependent forms of interaction [Hanneke, 2009].
For simplicity, we choose to formulate our transfer learning algorithms in the language of active
learning; as we show, this problem can benefit significantly from transfer. Formulations for other
learning protocols would follow along similar lines, with analogous theorems; these results are
particularly interested when composed with the results on prior-dependent active learning from
the previous chapter.

Transfer learning is related at least in spirit to much earlier work on case-based and analog-
ical learning [Carbonell, 1983, 1986, Kolodner (Ed), 1993, Thrun, 1996, Veloso and Carbonell,
1993], although that body of work predated modern machine learning, and focused on symbolic
reuse of past problem solving solutions rather than on current machine learning problems such as
classification, regression or structured learning. More recently, transfer learning (and the closely
related problem of multitask learning) has been studied in specific cases with interesting (though
sometimes heuristic) approaches [Baxter, 1997, Ben-David and Schuller, 2003, Caruana, 1997,
Micchelli and Pontil, 2004, Silver, 2000]. This paper considers a general theoretical framework
for transfer learning, based on an Empirical Bayes perspective, and derives rigorous theoretical
results on the benefits of transfer. We discuss the relation of this analysis to existing theoretical

work on transfer learning below.

7.1.1 Outline of the paper

The remainder of the paper is organized as follows. In Section 7.2 we introduce basic notation

used throughout, and survey some related work from the existing literature. In Section 7.3, we
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describe and analyze our proposed method for estimating the distribution of target concepts, the

key ingredient in our approach to transfer learning, which we then present in Section 7.4.

7.2 Definitions and Related Work

First, we state a few basic notational conventions. We denote N = {1,2,...} and Ny = N U
{0}. For any random variable X, we generally denote by Py the distribution of X (the induced
probability measure on the range of X), and by Pxy the regular conditional distribution of X

given Y. For any pair of probability measures (i1, i2 on a measurable space (€2, F), we define

1 = pzll = sup | (A) = p2(A)].
AeF

Next we define the particular objects of interest to our present discussion. Let © be an
arbitrary set (called the parameter space), (X, By ) be a Borel space [Schervish, 1995] (where
X is called the instance space), and D be a fixed distribution on X (called the data distribution).
For instance, © could be R" and X could be R™, for some n,m € N, though more general
scenarios are certainly possible as well, including infinite-dimensional parameter spaces. Let C
be a set of measurable classifiers h : X — {—1,+1} (called the concept space), and suppose
C has VC dimension d < oo [Vapnik, 1982] (such a space is called a VC class). C is equipped
with its Borel o-algebra 3, induced by the pseudo-metric p(h, g) = D({z € X : h(x) # g(x)}).
Though all of our results can be formulated for general D in slightly more complex terms, for
simplicity throughout the discussion below we suppose p is actually a metric, in thatany h, g € C
with h # g have p(h, g) > 0; this amounts to a topological assumption on C relative to D.

For each § € O, 7y is a distribution on C (called a prior). Our only (rather mild) assumption
on this family of prior distributions is that {7y : § € O} be totally bounded, in the sense that
Ve > 0, J finite ©. C O s.t. VO € ©,30. € O, with ||my — 7. || < €. See [Devroye and Lugosi,
2001] for examples of categories of classes that satisfy this.

The general setup for the learning problem is that we have a true parameter value 6, € ©, and

112



a collection of C-valued random variables {h}, }en pco, Where for a fixed 0 € © the {h})}Hen
variables are i.i.d. with distribution 7.

The learning problem is the following. For each 6 € O, there is a sequence
Zt(e) — {(Xth El(@)), (Xt27 YtQ(@)), .. ‘}7

where {X}; }+en are i.i.d. D, and for each ¢, € N, Y},;(0) = hj,(Xy). For k € N we denote by
Zu(0) = {(Xu1,Yu(0)),. .., (X, Yie(0))}. Since the Y3;(0) are the actual hjy(X};) values, we
are studying the non-noisy, or realizable-case, setting.

The algorithm receives values € and 7" as input, and for each ¢ € {1,2,...,T} in increas-
ing order, it observes the sequence X;1, X;o, ..., and may then select an index 7, receive label
Yy, (6,), select another index o, receive label Y};, (6, ), etc. The algorithm proceeds in this fash-
ion, sequentially requesting labels, until eventually it produces a classifier hy. 1t then increments
t and repeats this process until it produces a sequence ﬁl, fzg, cee hr, at which time it halts. To be
called correct, the algorithm must have a guarantee that V0, € O, Vt < T E [,0 (ﬁt, hfg*ﬂ < g,
for any values of 7' € N and £ > 0 given as input. We will be interested in the expected number
of label requests necessary for a correct learning algorithm, averaged over the 7' tasks, and in
particular in how shared information between tasks can help to reduce this quantity when direct

access to 0, is not available to the algorithm.

7.2.1 Relation to Existing Theoretical Work on Transfer Learning

Although we know of no existing work on the theoretical advantages of transfer learning for
active learning, the existing literature contains several analyses of the advantages of transfer
learning for passive learning. In his classic work, Baxter ([Baxter, 1997] section 4) explores a
similar setup for a general form of passive learning, except in a full Bayesian setting (in contrast
to our setting, often referred to as “empirical Bayes,” which includes a constant parameter 6, to be
estimated from data). Essentially, [Baxter, 1997] sets up a hierarchical Bayesian model, in which

(in our notation) 6, is a random variable with known distribution (hyper-prior), but otherwise the
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specialization of Baxter’s setting to the pattern recognition problem is essentially identical to our
setup above. This hyper-prior does make the problem slightly easier, but generally the results
of [Baxter, 1997] are of a different nature than our objectives here. Specifically, Baxter’s results
on learning from labeled examples can be interpreted as indicating that transfer learning can
improve certain constant factors in the asymptotic rate of convergence of the average of expected
error rates across the learning problems. That is, certain constant complexity terms (for instance,
related to the concept space) can be reduced to (potentially much smaller) values related to 7y, by
transfer learning. Baxter argues that, as the number of tasks grows large, this effectively achieves
close to the known results on the sample complexity of passive learning with direct access to 6,.
A similar claim is discussed by Ando and Zhang [Ando and Zhang, 2004] (though in less detail)

for a setting closer to that studied here, where 6, is an unknown parameter to be estimated.

There are also several results on transfer learning of a slightly different variety, in which,
rather than having a prior distribution for the target concept, the learner initially has several
potential concept spaces to choose from, and the role of transfer is to help the learner select from
among these concept spaces [Ando and Zhang, 2005, Baxter, 2000]. In this case, the idea is
that one of these concept spaces has the best average minimum achievable error rate per learning
problem, and the objective of transfer learning is to perform nearly as well as if we knew which
of the spaces has this property. In particular, if we assume the target functions for each task all
reside in one of the concept spaces, then the objective of transfer learning is to perform nearly
as well as if we knew which of the spaces contains the targets. Thus, transfer learning results
in a sample complexity related to the number of learning problems, a complexity term for this
best concept space, and a complexity term related to the diversity of concept spaces we have to
choose from. In particular, as with [Baxter, 1997], these results can typically be interpreted as
giving constant factor improvements from transfer in a passive learning context, at best reducing
the complexity constants, from those for the union over the given concept spaces, down to the

complexity constants of the single best concept space.
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In addition to the above works, there are several analyses of transfer learning and multitask
learning of an entirely different nature than our present discussion, in that the objectives of the
analysis are somewhat different. Specifically, there is a branch of the literature concerned with
task relatedness, not in terms of the underlying process that generates the target concepts, but
rather directly in terms of relations between the target concepts themselves. In this sense, several
tasks with related target concepts should be much easier to learn than tasks with unrelated target
concepts. This is studied in the context of kernel methods by [Evgeniou and Pontil, 2004, Evge-
niou, Micchelli, and Pontil, 2005, Micchelli and Pontil, 2004], and in a more general theoretical
framework by [Ben-David and Schuller, 2003]. As mentioned, our approach to transfer learning
is based on the idea of estimating the distribution of target concepts. As such, though interesting
and important, these notions of direct relatedness of target concepts are not as relevant to our

present discussion.

As with [Baxter, 1997], the present work is interested in showing that as the number of
tasks grows large, we can effectively achieve a sample complexity close to that achievable with
direct access to #,. However, in contrast, we are interested in a general approach to transfer
learning and the analysis thereof, leading to concrete results for a variety of learning protocols
such as active learning and semi-supervised learning. In particular, our analysis of active learning
reveals the interesting phenomenon that transfer learning can sometimes improve the asymptotic

dependence on ¢, rather than merely the constant factors as in the analysis of [Baxter, 1997].

Our work contrasts with [Baxter, 1997] in another important respect, which significantly
changes the way we approach the problem. Specifically, in Baxter’s analysis, the results (e.g.,
[Baxter, 1997] Theorems 4, 6) regard the average loss over the tasks, and are stated as a function
of the number of samples per task. This number of samples plays a dual role in Baxter’s analysis,
since these samples are used both by the individual learning algorithm for each task, and also for
the global transfer learning process that provides the learners with information about 6¢,. Baxter

is then naturally interested in the rates at which these losses shrink as the sample sizes grow
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large, and therefore formulates the results in terms of the asymptotic behavior as the per-task
sample sizes grow large. In particular, the results of [Baxter, 1997] involve residual terms which

become negligible for large sample sizes, but may be more significant for smaller sample sizes.

In our work, we are interested in decoupling these two roles for the sample sizes; in partic-
ular, our results regard only the number of tasks as an asymptotic variable, while the number of
samples per task remains bounded. First, we note a very practical motivation for this: namely,
non-altruistic learners. In many settings where transfer learning may be useful, it is desirable
that the number of labeled examples we need to collect from each particular learning problem
never be significantly larger than the number of such examples required to solve that particular
problem (i.e., to learn that target concept to the desired accuracy). For instance, this is the case
when the learning problems are not all solved by the same individual (or company, etc.), but
rather a coalition of cooperating individuals (e.g., hospitals sharing data on clinical trials); each
individual may be willing to share the data they used to learn their particular concept, in the
interest of making others’ learning problems easier; however, they may not be willing to collect
significantly more data than they themselves need for their own learning problem. We should
therefore be particularly interested in studying transfer as a by-product of the usual learning pro-
cess; failing this, we are interested in the minimum possible number of extra labeled examples

per task to gain the benefits of transfer learning.

The issue of non-altruistic learners also presents a further technical problem in that the in-
dividuals solving each task may be unwilling to alter their method of gathering data to be more
informative for the transfer learning process. That is, we expect the learning process for each
task is designed with the sole intention of estimating the target concept, without regard for the
global transfer learning problem. To account for this, we model the transfer learning problem in
a reduction-style framework, in which we suppose there is some black-box learning algorithm to
be run for each task, which takes a prior as input and has a theoretical guarantee of good perfor-

mance provided the prior is correct. We place almost no restrictions whatsoever on this learning
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algorithm, including the manner in which it accesses the data. This allows remarkable generality,
since this procedure could be passive, active, semi-supervised, or some other kind of query-based
strategy. However, because of this generality, we have no guarantee on the information about 6,
reflected in the data used by this algorithm (especially if it is an active learning algorithm). As
such, we choose not to use the label information gathered by the learning algorithm for each
task when estimating the 6,, but instead take a small number of additional random labeled ex-
amples from each task with which to estimate #,. Again, we want to minimize this number of
additional samples per task; indeed, in this work we are able to make due with a mere constant
number of additional samples per task. To our knowledge, no result of this type (estimating 6,
using a bounded sample size per learning problem) has previously been established at the level

of generality studied here.

7.3 Estimating the Prior

The advantage of transfer learning in this setting is that each learning problem provides some
information about 6,, so that after solving several of the learning problems, we might hope to be
able to estimate 6,. Then, with this estimate in hand, we can use the corresponding estimated
prior distribution in the learning algorithm for subsequent learning problems, to help inform
the learning process similarly to how direct knowledge of #, might be helpful. However, the
difficulty in approaching this is how to define such an estimator. Since we do not have direct
access to the h; values, but rather only indirect observations via a finite number of example
labels, the standard results for density estimation from i.i.d. samples cannot be applied.

The idea we pursue below is to consider the distributions on Z(6,). These variables are di-
rectly observable, by requesting the labels of those examples. Thus, for any finite £ € N, this dis-
tribution is estimable from observable data. That is, using the i.i.d. values Z4(6,), ..., Zu4(0,),
we can apply standard techniques for density estimation to arrive at an estimator of Pz,, ¢,). Then

the question is whether the distribution IPz,, (5, ) uniquely characterizes the prior distribution 7, :

117



that is, whether y, is identifiable from Pz, o,).

+

As an example, consider the space of half-open interval classifiers on [0,1]: C = {1,

0 <a<b< 1}, where Ilib)(x) = +1ifa < x < band —1 otherwise. In this case, 7y, is
not necessarily identifiable from [Pz, (¢, ; for instance, the distributions 7, and 7y, characterized
by 76, ({1501)}) = 70, ({155.0)}) = 1/2 and o, ({155, 9 }) = 7e, ({17 5y }) = 1/2 are not dis-
tinguished by these one-dimensional distributions. However, it turns out that for this half-open
intervals problem, my, is uniquely identifiable from Pz, ,); for instance, in the ¢, vs 0, sce-

nario, the conditional probability Py, (s,.vis(0,)/(x: ) (1, +1)|(1/4, 3/4)) will distinguish

i

2

7, from my,, and this can be calculated from Pz, s,). The crucial element of the analysis below
is determining the appropriate value of % to uniquely identify 7y, from Pz, (4,) in general. As we
will see, k& = d (the VC dimension) is always sufficient, a key insight for the results that follow.
We will also see this is not the case for any k < d.

To be specific, in order to transfer knowledge from one task to the next, we use a few labeled
data points from each task to gain information about 6,. For this, for each task ¢, we simply take

the first d data points in the Z,(6,) sequence. That is, we request the labels

}/tl (9*)7 KQ(Q*)u tee 73/td<9*)

and use the points Z;,(,) to update an estimate of 6,.

The following result shows that this technique does provide a consistent estimator of 7y, .
Again, note that this result is not a straightforward application of the standard approach to con-
sistent estimation, since the observations here are not the hj, variables themselves, but rather a
number of the Y;;(0,) values. The key insight in this result is that 7y, is uniquely identified by the
joint distribution Pz, , 4, over the first d labeled examples; later, we prove this is not necessarily
true for Pz, (5,) for values k < d. This identifiability result is stated below in Corollary 7.6;
as we discuss in Section 7.3.1, there is a fairly simple direct proof of this result. However,
for our purposes, we will actually require the stronger condition that any § € © with small

||PZtk(9) — Pgtk(g*)n also has small ||7T9 — Ty,

. This stronger requirement adds to the complexity
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of the proofs. The results in this section are purely concerned with relating distances in the space
of Pz,,) distributions to the corresponding distances in the space of 7y distributions; as such,
they are not specific to active learning or other learning protocols, and hence are of independent
interest.

Theorem 7.1. There exists an estimator éTg* = éT(Zld(Q*), oy Zrq(0,)), and functions R :
Ng x (0,1] — [0,00) and 6 : Ny x (0,1] — [0, 1], such that for any o > 0, Th_I};O R(T,«a) =
lim §(7T, «) = 0 and for any T' € Ny and 0, € O,

T—o0
P (Hwém — .|| > R(T, a)) < (T, ) < a.

One important detail to note, for our purposes, is that R(T, «) is independent from 6,, so
that the value of R(7, «) can be calculated and used within a learning algorithm. The proof of
Theorem 7.1 will be established via the following sequence of lemmas. Lemma 7.2 relates dis-
tances in the space of priors to distances in the space of distributions on the full data sets. In turn,
Lemma 7.3 relates these distances to distances in the space of distributions on a finite number of
examples from the data sets. Lemma 7.4 then relates the distances between distributions on any
finite number of examples to distances between distributions on d examples. Finally, Lemma 7.5
presents a standard result on the existence of a converging estimator, in this case for the distri-
bution on d examples, for totally bounded families of distributions. Tracing these relations back,
they relate convergence of the estimator for the distribution of d examples to convergence of the
corresponding estimator for the prior itself.

Lemma 7.2. Forany 0,0’ € © andt € N,

170 = 7or | = [Pz, = Pzyor) -
Proof. Fix 0,6 € ©,t € N. Let X = {Xy1, Xpo,...}, Y(0) = {Y;1(0),Y:2(0), ...}, and for
k€ Nlet Xy = {Xy,..., Xu}. and Yi(0) = {Yu(0),...,Y(0)}. For h € C, let cx(h) =
{(Xer, M( X)), (Xia, M(Xi2)), -}
For h,g € C, define px(h,g) = lim_ LS 1[A(Xy) # g(Xy)] (f the limit exists), and
px,.(h,g) = %Zle 1[h(X4) # 9(Xy)]. Note that since C has finite VC dimension, so does

119



the collection of sets {{z : h(z) # g(z)} : h,g € C}, so that the uniform strong law of
large numbers implies that with probability one, Vh, g € C, px(h, g) exists and has px(h, g) =
p(h, g) [Vapnik, 1982].

Consider any 0,0" € ©, and any A € B. Then since B is the Borel o-algebra induced by p,
any h ¢ AhasVg € A, p(h,g) > 0. Thus, if px(h, g) = p(h, g) forall h,g € C, then Vh ¢ A,

Vg € A px(h,g) = p(h,g) >0 = Vg € A, cx(h) # cx(g) = ex(h) ¢ cx(A).
This implies cx ' (cx(A)) = A. Under these conditions,
Pz, o)x(cx(A)) = mo(cx ' (ex(A))) = mo(A),

and similarly for 6'.
Any measurable set C' for the range of Z,(0) can be expressed as C' = {cz(h) : (h,z) € C'}

for some appropriate C' € B ® BY. Letting CL = {h : (h,z) € C"}, we have

Pz,)(C) = /We(cg%l(cx(oé)))PX(d@ = /WG(C;%)PX(M) = Py, 3 (C").

Likewise, this reasoning holds for ’. Then

IPz0) — Pz.on |l = Pz, % — Pz, w0l
= sun | [(mlCl) — mo(Co)Px(a0)
O BB
S /Sup |7T9(A) — 7T9/(A)|Px(dj) = ||7T9 — 7T9/||.
ACB

Since hj, and X are independent, for A € B, mg(A) = Py, (A) = P, (A)Px(X) = Pz, 50 (AX

ES

X'*°). Analogous reasoning holds for /.. Thus, we have

o — Tl = Bz (- X X) = P, (- x X))

< Pezpx) — P, ol = [IPz6) — Pzion -
Combining the above, we have ||Pz, ) — Pz, || = ||70 — mor||- O
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Lemma 7.3. There exists a sequence ry, = o(1) such that Vt, k € N, V0,6 € ©,
IPz0) — Payonll < llmo — morll < Pzi0) — Pzon |l + 7

Proof. The left inequality follows from Lemma 7.2 and the basic definition of || - ||, since

Pz,.0) (") = Pz, (- x (X x {=1,+1})>), so that
1Pz, — Pzl < IPz,0) — Pz,on |l = |lmg — 7o ||.

The remainder of this proof focuses on the right inequality. Fix 6,6’ € ©, let v > 0, and let

B C (X x {—1,+1})> be a measurable set such that
170 = 7o || = [[Pz.0) = Pyl < Pz(0)(B) = Pz, 0)(B) +7-

Let A be the collection of all measurable subsets of (X x {—1, +1})> representable in the form
A’ x (X x {—1,+1})>, for some measurable A’ C (X x {—1,+1})* and some k € N. In
particular, since A is an algebra that generates the product o-algebra, Carathéodory’s extension
theorem [Schervish, 1995] implies that there exist disjoint sets {A;};en in A such that B C

UieN A; and

Pz,0)(B) — Pz,0)(B) < Y _Pz0)(A) — Y Pz (A) +7.

1€EN €N

Additionally, as these sums are bounded, there must exist n € N such that

szt(o) (A;) <+ szt(e)(fli),

1€EN =1

so that
D Pz (A) =D Pzen(A) <7+ > _Pze(A) — Y Pz (A)
€N 1€N =1 i=1
=7+ Pz (U Az’) — Pz, ) (U Ai) .
=1 i=1
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AsJl_, A; € A, thereexists &’ € N and measurable A’ C (X x{—1,+1})* suchthat|J]_, A; =
A" x (X x {—1,+1}), and therefore

Pz.) (U Ai) — Pz (U Ai) =Pz,,.0)(A) =Pz, 0)(4)
i=1

i=1

<Pz 0) = Pzyionll < Him [Pz, 0) = Pz, 0

In summary, we have |1y — 7/ || < limgo0 [|Pz,,0) — Pz, + 37. Since this is true for an

arbitrary v > 0, taking the limit as v — 0 implies
170 = morl| < Tim [Pz, 8) — Pz, 00|
In particular, this implies there exists a sequence 7 (6,6) = o(1) such that

VE €N, [[mg — mo|| < |[Pz,.0) = Pzyion]l + r4(0,6").

This would suffice to establish the upper bound if we were allowing 7 to depend on the par-
ticular € and 6’. However, to guarantee the same rates of convergence for all pairs of parameters
requires an additional argument. Specifically, let v > 0 and let ©., denote a minimal subset of ©
such that, V6 € ©, 30, € O, s.t. |1y — mg, || < 7: thatis, a minimal y-cover. Since [©,| < oo
by assumption, defining () = maxgoco, ri(0,0'), we have r(y) = o(1). Furthermore, for
any 0,0 € ©, letting 0., = argming.cq_||mg — mor || and 6/, = argming,cq_ || — 7o~ ||, we have

(by triangle inequalities)

g — 7o/ || < llmo — 7o, || + 7o, — 7o, || + [|70;, — 7o ||

<2y +76(7) + [Pz, — Pziorll

By triangle inequalities and the left inequality from the lemma statement (established above), we
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also have

IPz,.0,) — Pzl
<Pz, — Pzuo) | + IPz0) — Pziionll + Pz — Pzuonll
< 7w, — moll + [P z,0) — Pz,pon || + 7o — e ||

<27+ [Pz, 0 — Pz, 01-

Defining r, = inf,~¢ (4 + ri(7)), we have the right inequality of the lemma statement, and

since () = o(1) for each v > 0, we have r, = o(1). O

Lemma 7.4. Vt, k € N, V0,0 € ©,

IP2,00) — Paon | < 4+ 224 [P, 0 — Py |

Proof. Fix any t € N, and let X = {X}, Xyo,...} and Y(0) = {Y}1(0),Y2(0), ...}, and for
k € Nlet Xk = {th, Ce ,th} and Yk(e) = {Yzl<9), e ,sz(9>}
If k <d, thenPz, (5 (-) = Pz, 0)(- X (X x {=1,+1})7), so that

HPZtk(g) - Pztk(a’)H < ”]P)th(@ - ]P)th(@')H?

and therefore the result trivially holds.

Now suppose k > d. For a sequence z and / C N, we will use the notation z; = {z; : i € I}.
Note that, for any & > d and z* € X*, there is a sequence (z*) € {—1,+1}"* such that no
h € C has h(z*) = y(z*) (i.e., Vh € C, Ji < k s.t. h(zF) # 3;(z%)). Now suppose k > d and
take as an inductive hypothesis that there is a measurable set A* C X'*° of probability one with
the property that Vz € A*, for every finite I C N with |I| > d, for every § € {—1,+1}* with

\gr — y(@)]1/2 < k-1,

Py, o), (Ur|Z1) — Py, oy, (Ur1Z1) |

S 2 X o [PYaa(5170) — Prycoopa(7170)]
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This clearly holds for ||g; — %(Z;)|[1/2 = 0, since Py, ), (¥|Z;) = 0 in this case, so this
will serve as our base case in the inductive proof. Next we inductively extend this to the value
k > 0. Specifically, let A7 _, be the A* guaranteed to exist by the inductive hypothesis, and fix
any z € A",y € {—1,+1}*, and finite I C N with |I| > d and ||g; — y(Z)|[1/2 = k. Leti € I
be such that §; # 9;(7;), and let §’ € {—1,+1} have §; = y; for every j # i, and g = —¥;.
Then

Py, @, (0r1Z1) = Py, oy 010 0 Unad 1Zry) — Pyox, (07120), (7.1)

and similarly for ¢’. By the inductive hypothesis, this means

Py, )%, (Ur|Z1) — Py, 0%, (711%1)]
< ‘Pvz\m @O TN TN ) = Py 00150 G0 170 ) ’
+ Py oy, (T5171) — Py onpx, (97171) |

< 9k ma P 7T 0) — Po o ) .
< gde{—l,—i-l)}(d,DEId‘ Yd(G)\Xd(y ‘ D) Yd(G)IXd(?J | D)‘

Therefore, by the principle of induction, this inequality holds for all £ > d, for every = € A*,
gy € {—1,+1}°, and finite I C N, where A* has D>-probability one.

In particular, we have that for 0,0’ € ©,
IPz..0) — Pz o)l

<2'E P 7" 1X%) — Py, onix, (77X
= Lke?—l?iuk‘ V()% (71 X) Y05 ("] k)@

< 2*E P 11X D) — Py o, (74X
> Ljde{—l,—i-{?da,)D(e{l ..... k}d} va(0) x4 (91 Xp) Y00 %4 (7] D)|

<2 Z E [|Py, o). (771XD) — Py a01x, (71X0)|] -

gte{—-1,+1}¢ De{1,..., }d

Exchangeability implies this is at most

2 Z Z E [|Py )%, (571Xa) — Pyonx. (571%a) ]

gie{—-1,+1}¢ De{1,...,

2k+d.d ~d _ , ~d
<27 gdeg?ﬁl}ﬁ [Py a0y (5°1Xa) — Py gqoni, (5% [] -
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To complete the proof, we need only bound this value by an appropriate function of ||Pz, ) —

Pz,,0]|- Toward this end, suppose
E [|Py, )%, (771Xa) — Py, onx, (591Xa)|] > €,
for some 7j¢. Then either
P (Py,0)x, (571Xa) — Py oz, (571Xa) > €/4) > e/4,

or
P (Py 0%, (571Xa) — Pyyo)x, (5%1Xa) > €/4) > /4.

For which ever is the case, let A, denote the corresponding measurable subset of X%, of proba-

bility at least £ /4. Then

IPz,.0) — Pz || = |Pzu0)(Ae X {§7}) — Pz,u01(Ae X {7})]

> (c/4)Py,(A.) > £2/16.

Therefore,

E [[Py, o, (571%a) — Pryonix, (§*1Xa)|] < 4\/ P z,000) = Pzucon

which means

Yhtdy.d ~d _ i
27k gde?_l?indE [Py, (571%a) — Py yorx, (591Xa) ]

<4. 22’f+dkd\/ IPz,.00) — Pz,q0n |-
[

The following lemma is a standard result on the existence of converging density estima-
tors for totally bounded families of distributions. For our purposes, the details of the estimator
achieving this guarantee are not particularly important, as we will apply the result as stated. For

completeness, we describe a particular estimator that does achieve the guarantee after the lemma.
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Lemma 7.5. [Devroye and Lugosi, 2001, Yatracos, 1985] Let P = {py : 6 € O} be a totally
bounded family of probability measures on a measurable space (2, F), and let {W(0)}+enoco
be Q-valued random variables such that {W;(0) }1en are i.i.d. py for each § € ©. Then there
exists an estimator Org, = Op(W1(0,), ..., Wr(0,)) and functions Rp : Ny x (0,1] = [0, 00)
and 6p : Ny x (0,1] = [0, 1] such that Vo > 0, limg_,o Rp(T, ) = limyp_,o 0p(T, ) = 0, and
VO, € ©and T € Ny,

P (lps,,, —po.ll > Bp(T,0)) < 3p(T.0) < .

In many contexts (though certainly not all), even a simple maximum likelihood estimator
suffices to supply this guarantee. However, to derive results under the more general condi-
tions we consider here, we require a more involved method: specifically, the minimum dis-
tance skeleton estimate explored by [Devroye and Lugosi, 2001, Yatracos, 1985], specified as
follows. Let ©. C © be a minimal-cardinality e-cover of O: that is, a minimal-cardinality sub-
set of © such that V6 € ©, 30. € O, with ||ps. — pg|| < €. For each 0,6 € O, let Agy
be a set in F maximizing pg(Agpe) — po(Ase ), and let A, = {Agyp : 0,0 € O.}, known
as a Yatracos class. Finally, for A € F, let pp(A) = T~ S0 1,(W,(6,)). The mini-
mum distance skeleton estimate is 079, = argmingcg_sup sc 4. [Po(A) — pr(A)|. The reader
is referred to [Devroye and Lugosi, 2001, Yatracos, 1985] for a proof that this method satis-
fies the guarantee of Lemma 7.5. In particular, if €7 is a sequence decreasing to 0 at a rate

such that T~ !log(|©.,|) — 0, and dr is a sequence bounded by « and decreasing to 0 with

or = w(er + /T 10g(|O.,|)), then the result of [Devroye and Lugosi, 2001, Yatracos, 1985],

combined with Markov’s inequality, implies that to satisfy the condition of Lemma 7.5, it suffices

to take Rp(T,a) = 6, (3€T + /8T 1log(2[0.,|* v 8)) and dp(T, ) = o0r. For instance,
er = 2inf {5 > 0:log(|©]) < \/T} and 67 = a A (/e + T~1/8) suffice.

We are now ready for the proof of Theorem 7.1

Theorem 7.1. For ¢ > 0, let ©. C O be a finite subset such that V8 € O, 30, € O, with

lmg. — mg|| < € this exists by the assumption that {my : § € O} is totally bounded. Then
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Lemma 7.3 implies that V§ € O, 30, € O, with [Pz, 4.) — Pz, < |mo. — 7l < &,
so that {Pz,,5.) : . € ©.} is a finite e-cover of {Pz, ) : § € ©}. Therefore, {Pz,, :
6 € O} is totally bounded. Lemma 7.5 then implies that there exists an estimator 9T9* =

Or(Z14(0y), - .., Zraq(0,)) and functions Ry : Ny x (0, 1] — [0,00) and 6,4 : Ng x (0, 1] — [0, 1]
such that Voo > 0, limp o Ry(T, @) = limp_, 64(T, ) = 0, and VO, € © and T' € Ny,

P (”PZ(TH)d(éTe*)\éTe* - IP)Z(TH)d(g*) > Rd(T’ a)) = 5d<T’ a> < a. (7.2)

Defining
R(T, ) = min (m 4. oPHdpd SR(T a)) :
S

and (T, o) = 64(T, ), and combining (7.2) with Lemmas 7.4 and 7.3, we have
P (||7rém — 7o || > R(T, a)> <§(T,0) < a

Finally, note that lim 7, = 0 and lim Ry(7, ) = 0 imply that lim R(T,«) = 0. O
k—o0 T—o0 T—o0

7.3.1 Identifiability from d Points

Inspection of the above proof reveals that the assumption that the family of priors is totally
bounded is required only to establish the estimability and bounded minimax rate guarantees. In
particular, the implied identifiability condition is, in fact, always satisfied, as stated formally in
the following corollary.

Corollary 7.6. For any priors 7y, mo on C, if b} ~ m;, Xy, ..., Xy are i.i.d. D independent from
hy, and Zg(i) = {(X1,h;(X1)), ..., (Xq, hj(Xa))} fori € {1,2}, then Py,1y = Py,0) =

T = To.

Proof. The described scenario is a special case of our general setting, with © = {1, 2}, in which
case Pz,;) = Pz,,5). Thus, if Pz,q) = Pz, ), then Lemma 7.4 and Lemma 7.3 combine to

imply that |7, — m2|| < infrenrr = 0. O
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Since Corollary 7.6 is interesting in itself, it is worth noting that there is a simple direct proof
of this result. Specifically, by an inductive argument based on the observation (7.1) from the
proof of Lemma 7.4, we quickly find that for any & € N, Pz, ,) is identifiable from Pz, ,,).
Then we merely recall that Pz, ) is always identifiable from {Pz,, s,y : & € N} [Kallenberg,

2002], and the argument from the proof of Lemma 7.2 shows 7y, is identifiable from Pz, ,).

It is natural to wonder whether identifiability of 7y, from Pz, ,) remains true for some
smaller number of points £ < d, so that we might hope to create an estimator for 7y, based on
an estimator for Pz, (5,). However, one can show that d is actually the minimum possible value
for which this remains true for all D and all families of priors. Formally, we have the following

result, holding for every VC class C.

Theorem 7.7. There exists a data distribution D and priors 71, 75 on C such that, for any pos-
itive integer k < d, if hf ~ m;, Xi,..., Xy are i.i.d. D independent from h}, and Z(i) =
{(Xl, h;k(Xl)), ceey (Xk, h;k(Xk))}fO}’Z € {1, 2}, then ]P)Zk(l) = sz(g) but T 7é 9.

Proof. Note that it suffices to show this is the case for & = d — 1, since any smaller k is a
marginal of this case. Consider a shatterable set of points Sy = {x1,z3,...,24} C X, and let
D be uniform on Sy. Let C[S,] be any 2¢ classifiers in C that shatter Sy. Let 7; be the uniform
distribution on C[S]. Now let Sy 1 = {z1,...,24 1} and C[S;_1] C C[Sy] shatter S; ; with
the property that Vh € C[S4_1], h(zq) = H;l;} h(z;). Let mo be uniform on C[S;_1]. Now

for any & < d and distinct indices t1,...,tx € {1,...,d}, {h(zy),..., hi(z,)} is distributed

~~~~~

which implies Pz, 1) = Pz, ,(2). However, 7 is clearly different from 7, since even the sizes

of the supports are different. [
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7.4 Transfer Learning

In this section, we look at an application of the techniques from the previous section to transfer
learning. Like the previous section, the results in this section are general, in that they are ap-
plicable to a variety of learning protocols, including passive supervised learning, passive semi-
supervised learning, active learning, and learning with certain general types of data-dependent
interaction (see [Hanneke, 2009]). For simplicity, we restrict our discussion to the active learning
formulation; the analogous results for these other learning protocols follow by similar reasoning.

The result of the previous section implies that an estimator for 6, based on d-dimensional joint
distributions is consistent with a bounded rate of convergence R. Therefore, for certain prior-
dependent learning algorithms, their behavior should be similar under Ty, O their behavior
under 7y, .

To make this concrete, we formalize this in the active learning protocol as follows. A prior-
dependent active learning algorithm A takes as inputs £ > 0, D, and a distribution 7 on C. It
initially has access to X1, X, ... i.i.d. D; it then selects an index ¢; to request the label for,
receives Y;, = h*(Xj,), then selects another index is, etc., until it eventually terminates and
returns a classifier. Denote by Z = {(X1, h*(X1)), (X2, h*(X5)),...}. To be correct, A must
guarantee that for h* ~ m, Ve > 0, E [p(A(e, D, ), h*)] < e. We define the random variable
N(A, f,e,D, ) as the number of label requests .4 makes before terminating, when given &, D,
and 7 as inputs, and when h* = f is the value of the target function; we make the particular
data sequence Z the algorithm is run with implicit in this notation. We will be interested in the
expected sample complexity SC(A,e,D,n) = E[N(A, h*,e,D, ).

We propose the following algorithm A, for transfer learning, defined in terms of a given
correct prior-dependent active learning algorithm A,. We discuss interesting specifications for
A, in the next section, but for now the only assumption we require is that for any ¢ > 0 and
D, there is a value s. < oo such that for every 7 and f € C, N(A,, f,e,D,7) < s.; this

is a very mild requirement, and any active learning algorithm can be converted into one that
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satisfies this without significantly increasing its sample complexities for the priors it is already
good for [Balcan, Hanneke, and Vaughan, 2010]. We additionally denote by m. = %i In (%)
and B(0,v) ={0' € © : ||mg — 7o || < 7}

Algorithm 1 A, (T, ¢): an algorithm for transfer learning, specified in terms of a generic subrou-

tine A,.
fort=1,2,...,Tdo

Request labels Yy (6,), ..., Yia(6s)
if R(t—1,5/2) > /8 then

Request labels Yi(a41)(04), - - -, Yim. (6)

Take fzt asany h € Cs.t. Vi < mg, h(Xy;) = Yu(0,)
else

Let 6,9, € B (é(t_l)g*, R(t—1, 5/2)) be such that

SC(Aq,e/4,D,mg,, ) < ~ min SC(A,,e/4,D,mg) + 1/t
* 0€B(0;—1)0, R(t—1,6/2))

Run A,(g/4,D, mg,, ) with data sequence Z;(0,) and let h, be the classifier it returns

end if

end for

Recall that é(t_l)g*, which is defined by Theorem 7.1, is a function of the labels requested
on previous rounds of the algorithm; R(¢t — 1,£/2) is also defined by Theorem 7.1, and has no
dependence on the data (or on 6,). The other quantities referred to in Algorithm 1 are defined
just prior to Algorithm 1. We suppose the algorithm has access to the value SC(A,,e/4,D, mp)
for every # € ©. This can sometimes be calculated analytically as a function of 6, or else can
typically be approximated via Monte Carlo simulations. In fact, the result below holds even if

SC'is merely an accessible upper bound on the expected sample complexity.
Theorem 7.8. The algorithm A, is correct. Furthermore, if St(¢) is the total number of label
requests made by A (T, ¢), then lim sup w < SC(A,,e/4,D,my,) + d.

T—o0

The implication of Theorem 7.8 is that, via transfer learning, it is possible to achieve al-
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most the same long-run average sample complexity as would be achievable if the target’s prior
distribution were known to the learner. We will see in the next section that this is sometimes
significantly better than the single-task sample complexity. As mentioned, results of this type for
transfer learning have previously appeared when A, is a passive learning method [Baxter, 1997];
however, to our knowledge, this is the first such result where the asymptotics concern only the
number of learning tasks, not the number of samples per task; this is also the first result we know

of that is immediately applicable to more sophisticated learning protocols such as active learning.

The algorithm A, is stated in a simple way here, but Theorem 7.8 can be improved with
some obvious modifications to .4,. The extra “+d” in Theorem 7.8 is not actually necessary,
since we could stop updating the estimator 6,9, (and the corresponding R value) after some o(T)
number of rounds (e.g., V/T), in which case we would not need to request Y3 (6), ..., Yia(6y)
for ¢ larger than this, and the extra d - o(T") number of labeled examples vanishes in the average
as T' — oo. Additionally, the £/4 term can easily be improved to any value arbitrarily close to €
(even (1 — o(1))e) by running A, with argument € — 2R(t — 1,¢/2) — 6(t — 1,¢/2) instead of
¢/4, and using this value in the SC' calculations in the definition of 6,9, as well. In fact, for many
algorithms A4, (e.g., with SC(A,,¢e, D, my,) continuous in ¢), combining the above two tricks

yields lim sup w < SC(Ag,e,D,m,).

T—o0

Returning to our motivational remarks from Subsection 7.2.1, we can ask how many extra la-
beled examples are required from each learning problem to gain the benefits of transfer learning.
This question essentially concerns the initial step of requesting the labels Y1 (6,), ..., Yia(0,).
Clearly this indicates that from each learning problem, we need at most d extra labeled examples
to gain the benefits of transfer. Whether these d label requests are indeed extra depends on the
particular learning algorithm A,; that is, in some cases (e.g., certain passive learning algorithms),
A, may itself use these initial d labels for learning, so that in these cases the benefits of trans-
fer learning are essentially gained as a by-product of the learning processes, and essentially no

additional labeling effort need be expended to gain these benefits. On the other hand, for some
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active learning algorithms, we may expect that at least some of these initial d labels would not
be requested by the algorithm, so that some extra labeling effort is expended to gain the benefits
of transfer in these cases.

One drawback of our approach is that we require the data distribution D to remain fixed
across tasks (this contrasts with [Baxter, 1997]). However, it should be possible to relax this
requirement in the active learning setting in many cases. For instance, if X = R, then as long
as we are guaranteed that the distribution D, for each learning task has a strictly positive density
function, it should be possible to use rejection sampling for each task to guarantee the d queried
examples from each task have approximately the same distribution across tasks. This is all we
require for our consistency results on éTg* (i.e., it was not important that the d samples came
from the true distribution D, only that they came from a distribution under which p is a metric).

We leave the details of such an adaptive method for future consideration.

7.4.1 Proof of Theorem 7.8

Recall that, to establish correctness, we must show that Vi < T, E [p (ﬁt