

PROBABILISTIC DEVIATION DETECTION AND OPTIMAL
THRESHOLDS

BAE SYSTEMS, INC.

JANUARY 2014

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2014-013

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2014-013 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
KURT LACHEVET JULIE BRICHACEK, Chief
Work Unit Manager Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JANUARY 2014
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

DEC 2011 – SEP 2013
4. TITLE AND SUBTITLE

PROBABILISTIC DEVIATION DETECTION AND OPTIMAL
THRESHOLDS

5a. CONTRACT NUMBER
FA8750-12-C-0069

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Joseph Fahey and Jeff Smith

5d. PROJECT NUMBER
S2AN

5e. TASK NUMBER
PD

5f. WORK UNIT NUMBER
OT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Bae Systems, Inc.
6 New England Executive Drive
Burlington, MA 01803-5012

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISC
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2014-013
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2014-0164
Date Cleared: 21 January 2014
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The PDDOT program is to provide a method of continuously monitoring military plans during execution for deviations
from expected performance. Determining such deviations in critical to the success of military operations where the
complexity of the battle space and rapidly evolving enemy tactics requires an agile and effective response. In addition,
commanders face the challenge of deciding when a deviation is significant enough to warrant the risks of re-planning.
The PDDOT project identifies an optimal deviation threshold for determining when the executing plan is proceeding as
planned, or needs to be modified.

15. SUBJECT TERMS
Plan deviation, optimal threshold, DEEP, StarCraft

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
KURT LACHEVET

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
315-330-2896

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

33

Table of Contents
LIST OF FIGURES ..ii

LIST OF TABLES .. ii

1. SUMMARY ... 1

1.1 Task Objectives .. 1

1.2 Technical Challenges .. 1

1.3 General Methodology ... 2

1.4 Technical Results ... 2

1.4.1 Metrics ... 2

1.4.2 Testing Support ... 2

1.5 Important Findings and Conclusions .. 2

1.6 Implications for Further Research ... 2

2. INTRODUCTION ... 3

2.1 An Introduction to DEEP.. 3

2.2 DEEP and StarCraft .. 3

2.3 PDDOT for DEEP .. 4

3. METHODS, ASSUMPTIONS, AND PROCEDURES .. 5

3.1 Achieving Program Goals.. 5

3.2 Simulation with DEEP and StarCraft ... 6

3.3 Enabling Technologies – Deep Green .. 6

4. RESULTS AND DISCUSSION ... 7

4.1 PDDOT Integration with DEEP... 7

4.2 PDDOT Architecture ... 9

4.2.1 PDDOT Agent ... 10

4.2.2 World State Monitor ... 10

4.2.3 Deviation Detector .. 12

4.2.4 Optimal Threshold ... 16

4.3 Testing Harness .. 17

4.3.1 Runtime Parameterization ... 17

4.3.2 Results Analysis ... 19

4.4 Test Results .. 20

i

4.4.1 Recording Results .. 20

4.4.2 Test Plan .. 20

4.4.3 Results Breakdown .. 22

4.4.4 Testing Limitations ... 22

4.5 Programmatic Summary ... 24

4.5.1 Milestone Schedule .. 24

5. CONCLUSIONS .. 24

6. RECOMMENDATIONS AND EXTENSIONS ... 25

7. BIBLIOGRAPHY .. 26

8. LIST OF SYMBOLS, ABBREVIATIONS, & ACRONYMS .. 27

List of Figures
Figure 1: A screenshot of the StarCraft Brood War videogame ... 4

Figure 2: The DEEP Blackboard architecture integrating PDDOT .. 7

Figure 3: The PDDOT architecture .. 9

Figure 4: State representation during execution ..12

Figure 5: States considered during deviation detection ..12

Figure 6: Probability calculation of being on plan to off plan ...13

Figure 7: Graphed functional form for calculating likelihood for an observed feature14

Figure 8: Functional form in deviation detection for features ...14

Figure 9: Functional Form ..15

Figure 10: Optimal Threshold Search ...16

Figure 11: Testing harness for runtime parameterization ...18

Figure 12: Analyzing Multiple Simulation Results ...20

Figure 13: PDDOT milestone schedule ..24

List of Tables
Table 1: Terran Units and descriptions used in StarCraft simulations ... 8

Table 3: SME Worksheet Eliciting StarCraft Domain Knowledge ...15

Table 4: Results for testing no re-planning and baseline re-planning ..21

Table 5: Results for Testing Individual Features Using SME Elicitations21

Table 6: Optimal threshold search test results ...22

ii

1. SUMMARY
This report describes the research done under the Probabilistic Deviation Detection and
Optimal Threshold (PDDOT) project. The goal of the PDDOT program is to provide a
method for continuously monitoring military plans during execution for deviations from
expected performance as the situation evolves and more information becomes available. In
addition, the PDDOT project identifies an optimal deviation threshold for determining when
the executing plan is proceeding as planned, or needs to be modified. PDDOT also provides a
convenient testing harness for integrating plan execution and deviation parameters into
AFRL's Distributed Episodic Exploratory Planning (DEEP) environment to assist
development and integration testing. The following sections summarize our approach and
results. The remainder of this summary covers:

• Task Objectives
• Technical Challenges
• General Methodology
• Technical Results
• Important Findings and Conclusions
• Implications for Future Research

An introduction to the main body of the report is followed by sections on:

• Methods, Assumptions, and Procedures
• Results and Discussion
• Conclusions, and
• Recommendations and Extensions

1.1 Task Objectives
The task objectives for the PDDOT program are:

1. Develop a method for determining the degree to which a current world state has
deviated from a previously planned goal state

2. Monitor an executing plan and world state over time to enable automated plan
deviation alerts and re-plan triggers

3. Determine a tradeoff analysis of the reward for re-planning at a particular time

1.2 Technical Challenges
To accomplish these objectives, a range of technical challenges were assessed in this project:

1. Structural representation of state – estimating world state from partial observations in
the environment

2. Development of deviation algorithm to identify degree of deviation from the executing
plan

3. Integration of the PDDOT agent into the DEEP environment for testing
4. Address excessive thrashing when re-planning occurs too frequently
5. Develop method for identifying optimal threshold

Approved for Public Release; Distribution Unlimited.

1

1.3 General Methodology
Our methodology consisted of designing a robust architecture with four major interacting
components. First, we addressed the representational challenge of creating a structure to
maintain state and actions for the executing plan. Second, a probabilistic deviation detection
algorithm was developed to estimate posterior probability distributions over the represented
states based on observation data received over time. Third, optimal threshold search
techniques were designed and tested to determine the best threshold policies for maximizing
reward. Lastly, a set of testing utilities and metrics were designed to test the baseline DEEP
system with both no re-planning and PDDOT re-planning techniques.

In addition, parallel to PDDOT design and development efforts, integration with the DEEP
system was pursued to provide feedback on both PDDOT and DEEP design and development
decisions.

1.4 Technical Results
The PDDOT project was focused on designing and implementing the PDDOT architecture, as
well as testing and demonstrating the utility of the overall system concept within the DEEP
environment.

1.4.1 Metrics

While the metrics compiled from simulations ran in StarCraft illustrated a functioning
PDDOT architecture, further research & development on the simulation platform would be
required to fully measure & analyze the performance impact by PDDOT.

1.4.2 Testing Support

The PDDOT project was very successful in providing testing support for both DEEP and
PDDOT. A significant number of issues were identified, many of which were also addressed,
throughout the development of PDDOT. The testing harness proved to be a very useful tool
for customizing and running simulations quickly. In addition, the testing harness also provided
very convenient utilities for analyzing test results from simulations within the DEEP
environment.

1.5 Important Findings and Conclusions
Testing conducted in the DEEP environment using StarCraft revealed significant deviations
from plan expectations and reinforced the need for a PDDOT solution to assist plan execution.
In addition, it became apparent that the impact of PDDOT directly depends on the ability to
efficiently re-plan to a plan with a greater opportunity for success. In order to provide this
capability, DEEP Case-Based Reasoner (CBR) requires a comprehensive case-base in addition
to a robust CBR matching algorithm.

1.6 Implications for Further Research
In order to provide a more general solution for deviation analysis in military planning,
PDDOT attempts to implement a capability independent of domain specific details from the
StarCraft simulation environment used in testing. This goal was achieved through the
abstraction of subject matter expertise used to provide incite for the various features
comprising state. Interesting research, however, remains to be conducted to better understand
the impact of varying feature sets used to perform deviation analysis. In addition, exploration

Approved for Public Release; Distribution Unlimited.

2

of feature selection is a potentially useful opportunity in the context of DEEP CBR case
matching.

2. INTRODUCTION
The goal of the PDDOT program is to provide a re-planning technology to determine
deviations in an executing course of action for real-time management of military operations.
Determining such deviations is critical to the success of military operations where the
complexity of the battle space and rapidly evolving enemy tactics requires an agile and effective
response. In addition, commanders face the challenge of deciding when a deviation is
significant enough to warrant the risks of re-planning. Re-planning too often results in
excessive thrashing, where plans are not able to setup in time and are primarily occupied with
transitioning to the new plan. Infrequent re-planning, on the other hand, eliminates the benefit
of dynamic planning and leveraging situational updates to ensure plan goals are achievable.
The identification of an optimal threshold between these two extremes is desirable in assisting
commanders to determine when to re-plan successfully.

2.1 An Introduction to DEEP
The PDDOT program integrates with AFRL's DEEP environment to simulate military
planning and engagements against enemy forces using the StarCraft gaming engine. DEEP is
a mixed-initiative decision support system that utilizes past experiences to suggest courses of
action for new situations. The DEEP effort began in 2006 in response to deficiencies in course
of action development in command and control (C2) systems. The DEEP system aims to
provide support to a military planning staff to better satisfy the stated and implied conditions
embodied in a given commander's intent. The project uses analogical reasoning over an
experience base of past actions to solve new problems. It explores case-based reasoning (CBR)
for plan retrieval and course of action development. The system is mixed-initiative in the sense
that a commander, through his or her agent, can view and modify the contents of the shared
repository as needed. A blackboard-based architecture manages a common knowledge
repository through which the various software agents interact.

The resulting initial research platform is comprised of the following components:
• Distributed Blackboard to support multi-agent, non-deterministic, opportunistic

reasoning
• Case-Based Reasoning to capture experiences, which may be successes and/or failures
• ARPI Core Plan Representation (CPR) for human-to-machine common dialog
• Multi-Agent System for mixed initiative planning

For more information regarding the Distributed Episodic Exploratory Planning (DEEP)
project, see Carozzoni, et al. 2008 & Richards, et al. 2012.

2.2 DEEP and StarCraft
StarCraft is a popular military science fiction force-on-force real-time strategy game developed
by Blizzard Entertainment in 1998. Blue and red forces build economies, construct physical
bases, develop military capabilities and are involved in force-on-force engagements. Three
different StarCraft 'races' represent different military forces available to use in force-on-force
engagements. Each StarCraft race consists of unique unit and building types with varying
strengths and weaknesses when employed on the battlefield.

Approved for Public Release; Distribution Unlimited.

3

Figure 1: A screenshot of the StarCraft Brood War videogame

StarCraft is used as the domain for the case-based planning research conducted in the DEEP
project. StarCraft was selected for a number of different reasons that make the game engine an
attractive choice for DEEP research and testing. One of the primary reasons for using
StarCraft is the large case base that can be constructed due to the game's popularity and ability
to save simulation logs after game play. Thousands of simulation logs are available online and
were collected to create the case-base used in DEEP CBR.

The complexity of the StarCraft gaming engine also makes it an excellent choice for a
simulation domain. Although the actions for the red forces in StarCraft are deterministic, the
large action space over which the game proceeds makes it unlikely to see the same outcomes
given a small set of actions taking place over a limited portion of the game's duration.

In addition, StarCraft is an active research domain for both academic and defense research
projects. In 2008, a public domain application programming interface (API), called Brood War
API (BWAPI), was developed within the StarCraft research community using C++ to interface
with the gaming engine. The framework is free and open source, which helped it gain
popularity for researchers, students and hobbyists.

2.3 PDDOT for DEEP
Planning for military operations is notoriously difficult; initial plans rarely survive first contact
with the enemy. Initial experiments with the DEEP environment revealed excessive thrashing
due to the high frequency of re-planning. It was immediately realized that a challenge existed
to provide an automated re-planning capability, including the ability to meaningfully estimate
the distance between reality and planned outcomes, and to determine when a deviation is
sufficiently significant to justify re-planning. An autonomous and adaptive re-planning

Approved for Public Release; Distribution Unlimited.

4

technology provides plausible decisions to commanders aiming to reduce the differential
between the current state and the desired outcome.

PDDOT addresses this challenge by leveraging AFRL's in-house research in CBR technology
to select the best historical plan for a given situation when determining a re-plan is necessary.
In order to achieve this, PDDOT provides algorithms for plan monitoring, representation,
probabilistic deviation detection and optimal threshold search. The key components developed
under PDDOT are:

• World State Monitor for processing situation and plan execution changes over time
• Deviation Detection for algorithmically determining deviations in plan execution
• Optimal Threshold Search for identifying the optimal deviation threshold
• Testing Harness for improving the ability to test and analyze results

The remaining sections of this report discuss the PDDOT deliverables in more detail. Section 3
outlines the methods, assumptions and procedures of PDDOT development. Section 4 includes
an overview of each of the four primary PDDOT deliverables, with supporting documentation
provided as appendices. Section 5 presents a programmatic summary. Insights and lessons
learned for the work developed under this contract are given in Section 6. Recommendations
for future work and possible project extensions are given in Section 7.

3. METHODS, ASSUMPTIONS, AND PROCEDURES
Due to the high level of integration between PDDOT and DEEP, a number of requirements
were established early in the program to increase both productivity and transparency. The
following two sections details the requirements established in order to best achieve success for
the PDDOT project.

3.1 Achieving Program Goals
One of the goals for the PDDOT project is to provide testing and integration support for the
DEEP environment. Development for the PDDOT project was established in a repository
accessible by both BAE Systems and AFRL consisting of the source code for both PDDOT and
DEEP for rapid collaboration, development and bug fixing.

In addition, in order for the PDDOT project to provide a useful and robust re-planning service,
there are 3 requirements needed from the environment used for integration:

• Real-time, up-to-date situation updates. PDDOT aims to be agile and effective in
course of action management, which requires information it reasons about to be
available in real-time. In addition, PDDOT's performance also relies on the frequency
of situation updates. Infrequent or rare situational updates leaves PDDOT blind to the
engagement and hinders its ability to provide insight into course of action management.

• A rich feature-set for both the plan and situation updates to allow comprehensive
reasoning over time. Limited information about the state of engagement also hinders
PDDOT's ability to gauge deviations in plan execution. A rich feature-set allows
PDDOT to provide more insight into the level of deviation for course of action
management.

• A mechanism for communicating the need to re-plan when an opportunity to re-plan is
identified.

Approved for Public Release; Distribution Unlimited.

5

Collaborative development in the shared repository during the early stages of integration
testing helped ensure the requirements were addressed by the DEEP environment and utilized
in PDDOT.

3.2 Simulation with DEEP and StarCraft
A major goal for the PDDOT project is to provide a useful and robust re-planning service
integrated within the DEEP environment and tested with StarCraft. In order to provide this
capability, metrics were first established to define success for the PDDOT project. From a
simulation standpoint, statistics and scores from StarCraft were considered to provide metrics
for PDDOT's performance within the DEEP environment. While StarCraft provides handy
metrics to measure the performance of friendly plans executed against the enemy, it is
important to note that these metrics involve the entire end-to-end system of PDDOT working
within DEEP. In order for these metrics to be a useful measurement of success for PDDOT
alone, there are an additional 3 major requirements that need to be satisfied by the
environment:

• Reasonable determinism in game-play. In order to have metrics from testing be an
accurate representation of PDDOT and DEEP performance, test cases must not vary
drastically from one test set to another. Test set sizes are limited due to the amount of
time required to run a complete simulation in StarCraft (up to 30+ minutes per
simulation – if it terminates), which requires relatively deterministic game-play to have
meaningful results with limited test set sizes.

• A rich case-base and intelligent case-base reasoning technology. The concept of
leveraging known solutions to solve new ones in case-based reasoning is particularly
useful when the case-base of known solutions is rich. However, a case-base lacking
relevant cases severely limits the ability to be a useful technology. Case-base reasoning
usefulness also declines with naïve querying algorithms, even if a rich case-base is
available.

• Comprehensive set of robust metrics for evaluating simulations. The metrics provided
by the StarCraft game engine must be relevant to and reflective of the outcome of the
engagement.

Implications of the DEEP environment limitations are discussed in the Testing Limitations
section (4.4.4), Conclusions (5), as well as the Recommendations and Extensions section (6).

3.3 Enabling Technologies – Deep Green
BAE Systems – Technology Solutions previously led the development of DARPA's Deep Green
project and was responsible for developing and implementing a decision-making support
system for United States Army commanders planning force-on-force engagements. Under the
Deep Green project, a probabilistic model known as a futures graph was developed to represent a
large, well-defined state space of potential outcomes and utilities for engagements with enemy
forces. Deep Green's Crystal Ball component designed algorithms estimating state
probabilities and automated alert generation capabilities to enable risk and deviation analysis
for commanders. The work accomplished in Crystal Ball provides a strong foundation for
adapting existing deviation detection algorithms for the PDDOT program. In order to
position the PDDOT program for success, a goal is to consider and leverage the work under
Deep Green's Crystal Ball when facing comparable design challenges.

Approved for Public Release; Distribution Unlimited.

6

4. RESULTS AND DISCUSSION
4.1 PDDOT Integration with DEEP
Integration with the DEEP environment takes place in two areas, active monitoring during
simulation and test management and analysis. During simulation, PDDOT interacts with the
DEEP environment through the DEEP Blackboard messaging service.

Figure 2: The DEEP Blackboard architecture integrating PDDOT

The DEEP Blackboard represents the common knowledge repository through which agents
may interact to conduct non-deterministic, opportunistic reasoning. PDDOT is both a
consumer and producer of Blackboard knowledge. In addition to PDDOT, there are 3 other
agents involved in contributing and consuming information from the DEEP Blackboard:

StarCraft Planning Agent: Updates the DEEP plan to be executed in StarCraft when
notified. Uses DEEP CBR to select a new plan from the DEEP case-base that best
matches the current state of engagement when a re-plan has been determined. Posts the
plan representation to the DEEP Blackboard.

Plan Execution Agent: Executes new plans posted to the DEEP Blackboard in StarCraft.
Translates the DEEP plan representation into a series of StarCraft actions over time and
executes them.

Situation Agent: Posts situational updates to the DEEP Blackboard when state changes are
observed in StarCraft. Situation updates include information detailing the creation and
destruction of both friendly and enemy buildings and units as well as observations of
enemy units by friendly units.

The PDDOT Agent subscribes to the DEEP Blackboard during simulations in order to receive
updates about the ongoing engagement from other DEEP agents. PDDOT processes
situational and plan updates posted to the blackboard in order to analyze the state of deviation.

Approved for Public Release; Distribution Unlimited.

7

In addition, PDDOT posts re-plan updates to the blackboard when deciding a deviation has
occurred.

When starting a new simulation in DEEP, PDDOT receives an initial plan update from the
StarCraft Planning Agent denoting the first plan being executed. Plan updates are then
received only when a re-plan is issued by the PDDOT Agent and processed by the StarCraft
Planning Agent. Due to the asynchronous nature of the DEEP Blackboard, plan updates are
received after the StarCraft Planning Agent processes the re-plan update, selects a new plan
from the case-base and posts the new plan update to the blackboard. On average during
simulations, this process occurs very quickly with a delay of less than 50 frames.

Plans used by PDDOT are represented in the DEEP case-base by a series of plan features over
time. DEEP plan features for StarCraft plans are comprised of the various unit and building
types available by each of the friendly and enemy forces. Plans store a feature-set for each plan
time step. Each feature-set maps an integer count to each feature, denoting the number of
entities represented by the feature that currently exist on the battlefield. As an example, a
feature-set may map the number 6 to Terran Marine, denoting the existence of 6 Terran
Marine units in the plan at that particular time step. Currently, plan time steps are defined as
2000 frames in a StarCraft simulation. Typically, plans contain 43 plan states covering a total
of 86,000 frames.

Table 1: Terran Units and descriptions used in StarCraft simulations

Terran Unit Description

Battlecruiser Largest and most powerful of all Terran air units

Dropship Terran transport unit capable of transporting any ground unit

Firebat Infantry support unit equipped with a flamethrower

Ghost Specialized infantry type unit with the power of invisibility

Goliath Most powerful anti-air ground unit

Marine Basic combat unit for the Terran race

Missile Turret A static turret with basic anti-air defense

Science Vessel An aerial support unit capable of remotely repairing mechanical units

SCV Worker unit used to harvest minerals and resources

Siege Tank A basic tank unit with the ability to inflict high damage

Vulture A basic mobile ground unit

Wraith An aerial attack unit with the power of invisibility

Medic A basic ground unit with the ability to heal biological units

Valkyrie A small sized spacecraft equipped with rockets

Approved for Public Release; Distribution Unlimited.

8

Table 4-1 lists the various units for the Terran race, the primary race used to represent friendly
forces in StarCraft simulations with DEEP. Each entity maintains a particular capability that it
provides for its race. The remaining two StarCraft races have similar unit and building types
with comparable capabilities. DEEP with PDDOT aims to identify and utilize the optimal
consistency of each entity for the blue force to best defeat the red force in combat.

Situations used by PDDOT are represented by the Situation Agent in DEEP similar to plan
states in the DEEP plan representation. Situation updates are posted by the Situation Agent
when changes on the battlefield are observed with a maximum frequency of 50 frames (when no
changes are observed, no update is posted). Situations contains updates for each of the friendly
and enemy units and buildings, describing the number of each visible on the StarCraft
battlefield. Situation updates do not provide complete information about enemy units and
buildings and only reveal entity counts for those visible by friendly forces. In the StarCraft
domain, this incomplete information availability is known as the "fog of war" and describes the
limitation of observing the battlefield only to the extent of friendly units. Imperfect
information about the state of engagement plays a critical role in the ability of PDDOT to
reason about the state of deviation.

4.2 PDDOT Architecture
PDDOT address the challenge to optimally identify deviation points in plan execution through
the interaction of four main components: the PDDOT Agent, World State Monitor, Deviation
Detector, and Optimal Threshold Search. Each of the four main PDDOT components provides
individual solutions to adaptation, representation, and algorithmic challenges and is optimized
for clarity and compatibility. An overview of the PDDOT architecture is shown in Figure 4-2
below.

Figure 3: The PDDOT architecture

The PDDOT Agent first addresses the challenge to adapt to the DEEP environment and run
tests in the StarCraft domain. Second, the World State Monitor adapts DEEP plan and

Approved for Public Release; Distribution Unlimited.

9

situation update representations to PDDOT specific representations in order to effectively
analyze deviation likelihoods. Next, the Deviation Detector utilizes a deviation detection
algorithm instantiated by subject matter expertise to provide insight on the current state of
plan deviation. Lastly, the Optimal Threshold Search component addresses the challenge to
discover the optimal deviation threshold to obtain maximum reward.

4.2.1 PDDOT Agent

The PDDOT Agent's primary responsibility is to interface with the DEEP environment and
provide a convenient abstraction for integrating the rest of the PDDOT architecture with
DEEP. As mentioned earlier, DEEP employs a distributed blackboard system as an
opportunistic artificial intelligence application based on the blackboard architectural software
engineering paradigm. (Corkill, 1991) The blackboard system functions as a central knowledge
store facilitating communication and interaction between the various DEEP agents, including
the PDDOT Agent.

The PDDOT Agent uses Java Remote Method Invocation (Java RMI) to interact with the
blackboard remotely over a local port connection. Information communicated to the PDDOT
Agent from the Blackboard is filtered for plan and situation updates, represented as Java objects
in the native DEEP format. Additionally, the PDDOT Agent filters for a specific message
posted by the Situation Agent denoting the end of the current simulation. This allows
PDDOT to initiate its post-simulation processing to output simulation results. All information
filtered from the blackboard by the PDDOT Agent is communicated directly to the World
State Monitor to process and translate into representations useful for deviation detection
algorithms.

4.2.2 World State Monitor

A key representational challenge that PDDOT faces is the need to analyze plan and situation
updates native to the DEEP environment operating in the StarCraft domain. The World State
Monitor is responsible for addressing this challenge by constructing state and observation
representations useful for the probabilistic reasoning algorithms exercised in deviation
detection.

In artificial intelligence research, dynamic models capable of estimating future states under
uncertainty are required to support prediction and expected utility calculations. Typically,
modeling under uncertainty requires the ability to define qualitative states within a state space,
dynamically update likelihood estimations from information disclosed in observations, and
determine outcome utility. In order to accomplish this, PDDOT implements a World State
Monitor to address the representational challenge of identifying the key variables that
constitute qualitative state, as well as the state space of potential states and transitions. The
World State Monitor processes plan, situation and termination updates from the PDDOT
Agent to provide a graphical model with the necessary information to effectively estimate
deviation likelihood during engagements.

One of the reasons BAE Systems – Technology Solutions was uniquely suited to address the
challenges of PDDOT was the prior work accomplished under DARPA's Deep Green program
for similar ground-based force-on-force planning scenarios. The Deep Green program
successfully demonstrated the ability to model pre-defined partial state spaces using a unique
hybrid representation of hidden Markov models (HMMs) and partially observable Markov
decision processes (POMDPs). The foresight during PDDOT program planning was that the

Approved for Public Release; Distribution Unlimited.

10

models, algorithms, and expertise matured under the Deep Green program would translate to
the PDDOT domain.

Initially, the probabilistic model considered for PDDOT was a more efficient adaptation of a
futures graph using a POMDP. In addition to its use in Deep Green, a POMDP is an attractive
choice due to the constraint imposed by observations that only partial information is revealed
about the state of engagement. While representing all possible states of an engagement is
intractable, a simpler representation was considered involving a linear progression of plan
states with an additional catch-all deviation state. Each plan state in the POMDP would
include a transition to the deviation state with a static, pre-defined deviation likelihood. Similar
to Deep Green, a particle filter would be used to estimate the posterior probability distribution
over POMDP states based on situation updates.

During the early stages of PDDOT design and integration, it was revealed that the
characteristics of the DEEP environment constrained the effectiveness of using the modeling
approach taken in Deep Green. Typically, two requirements must be met when considering the
use of a POMDP for reasoning –the ability to control state transitions with a transition model
detailing the likelihood of action outcomes, and uncertainty about current state. In the Deep
Green project, commanders include various decision points in the planning process and utilize
futures graph likelihood estimates to provide insight into the outcome of potential actions
during plan execution. The use of decision points in Deep Green plans warrants the
consideration of a POMDP to optimize decision making for the commander. Unlike the Deep
Green project, no decision making is involved in plan execution within the DEEP environment
for StarCraft simulations. From the PDDOT perspective, plans are executed independently
and observations dictate all transitions between plan states and the deviation state. PDDOT
does not control the transition between plan states and the deviation state, it observes them. The
policy of PDDOT is to re-plan when the current state is the deviation state and results in the
construction of a new graphic model. In other words, PDDOT controls when the graphic
models are replaced, but observes the nature in which they evolve.

Without the need to model decision making in the state space, another model to consider is a
hidden Markov model (HMM). While HMMs do not involve the observer controlling state
transition, they do include the second requirement of a POMDP in that the current state
cannot be directly observed. This particular requirement appears to be relevant to the DEEP
domain based on the condition that situation updates only reveal partial information about the
entire state of engagement. However, as mentioned earlier, the model considered for PDDOT
involves only plan states to avoid the intractability of modeling the entire state space. Taking
this approach, uncertainty about current state would imply the possibility of being in different
plan states at any given time. Addressing this issue early in the PDDOT program, it was
decided that temporal shifts in plan execution would be considered deviations. This decision
was made due to the fact that plan execution cannot be augmented based on the likelihood of
being in a particular plan state. Instead, if a different plan state better represented the current
engagement, re-planning would likely allow DEEP CBR to choose the better state and execute
the corresponding build actions.

Ultimately, the state that is most important to PDDOT at a given time is the current executing
state. Without the requirements used in POMDPs and HMMs above, the PDDOT plan
representation is capable of being modeled as a Markov chain where the current state is either
the plan state being executed or the deviation state.

Approved for Public Release; Distribution Unlimited.

11

Figure 4: State representation during execution

The World State Monitor is responsible for constructing the PDDOT state representation as a
Markov chain from the DEEP representation used in CBR. Each of the PDDOT states are
populated with the unit and building counts for both friendly and enemy forces as described in
the DEEP case log.

Lastly, the World State Monitor is also responsible for constructing observation updates from
the DEEP situation update to allow deviation detection algorithms to appropriately process
state transitions in the PDDOT state representation. Observations closely resemble the states
representations to allow ease of processing, and include the features necessary to assess state
likelihood estimations in deviation detection.

4.2.3 Deviation Detector

The Deviation Detector is responsible for implementing the algorithms that calculate the
magnitude in which plan execution has deviated from its expected performance. Deviation
detection begins with the PDDOT state representation provided by the World State Monitor,
and uses observations also provided by the World State Monitor to determine state transitions.

Figure 5: States considered during deviation detection

As described in the World State Monitor, the PDDOT state representation is based on a
Markov chain and only considers the executing state and deviation state when determining a
deviation. At any specific time during plan execution, the DEEP Plan Execution Agent is
actively executing the actions in StarCraft required to transition blue units and buildings from
one plan time step to the next. For instance, if one plan time step contains 6 friendly marine
units, and the following contains 10, the Plan Execution Agent builds 4 friendly marines over
the course of the time step. The PDDOT plan state representing the first plan time step is
known as the executing plan state. In deviation detection, the Deviation Detector uses the
information described in observations to determine if the executing plan state successfully
transitions to the next plan state or results in a transition to the deviation state.

s
j

S
dev

s
j+1

 s
j+2

 s
j+3

Sdev

sj sj+1

Approved for Public Release; Distribution Unlimited.

12

To determine which state transition occurs, observation updates are used to measure how
strongly the information conveyed in observation updates represents the executing state
transition in comparison to the deviation state. In the context of DEEP and StarCraft, the unit
and building counts described in observation updates are compared with those in the state
representation using a calculation to generate the strength measurement in terms of likelihood.

PDDOT uses a Bayesian approach to calculating state transition likelihood when observations
are received. One challenge that a Bayesian approach faces, however, is the need to calculate
the probability of observed parameters outright. This type of calculation is not straight-
forward in the context of PDDOT. Nonetheless, a calculation representing the absolute
probability of a state transition is not necessarily what PDDOT needs to assess a deviation. A
useful calculation that avoids this requirement is assessing the ratio of probabilities for
transitioning to plan or deviation state. Conveniently, calculating this ratio allows us to avoid
outright probability calculations as they cancel out. In reality, this ratio represents the
probability of being on plan to off plan and is perfectly capable of threshold analysis.

The assumption made for the PDDOT project is that all features of the plan state, detailing
unit and building counts, are independent. This means, for instance, that the number of marine
units present implies nothing about the existence of battlecruiser units. While this may not
always be true in practice, an added level of domain expertise is required to determine the
nature of conditional independence between various features. Due to program time and
resources constraints, this was not prioritized for the StarCraft domain, but is addressed in
Section 7 on Recommendations.

𝑃[𝑆|𝐷��⃗]
𝑃[𝑆|𝐷��⃗]

= ��
𝑃[𝐷𝑖|𝑆]
𝑃[𝐷𝑖|𝑆]𝑖

� �
𝑃[𝑆]
𝑃[𝑆]

�

Figure 6: Probability calculation of being on plan to off plan

Deviation detection instead assesses the overall likelihood of being in the current state as the
product of the likelihood that each observed feature appears to be on plan. Figure 4-5 shows
the Bayesian logic involved in calculating the probability of being on plan to off plan with the
assumption that features are independent. The second term in the product represents the
probability that the executing plan was chosen and is a constant for all calculations.
Conveniently, because PDDOT is interested in threshold analysis and not outright value
calculation, this term can be ignored in deviation assessment. Deviation analysis focuses on
calculating the first term in order to assess deviation likelihood.

PDDOT leverages the inverse functions used in the particle filter for Deep Green's Crystal Ball
to calculate the likelihood of the various features being on plan. The inverse function utilizes
static maximum and minimum likelihoods to constrain the shape of the functional form and
provide reasonable approximations. Two inverse functions are combined, one for calculations
involving observations below the planned value and one for observations above the planned
value, to accurately measure deviation for arbitrary observations. An example of the functional
form is shown in Figure 4-6 below. The shape of the functional form appropriately exhibits the
desired behavior to provide high likelihood estimations when observations closely resemble the
planned value, decreasing as the observation becomes less accurate.

Approved for Public Release; Distribution Unlimited.

13

Figure 7: Graphed functional form for calculating likelihood for an observed feature

When developing these calculations, it was quickly realized that a significant understanding of
the features involved was required to provide accurate estimates. As an example, an SCV in
StarCraft is an inexpensive worker unit used in large numbers. A marine battlecruiser, on the
other hand, is one of the most expensive deployable vehicles and is used very sparingly if at all.
An observation revealing a few less SCVs than planned would be seen in an entirely different
perspective than an observation revealing a few less battlecruisers than planned. Another
desire realized during testing was the ability to allow observations to be less accurate over
time. Small deviations in expected unit counts become less significant as the number of
expected units increases from only a few too many dozens over the course of a simulation.
PDDOT attempts to abstract the StarCraft domain knowledge from the deviation detection
algorithms to provide a more useful, extensible system that is capable of operating with various
cases, datasets, and domains.

()
() 
















−
−

−++
−

















−
−

−+

=+=
12

1
121

12

1
121

/)(%
)|(

tt
ttBBB

PPO
tt
ttAAA

B
plan
APOP

ttt
tt

Figure 8: Functional form in deviation detection for features

Deviation detection achieves this abstraction by parameterizing the functional forms used and
instantiating them for each feature with the knowledge of subject matter experts (SMEs).
Using the knowledge of SMEs, each inverse function is capable of being specifically tailored to
a particular feature in a given domain at any given time. The parameterized functional form
used is shown in Figure 4-7. A SME worksheet was developed to capture information about
each feature in order to instantiate each inverse function with parameters inscribing their
knowledge. A sample worksheet eliciting StarCraft SME expertise is shown in Table 4-2. A
functional form instantiated with SME expertise is graphed in Matlab in Figure 4-8. The
functional form displays the ratio as a function of time and observed valued for the given plan
value of 5. Note that the functional form graphed demonstrates the desired characteristic that
the ratio increases over time.

Approved for Public Release; Distribution Unlimited.

14

Table 2: SME Worksheet Eliciting StarCraft Domain Knowledge

Frame Ratio elicitation Marine Zergling Vulture Hydralisk

5,000 1x lowerbound -0.5 -1.0 -0.5 -1.0

5x lowerbound -0.2 -0.25 -0.3 -0.2

5x upperbound 0.8 0.25 0.8 0.3

1x upperbound 1.0 0.6 1.0 0.7

50,000 1x lowerbound -0.33 -0.4 -0.3 -0.5

5x lowerbound -0.25 -0.3 -0.2 -0.3

5x upperbound 1.0 0.2 1.0 0.15

1x upperbound 2.0 0.3 2.0 0.25

Figure 9: Functional Form

Approved for Public Release; Distribution Unlimited.

15

Ultimately, the Deviation Detector uses the observations communicated by the World State
Monitor to calculate the likelihood of being on plan, and compares the estimate to a threshold
to determine if it is significant enough to warrant re-planning. Once a re-plan has been
determined, the Deviation Detector creates a re-plan update and notifies the PDDOT Agent to
communicate it to the DEEP Blackboard.

4.2.4 Optimal Threshold

While the Deviation Detector is responsible for estimating the magnitude of deviation, another
challenge exists in determining the level in which a deviation becomes significant. Early
testing in the DEEP environment used the baseline re-planning technique to re-plan on every
situational update and resulted in 'thrashing'. The effect of thrashing is severely detrimental
and does not allow enough time for a plan to develop, leaving friendly forces defenseless.
Figure 4-9 shows the effects of re-planning too frequently and not enough. From the graph, it
is apparent that there is some optimal threshold, T*, for which re-planning is the most
rewarding for friendly forces. Optimal Threshold Search addresses this challenge by iteratively
testing PDDOT at different thresholds and analyzing simulation results.

Figure 10: Optimal Threshold Search

Optimal Threshold Search utilizes the heavily parameterized nature of PDDOT to allow the
deviation threshold to be dynamically updated during runtime. The test harness (discussed in
Section 4.3) developed to provide testing support to both DEEP and PDDOT conveniently
handles PDDOT parameterization, including threshold specification.

In order to identify the optimal deviation threshold, Optimal Threshold Search iteratively
increments the threshold used in deviation detection by a pre-specified step size. A number of
simulations are conducted for each threshold value and the results are analyzed in the test
harness to determine the particular threshold that performed the best against the enemy (the
number of simulations conducted at each step varied depending on the time available for
testing). In addition to supplying a step size for iteration in optimal threshold search, upper
and lower bounds are specified to provide a more focused search. The ability to adjust the step

Reward

Threshold

No re-planning

Thrashing

Optimal Re-planning

Reward gain

R

R*

T*

Approved for Public Release; Distribution Unlimited.

16

size and bounds greatly improved the process of optimal search, due to the large investment of
time required to perform simulations in the DEEP environment using StarCraft. Details
regarding optimal threshold search in the test harness is described further in the following
section (4.3).

4.3 Testing Harness
In addition to deviation analysis, one of the main efforts of the PDDOT project is to provide
convenient testing tools for both PDDOT and the DEEP environment. Early in the program,
a large portion of the time spent during the PDDOT design process was understanding the
nature of integrating with the DEEP environment. It was critical to fully comprehend the
information conveyed in plan and situation updates as well as the manner in which they are
delivered to the PDDOT Agent. During this process, a number of bugs were fixed, features
added, parameters adjusted, and limitations noted that affected PDDOT assumptions. At the
time, the DEEP environment had little to no testing outside of the DEEP developers and
relatively limited testing in general.

During the first half of the program, PDDOT work was occasionally put on hold while bugs
were fixed or features added to the DEEP environment to address various issues or
requirements for PDDOT to operate. In addition, significant time was spent testing and
providing feedback for the frequent updates to DEEP source code. Shortly thereafter, an effort
was proposed to develop an interface to assist testing and parameterization to improve the
ability to test both PDDOT and DEEP as they evolved in parallel over time. The test harness
maintains a lasting effect for the DEEP environment as a front-end to testing a development
for the DEEP environment for future projects and use at AFRL.

The testing harness was developed within the DEEP source code and integrated with the
entire end-to-end system involving PDDOT, DEEP and StarCraft. The main features of the
testing harness include the user interface, runtime parameterization for DEEP and PDDOT, as
well as simulation results analysis.

4.3.1 Runtime Parameterization

The testing harness developed acts as a front-end to running simulations in the DEEP
environment. The harness provides the ability to specify parameters in four major areas: initial
conditions, re-planning, duration of testing, and results.

Approved for Public Release; Distribution Unlimited.

17

Figure 11: Testing harness for runtime parameterization

During initial testing in the DEEP environment, PDDOT faced challenges simulating force-
on-force engagements against the Protoss enemy StarCraft race. A particular characteristic of
the Protoss race results in a high percentage of early attack strategies in StarCraft. While it
was not understood at the time, the initial case-base plan chosen for the friendly Terran race
has extraordinary difficulty defeating early Protoss attacks due to the amount of time it
typically takes to construct its defenses. The effect of this match-up severely limited the ability
to test PDDOT and let the plan take form. For this particular reason, it was desirable to
execute tests against the Zerg race; a race less prone to execute a gimmicky “all-in” early
attack. The test harness addresses the effects of varying enemy race and initial case-base plan
by allowing the initial conditions to be specified at runtime. The harness modifies StarCraft
configuration files and calls DEEP CBR methods to achieve this behavior.

The majority of parameters available for configuration in the test harness fall under the re-
planning category. All parameters in this category affect the performance of PDDOT in
DEEP. The current harness provides three different methods of re-planning to choose from:
no re-planning, baseline re-planning, and PDDOT re-planning. Baseline re-planning refers to
the initial DEEP re-planning logic, where a new plan is chosen from CBR at each situation
update. When PDDOT re-planning is selected, options become available to adjust the
threshold manually, perform optimal threshold search, and even choose a specific plan for re-
planning (instead of using DEEP CBR). This option was used for testing early in the PDDOT
program when only a small case-base was available for DEEP. Due to the difficulty DEEP

Control of run-time.

Ability to select re-planning
logic type used in test

Parameter setting for use in
our Optimal Threshold Search

Testing for feature selection
work (separate effort)

Status

Approved for Public Release; Distribution Unlimited.

18

CBR matching had on the small case-base, early PDDOT testing techniques involved
enumerating all possible re-planning scenarios, for a single re-plan, and analyzing results.

The 'Select Features' button in the re-planning section, while not functional, serves as a place
holder for where feature selection work would integrate with the test harness. As noted in the
recommendations section, a very interesting extension to both PDDOT and DEEP CBR is
feature selection. Feature selection allows both the CBR and PDDOT algorithms to be biased
based on the significance of certain features. The test harness is a useful tool to allow users and
developers to adjust weighting and other parameters associated with feature selection at
runtime.

Lastly, the test harness provides support for adjusting the duration of testing and results
output. Additionally, a checkbox is available to provide a console during simulations to show
the status of testing and other testing information. Currently, the status monitor displays the
number of simulations completed, the number remaining, and the total time spent testing.

4.3.2 Results Analysis

Results analysis is another important feature included in the testing harness to provide an
analysis of the simulations executed by DEEP in StarCraft. The tools provided to analyze
testing results was the primary mechanism used to characterize the performance of PDDOT in
DEEP. The results analyzed are those captured and outputted by PDDOT in the results
handler (see Section 4.4.1). The second tab located at the top of the testing harness reveals a
separate user interface for analyzing past results.

Upon selecting the directory containing the results of interest, a list of available output files is
displayed. The test harness parses results in XML format and extracts the high level
simulation characteristics, such as final score, and constructs a results summary to give the user
an overview of the simulation outcome. Underneath the simulation summary, a list of plan
states and observation updates is available to the user to further inspect the details of the plan
and observations from the simulation. The plan states and observations are interlaced
according to time to allow chronological exploration. Lastly, the user can select 'View Scoring
Graph' to graph the game score over time and can optionally save the graph as an image file.

The test harness conveniently allows the analysis of either individual or multiple tests at once.
The ability to analyze multiple results is a useful feature for PDDOT when attempting to
understand the performance of results with similar parameters. For instance, test results for
simulations using the same threshold value can be analyzed together to gain an understanding
about PDDOT's performance at a particular iteration of optimal threshold testing.

Approved for Public Release; Distribution Unlimited.

19

Figure 12: Analyzing Multiple Simulation Results

When selecting multiple result files, the 'Compute Summary Stats' button becomes available.
Selecting this button brings up a similar display to the one displaying a single results analysis.
The summary section characterizes statistics involving all simulation outcomes, such as
average score and number of wins. Instead of displaying a list of plan states and observations, a
list of the individual results involved is shown and allows the user to further inspect individual
results. Score graphing is also available to display all game scores overlaid on a single graph.
A screenshot of the user interface when viewing multiple simulation results is shown in Figure
4-11.

4.4 Test Results

4.4.1 Recording Results

PDDOT includes an implementation of a results handler responsible for recording useful
simulation details for later analysis. Simulation results recorded by the results handler is
especially useful for debugging PDDOT behavior, analyzing PDDOT performance in DEEP,
and generally making simulations more transparent for later analysis.

During a simulation, PDDOT provides the results handler with all runtime parameters,
executed plans and observation updates to process and record information for later analysis.
For each plan and observation, the results handler records unit and building counts in addition
to the time in which they occurred. After a simulation finishes, the results handler captures the
final game score and whether or not the enemy was defeated. Lastly, all information recorded
by the results handler is outputted as a file in XML format.

4.4.2 Test Plan

PDDOT testing consisted of four separate test sets: no re-planning, PDDOT re-planning,
feature exploration, and optimal threshold. The baseline Case-Based Planning uses the
minimal amount of information avaialable at the beginning of the game and determines the best
possible plan to use with the available information. The baseline does not perform subsequent

Statistics summarize all runs selected

Approved for Public Release; Distribution Unlimited.

20

re-plans. The PDDOT re-planning test uses the PDDOT architecture & uses information as it
becomes available to alert the DEEP case-based re-planning algorithms to retrieve a new plan
for execution when the plan is deviating from expected performance. Table 4-3 shows the
results for both no re-planning and PDDOT re-planning techniques.

Table 3: Results for testing no re-planning and baseline re-planning

Run Type

Avg
Reward –
Wins

Avg
Reward –
Losses

Max
Reward

StdDev
Reward

% Terran
Win

Baseline
Case-Base
Planning

106,464 23,478 142,865 47,234 10/26 (38.5%)

PDDOT
Re-planning

102,076 32,193 199,620 53,384 13/22 (59.1%)

The feature exploration test set tests PDDOT re-planning logic with SME elicitations for
individual features. Testing SME judgment for each feature helps ensure the elicitations are
correct and provides insight into the impact each feature has on re-planning. Two features
were chosen from each race for exploration, and the results for re-planning are listed in Table
4-4.

Table 4: Results for Testing Individual Features Using SME Elicitations

Re-planning in optimal threshold search included all four of the SME elicitations for Terran
Marines, Zerg Zerglings, Terran Vultures and Zerg Hydralisks. While a useful exploration
would be to determine which set of features yielded the best results, it would take a
considerable amount of time (24 – 4 = 12 additional test sets) and was decidedly omitted from

Approved for Public Release; Distribution Unlimited.

21

the test plan. In addition, due to lack of concretely being able to determine improved
performance, testing for an optimal feature set was not a valuable investment of time.

Optimal threshold testing was conducted using the threshold bounds 0.6 to 1.0 with a 0.1 step
at each iteration. Tests using the thresholds 0.2 and 2.0 were also conducted as a reference
point. The results from optimal threshold testing are shown in Table 4-5.

Table 5: Optimal threshold search test results

4.4.3 Results Breakdown

Based on the results revealed in Section 4.4.1, the simulations showed that PDDOT had a
positive impact on the winning percentages over the baseline planning technique. Although it
shows that re-planning out-performed single static plan, it is difficult to conclude that re-
planning with PDDOT had a significant impact on the winning percentage over other
replanning techniques given the set of tests.

A number of reasons factor into the impact PDDOT was able to provide for DEEP in StarCraft
simulations. One consideration is that as the number of tests conducted in each test set
approaches a very large (and unrealistic at this stage in development) number, various testing
limitations and randomness would approach a constant. We contend that at this limit
PDDOT's impact would be apparent. In order to produce better test results, the following
section details many of the testing limitations uncovered throughout the program.

4.4.4 Testing Limitations

Throughout PDDOT development and testing a number of limitations were documented. This
section provides a list of all limitations identified and is a useful reference for future
development and testing in both DEEP and PDDOT

Approved for Public Release; Distribution Unlimited.

22

4.4.4.1 StarCraft Domain Analysis

StarCraft is certainly a useful domain for rapidly testing military planning techniques in a
force-on-force gaming environment with considerable complexity. While StarCraft has many
upsides for accomplishing the goals of DEEP and PDDOT, a number of limitations exist that
impact performance:

• Simulations are timely. While StarCraft force-on-force simulations are magnitudes
faster and easier than other military planning simulations, it is still a slow process and
typically takes anywhere from a few minutes to a half hour to finish (when successfully
terminating). The DEEP team has investigated ways of deactivating the user interface
allowing much faster simulation runs, however, it has not yet been incorporated into
the expirementation platform used in this project.

• StarCraft AI frequently exercises early adversarial attacks. As mentioned earlier, early
attacks can be difficult to prevent and don't allow the friendly plan to develop. Due to
the large amount of time spent testing, this can slow down the process of generating
meaningful results even further.

• Enemy attacks are unpredictable and sudden. Often times, the enemy will send a large
number of ground forces to attack friendly bases. When a large fog of war exists
(typically early in simulations when much of the map is unoccupied), these attacks have
a similar impact to an ambush and only becomes noticeable when the enemy is nearly
inside the friendly base. Because of this, re-planning has little impact as friendly forces
do not have enough time to react. A consideration that may alleviate this problem is to
use more scouting to attempt to identify enemy rushes more timely.

• Metrics identifying a successful engagement are difficult to generate. While game
score is an enticing characteristic to relate to success, it occasionally can be misleading.
The StarCraft game score combines four individual scores and may not relate to a
commander's notion of success. For instance, one of the individual scores included in
the game score is a build score – a score that uniformly increases as more friendly units
and buildings are built throughout the engagement. When an engagement lasts for a
long time, the build score typically drives the game score up. The end result of this is
that game score usually increases with simulation time. In reality, a lengthy
engagement can be costly and undesirable, whereas more efficient victories are more
highly praised.

• Occasionally StarCraft will crash late during a simulation. This can be an issue when
friendly victories are somewhat rare and a near victory crashes.

Approved for Public Release; Distribution Unlimited.

23

4.5 Programmatic Summary

4.5.1 Milestone Schedule

Figure 13: PDDOT milestone schedule

5. CONCLUSIONS
The exploration in deviation analysis accomplished in PDDOT confirms the need to
dynamically assess the nature in which plans deviate from expected performance due to
battlespace complexity and enemy tactics evolving rapidly over time. Our exploration
identifies the challenges that exist in successfully determining deviations during plan execution
and provides an architecture and algorithms to efficiently address the challenges involved.

While PDDOT identifies the need for SME expertise for the fielded domain, it achieves domain
independence through the use of SME knowledge abstractions to instantiate deviation
detection algorithms with careful monitoring. PDDOT's chosen approach allows the
architecture to be useful in domains differing from the StarCraft simulation environment
targeted in DEEP.

While the DEEP platform with PDDOT witnessed limitations in CBR reasoning and plan
execution within the StarCraft domain, it presents a convincing technological approach to
having future success in military planning operations with future development and critiques.

Approved for Public Release; Distribution Unlimited.

24

6. RECOMMENDATIONS AND EXTENSIONS
We recommend the extension of PDDOT technology from the StarCraft domain to real-world
planners by providing an API that may be referenced in a wider context. Towards this end, we
had discussions concerning PDDOT’s role in AFRL’s Living Planner, not only exposing
PDDOT’s API, but (1) recoded so that it could be provided as a service in AFRL’s
Cornerstone/SCORA framework (along with several other AFRL-based services including
JAGUAR, CDAP/ICAP, etc.) and (2) substituting the blackboard-based DEEP dependency
with a common global world state structure. We would be happy to provide the most current
architecture diagram representing these discussions. PDDOT’s role in a Living Planner is just
one instance of participation a real-world planner. PDDOT technology could play a similar
role in any dynamic planning application.

Another interesting extension with implications in a more general planning domain is the
exploration of feature space for both deviation detection in PDDOT and CBR in DEEP. Both
PDDOT and DEEP CBR algorithms operate through reasoning about the various features that
comprise plan states and observation updates. Through research conducted to better
understand the impact various features have on reasoning, these algorithms can potentially be
biased to increase efficiency and accuracy.

A more local recommendation is to extend the DEEP Plan Execution Agent to provide a more
realistic, feature-filled capability. In comparison to Deep Green and other planning aids, the
Plan Execution Agent might benefit from exploring the inclusion of unit positions and attack
coordination and execution. As mentioned in this report, PDDOT currently requires an
extremely consice feature set, potentially omitting many of the intricate details that comprise
real-world military plans.

Another opportunity exists in using the technology developed by PDDOT to provide a more
robust CBR algorithm. DEEP CBR approaches a similar need in determining a plan and state
which most closely reflects the current engagement. PDDOT's deviation measurement
algorithm could potentially be used in DEEP CBR by searching for a plan state with the lowest
deviation measurement. An opportunity exists in determining how the deviation measurement
could bridge the gap between DEEP and PDDOT while addressing the efficiency concerns of
CBR technology.

As an effort to assist the development of the DEEP environment, a number of limitations were
recorded for future consideration. The most noticeable limitations exists in DEEP's case-base
and ability of matching algorithm for finding a plan in the case-base that most closely
resembles the current state of engagement.

In addition, the following list was compiled throughout PDDOT integration and testing with
DEEP:

• DEEP currently uses a default initial build order of buildings and units at the beginning
of every engagement. DEEP attempts to alleviate the difficulty in defending early
enemy attacks by always creating specific units and buildings before executing the
starting plan. While this may have some upside, the initial build order is not currently
described in the plan details. From the PDDOT perspective, the initial build order
causes the appearance of a deviation and skews the expected unit and building counts.

• The DEEP Plan Execution Agent uses separate AI to control the construction of SCVs
and Supply Depots. Similar to the impact resulting from the initial build order,

Approved for Public Release; Distribution Unlimited.

25

PDDOT finds it difficult to assess deviation when the expected number of SCVs and
Supply Depots differs from the plan and is unknown. In addition, the construction of
new SCVs and Supply Depots uses resources that may be required to build other plan
specific entities, causing further deviations.

• Marines in bunkers are not accounted for by the DEEP Plan Execution Agent.
Observations, however, recognizes the existence of marines in bunkers. Because
bunkers with marines are used frequently, a large discrepancy typically arises between
the number of marines present and the number recognized by the execution agent. This
gives the effect of the plan execution agent building far more marines than the plan
states. This also impacts the deviation estimates calculated by PDDOT.

• Plan execution uses a defensive strategy, which often causes stalemates late in
engagements. When a friendly engagement with the enemy is nearly victorious,
friendly forces may occupy nearly the entire map. However, a small number of enemy
worker units may still be lingering in small bases located in the corners of the map,
collecting resources indefinitely. In order to declare the engagement a victory and
terminate the simulation, the friendly force must eliminate these last few worker units
(an easy task, considering they do not have offensive capabilities). This can cause a
problem when the plan execution agent doesn't actively search and destroy these last
few enemy workers. The effect of this is a stalemate, which will cause the simulation to
run indefinitely.

• Occasionally on startup, DEEP fails to initialize Blackboard agents, rendering any
agents relying on information produced by the absent agents ineffective.

7. BIBLIOGRAPHY
AFRL/RIS. (2011) Experience Based Adaption & Re-Planning Simulation Environment: StarCraft.
White paper from DEEP program

AFRL/RIS. (2011) Experience Based Adaption & Re-Planning Overview. White paper from
DEEP program

Carrozoni, J., Lawton, J., et. al. Distributed Episodic Exploratory Planning (DEEP). Air Force
Research Laboratory, 2008. AFRL-RI-RS-TR-2008-279.

Corkill, Daniel; Blackboard Systems. AI Expert 6(9):40-47, 1991.

Hinrichs, T., Forbus, K., de Kleer, J., et al. (2010) Hybrid Qualitative Simulation of Military
Operations. Technical report from the Deep Green program.

Pearl, J. (2009). Causality. Cambridge University Press.

Richards, D., Lachevet, K., et. al. Distributed Episodic Exploratory Planning (DEEP). Air
Force Research Laboratory, 2012. AFRL-RI-RS-TR-2012-115.

Stromsten, S. (2010) Dynamics for filtering/monitoring/tracking in CB [Crystal Ball]. Technical
report for BAE Systems AIT from the Deep Green program.

Surdu, J., Kittka, K. (2008) The Deep Green Concept. Proceeding from the 2008 Spring simulation
multiconference.

Xu, Tianbing, Zhang, Zhongfei, et. al. (2012) Generative Models for Evolutionary Clustering. ACM
Transactions on Knowledge Diuscovery from Data.

Approved for Public Release; Distribution Unlimited.

26

8. LIST OF SYMBOLS, ABBREVIATIONS, & ACRONYMS

Symbol,
Abbreviation,

Acronym
Definition

AFRL Air Force Research Labratory

AI Artificial Intelligence

API Application Programming Interface

ARPI AFRL-Rome Planning Initiative

BWAPI Brood War Application Programming Interface

C2 Command and Control

CBR Case-base reasoning

CDAP COA Development and Analysis Prototype

COA Course of Action

CPR Core Plan Representation

DARPA Defense Advanced Research Projects Agency

DEEP Distributed Episodic Exploratory Planning

DG Deep Green

GUI Graphical User Interface

HMM Hidden Markov Model

ICAP Interactive Collaboration Environment for COA Assessment Planning

ICD Interface Control Document

JAGUAR Joint Air Ground Unified Adaptive Re-planner

OT Optimal Threshold

PDD Plan Deviation Detector

PDDOT Probabilistic Deviation Detection and Optimal Threshold

POMDP Partially Observable Markov Decision Process

RMI Remote Method Invocation

SCORA Synchronized Constraint-based Optimization, Repair, and Assembly

Approved for Public Release; Distribution Unlimited.

27

Symbol,
Abbreviation,

Acronym
Definition

SCV Space Construction Vehicle

SME Subject Matter Expert

SVN Subversion

TIM Technical Interchange Meeting

WSM World State Monitor

XML Extensible Markup Language

Approved for Public Release; Distribution Unlimited.

28

	1. SUMMARY
	1.1 Task Objectives
	1.2 Technical Challenges
	1.3 General Methodology
	1.4 Technical Results
	1.4.1 Metrics
	1.4.2 Testing Support

	1.5 Important Findings and Conclusions
	1.6 Implications for Further Research

	2. INTRODUCTION
	2.1 An Introduction to DEEP
	2.2 DEEP and StarCraft
	2.3 PDDOT for DEEP

	3. METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Achieving Program Goals
	3.2 Simulation with DEEP and StarCraft
	3.3 Enabling Technologies – Deep Green

	4. RESULTS AND DISCUSSION
	4.1 PDDOT Integration with DEEP
	4.2 PDDOT Architecture
	4.2.1 PDDOT Agent
	4.2.2 World State Monitor
	4.2.3 Deviation Detector
	4.2.4 Optimal Threshold

	4.3 Testing Harness
	4.3.1 Runtime Parameterization
	4.3.2 Results Analysis

	4.4 Test Results
	4.4.1 Recording Results
	4.4.2 Test Plan
	4.4.3 Results Breakdown
	4.4.4 Testing Limitations
	4.4.4.1 StarCraft Domain Analysis

	4.5 Programmatic Summary
	4.5.1 Milestone Schedule

	5. CONCLUSIONS
	6. RECOMMENDATIONS AND EXTENSIONS
	7. BIBLIOGRAPHY
	8. LIST OF SYMBOLS, ABBREVIATIONS, & ACRONYMS

