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1. SUMMARY 
This report describes the research done under the Probabilistic Deviation Detection and 
Optimal Threshold (PDDOT) project.  The goal of the PDDOT program is to provide a 
method for continuously monitoring military plans during execution for deviations from 
expected performance as the situation evolves and more information becomes available.  In 
addition, the PDDOT project identifies an optimal deviation threshold for determining when 
the executing plan is proceeding as planned, or needs to be modified.  PDDOT also provides a 
convenient testing harness for integrating plan execution and deviation parameters into 
AFRL's Distributed Episodic Exploratory Planning (DEEP) environment to assist 
development and integration testing.  The following sections summarize our approach and 
results.  The remainder of this summary covers: 

• Task Objectives 
• Technical Challenges 
• General Methodology 
• Technical Results 
• Important Findings and Conclusions 
• Implications for Future Research  

An introduction to the main body of the report is followed by sections on: 

• Methods, Assumptions, and Procedures 
• Results and Discussion 
• Conclusions, and 
• Recommendations and Extensions 

 

1.1 Task Objectives 
The task objectives for the PDDOT program are: 

1. Develop a method for determining the degree to which a current world state has 
deviated from a previously planned goal state 

2. Monitor an executing plan and world state over time to enable automated plan 
deviation alerts and re-plan triggers 

3. Determine a tradeoff analysis of the reward for re-planning at a particular time  

1.2 Technical Challenges 
To accomplish these objectives, a range of technical challenges were assessed in this project: 

1. Structural representation of state – estimating world state from partial observations in 
the environment 

2. Development of deviation algorithm to identify degree of deviation from the executing 
plan 

3. Integration of the PDDOT agent into the DEEP environment for testing 
4. Address excessive thrashing when re-planning occurs too frequently 
5. Develop method for identifying optimal threshold 
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1.3 General Methodology  
Our methodology consisted of designing a robust architecture with four major interacting 
components.  First, we addressed the representational challenge of creating a structure to 
maintain state and actions for the executing plan.  Second, a probabilistic deviation detection 
algorithm was developed to estimate posterior probability distributions over the represented 
states based on observation data received over time.  Third, optimal threshold search 
techniques were designed and tested to determine the best threshold policies for maximizing 
reward.  Lastly, a set of testing utilities and metrics were designed to test the baseline DEEP 
system with both no re-planning and PDDOT re-planning techniques. 

In addition, parallel to PDDOT design and development efforts, integration with the DEEP 
system was pursued to provide feedback on both PDDOT and DEEP design and development 
decisions.  

1.4 Technical Results 
The PDDOT project was focused on designing and implementing the PDDOT architecture, as 
well as testing and demonstrating the utility of the overall system concept within the DEEP 
environment.   

1.4.1 Metrics 

While the metrics compiled from simulations ran in StarCraft illustrated a functioning 
PDDOT architecture, further research & development on the simulation platform would be 
required to fully measure & analyze the performance impact by PDDOT. 

1.4.2 Testing Support 

The PDDOT project was very successful in providing testing support for both DEEP and 
PDDOT.  A significant number of issues were identified, many of which were also addressed, 
throughout the development of PDDOT.  The testing harness proved to be a very useful tool 
for customizing and running simulations quickly.  In addition, the testing harness also provided 
very convenient utilities for analyzing test results from simulations within the DEEP 
environment. 

1.5 Important Findings and Conclusions 
Testing conducted in the DEEP environment using StarCraft revealed significant deviations 
from plan expectations and reinforced the need for a PDDOT solution to assist plan execution.  
In addition, it became apparent that the impact of PDDOT directly depends on the ability to 
efficiently re-plan to a plan with a greater opportunity for success.  In order to provide this 
capability, DEEP Case-Based Reasoner (CBR) requires a comprehensive case-base in addition 
to a robust CBR matching algorithm. 

1.6 Implications for Further Research 
In order to provide a more general solution for deviation analysis in military planning, 
PDDOT attempts to implement a capability independent of domain specific details from the 
StarCraft simulation environment used in testing.  This goal was achieved through the 
abstraction of subject matter expertise used to provide incite for the various features 
comprising state.  Interesting research, however, remains to be conducted to better understand 
the impact of varying feature sets used to perform deviation analysis.  In addition, exploration 
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of feature selection is a potentially useful opportunity in the context of DEEP CBR case 
matching. 

2. INTRODUCTION 
The goal of the PDDOT program is to provide a re-planning technology to determine 
deviations in an executing course of action for real-time management of military operations.  
Determining such deviations is critical to the success of military operations where the 
complexity of the battle space and rapidly evolving enemy tactics requires an agile and effective 
response.  In addition, commanders face the challenge of deciding when a deviation is 
significant enough to warrant the risks of re-planning.  Re-planning too often results in 
excessive thrashing, where plans are not able to setup in time and are primarily occupied with 
transitioning to the new plan.  Infrequent re-planning, on the other hand, eliminates the benefit 
of dynamic planning and leveraging situational updates to ensure plan goals are achievable.  
The identification of an optimal threshold between these two extremes is desirable in assisting 
commanders to determine when to re-plan successfully. 

2.1 An Introduction to DEEP 
The PDDOT program integrates with AFRL's DEEP environment to simulate military 
planning and engagements against enemy forces using the StarCraft gaming engine.  DEEP is 
a mixed-initiative decision support system that utilizes past experiences to suggest courses of 
action for new situations.  The DEEP effort began in 2006 in response to deficiencies in course 
of action development in command and control (C2) systems.  The DEEP system aims to 
provide support to a military planning staff to better satisfy the stated and implied conditions 
embodied in a given commander's intent.  The project uses analogical reasoning over an 
experience base of past actions to solve new problems.  It explores case-based reasoning (CBR) 
for plan retrieval and course of action development.  The system is mixed-initiative in the sense 
that a commander, through his or her agent, can view and modify the contents of the shared 
repository as needed.  A blackboard-based architecture manages a common knowledge 
repository through which the various software agents interact.   

The resulting initial research platform is comprised of the following components:  
• Distributed Blackboard to support multi-agent, non-deterministic, opportunistic 

reasoning  
• Case-Based Reasoning to capture experiences, which may be successes and/or failures  
• ARPI Core Plan Representation (CPR) for human-to-machine common dialog  
• Multi-Agent System for mixed initiative planning 

 
For more information regarding the Distributed Episodic Exploratory Planning (DEEP) 
project, see Carozzoni, et al. 2008 & Richards, et al. 2012. 

2.2 DEEP and StarCraft 
StarCraft is a popular military science fiction force-on-force real-time strategy game developed 
by Blizzard Entertainment in 1998.  Blue and red forces build economies, construct physical 
bases, develop military capabilities and are involved in force-on-force engagements.  Three 
different StarCraft 'races' represent different military forces available to use in force-on-force 
engagements.  Each StarCraft race consists of unique unit and building types with varying 
strengths and weaknesses when employed on the battlefield. 
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Figure 1: A screenshot of the StarCraft Brood War videogame 

StarCraft is used as the domain for the case-based planning research conducted in the DEEP 
project.  StarCraft was selected for a number of different reasons that make the game engine an 
attractive choice for DEEP research and testing.  One of the primary reasons for using 
StarCraft is the large case base that can be constructed due to the game's popularity and ability 
to save simulation logs after game play.  Thousands of simulation logs are available online and 
were collected to create the case-base used in DEEP CBR. 

The complexity of the StarCraft gaming engine also makes it an excellent choice for a 
simulation domain.  Although the actions for the red forces in StarCraft are deterministic, the 
large action space over which the game proceeds makes it unlikely to see the same outcomes 
given a small set of actions taking place over a limited portion of the game's duration.   

In addition, StarCraft is an active research domain for both academic and defense research 
projects.  In 2008, a public domain application programming interface (API), called Brood War 
API (BWAPI), was developed within the StarCraft research community using C++ to interface 
with the gaming engine.  The framework is free and open source, which helped it gain 
popularity for researchers, students and hobbyists. 

2.3 PDDOT for DEEP 
Planning for military operations is notoriously difficult; initial plans rarely survive first contact 
with the enemy.  Initial experiments with the DEEP environment revealed excessive thrashing 
due to the high frequency of re-planning.  It was immediately realized that a challenge existed 
to provide an automated re-planning capability, including the ability to meaningfully estimate 
the distance between reality and planned outcomes, and to determine when a deviation is 
sufficiently significant to justify re-planning.  An autonomous and adaptive re-planning 
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technology provides plausible decisions to commanders aiming to reduce the differential 
between the current state and the desired outcome. 

PDDOT addresses this challenge by leveraging AFRL's in-house research in CBR technology 
to select the best historical plan for a given situation when determining a re-plan is necessary.  
In order to achieve this, PDDOT provides algorithms for plan monitoring, representation, 
probabilistic deviation detection and optimal threshold search.  The key components developed 
under PDDOT are: 

• World State Monitor for processing situation and plan execution changes over time 
• Deviation Detection for algorithmically determining deviations in plan execution 
• Optimal Threshold Search for identifying the optimal deviation threshold 
• Testing Harness for improving the ability to test and analyze results 

The remaining sections of this report discuss the PDDOT deliverables in more detail. Section 3 
outlines the methods, assumptions and procedures of PDDOT development. Section 4 includes 
an overview of each of the four primary PDDOT deliverables, with supporting documentation 
provided as appendices. Section 5 presents a programmatic summary.  Insights and lessons 
learned for the work developed under this contract are given in Section 6. Recommendations 
for future work and possible project extensions are given in Section 7. 

3. METHODS, ASSUMPTIONS, AND PROCEDURES 
Due to the high level of integration between PDDOT and DEEP, a number of requirements 
were established early in the program to increase both productivity and transparency.  The 
following two sections details the requirements established in order to best achieve success for 
the PDDOT project. 

3.1 Achieving Program Goals 
One of the goals for the PDDOT project is to provide testing and integration support for the 
DEEP environment.  Development for the PDDOT project was established in a repository 
accessible by both BAE Systems and AFRL consisting of the source code for both PDDOT and 
DEEP for rapid collaboration, development and bug fixing.   

In addition, in order for the PDDOT project to provide a useful and robust re-planning service, 
there are 3 requirements needed from the environment used for integration: 

• Real-time, up-to-date situation updates.  PDDOT aims to be agile and effective in 
course of action management, which requires information it reasons about to be 
available in real-time.  In addition, PDDOT's performance also relies on the frequency 
of situation updates.  Infrequent or rare situational updates leaves PDDOT blind to the 
engagement and hinders its ability to provide insight into course of action management. 

• A rich feature-set for both the plan and situation updates to allow comprehensive 
reasoning over time.  Limited information about the state of engagement also hinders 
PDDOT's ability to gauge deviations in plan execution.  A rich feature-set allows 
PDDOT to provide more insight into the level of deviation for course of action 
management. 

• A mechanism for communicating the need to re-plan when an opportunity to re-plan is 
identified. 
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Collaborative development in the shared repository during the early stages of integration 
testing helped ensure the requirements were addressed by the DEEP environment and utilized 
in PDDOT. 

3.2 Simulation with DEEP and StarCraft 
A major goal for the PDDOT project is to provide a useful and robust re-planning service 
integrated within the DEEP environment and tested with StarCraft.  In order to provide this 
capability, metrics were first established to define success for the PDDOT project.  From a 
simulation standpoint, statistics and scores from StarCraft were considered to provide metrics 
for PDDOT's performance within the DEEP environment.  While StarCraft provides handy 
metrics to measure the performance of friendly plans executed against the enemy, it is 
important to note that these metrics involve the entire end-to-end system of PDDOT working 
within DEEP.  In order for these metrics to be a useful measurement of success for PDDOT 
alone, there are an additional 3 major requirements that need to be satisfied by the 
environment: 

• Reasonable determinism in game-play.  In order to have metrics from testing be an 
accurate representation of PDDOT and DEEP performance, test cases must not vary 
drastically from one test set to another.  Test set sizes are limited due to the amount of 
time required to run a complete simulation in StarCraft (up to 30+ minutes per 
simulation – if it terminates), which requires relatively deterministic game-play to have 
meaningful results with limited test set sizes. 

• A rich case-base and intelligent case-base reasoning technology.  The concept of 
leveraging known solutions to solve new ones in case-based reasoning is particularly 
useful when the case-base of known solutions is rich.  However, a case-base lacking 
relevant cases severely limits the ability to be a useful technology.  Case-base reasoning 
usefulness also declines with naïve querying algorithms, even if a rich case-base is 
available.    

• Comprehensive set of robust metrics for evaluating simulations.  The metrics provided 
by the StarCraft game engine must be relevant to and reflective of the outcome of the 
engagement. 

Implications of the DEEP environment limitations are discussed in the Testing Limitations 
section (4.4.4), Conclusions (5), as well as the Recommendations and Extensions section (6). 

3.3 Enabling Technologies – Deep Green 
BAE Systems – Technology Solutions previously led the development of DARPA's Deep Green 
project and was responsible for developing and implementing a decision-making support 
system for United States Army commanders planning force-on-force engagements.  Under the 
Deep Green project, a probabilistic model known as a futures graph was developed to represent a 
large, well-defined state space of potential outcomes and utilities for engagements with enemy 
forces.  Deep Green's Crystal Ball component designed algorithms estimating state 
probabilities and automated alert generation capabilities to enable risk and deviation analysis 
for commanders.  The work accomplished in Crystal Ball provides a strong foundation for 
adapting existing deviation detection algorithms for the PDDOT program.  In order to 
position the PDDOT program for success, a goal is to consider and leverage the work under 
Deep Green's Crystal Ball when facing comparable design challenges.  
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4. RESULTS AND DISCUSSION 
4.1 PDDOT Integration with DEEP 
Integration with the DEEP environment takes place in two areas, active monitoring during 
simulation and test management and analysis.  During simulation, PDDOT interacts with the 
DEEP environment through the DEEP Blackboard messaging service. 

 
Figure 2: The DEEP Blackboard architecture integrating PDDOT 

The DEEP Blackboard represents the common knowledge repository through which agents 
may interact to conduct non-deterministic, opportunistic reasoning.  PDDOT is both a 
consumer and producer of Blackboard knowledge.  In addition to PDDOT, there are 3 other 
agents involved in contributing and consuming information from the DEEP Blackboard: 

StarCraft Planning Agent: Updates the DEEP plan to be executed in StarCraft when 
notified.  Uses DEEP CBR to select a new plan from the DEEP case-base that best 
matches the current state of engagement when a re-plan has been determined.  Posts the 
plan representation to the DEEP Blackboard. 

Plan Execution Agent: Executes new plans posted to the DEEP Blackboard in StarCraft.  
Translates the DEEP plan representation into a series of StarCraft actions over time and 
executes them. 

Situation Agent: Posts situational updates to the DEEP Blackboard when state changes are 
observed in StarCraft.  Situation updates include information detailing the creation and 
destruction of both friendly and enemy buildings and units as well as observations of 
enemy units by friendly units. 

The PDDOT Agent subscribes to the DEEP Blackboard during simulations in order to receive 
updates about the ongoing engagement from other DEEP agents.  PDDOT processes 
situational and plan updates posted to the blackboard in order to analyze the state of deviation.  
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In addition, PDDOT posts re-plan updates to the blackboard when deciding a deviation has 
occurred. 

When starting a new simulation in DEEP, PDDOT receives an initial plan update from the 
StarCraft Planning Agent denoting the first plan being executed.  Plan updates are then 
received only when a re-plan is issued by the PDDOT Agent and processed by the StarCraft 
Planning Agent.  Due to the asynchronous nature of the DEEP Blackboard, plan updates are 
received after the StarCraft Planning Agent processes the re-plan update, selects a new plan 
from the case-base and posts the new plan update to the blackboard.  On average during 
simulations, this process occurs very quickly with a delay of less than 50 frames. 

Plans used by PDDOT are represented in the DEEP case-base by a series of plan features over 
time.  DEEP plan features for StarCraft plans are comprised of the various unit and building 
types available by each of the friendly and enemy forces.  Plans store a feature-set for each plan 
time step.  Each feature-set maps an integer count to each feature, denoting the number of 
entities represented by the feature that currently exist on the battlefield.  As an example, a 
feature-set may map the number 6 to Terran Marine, denoting the existence of 6 Terran 
Marine units in the plan at that particular time step.  Currently, plan time steps are defined as 
2000 frames in a StarCraft simulation.  Typically, plans contain 43 plan states covering a total 
of 86,000 frames. 

Table 1: Terran Units and descriptions used in StarCraft simulations 

Terran Unit Description 

Battlecruiser Largest and most powerful of all Terran air units 

Dropship Terran transport unit capable of transporting any ground unit 

Firebat Infantry support unit equipped with a flamethrower 

Ghost Specialized infantry type unit with the power of invisibility 

Goliath Most powerful anti-air ground unit 

Marine Basic combat unit for the Terran race 

Missile Turret A static turret with basic anti-air defense 

Science Vessel An aerial support unit capable of remotely repairing mechanical units 

SCV Worker unit used to harvest minerals and resources 

Siege Tank A basic tank unit with the ability to inflict high damage 

Vulture A basic mobile ground unit 

Wraith An aerial attack unit with the power of invisibility 

Medic A basic ground unit with the ability to heal biological units 

Valkyrie A small sized spacecraft equipped with rockets 
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Table 4-1 lists the various units for the Terran race, the primary race used to represent friendly 
forces in StarCraft simulations with DEEP.  Each entity maintains a particular capability that it 
provides for its race.  The remaining two StarCraft races have similar unit and building types 
with comparable capabilities.  DEEP with PDDOT aims to identify and utilize the optimal 
consistency of each entity for the blue force to best defeat the red force in combat. 

Situations used by PDDOT are represented by the Situation Agent in DEEP similar to plan 
states in the DEEP plan representation.  Situation updates are posted by the Situation Agent 
when changes on the battlefield are observed with a maximum frequency of 50 frames (when no 
changes are observed, no update is posted). Situations contains updates for each of the friendly 
and enemy units and buildings, describing the number of each visible on the StarCraft 
battlefield.  Situation updates do not provide complete information about enemy units and 
buildings and only reveal entity counts for those visible by friendly forces.  In the StarCraft 
domain, this incomplete information availability is known as the "fog of war" and describes the 
limitation of observing the battlefield only to the extent of friendly units.  Imperfect 
information about the state of engagement plays a critical role in the ability of PDDOT to 
reason about the state of deviation.   

4.2 PDDOT Architecture 
PDDOT address the challenge to optimally identify deviation points in plan execution through 
the interaction of four main components: the PDDOT Agent, World State Monitor, Deviation 
Detector, and Optimal Threshold Search.  Each of the four main PDDOT components provides 
individual solutions to adaptation, representation, and algorithmic challenges and is optimized 
for clarity and compatibility.  An overview of the PDDOT architecture is shown in Figure 4-2 
below. 

 
Figure 3: The PDDOT architecture 

The PDDOT Agent first addresses the challenge to adapt to the DEEP environment and run 
tests in the StarCraft domain.  Second, the World State Monitor adapts DEEP plan and 
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situation update representations to PDDOT specific representations in order to effectively 
analyze deviation likelihoods.  Next, the Deviation Detector utilizes a deviation detection 
algorithm instantiated by subject matter expertise to provide insight on the current state of 
plan deviation.  Lastly, the Optimal Threshold Search component addresses the challenge to 
discover the optimal deviation threshold to obtain maximum reward. 

4.2.1 PDDOT Agent 

The PDDOT Agent's primary responsibility is to interface with the DEEP environment and 
provide a convenient abstraction for integrating the rest of the PDDOT architecture with 
DEEP.  As mentioned earlier, DEEP employs a distributed blackboard system as an 
opportunistic artificial intelligence application based on the blackboard architectural software 
engineering paradigm. (Corkill, 1991)  The blackboard system functions as a central knowledge 
store facilitating communication and interaction between the various DEEP agents, including 
the PDDOT Agent.   

The PDDOT Agent uses Java Remote Method Invocation (Java RMI) to interact with the 
blackboard remotely over a local port connection.  Information communicated to the PDDOT 
Agent from the Blackboard is filtered for plan and situation updates, represented as Java objects 
in the native DEEP format.  Additionally, the PDDOT Agent filters for a specific message 
posted by the Situation Agent denoting the end of the current simulation.  This allows 
PDDOT to initiate its post-simulation processing to output simulation results.  All information 
filtered from the blackboard by the PDDOT Agent is communicated directly to the World 
State Monitor to process and translate into representations useful for deviation detection 
algorithms. 

4.2.2 World State Monitor 

A key representational challenge that PDDOT faces is the need to analyze plan and situation 
updates native to the DEEP environment operating in the StarCraft domain.  The World State 
Monitor is responsible for addressing this challenge by constructing state and observation 
representations useful for the probabilistic reasoning algorithms exercised in deviation 
detection. 

In artificial intelligence research, dynamic models capable of estimating future states under 
uncertainty are required to support prediction and expected utility calculations.  Typically, 
modeling under uncertainty requires the ability to define qualitative states within a state space, 
dynamically update likelihood estimations from information disclosed in observations, and 
determine outcome utility.  In order to accomplish this, PDDOT implements a World State 
Monitor to address the representational challenge of identifying the key variables that 
constitute qualitative state, as well as the state space of potential states and transitions.  The 
World State Monitor processes plan, situation and termination updates from the PDDOT 
Agent to provide a graphical model with the necessary information to effectively estimate 
deviation likelihood during engagements. 

One of the reasons BAE Systems – Technology Solutions was uniquely suited to address the 
challenges of PDDOT was the prior work accomplished under DARPA's Deep Green program 
for similar ground-based force-on-force planning scenarios.  The Deep Green program 
successfully demonstrated the ability to model pre-defined partial state spaces using a unique 
hybrid representation of hidden Markov models (HMMs) and partially observable Markov 
decision processes (POMDPs).  The foresight during PDDOT program planning was that the 
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models, algorithms, and expertise matured under the Deep Green program would translate to 
the PDDOT domain. 

Initially, the probabilistic model considered for PDDOT was a more efficient adaptation of a 
futures graph using a POMDP.  In addition to its use in Deep Green, a POMDP is an attractive 
choice due to the constraint imposed by observations that only partial information is revealed 
about the state of engagement.  While representing all possible states of an engagement is 
intractable, a simpler representation was considered involving a linear progression of plan 
states with an additional catch-all deviation state.  Each plan state in the POMDP would 
include a transition to the deviation state with a static, pre-defined deviation likelihood.  Similar 
to Deep Green, a particle filter would be used to estimate the posterior probability distribution 
over POMDP states based on situation updates. 

During the early stages of PDDOT design and integration, it was revealed that the 
characteristics of the DEEP environment constrained the effectiveness of using the modeling 
approach taken in Deep Green.  Typically, two requirements must be met when considering the 
use of a POMDP for reasoning –the ability to control state transitions with a transition model 
detailing the likelihood of action outcomes, and uncertainty about current state.  In the Deep 
Green project, commanders include various decision points in the planning process and utilize 
futures graph likelihood estimates to provide insight into the outcome of potential actions 
during plan execution.  The use of decision points in Deep Green plans warrants the 
consideration of a POMDP to optimize decision making for the commander.  Unlike the Deep 
Green project, no decision making is involved in plan execution within the DEEP environment 
for StarCraft simulations.  From the PDDOT perspective, plans are executed independently 
and observations dictate all transitions between plan states and the deviation state.  PDDOT 
does not control the transition between plan states and the deviation state, it observes them.  The 
policy of PDDOT is to re-plan when the current state is the deviation state and results in the 
construction of a new graphic model.  In other words, PDDOT controls when the graphic 
models are replaced, but observes the nature in which they evolve. 

Without the need to model decision making in the state space, another model to consider is a 
hidden Markov model (HMM).  While HMMs do not involve the observer controlling state 
transition, they do include the second requirement of a POMDP in that the current state 
cannot be directly observed.  This particular requirement appears to be relevant to the DEEP 
domain based on the condition that situation updates only reveal partial information about the 
entire state of engagement.  However, as mentioned earlier, the model considered for PDDOT 
involves only plan states to avoid the intractability of modeling the entire state space.  Taking 
this approach, uncertainty about current state would imply the possibility of being in different 
plan states at any given time.  Addressing this issue early in the PDDOT program, it was 
decided that temporal shifts in plan execution would be considered deviations.  This decision 
was made due to the fact that plan execution cannot be augmented based on the likelihood of 
being in a particular plan state.  Instead, if a different plan state better represented the current 
engagement, re-planning would likely allow DEEP CBR to choose the better state and execute 
the corresponding build actions. 

Ultimately, the state that is most important to PDDOT at a given time is the current executing 
state.  Without the requirements used in POMDPs and HMMs above, the PDDOT plan 
representation is capable of being modeled as a Markov chain where the current state is either 
the plan state being executed or the deviation state. 
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Figure 4: State representation during execution 

The World State Monitor is responsible for constructing the PDDOT state representation as a 
Markov chain from the DEEP representation used in CBR.  Each of the PDDOT states are 
populated with the unit and building counts for both friendly and enemy forces as described in 
the DEEP case log.   

Lastly, the World State Monitor is also responsible for constructing observation updates from 
the DEEP situation update to allow deviation detection algorithms to appropriately process 
state transitions in the PDDOT state representation.  Observations closely resemble the states 
representations to allow ease of processing, and include the features necessary to assess state 
likelihood estimations in deviation detection. 

4.2.3 Deviation Detector 

The Deviation Detector is responsible for implementing the algorithms that calculate the 
magnitude in which plan execution has deviated from its expected performance.  Deviation 
detection begins with the PDDOT state representation provided by the World State Monitor, 
and uses observations also provided by the World State Monitor to determine state transitions. 

 
Figure 5: States considered during deviation detection 

As described in the World State Monitor, the PDDOT state representation is based on a 
Markov chain and only considers the executing state and deviation state when determining a 
deviation.  At any specific time during plan execution, the DEEP Plan Execution Agent is 
actively executing the actions in StarCraft required to transition blue units and buildings from 
one plan time step to the next.  For instance, if one plan time step contains 6 friendly marine 
units, and the following contains 10, the Plan Execution Agent builds 4 friendly marines over 
the course of the time step.  The PDDOT plan state representing the first plan time step is 
known as the executing plan state.  In deviation detection, the Deviation Detector uses the 
information described in observations to determine if the executing plan state successfully 
transitions to the next plan state or results in a transition to the deviation state. 
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To determine which state transition occurs, observation updates are used to measure how 
strongly the information conveyed in observation updates represents the executing state 
transition in comparison to the deviation state.  In the context of DEEP and StarCraft, the unit 
and building counts described in observation updates are compared with those in the state 
representation using a calculation to generate the strength measurement in terms of likelihood.   

PDDOT uses a Bayesian approach to calculating state transition likelihood when observations 
are received.  One challenge that a Bayesian approach faces, however, is the need to calculate 
the probability of observed parameters outright.  This type of calculation is not straight-
forward in the context of PDDOT.  Nonetheless, a calculation representing the absolute 
probability of a state transition is not necessarily what PDDOT needs to assess a deviation.  A 
useful calculation that avoids this requirement is assessing the ratio of probabilities for 
transitioning to plan or deviation state.  Conveniently, calculating this ratio allows us to avoid 
outright probability calculations as they cancel out.  In reality, this ratio represents the 
probability of being on plan to off plan and is perfectly capable of threshold analysis.   

The assumption made for the PDDOT project is that all features of the plan state, detailing 
unit and building counts, are independent.  This means, for instance, that the number of marine 
units present implies nothing about the existence of battlecruiser units.  While this may not 
always be true in practice, an added level of domain expertise is required to determine the 
nature of conditional independence between various features.  Due to program time and 
resources constraints, this was not prioritized for the StarCraft domain, but is addressed in 
Section 7 on Recommendations. 
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Figure 6: Probability calculation of being on plan to off plan 

Deviation detection instead assesses the overall likelihood of being in the current state as the 
product of the likelihood that each observed feature appears to be on plan.  Figure 4-5 shows 
the Bayesian logic involved in calculating the probability of being on plan to off plan with the 
assumption that features are independent.  The second term in the product represents the 
probability that the executing plan was chosen and is a constant for all calculations.  
Conveniently, because PDDOT is interested in threshold analysis and not outright value 
calculation, this term can be ignored in deviation assessment.  Deviation analysis focuses on 
calculating the first term in order to assess deviation likelihood. 

PDDOT leverages the inverse functions used in the particle filter for Deep Green's Crystal Ball 
to calculate the likelihood of the various features being on plan.  The inverse function utilizes 
static maximum and minimum likelihoods to constrain the shape of the functional form and 
provide reasonable approximations.  Two inverse functions are combined, one for calculations 
involving observations below the planned value and one for observations above the planned 
value, to accurately measure deviation for arbitrary observations.  An example of the functional 
form is shown in Figure 4-6 below.  The shape of the functional form appropriately exhibits the 
desired behavior to provide high likelihood estimations when observations closely resemble the 
planned value, decreasing as the observation becomes less accurate.  
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Figure 7: Graphed functional form for calculating likelihood for an observed feature 

When developing these calculations, it was quickly realized that a significant understanding of 
the features involved was required to provide accurate estimates.  As an example, an SCV in 
StarCraft is an inexpensive worker unit used in large numbers.  A marine battlecruiser, on the 
other hand, is one of the most expensive deployable vehicles and is used very sparingly if at all.  
An observation revealing a few less SCVs than planned would be seen in an entirely different 
perspective than an observation revealing a few less battlecruisers than planned.  Another 
desire realized during testing was the ability to allow observations to be less accurate over 
time.  Small deviations in expected unit counts become less significant as the number of 
expected units increases from only a few too many dozens over the course of a simulation. 
PDDOT attempts to abstract the StarCraft domain knowledge from the deviation detection 
algorithms to provide a more useful, extensible system that is capable of operating with various 
cases, datasets, and domains. 
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Figure 8: Functional form in deviation detection for features 

Deviation detection achieves this abstraction by parameterizing the functional forms used and 
instantiating them for each feature with the knowledge of subject matter experts (SMEs).  
Using the knowledge of SMEs, each inverse function is capable of being specifically tailored to 
a particular feature in a given domain at any given time.  The parameterized functional form 
used is shown in Figure 4-7.  A SME worksheet was developed to capture information about 
each feature in order to instantiate each inverse function with parameters inscribing their 
knowledge.  A sample worksheet eliciting StarCraft SME expertise is shown in Table 4-2.  A 
functional form instantiated with SME expertise is graphed in Matlab in Figure 4-8.  The 
functional form displays the ratio as a function of time and observed valued for the given plan 
value of 5.  Note that the functional form graphed demonstrates the desired characteristic that 
the ratio increases over time. 
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Table 2: SME Worksheet Eliciting StarCraft Domain Knowledge 

Frame  Ratio elicitation  Marine Zergling Vulture Hydralisk 

5,000  1x lowerbound  -0.5 -1.0 -0.5 -1.0 

5x lowerbound  -0.2 -0.25 -0.3 -0.2 

5x upperbound  0.8 0.25 0.8 0.3 

1x upperbound  1.0 0.6 1.0 0.7 

50,000  1x lowerbound  -0.33 -0.4 -0.3 -0.5 

5x lowerbound  -0.25 -0.3 -0.2 -0.3 

5x upperbound  1.0 0.2 1.0 0.15 

1x upperbound  2.0 0.3 2.0 0.25 

 

 

 
Figure 9: Functional Form 
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Ultimately, the Deviation Detector uses the observations communicated by the World State 
Monitor to calculate the likelihood of being on plan, and compares the estimate to a threshold 
to determine if it is significant enough to warrant re-planning.  Once a re-plan has been 
determined, the Deviation Detector creates a re-plan update and notifies the PDDOT Agent to 
communicate it to the DEEP Blackboard. 

4.2.4 Optimal Threshold 

While the Deviation Detector is responsible for estimating the magnitude of deviation, another 
challenge exists in determining the level in which a deviation becomes significant.  Early 
testing in the DEEP environment used the baseline re-planning technique to re-plan on every 
situational update and resulted in 'thrashing'.  The effect of thrashing is severely detrimental 
and does not allow enough time for a plan to develop, leaving friendly forces defenseless.  
Figure 4-9 shows the effects of re-planning too frequently and not enough.  From the graph, it 
is apparent that there is some optimal threshold, T*, for which re-planning is the most 
rewarding for friendly forces.  Optimal Threshold Search addresses this challenge by iteratively 
testing PDDOT at different thresholds and analyzing simulation results. 

 
Figure 10: Optimal Threshold Search 

 

Optimal Threshold Search utilizes the heavily parameterized nature of PDDOT to allow the 
deviation threshold to be dynamically updated during runtime.  The test harness (discussed in 
Section 4.3) developed to provide testing support to both DEEP and PDDOT conveniently 
handles PDDOT parameterization, including threshold specification.   

In order to identify the optimal deviation threshold, Optimal Threshold Search iteratively 
increments the threshold used in deviation detection by a pre-specified step size.  A number of 
simulations are conducted for each threshold value and the results are analyzed in the test 
harness to determine the particular threshold that performed the best against the enemy (the 
number of simulations conducted at each step varied depending on the time available for 
testing).  In addition to supplying a step size for iteration in optimal threshold search, upper 
and lower bounds are specified to provide a more focused search.  The ability to adjust the step 
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size and bounds greatly improved the process of optimal search, due to the large investment of 
time required to perform simulations in the DEEP environment using StarCraft.  Details 
regarding optimal threshold search in the test harness is described further in the following 
section (4.3).  

4.3 Testing Harness 
In addition to deviation analysis, one of the main efforts of the PDDOT project is to provide 
convenient testing tools for both PDDOT and the DEEP environment.  Early in the program, 
a large portion of the time spent during the PDDOT design process was understanding the 
nature of integrating with the DEEP environment.  It was critical to fully comprehend the 
information conveyed in plan and situation updates as well as the manner in which they are 
delivered to the PDDOT Agent.  During this process, a number of bugs were fixed, features 
added, parameters adjusted, and limitations noted that affected PDDOT assumptions.  At the 
time, the DEEP environment had little to no testing outside of the DEEP developers and 
relatively limited testing in general. 

During the first half of the program, PDDOT work was occasionally put on hold while bugs 
were fixed or features added to the DEEP environment to address various issues or 
requirements for PDDOT to operate.  In addition, significant time was spent testing and 
providing feedback for the frequent updates to DEEP source code.  Shortly thereafter, an effort 
was proposed to develop an interface to assist testing and parameterization to improve the 
ability to test both PDDOT and DEEP as they evolved in parallel over time.  The test harness 
maintains a lasting effect for the DEEP environment as a front-end to testing a development 
for the DEEP environment for future projects and use at AFRL.   

The testing harness was developed within the DEEP source code and integrated with the 
entire end-to-end system involving PDDOT, DEEP and StarCraft.  The main features of the 
testing harness include the user interface, runtime parameterization for DEEP and PDDOT, as 
well as simulation results analysis.  

4.3.1 Runtime Parameterization 

The testing harness developed acts as a front-end to running simulations in the DEEP 
environment.  The harness provides the ability to specify parameters in four major areas: initial 
conditions, re-planning, duration of testing, and results.   
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Figure 11: Testing harness for runtime parameterization 

During initial testing in the DEEP environment, PDDOT faced challenges simulating force-
on-force engagements against the Protoss enemy StarCraft race.  A particular characteristic of 
the Protoss race results in a high percentage of early attack strategies in StarCraft.  While it 
was not understood at the time, the initial case-base plan chosen for the friendly Terran race 
has extraordinary difficulty defeating early Protoss attacks due to the amount of time it 
typically takes to construct its defenses.  The effect of this match-up severely limited the ability 
to test PDDOT and let the plan take form.  For this particular reason, it was desirable to 
execute tests against the Zerg race; a race less prone to execute a gimmicky “all-in” early 
attack.  The test harness addresses the effects of varying enemy race and initial case-base plan 
by allowing the initial conditions to be specified at runtime.  The harness modifies StarCraft 
configuration files and calls DEEP CBR methods to achieve this behavior. 

The majority of parameters available for configuration in the test harness fall under the re-
planning category.  All parameters in this category affect the performance of PDDOT in 
DEEP.  The current harness provides three different methods of re-planning to choose from: 
no re-planning, baseline re-planning, and PDDOT re-planning.  Baseline re-planning refers to 
the initial DEEP re-planning logic, where a new plan is chosen from CBR at each situation 
update. When PDDOT re-planning is selected, options become available to adjust the 
threshold manually, perform optimal threshold search, and even choose a specific plan for re-
planning (instead of using DEEP CBR).  This option was used for testing early in the PDDOT 
program when only a small case-base was available for DEEP.  Due to the difficulty DEEP 
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CBR matching had on the small case-base, early PDDOT testing techniques involved 
enumerating all possible re-planning scenarios, for a single re-plan, and analyzing results. 

The 'Select Features' button in the re-planning section, while not functional, serves as a place 
holder for where feature selection work would integrate with the test harness.  As noted in the 
recommendations section, a very interesting extension to both PDDOT and DEEP CBR is 
feature selection.  Feature selection allows both the CBR and PDDOT algorithms to be biased 
based on the significance of certain features.  The test harness is a useful tool to allow users and 
developers to adjust weighting and other parameters associated with feature selection at 
runtime. 

Lastly, the test harness provides support for adjusting the duration of testing and results 
output.  Additionally, a checkbox is available to provide a console during simulations to show 
the status of testing and other testing information.  Currently, the status monitor displays the 
number of simulations completed, the number remaining, and the total time spent testing.   

4.3.2 Results Analysis 

Results analysis is another important feature included in the testing harness to provide an 
analysis of the simulations executed by DEEP in StarCraft.  The tools provided to analyze 
testing results was the primary mechanism used to characterize the performance of PDDOT in 
DEEP.  The results analyzed are those captured and outputted by PDDOT in the results 
handler (see Section 4.4.1).  The second tab located at the top of the testing harness reveals a 
separate user interface for analyzing past results.   

Upon selecting the directory containing the results of interest, a list of available output files is 
displayed.  The test harness parses results in XML format and extracts the high level 
simulation characteristics, such as final score, and constructs a results summary to give the user 
an overview of the simulation outcome.  Underneath the simulation summary, a list of plan 
states and observation updates is available to the user to further inspect the details of the plan 
and observations from the simulation.  The plan states and observations are interlaced 
according to time to allow chronological exploration.  Lastly, the user can select 'View Scoring 
Graph' to graph the game score over time and can optionally save the graph as an image file. 

The test harness conveniently allows the analysis of either individual or multiple tests at once.  
The ability to analyze multiple results is a useful feature for PDDOT when attempting to 
understand the performance of results with similar parameters.  For instance, test results for 
simulations using the same threshold value can be analyzed together to gain an understanding 
about PDDOT's performance at a particular iteration of optimal threshold testing.   
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Figure 12: Analyzing Multiple Simulation Results 

When selecting multiple result files, the 'Compute Summary Stats' button becomes available.  
Selecting this button brings up a similar display to the one displaying a single results analysis.  
The summary section characterizes statistics involving all simulation outcomes, such as 
average score and number of wins.  Instead of displaying a list of plan states and observations, a 
list of the individual results involved is shown and allows the user to further inspect individual 
results.  Score graphing is also available to display all game scores overlaid on a single graph.  
A screenshot of the user interface when viewing multiple simulation results is shown in Figure 
4-11. 

4.4 Test Results 

4.4.1 Recording Results 

PDDOT includes an implementation of a results handler responsible for recording useful 
simulation details for later analysis.  Simulation results recorded by the results handler is 
especially useful for debugging PDDOT behavior, analyzing PDDOT performance in DEEP, 
and generally making simulations more transparent for later analysis.   

During a simulation, PDDOT provides the results handler with all runtime parameters, 
executed plans and observation updates to process and record information for later analysis.  
For each plan and observation, the results handler records unit and building counts in addition 
to the time in which they occurred.  After a simulation finishes, the results handler captures the 
final game score and whether or not the enemy was defeated.  Lastly, all information recorded 
by the results handler is outputted as a file in XML format. 

4.4.2 Test Plan 

PDDOT testing consisted of four separate test sets: no re-planning, PDDOT re-planning, 
feature exploration, and optimal threshold.  The baseline Case-Based Planning uses the 
minimal amount of information avaialable at the beginning of the game and determines the best 
possible plan to use with the available information. The baseline does not perform subsequent 

Statistics summarize all runs selected 
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re-plans. The PDDOT re-planning test uses the PDDOT architecture & uses information as it 
becomes available to alert the DEEP case-based re-planning algorithms to retrieve a new plan 
for execution when the plan is deviating from expected performance. Table 4-3 shows the 
results for both no re-planning and PDDOT re-planning techniques. 

 

Table 3: Results for testing no re-planning and baseline re-planning 

Run Type 

Avg 
Reward – 
Wins 

Avg 
Reward – 
Losses 

Max 
Reward 

StdDev 
Reward 

% Terran 
Win 

Baseline 
Case-Base 
Planning 

106,464 23,478 142,865 47,234 10/26 (38.5%) 

PDDOT  
Re-planning 

102,076 32,193 199,620 53,384 13/22 (59.1%) 

The feature exploration test set tests PDDOT re-planning logic with SME elicitations for 
individual features.  Testing SME judgment for each feature helps ensure the elicitations are 
correct and provides insight into the impact each feature has on re-planning.  Two features 
were chosen from each race for exploration, and the results for re-planning are listed in Table 
4-4. 

 

Table 4: Results for Testing Individual Features Using SME Elicitations 

 
Re-planning in optimal threshold search included all four of the SME elicitations for Terran 
Marines, Zerg Zerglings, Terran Vultures and Zerg Hydralisks.  While a useful exploration 
would be to determine which set of features yielded the best results, it would take a 
considerable amount of time (24 – 4 = 12 additional test sets) and was decidedly omitted from 
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the test plan.  In addition, due to lack of concretely being able to determine improved 
performance, testing for an optimal feature set was not a valuable investment of time.   

Optimal threshold testing was conducted using the threshold bounds 0.6 to 1.0 with a 0.1 step 
at each iteration.  Tests using the thresholds 0.2 and 2.0 were also conducted as a reference 
point.  The results from optimal threshold testing are shown in Table 4-5. 
 

Table 5: Optimal threshold search test results 

 

4.4.3 Results Breakdown 

Based on the results revealed in Section 4.4.1, the simulations showed that PDDOT had a 
positive impact on the winning percentages over the baseline planning technique. Although it 
shows that re-planning out-performed single static plan, it is difficult to conclude that re-
planning with PDDOT had a significant impact on the winning percentage over other 
replanning techniques given the set of tests.    

A number of reasons factor into the impact PDDOT was able to provide for DEEP in StarCraft 
simulations.  One consideration is that as the number of tests conducted in each test set 
approaches a very large (and unrealistic at this stage in development) number, various testing 
limitations and randomness would approach a constant.  We contend that at this limit 
PDDOT's impact would be apparent.  In order to produce better test results, the following 
section details many of the testing limitations uncovered throughout the program. 

4.4.4 Testing Limitations 

Throughout PDDOT development and testing a number of limitations were documented.  This 
section provides a list of all limitations identified and is a useful reference for future 
development and testing in both DEEP and PDDOT 
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4.4.4.1 StarCraft Domain Analysis 

StarCraft is certainly a useful domain for rapidly testing military planning techniques in a 
force-on-force gaming environment with considerable complexity.  While StarCraft has many 
upsides for accomplishing the goals of DEEP and PDDOT, a number of limitations exist that 
impact performance: 

• Simulations are timely.  While StarCraft force-on-force simulations are magnitudes 
faster and easier than other military planning simulations, it is still a slow process and 
typically takes anywhere from a few minutes to a half hour to finish (when successfully 
terminating). The DEEP team has investigated ways of deactivating the user interface 
allowing much faster simulation runs, however, it has not yet been incorporated into 
the expirementation platform used in this project. 

• StarCraft AI frequently exercises early adversarial attacks.  As mentioned earlier, early 
attacks can be difficult to prevent and don't allow the friendly plan to develop.  Due to 
the large amount of time spent testing, this can slow down the process of generating 
meaningful results even further.   

• Enemy attacks are unpredictable and sudden.  Often times, the enemy will send a large 
number of ground forces to attack friendly bases.  When a large fog of war exists 
(typically early in simulations when much of the map is unoccupied), these attacks have 
a similar impact to an ambush and only becomes noticeable when the enemy is nearly 
inside the friendly base.  Because of this, re-planning has little impact as friendly forces 
do not have enough time to react.  A consideration that may alleviate this problem is to 
use more scouting to attempt to identify enemy rushes more timely. 

• Metrics identifying a successful engagement are difficult to generate.  While game 
score is an enticing characteristic to relate to success, it occasionally can be misleading.  
The StarCraft game score combines four individual scores and may not relate to a 
commander's notion of success.  For instance, one of the individual scores included in 
the game score is a build score – a score that uniformly increases as more friendly units 
and buildings are built throughout the engagement.  When an engagement lasts for a 
long time, the build score typically drives the game score up.  The end result of this is 
that game score usually increases with simulation time.  In reality, a lengthy 
engagement can be costly and undesirable, whereas more efficient victories are more 
highly praised. 

• Occasionally StarCraft will crash late during a simulation.  This can be an issue when 
friendly victories are somewhat rare and a near victory crashes. 
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4.5 Programmatic Summary 

4.5.1 Milestone Schedule 

 

Figure 13: PDDOT milestone schedule 

5. CONCLUSIONS 
The exploration in deviation analysis accomplished in PDDOT confirms the need to 
dynamically assess the nature in which plans deviate from expected performance due to 
battlespace complexity and enemy tactics evolving rapidly over time.  Our exploration 
identifies the challenges that exist in successfully determining deviations during plan execution 
and provides an architecture and algorithms to efficiently address the challenges involved. 

While PDDOT identifies the need for SME expertise for the fielded domain, it achieves domain 
independence through the use of SME knowledge abstractions to instantiate deviation 
detection algorithms with careful monitoring.  PDDOT's chosen approach allows the 
architecture to be useful in domains differing from the StarCraft simulation environment 
targeted in DEEP. 

While the DEEP platform with PDDOT witnessed limitations in CBR reasoning and plan 
execution within the StarCraft domain, it presents a convincing technological approach to 
having future success in military planning operations with future development and critiques.  

Approved for Public Release; Distribution Unlimited. 

24 



 

6. RECOMMENDATIONS AND EXTENSIONS 
We recommend the extension of PDDOT technology from the StarCraft domain to real-world 
planners by providing an API that may be referenced in a wider context. Towards this end, we 
had discussions concerning PDDOT’s role in AFRL’s Living Planner, not only exposing 
PDDOT’s API, but (1) recoded so that it could be provided as a service in AFRL’s 
Cornerstone/SCORA framework (along with several other AFRL-based services including 
JAGUAR, CDAP/ICAP, etc.) and (2) substituting the blackboard-based DEEP dependency 
with a common global world state structure. We would be happy to provide the most current 
architecture diagram representing these discussions. PDDOT’s role in a Living Planner is just 
one instance of participation a real-world planner.  PDDOT technology could play a similar 
role in any dynamic planning application. 

Another interesting extension with implications in a more general planning domain is the 
exploration of feature space for both deviation detection in PDDOT and CBR in DEEP.  Both 
PDDOT and DEEP CBR algorithms operate through reasoning about the various features that 
comprise plan states and observation updates.  Through research conducted to better 
understand the impact various features have on reasoning, these algorithms can potentially be 
biased to increase efficiency and accuracy. 

A more local recommendation is to extend the DEEP Plan Execution Agent to provide a more 
realistic, feature-filled capability.  In comparison to Deep Green and other planning aids, the 
Plan Execution Agent might benefit from exploring the inclusion of unit positions and attack 
coordination and execution.  As mentioned in this report, PDDOT currently requires an 
extremely consice feature set, potentially omitting many of the intricate details that comprise 
real-world military plans.  

Another opportunity exists in using the technology developed by PDDOT to provide a more 
robust CBR algorithm.  DEEP CBR approaches a similar need in determining a plan and state 
which most closely reflects the current engagement.  PDDOT's deviation measurement 
algorithm could potentially be used in DEEP CBR by searching for a plan state with the lowest 
deviation measurement.  An opportunity exists in determining how the deviation measurement 
could bridge the gap between DEEP and PDDOT while addressing the efficiency concerns of 
CBR technology.   

As an effort to assist the development of the DEEP environment, a number of limitations were 
recorded for future consideration.  The most noticeable limitations exists in DEEP's case-base 
and ability of matching algorithm for finding a plan in the case-base that most closely 
resembles the current state of engagement.   

In addition, the following list was compiled throughout PDDOT integration and testing with 
DEEP: 

• DEEP currently uses a default initial build order of buildings and units at the beginning 
of every engagement.  DEEP attempts to alleviate the difficulty in defending early 
enemy attacks by always creating specific units and buildings before executing the 
starting plan.  While this may have some upside, the initial build order is not currently 
described in the plan details.  From the PDDOT perspective, the initial build order 
causes the appearance of a deviation and skews the expected unit and building counts. 

• The DEEP Plan Execution Agent uses separate AI to control the construction of SCVs 
and Supply Depots.  Similar to the impact resulting from the initial build order, 
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PDDOT finds it difficult to assess deviation when the expected number of SCVs and 
Supply Depots differs from the plan and is unknown.  In addition, the construction of 
new SCVs and Supply Depots uses resources that may be required to build other plan 
specific entities, causing further deviations. 

• Marines in bunkers are not accounted for by the DEEP Plan Execution Agent.  
Observations, however, recognizes the existence of marines in bunkers.  Because 
bunkers with marines are used frequently, a large discrepancy typically arises between 
the number of marines present and the number recognized by the execution agent.  This 
gives the effect of the plan execution agent building far more marines than the plan 
states.  This also impacts the deviation estimates calculated by PDDOT. 

• Plan execution uses a defensive strategy, which often causes stalemates late in 
engagements.  When a friendly engagement with the enemy is nearly victorious, 
friendly forces may occupy nearly the entire map.  However, a small number of enemy 
worker units may still be lingering in small bases located in the corners of the map, 
collecting resources indefinitely.  In order to declare the engagement a victory and 
terminate the simulation, the friendly force must eliminate these last few worker units 
(an easy task, considering they do not have offensive capabilities).  This can cause a 
problem when the plan execution agent doesn't actively search and destroy these last 
few enemy workers.  The effect of this is a stalemate, which will cause the simulation to 
run indefinitely. 

• Occasionally on startup, DEEP fails to initialize Blackboard agents, rendering any 
agents relying on information produced by the absent agents ineffective. 
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8. LIST OF SYMBOLS, ABBREVIATIONS, & ACRONYMS 

Symbol, 
Abbreviation, 

Acronym 
Definition 

AFRL Air Force Research Labratory 

AI Artificial Intelligence 

API Application Programming Interface 

ARPI AFRL-Rome Planning Initiative 

BWAPI Brood War Application Programming Interface 

C2 Command and Control 

CBR Case-base reasoning 

CDAP COA Development and Analysis Prototype 

COA Course of Action 

CPR Core Plan Representation 

DARPA Defense Advanced Research Projects Agency 

DEEP Distributed Episodic Exploratory Planning 

DG Deep Green 

GUI Graphical User Interface 

HMM Hidden Markov Model 

ICAP Interactive Collaboration Environment for COA Assessment Planning 

ICD Interface Control Document 

JAGUAR Joint Air Ground Unified Adaptive Re-planner 

OT Optimal Threshold 

PDD Plan Deviation Detector 

PDDOT Probabilistic Deviation Detection and Optimal Threshold 

POMDP Partially Observable Markov Decision Process 

RMI Remote Method Invocation 

SCORA Synchronized Constraint-based Optimization, Repair, and Assembly 
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Symbol, 
Abbreviation, 

Acronym 
Definition 

SCV Space Construction Vehicle 

SME Subject Matter Expert 

SVN Subversion 

TIM Technical Interchange Meeting 

WSM World State Monitor 

XML Extensible Markup Language 
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