

5158 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010-5403

Toxicology Study No. 85-XC-0FP4-12

Repeated-Dose and Reproductive/Developmental Toxicity of NTO (3-Nitro-1,2,4-Triazol-5-One) in the Rat

Prepared by: Lee C.B. Crouse and Emily May Lent

Toxicology Portfolio Toxicity Evaluation Program Army Institute of Public Health

Approved for public release; distribution unlimited.

Specialty: 500C, Toxicity Study

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of Karl Kroeck of the Laboratory Sciences Portfolio, U.S. Army Institute of Public Health for his efforts in analyzing the dosing suspensions used for this study. We would also like to thank Karen Deaver and Shane Hall for performing the statistics for this study.

Use of trademarked name(s) does not imply endorsement by the U.S. Army but is intended only to assist in the identification of a specific product.

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188		
The public reporting gathering and maintu- of information, includ 0188), 1215 Jefferso any penalty for failing PLEASE DO NOT	burden for this collecti aining the data neede ling suggestions for re in Davis Highway, Suit g to comply with a coll RETURN YOUR FO	ion of information is e id, and completing an ducing the burden, to te 1204, Arlington, VA lection of information RM TO THE ABOV	stimated to average 1 hour per id reviewing the collection of in pepartment of Defense, Wash 22202-4302. Respondents sh if it does not display a currenti E ADDRESS.	response, including iformation. Send con nington Headquarter ould be aware that n ly valid OMB control	the time for r nments regar s Services, D totwithstandin number.	I reviewing instructions, searching existing data sources, roing this burden estimate or any other aspect of this collection inectorate for information Operations and Reports (0704- ng any other provision of law, no person shall be subject to
1. REPORT DATE (DD-MM-YYYY)	2. REPOR	T TYPE		3	3. DATES COVERED (From - To)
21-	03-2014		Technical R	eport		April - July 2012
4. TITLE AND SUBT	TITLE				5a. CONTR	ACT NUMBER
Repeated-Dos -1,2,4-Triazol	se and Reprodu I-5-One) in the	ctive/Develop Rat	mental Toxicity of NT	ГО (3-Nitro	5b. GRANT	NUMBER
					5c. PROGR	AM ELEMENT NUMBER
6. AUTHOR(S)					5d. PROJE	CT NUMBER
Loo C P. Croy	use and Emily I	May Lont				85-XC-0FP4-12
Lee C.B. Cro	use and Emily r	viay Lent			-	
					5e. TASK I	NUMBER
					5f. WORK	UNIT NUMBER
					1	
7. PERFORMING O	RGANIZATION NAM	HE(S) AND ADDRE	SS(ES)			8. PERFORMING ORGANIZATION
US Army In	stitute of Public	e Health				REPORT NUMBER
Toxicology P	Portfolio (MCH	R-IP-TEP)				
5158 Blackha	wk Road. APC	MD 21010-	5403			85-XC-0FP4-12
C CRONSORINGIM		CY NAME(S) AND				
9. SPONSORING/M	UNITORING AGEN	CY NAME(S) AND	ADDRESS(ES)			10. SPUNSORMONITOR'S ACKONTM(S)
U.S. Army Re	esearch Develop	pment and Eng	ineering Command (F	RDECOM)		
Environmenta	al Acquisition a	and Logistics S	ustainment Program	(EALSP)		
Deputy Progr	am Manager/K	imberly A. Wa	itts			NUMBER(S)
3072 Aberdee	en Blvd., APG,	MD 21005				
12. DISTRIBUTION	VAVAILABILITY ST	ATEMENT				<u></u>
Distribution unlimited						
Distribution	mininteu					
13. SUPPLEMENT	ARY NOTES					
14. ABSTRACT						
Male and fem	ale Sprague-Da	awley rats were	e administered NTO in	n corn oil (0, 3	1.25, 125	5. and 500 mg/kg-day) via oral gavage for
two weeks pri	ior to mating an	nd for an additi	onal two weeks during	g mating. Fen	nale rats	were dosed throughout gestation and for
four days foll	owing birth. T	wo male recov	ery groups (0 and 500	mg/kg-day)	were held	for four weeks following the four-week
dosing period	. Reductions in	n testes and ep	ididymal mass and m	ass ratios wer	e observe	ed in the 500 mg/kg-day group compared to
controls. Spe	erm counts were	e also reduced	in the 500 mg/kg-day	group compa	red to co	ntrols with no motile sperm observed.
The reduction	is in testes and	epididymal ma	ss were associated wi	th tubular deg	eneration	h/atrophy and hypospermia with cribiform
change of the	epididymides.	Complete rec	overy was not eviden	t in the 500 m	g/kg-day	recovery group. No discernable
differences w	ere recognized	between dose	groups for the reprod	ductive param	eters mor	nitored. Gross external examinations of
the offspring	did not indicate	that NTO pres	sents a developmental	l hazard.		
15. SUBJECT TER	RMS					
				nana ana ang kanang	• • •	
nitrotriazolor	reproductive to	oxicity, develop	imental toxicity, expl	osives, insens	itive mun	intions, N1O, 3-Nitro-1,2,4-Triazol-5-One,
16 SECURITY CLA	SSIEICATION OF				19a, NAME	
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF	Lee C.	B. Crouse
		1 - 0 WENCOMER		PAGES	19b. TELE	PHONE NUMBER (Include area code)
U	U	U	SAR	213		410-436-3980

Study Title

Toxicology Study No. 85-XC-0FP4-12 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO (3-Nitro-1,2,4-Triazol-5-One) in the Rat

Data Requirement

OECD Health Effects Test Guideline 422

<u>Authors</u>

Lee C.B. Crouse Emily May Lent

Study Completed On

February 2014

Performing Laboratory

U.S. Army Institute of Public Health Portfolio of Toxicology (MCHB-IP-TEP) 5158 Blackhawk Road Aberdeen Proving Ground, MD 21010-5403

Laboratory Project ID

Protocol No. 0FP4-93-12-03-03

STATEMENT OF DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this report on the basis of its falling within the scope of TSCA § 790.7 (a) - (d).

Company:			
Company Agent Typed Name:		Date:	
Title:	Signature:		

Good Laboratory Practice Compliance Statement

The study described in this report was conducted in compliance with Title 40, Code of Federal Regulations (CFR), Part 792, Good Laboratory Practice Standards, except for the following:

1. The statistical analyses of the data were conducted by the U.S. Army Public Health Command statisticians. It is not known if these analyses were conducted in accordance with Good Laboratory Practice Standards.

2. During the study period, there were two instances where the animal room temperature was outside of the targeted range of 68-79 °F. In addition, there were five instances of the animal room being outside of the targeted humidity range of 30-70%. In each case, the problem was reported to maintenance personnel and rectified as soon as possible so that it did not affect the quality or integrity of the data generated from this study.

3. The test article characterization (purity) was conducted by the manufacturer and it is not known whether the testing was done in compliance with the above regulation.

413

LÉE C.B. CROUSE Biologist Toxicity Evaluation Program

20 March 2014 Date

Table of Contents

20	1	0
	a	ad

1	Summary	1
	1.1 Purpose 1.2 Conclusions	. 1 . 1
2	References	2
3	Authority	2
4	Background	2
5	Materials	3
	5.1 Test Substance5.2 Animals5.3 Contract Studies	. 3 . 4 . 4
	5.4 Quality Assurance	.5 5
6	Methods	5
7	 6.1 General Description 6.2 Test Substance Administration 6.3 Mating Procedure 6.4 Body Mass and Food Consumption	.556677888
-		
	7.1 Analytical Results 7.2 Clinical Observations and Mortality	. 9 10

7	7.3 Body Mass	11
7	7.4 Body Mass Gain and Food Consumption	
7	7.5 Organ Mass and Ratios	
7	7.6 Sperm Analysis	
7	7.7 Clinical Chemistry	
7	7.8 Hematology	
7	7.9 Prothrombin Time	
7	7.10 Reproductive/Developmental Parameters	
7	7.11 Pathology	
7	7.12 Histopathology	
8	Discussion	16
9	Conclusions	18
10	Point of Contact	19

Appendices

А	References	A-1
В	Quality Assurance Statement	B-1
С	Archives and Study Personnel	C-1
D	Clinical Observations	D-1
Е	Individual and Summary of Body Mass Data	E-1
F	Individual and Summary of Body Mass Gain Data	F-1
G	Individual and Summary of Food Consumption	G-1
Н	Individual and Summary of Organ Mass Data	H-1
1	Individual and Summary of Sperm Analysis Data	I-1
J	Individual and Summary of Clinical Chemistry Data	J-1
Κ	Individual and Summary of Hematology Data	K-1
L	Individual and Summary of Prothrombin Time Data	L-1
М	Reproductive/Developmental Data	M-1
Ν	Gross Pathology Data	N-1
0	Histopathology Report	0-1
Ρ	Statistical Analysis Report	P-1
Q	Study Protocol with Modifications	Q-1

Tables

1	Critical Study Events	3
2	Stability and Homogeneity Results	10
3	Dosing Solution/Suspension Concentration Results	10
4	Summary of Litter Parameters	13

TOXICOLOGY STUDY NO. 85-XC-0FP4-12 PROTOCOL NO. 0FP4-93-12-03-03 REPEATED-DOSE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY OF NTO (3-NITRO-1,2,4-TRIAZOL-5-ONE) IN THE RAT APRIL-JULY 2012

1 Summary

1.1 Purpose

The primary objective of this study was to determine the initial reproductive and developmental toxicity of 3-Nitro-1,2,4-triazol-5-one (NTO) through the use of a screening test. This test is not designed to provide complete information on all aspects of reproduction and development and only offers a limited means of detecting post-natal manifestations of prenatal exposure or effects induced during post-natal exposure. The secondary objective of this study was to confirm the effects of repeated-dose exposure to NTO using different exposure durations and dose levels than previously evaluated.

1.2 Conclusions

Daily oral exposure to male and female rats at dosages of 31.25, 125, and 500 mg/kg-d NTO in corn oil for four weeks did not induce compound-related pre-term mortality. Clinical signs of toxicity were mainly limited to bright yellow-colored urine at higher dosages with no changes in body mass, body mass gain, and food consumption compared to controls observed throughout the study period.

Treatment with NTO resulted in reductions in testes and epididymides mass and mass ratios in male rats given 500 mg/kg-d. Microscopic evaluation of these tissues revealed severe degeneration/atrophy of the testicular seminiferous tubules along with moderate to severe hypospermia and cribiform change of the epididymides. Sperm counts were reduced in the high dose group (500 mg/kg-d) with no motile sperm observed. Complete recovery was not evident in the high dose satellite group following a 4-week recovery period. Reductions in sperm counts with no motile sperm were also observed in the male satellite group. In female rats, differences between NTO treated and control animals were observed for brain and spleen, and uterus mass and mass ratios. Absolute brain mass was reduced in the 31.25 mg/kg-d dose group relative to controls. Spleen mass and spleen to body mass ratios were reduced in the 31.25 and 500 mg/kg-d dose groups relative to controls. No treatment-related microscopic findings were observed in female rats.

Under the stated study conditions, oral dosages of up to and including 500 mg/kg-d NTO did not appear to affect reproduction or development in Sprague-Dawley rats. Based upon the gross and microscopic findings in male rats following 4 weeks of treatment, as well as the results of the cauda epididymal sperm analysis, infertility would have likely been observed in the high dose males with an extended pre-mating dosing period. Gross external examinations of the offspring on the day of birth and on day 4 postpartum did not indicate that NTO presents a developmental hazard.

2 References

See Appendix A for a listing of references.

3 Authority

Military Interdepartmental Purchase Request (MIPR) No. MIPRIJDATHR142. This toxicology study addresses, in part, the environmental safety and occupational health requirements outlined in Army Regulations (AR) 200-1, AR 40-5, and AR 70-1; Department of Defense Instruction 4715.4; and Army Environmental Requirements and Technology Assessments (Department of the Army (DA), 2007a and b; DA, 2003; Department of Defense (DOD), 1996; and U.S. Army Environmental Command (USAEC), 2009). It was performed as part of an on-going effort by the U.S. Army Environmental Quality Technology (EQT), Ordnance Environmental Program Pollution Prevention Team, to produce safer ordnance. This program is under the direction of the U.S. Army Research, Development, and Engineering Command (USARDECOM) Environmental Acquisition Logistics & Sustainment Program and EQT Pollution Prevention.

4 Background

As a result of the Department of Defense (DOD)-wide initiative to improve munitions safety, the U.S. Army is developing insensitive munitions (IM) for incorporation into its inventory of conventional ammunition and missiles. The Army's IM Program is dedicated to developing munitions that reliably perform as they are intended but are less prone to inadvertent initiation from external stimuli such as bullet/fragment impact, heat from fire, and shock from neighboring explosions (Duncan 2002). The production of insensitive munitions requires the use of intrinsically insensitive explosives that contribute to lower order responses to inadvertent external stimuli. Despite the slightly lower performance of NTO compared to TNT, there has been a renewed interest in its use in explosive formulations based on the lower sensitivity as a melt-cast medium observed during testing and the less stringent shipping requirements. This has led to the development of a range of melt-castable explosives at Picatinny Arsenal, collectively known as "PAX" explosives (Davies and Provatas, 2006). To support the possible fielding and full-scale production of these PAX explosives, occupational exposure guidelines need to be developed and refined using toxicity data in a mammalian system to assess any occupational health hazards associated with the use and production of this material.

NTO is being investigated as a less sensitive direct replacement for traditional explosives such as TNT and RDX. NTO is a crystalline powder that is one of the components used in the formulation of an insensitive explosive referred to as IMX101. NTO was first reported in 1905 but was not used as an explosive until the early 1980's when it was discovered that the French were developing a "new insensitive explosive", which was later reported to be NTO. Renewed interest in the energetic properties of NTO has been fueled by the need to develop munitions that are less prone to inadvertent initiation during transport and routine handling. The reduced sensitivity to environmental stimuli and nearly equal performance during testing make NTO-based formulations desirable replacements for currently fielded munitions (Spear et al, 1989; Smith and Cliff, 1999). In addition to minimizing collateral damage from weapon or ordnance accidents, insensitive munitions offer logistical advantages on the battlefield. As modern battlefields increasingly shift into populated urban centers, insensitive munition inventories represent a less desirable target for

terrorists and minimize the threat to surrounding communities. Less sensitive munitions could also potentially be more cost effective and efficient to transport if granted reduced DOD/Department of Transportation (DOT) hazard classification rankings (DA, Rapid Action Revision (RAR) 2009).

A literature search was conducted prior to the initiation of the study revealing a limited amount of preliminary toxicity data. The reported mouse and rat oral LD₅₀ values were both greater than 5000 milligrams per kilogram (mg/kg). In addition, NTO was reported to be a mild skin and eye irritant but was not a dermal sensitizer (Los Alamos National Laboratory, 1985). A subchronic oral toxicity study in rats on NTO was performed by this Command in 2008. The subchronic study on NTO revealed changes in both testes and epididymides mass and mass ratios at dosages of 315 mg/kgday and above. Reductions in sperm counts were also noted at dosages of 315 mg/kg-day and above. Histopathology performed on the 90-day tissues revealed increased incidences of testicular hypoplasia at dosages of 315 mg/kg-day and above (USAPHC (Provisional), 2010). A repeateddose 14-day range finding study was also completed prior to the initiation of the 90-day study. In this 14-day study, testes mass and mass ratios were reduced compared to controls in male rats administered 500 mg/kg-day NTO and above. No dose group differences were observed for epididymus mass or mass ratios compared to controls and histopathology was not performed on any tissues from the 14-day study. The data from the oral subchronic study was used to calculate an occupational exposure level (OEL) for NTO. In addition to determining if the observed testicular hypoplasia and aspermia significantly affected reproduction, the data from this study will also be used to refine the established OEL that was previously extrapolated from oral toxicity data.

The following table identifies the critical dates of this study.

Critical Event	Date of Event
Animal Use Protocol Approved	March 30, 2012
Animals Born In-House Transferred to Protocol	April 9, 2012
Study In-Life Initiation	May 7, 2012
Male Necropsies	June 4 & 5, 2012
Pup Gross External Examinations	June 17-30, 2012
Female Necropsies	June 18–July 1, 2012
Recovery Male Necropsies and Experimental Completion	July 2, 2012
Study Completion	March 2014

Table 1. Critical Study Events

5 Materials

5.1 Test Substance

NTO is a light green to white crystalline solid with no odor. The chemical formula is $C_2H_2N_4O_3$ and the molecular weight is 130.06 grams per mole (g/mole). The manufacturer has stated that NTO has a melting point of 268-271 °C and a specific gravity of 1.93 (BAE Systems, 2007). The material was supplied by Ordnance Systems, Inc., Kingsport, Tennessee and identified as lot number BAE11L375-061 and batch number 10NTO11-5. The compound purity was performed by the manufacturer and reported as 99.48% pure by high-performance liquid chromotography analysis. The material was shipped to the U.S. Army Research, Development Engineering Command, Engineering Directorate, Pyrotechnics Team, APG-EA, MD 21010. A separate dosing

solution/suspension was prepared for each dose group at targeted concentrations of 6.25, 25, and 100 milligrams/milliliter (mg/ml). Dosing solutions/suspensions were prepared in volumes sufficient for approximately two-three weeks of dosing, resulting in preparation of two sets of dosing solutions. A third batch of 100 mg/ml dosing suspension was also required due to the additional volume needed for dosing of the recovery male animals. For each dosing solution/suspension, the calculated amount of NTO was weighed and placed in a ceramic mortar. The NTO was then wetted with a measured amount of corn oil and ground with a mortar and pestle to a fine consistency. The slurry was transferred to a volumetric flask and the mortar was rinsed with a measured amount of corn oil to remove any remaining slurry. The remaining corn oil was then added to the suspension to achieve the calculated concentration. A one milliliter (ml) sample was taken from each dosing solution/suspension prepared for the study and analyzed using an HPLC with ultraviolet detection to verify the concentration. In addition, the homogeneity of the solutions/suspensions was verified by determining the concentration of samples taken from the top, middle, and bottom of the highest concentration (100 mg/ml) suspension. Samples were collected from a representative suspension (6 mg/ml) at weekly intervals for an eight-week period to determine the stability of NTO in corn oil.

5.2 Animals^{*†}

Each phase of this study was conducted using young adult male and female Sprague-Dawley rats born in-house from a stock of timed-pregnant animals obtained from a Charles River Laboratories, Wilmington, Massachusetts. The animal room was maintained at 70.8 ± 0.87 °F and 51.0 ± 8.71% relative humidity during the acclimation and study periods. A certified pesticide-free rodent chow (Harlan Teklad[®], 8728C Certified Rodent Diet) and drinking quality water were available *ad libitum* except during overnight fasting prior to final blood collection. Rats were housed individually in suspended polycarbonate boxes with ALPHA-dri[®] bedding except during the mating period when the animals were housed on elevated wire racks in the polycarbonate boxes to allow for the observation of sperm plugs. Each rat was uniquely identified by number using cage cards. In addition, the animal identification number was recorded on the tail of each rat with a water-insoluble marker. (Teklad[®] Certified Rat Diet is a registered trademark of Harlan, Teklad. ALPHA-dri[®] is a registered trademark with Shepherd Specialty Papers.)

5.3 Contract Studies

Tissues from this study were preserved, packaged and transported to U.S. Army Medical Research Institute for Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, for processing, slide preparation and staining. Slides were returned to USAPHC for evaluation by an American College of Veterinary Pathology board certified military veterinary pathologist.

Research was conducted in compliance with DoD and federal statutes and regulations relating to animals and experiments involving animals and adheres to principles stated in the Guide for the Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council. National Academy Press, Washington, DC 1996.

[†] The studies reported herein were performed in animal facilities fully accredited by the American Association for the Accreditation of Laboratory Animal Care.

5.4 Quality Assurance

The AIPH Quality Systems Office audited critical phases of this study. Appendix B provides the dates of these audits, the phases audited, along with the dates that the results of the inspections were reported to the Study Director and Management.

5.5 Study Personnel

Appendix C contains the names of persons contributing to the performance of this study.

6 Methods

6.1 General Description

The study consisted of a repeated-dose oral toxicity test as well as a reproductive/developmental screening test and was conducted in a manner consistent with the methods outlined in the Organization for Economic Cooperation and Development (OECD) Test Guideline 422 (OECD, 1996). Neurobehavioral observations were omitted from this study due to the negative results obtained during the performance of a subchronic oral toxicity study on NTO previously performed by this Institute (USAPHC (Provisional), 2010). Dose selection was based on the findings obtained from previously-performed 14- and 90-day oral toxicity studies with the expectation of producing reproductive effects at the highest dose.

6.2 Test Substance Administration

Forty male and female Sprague Dawley rats, eight weeks old, weighing 339.8 ± 21.78 and 215.5 ± 12.82 grams, respectively, at the start of dosing were used for this study. Since these animals were born in-house and transferred for use on the study, they were acclimated for a 4-week period until they reached the appropriate age to be used. The animals were weighed and observed periodically throughout the acclimation period to assess their overall health. Following the acclimation period, ten rats of each sex were randomly distributed, according to body mass, into three NTO treatment groups and a corn oil control group. Dosage levels were set at 31.25, 125, and 500 mg/kg-day. Male and female rats were assigned to evenly distributed experimental start dates to facilitate the scheduling of necropsies. The volume of dosing solution/suspension per kilogram of body mass was equivalent across dose groups (5 ml/kg), including corn oil control animals. Animals were dosed daily (7 days/week) using a stainless steel 16 gauge x 2 inch gavage needle.

Male rats were dosed for a total of four weeks encompassing the two-week pre-mating period and the two-week mating period. Female rats were dosed throughout the study including the two-week pre-mating period, the variable time to conception, the duration of pregnancy, and up to and including postpartum day four. Dose was determined by the most recent weekly body mass measurement.

In addition to the main study animals, twenty male Sprague Dawley rats, eight weeks old, weighing 337.8 ± 28.90 grams at the start of dosing, were used as a satellite group to detect delayed occurrence, persistence of, or recovery from the toxic effects of NTO. These animals were from the

same stock of animals used for the main study and were randomly distributed, according to body mass, into a 500 mg/kg-day NTO treatment group and a corn oil control group consisting of ten male rats each. Satellite animals were dosed concurrently with main study animals seven days/week for a period of four weeks and were then held, but not dosed, for an additional four-week period prior to necropsy. The volume of NTO dosing suspension and corn oil per kilogram of body mass was equivalent to that of the main study animals (5 ml/kg) with dose determined by the most recent weekly body mass measurement.

6.3 Mating Procedure

Since the animals used for this study were born in-house, the male and female mating pairs for each dose group were randomly assigned according to dam to eliminate the possibility of inbreeding. Following the two-week pre-mating period, male and female rats were pair-housed in solid-bottom cages with elevated wire racks placed in the bottom. The female rats remained pair-housed with the same male rat until a sperm or vaginal plug was observed or a period of two weeks elapsed. The female rats and the cages were examined each morning prior to dosing for the presence of a vaginal or sperm plug. Day 0 of pregnancy was defined as the day a vaginal plug was observed and the pair was separated to be placed back in individual cages.

6.4 Body Mass and Food Consumption

Male and female rats were weighed several times during the acclimation period, on the first day of dosing, and weekly thereafter. During pregnancy, female rats were weighed on gestational days 0, 7, 14, 20, within 24 hours of parturition, and on day 4 postpartum. Female rats showing no evidence of copulation resumed their normal weekly weigh schedule following the 2-week mating period. Weekly body mass was obtained from satellite male animals during both the exposure and recovery periods. Terminal body mass was obtained the morning of necropsy following overnight fasting for all animals. Litters were weighed within 24 hours of parturition (day 0 or 1 postpartum) and on day 4 postpartum.

Feed was provided *ad libitum* seven days per week in weighed feeder bins with the exception of overnight fasting prior to necropsy. Feeder bins were reweighed on the same days body mass was obtained. Grams of food consumption for each period were calculated by subtracting the mass of the empty feeder from the mass of the full feeder. Food consumption was not monitored during the mating period due to pair-housing.

6.5 Observations

A thorough physical examination of each animal, including the male satellite group, was performed each day concurrently with the dosing procedure. Observations for mortality and signs of toxic effects were made twice daily, once in the morning following dosing and once in the afternoon, except on weekends when observations were only performed in the morning. Observations included, but were not limited to, evaluation of the skin and fur, eyes and mucous membranes, respiratory and circulatory effects, autonomic effects (e.g., salivation), central nervous system effects (e.g., tremors and convulsions), changes in the level of activity, gait, and posture, reactivity to handling or sensory stimuli, altered strength, and stereotypes or changes in behavior (e.g., self-mutilation). Pregnant females approaching gestation day 21 were observed more frequently to

allow for an accurate determination of gestation duration. One-time functional observations were omitted from this study due to the negative results obtained from a previously-performed subchronic oral toxicity study on NTO in rats.

Each litter was examined within 24 hours of parturition to establish the number and sex of live pups, litter mass, stillbirths, runts, and the presence of gross abnormalities. Litters were again examined on postpartum day 4 to establish the number and sex of live pups, litter mass, bizarre behavior, and the presence of gross external abnormalities.

6.6 Necropsy

Rats that died during the course of this study were submitted for gross necropsy. Tissues that were not grossly autolytic were submitted for histopathological evaluation. Following the appropriate treatment period, all surviving adult rats were anesthetized with carbon dioxide (CO₂), blood was collected by intracardiac puncture, and rats were euthanized using CO₂. Surviving male rats were euthanized following four weeks of treatment while surviving female dams were euthanized on postpartum day 5. Male necropsies were scheduled over two days based on the staggered experimental start dates and dam necropsies were based on their delivery date. Female rats that did not become pregnant were euthanized 24-25 days following the last day of the mating period. Litters were examined, anesthetized with CO₂, and euthanized on post-natal day 4. Male rats in the satellite group were euthanized 28 days following the last day of their treatment period. A macroscopic examination was conducted on all terminal animals, noting all lesions and abnormal observations. The following organs and tissues, or representative samples, were preserved in a suitable medium: all gross lesions; brain (including sections of medulla/pons, cerebellar cortex and cerebral cortex); pituitary; thyroid/parathyroid; thymus; lungs and trachea; pharynx; larynx; nose; heart; femur bone marrow; salivary glands; liver; spleen; kidney; adrenals; pancreas; testes; uterus; aorta; esophagus; stomach; duodenum; jejunum; ileum; caecum; colon; rectum; urinary bladder; representative lymph node; peripheral nerve; sternum with bone marrow; mammary gland; thigh musculature; eyes; femur (including articular surface); spinal cord at three levels (cervical, midthoracic, and lumbar) and exorbital lachrymal glands. In addition, the following organs were removed, trimmed in a uniform manner, and weighed: liver; kidneys; adrenals; gonads; spleen; brain; epididymides; uterus; thymus, and heart.

6.7 Sperm Analysis

Cauda epididymal sperm counts were determined on all male rats using a computer assisted sperm analyzer (TOX IVOS-CASA, Hamilton Thorne Research, Beverly, MA). After removal, trimming, and weighing, one epididymis was further trimmed to select the cauda portion, weighed, placed in one well of a six-well plate containing 10 ml of Roswell Park Memorial Institute-1640 (RPMI-1640; Sigma-Aldrich, St. Louis, MO) medium at approximately 37 °C and minced using two scalpel blades to release sperm. The suspension was incubated for 15 minutes at approximately 37 °C. Following a brief mixing with a pipette tip, 0.5 ml of suspension was transferred to one well of a six-well plate containing 2 ml of RPMI-1640 medium and stirred again. A chamber of a 100 micron standard count analysis slide (Leja®, Spectrum Technologies, Healdsburg, CA) was loaded with the resulting diluted semen suspension and the slide loaded into the semen analyzer. The number of sperm, number of motile sperm, and number of progressive sperm were determined in duplicate for each animal. The data were expressed as millions of sperm per ml of suspension and millions of sperm per gram cauda epididymis.

6.8 Clinical Chemistry and Hematology

Blood was obtained from CO₂ anesthetized adult animals via intracardiac puncture at the termination of the study. Blood for clinical chemistry analyses was transferred to tubes with no anticoagulant, allowed to clot for at least 20 minutes, and centrifuged to obtain serum. Blood for hematology analyses was transferred immediately to tubes containing tripotassium ethylenediamine-tetraacetic acid (K₃EDTA). Animals were fasted overnight prior to blood collection.

Clinical Chemistry parameters including: albumin (ALB), alkaline phosphatase (ALKP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), calcium (Ca), cholesterol (CHOL), creatinine (CREA), glucose (non-fasting) (GLU), globulin (GLOB), lactate dehydrogenase (LDH), inorganic phosphorous (PHOS), total bilirubin (TBIL), total protein (TP), sodium (Na), potassium (K), and chloride (CI) were determined (VetTest 8008 Chemistry Analyzer; VetLyte Na, K, CI Analyzer, IDEXX Laboratories, Inc., One IDEXX Drive, Westbrook, ME 04092) on all valid serum samples.

Hematology parameters including: white blood cell count (WBC), WBC differential (% neutrophils (NEU %N), % lymphocytes (LYM %L), % monocytes (MONO %M), % eosinophils (EOS %E), % basophils (BASO %B)), red blood cell count (RBC), hemoglobin (HGB), hematocrit (HCT), mean cell volume (MCV), mean cell hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), red blood cell distribution width (RDW), platelets (PLT), and mean platelet volume (MPV) were determined (Cell-Dyn 3700 Hematology Analyzer, Abbott Laboratories, Abbott Park, IL 60064) on all valid samples.

6.9 Histopathology

Tissues were appropriately preserved in 10% buffered formalin, selectively trimmed and placed in cassettes labeled with protocol number, animal identification number, and laboratory-assigned accession number. Testes and epididymides were preserved in modified Davidson's fixative for a period not exceeding 24 hours and were then transferred to 70% ethyl alcohol. Cassettes were placed in labeled formalin-filled bottles and transported to USAMRICD for processing. Tissues were microtomed at 5 µm thick and automatically stained with hematoxylin and eosin and coverslipped. The pathologist examined slides for compound-induced histopathologic changes via light microscopy. The prevalence and severity of findings were graded as compared to controls. Findings were assigned as none, minimal, mild, moderate, or severe.

6.10 Statistical Analysis

Analyses were conducted for males and females separately. SPSS 16.0 was used to perform all analyses and statistical significance was defined as $p \le .05$. For one-time measurement variables in adult animals (hematology, clinical chemistry, organ to body/brain mass ratios, sperm counts, litter/pup parameters), the dose groups were compared using a one-factor analysis of variance (ANOVA). If the dose group effect was significant, a Tukey post hoc test was used to compare pairs of dose groups. The Levene's test was used to determine the variance of the groups. The Tukey post hoc test was used because group variances were equal. Data was checked for normality by plotting residuals. If data was not normal it was natural log transformed. If

transformation still did not satisfy ANOVA assumptions, a non-parametric Kruskal-Wallis (K-W) test was used to analyze dose group differences. (SPSS[®] is a registered trademark of SPSS, Inc.)

For absolute organ mass, comparison of the dose groups was made using an analysis of covariance (ANCOVA), with body mass at the end of the study as the covariate. Even though the dose groups were assigned at Day 0 to keep the average starting mass for each dose group similar, the average mass could have changed during the study dependent on the dose group. The ANCOVA adjusted for any differences in terminal body mass among the dose groups because heavier animals would tend to have heavier organs. If the dose group effect was significant, a Sidak post hoc test was used to compare pairs of dose groups and dose groups to the control group.

Repeated-measure variables for adult animals (body mass and food consumption) were compared using repeated measures ANOVA. If the dose effect in the ANOVA was significant, a Tukey post hoc test was used to compare pairs of dose groups. If the interaction effect of week and dose group was statistically significant, weekly means were compared but overall dose group means were not because results would have been inconclusive. Verification of normally distributed data (residual plots) and equal variances among dose groups (Levene's test) assumptions was performed.

The distributions of reproductive characteristics were compared descriptively. The sample sizes for each group were too small to test statistically. To test for differences in the count distribution, a chi-square test would have been appropriate. However, given the sample size and the high proportion of females achieving the various reproductive endpoints, the expected value of many of the cells would have been less than 5 and violated the assumptions of a chi-square test.

7 Results

7.1 Analytical Results

The analytical chemistry results are summarized in Tables 2 and 3. The results of the 7-week stability study indicated that the NTO concentration in corn oil remained within acceptable ranges. Weekly recovery percentages ranged from 100-107% throughout the sampling period. Homogeneity testing of the most concentrated NTO/corn oil suspension (100 mg/ml) yielded 92% recovery at the top and 89% recovery at the middle and bottom of the container. Verification of the dosing solution/suspension concentrations prior to use yielded recovery percentages ranging from 85-102% of the nominal concentrations for all batches mixed. Given the concentrated nature of these mixtures and the acceptable limits of the analytical laboratory control samples for this method, these analytical results were considered acceptable. All of the dosage levels are reported using the nominal concentrations.

Nominal Concentration (mg/ml)	Analytical Concentration (mg/ml)
6 (day 0 stability)	6.3
6 (day 7 stability)	6.1
6 (day 14 stability)	6.0
6 (day 21 stability)	6.3
6 (day 28 stability)	6.3
6 (day 35 stability)	6.3
6 (day 42 stability)	6.4
6 (day 49 stability)	6.3
100 (homogeneity top)	92
100 (homogeneity middle)	89
100 (homogeneity bottom)	89

Table 2. Stability and Homogeneity Results

Table 3.	Dosing	Solution/Sus	pension (Concentration	Results
----------	--------	--------------	-----------	---------------	---------

Nominal Concentration (mg/ml)	Analytical Concentration (mg/ml)			
	Batch 1	Batch 2	Batch 3	
6.25	6.4	5.9, 5.7, 5.7 (repeats)		
25	23	22, 22, 23 (repeats)		
100	96	87, 85, 90 (repeats)	86	

7.2 Clinical Observations and Mortality

Daily oral administration of NTO suspended in corn oil for the selected time periods did not induce compound-related mortality at dosages of 500 mg/kg-d and below. One male rat in the 31.25 mg/kg-d dose group was found dead in its cage on day 18 of the study. This animal did undergo a gross pathological examination but the severity of tissue autolysis prevented the determination of a cause of death. This pre-term mortality was not considered test material related since the animal exhibited no clinical signs of toxicity prior to death.

Very few clinical signs were observed that could directly be attributed to NTO administration and were mainly limited to bright yellow-colored urine at dosages of 125 mg/kg-d and above. Additional signs noted throughout all dose groups that were likely caused by the stress associated with the daily oral gavage procedure included barbering, chromodacryorrhea, and dried red material around nose. Several female and recovery male animals had sores either behind the ears or on the ventral cervical area. The Attending Veterinarian examined the animals and noted localized alopecia with superficial lacerations. The affected animals were treated daily with a topical povidone swab. Although a skin scrape was recommended to determine whether the sores were caused by a parasitic problem or contact dermatitis, the lacerations resolved with topical treatment prior to the skin scrape being performed. Several female animals also exhibited signs resulting from parturition (e.g., blood-stained fur on urogenital area and rough haircoat). Due to the viscosity of the dosing suspensions, some male and female animals throughout all NTO dose groups appeared to have

corn oil around their mouths following dosing. This observation was noted in case the animal aspirated part of the dose and could have developed congested breathing on the following day (see Appendix D).

7.3 Body Mass

No differences in the body mass measurements for any male (including recovery males) or female dose group compared to control animals were observed throughout the study period. Body mass for the male and recovery male control groups was slightly higher by the end of the study period but the difference was not enough to be statistically significant. Female inter-dose group variability was obviously greater due to the pregnancies (see Appendix E).

7.4 Body Mass Gain and Food Consumption

No differences in body mass gain or food consumption for any male (including recovery males) or female dose group compared to control animals were observed throughout the study period. Female body mass gain and food consumption was reduced in the 500 mg/kg-d dose group during the 2-week pre-mating period compared to the 31.25 mg/kg-d dose group only (p=0.008 and 0.009, respectively). No differences were observed between any of the female dose groups during the gestational or postpartum study periods (see Appendices F & G).

7.5 Organ Mass and Ratios

In male rats, differences in organ mass and organ mass ratios were limited to the reproductive organs. Testes and epididymides mass, organ to body mass, and organ to brain mass ratios were decreased in the 500 mg/kg-d dose group compared to all other dose groups, including controls (p=0.00 for all). Testes and epididymides mass, organ to body mass, and organ to brain mass ratios remained decreased in the 500 mg/kg-d recovery male dose group compared to recovery controls following a 4-week recovery period (p=0.00 for all). In female rats, differences between NTO treated and control animals were observed for brain, spleen, and uterus mass and mass ratios. Absolute brain mass was reduced in the 31.25 mg/kg-d dose group relative to controls (p=0.020). Spleen mass and spleen to body mass ratios were reduced in the 31.25 (p=0.035 and p=0.031) and 500 mg/kg-d (p=0.008 and p=0.005) dose groups relative to controls. Following the removal of one outlier in the 500 mg/kg-d dose group, absolute uterus mass and uterus to brain mass ratios were reduced in the 125 mg/kg-d dose group relative to the 500 mg/kg-d group (p=0.027 and p=.016, respectively) (see Appendix H).

7.6 Sperm Analysis

The number of sperm per gram in the cauda epididymis in male rats in the 500 mg/kg-d group was reduced to 6.8% of the number of sperm per gram found in the controls (p=0.00). No motile sperm were found in any of the animals in the 500 mg/kg-d group. Average numbers of sperm per gram were only reduced to 91.7 and 87.2% of control averages in the 31.25 and 125 mg/kg-d dose groups, respectively. Following the 4-week recovery period, the number of sperm per gram in the cauda epididymis of male rats in the recovery 500 mg/kg-d group was reduced to 28.6% of the number of sperm per gram found in the recovery controls (p=0.00). No motile sperm were found in any of the animals in the recovery group (see Appendix I).

7.7 Clinical Chemistry

Differences between NTO treated male and female dose groups and their controls were not present for any of the serum clinical chemistry parameters. Total bilirubin (TBIL) was increased in the male 500 mg/kg-d dose group compared to the 125 mg/kg-d group only (p=0.023). The male TBIL group means did not exhibit any dose-dependent trends and all remained within normal ranges (Charles River Laboratories, 2006). No differences in clinical chemistry parameters were observed between the recovery male 500 mg/kg-d group and the recovery male controls. Phosphorus (PHOS) was elevated in the female 500 mg/kg-d group compared to the 125 mg/kg-d group (p=0.022) but all group means were well above normal ranges (Charles River Laboratories, 2006) (see Appendix J).

7.8 Hematology

Differences between NTO treated male and female dose groups and their controls were not present for any of the hematology parameters. Mean cell volume (MCV) and mean cell hemoglobin (MCH) were increased in the male 500 mg/kg-d group compared to the 31.25 mg/kg-d group (p=0.041 and p=0.010, respectively). All male MCV values remained within normal ranges while only the male 31.25 mg/kg-d MCH means were within normal ranges. MCH means for the control, 125, and 500 mg/kg-d groups were all above historical ranges. Mean platelet counts (PLT) were decreased in the male 500 mg/kg-d group compared to the 125 mg/kg-d male means but all group means remained within normal ranges. No differences in hematology parameters were observed between the recovery male 500 mg/kg-d group and the recovery male controls. Percent basophils (BASO %) were elevated in the female 500 mg/kg-d group compared to the 125 mg/kg-d group (p=0.015), however, all group means were well above normal ranges (Charles River Laboratories, 2006) (see Appendix K).

7.9 Prothrombin Time

No differences were observed with respect to prothrombin time among any of the male (including recovery males) or female dose group means (see Appendix L).

7.10 Reproductive/Developmental Parameters

No discernible differences were recognized among the dose groups, including controls, for the reproductive endpoints expressed as proportions. These endpoints included number of females showing evidence of copulation, number of females achieving pregnancy, number of dams with live young born, and number of dams with live young at postpartum day 4. The sample sizes were too small and proportions were too similar to allow for a meaningful statistical comparison. Of the 10 female rats pair-housed per dose group, 2 out of 10 were not pregnant from the corn oil control and 500 mg/kg-d NTO dose groups. In the control group, a sperm plug was found for one of the mating pairs but not the other. Sperm plugs were observed for both non-pregnant females in the 500 mg/kg-d dose group. One out of 10 females was not pregnant in the 31.25 mg/kg-d dose group and a sperm plug was observed for this pair. All females were pregnant in the 125 mg/kg-d dose group. Historical control data for developmental and reproductive toxicity studies using the CrI:CD® Sprague-Dawley rat indicated that, on average, 92.93 ± 11.1% of the females pair-housed successfully mated. Of those females that successfully mated, 95.72 ± 6.65% were pregnant. Overall, 88.78 ± 11.8% of the female rats pair-housed became pregnant (Charles River

Laboratories, 1993). NTO-treated animals in this study did not exhibit a reduction in pregnancy rates and were within historical averages. (CD® is a registered trademark of Charles River Laboratories)

Dose group averages for the number of days pair-housed prior to finding evidence of copulation, gestational length, pre-implantation loss, pre-natal loss, and post-natal loss were analyzed using a non-parametric Kruskal-Wallis test and were not statistically different (p=0.52, p=0.796, p=0.575, p=0.744, and p=0.431, respectively). Statistical analysis of the number of live pups at birth and at postpartum day 4, the pup sex ratio at birth and at postpartum day 4, the average litter mass at birth and at postpartum day 4, and the number of pup abnormalities (including stillbirths) at birth did not reveal any differences among dose group averages (p=0.974 and p=0.724, p=0.458 and p=0.381, p=0.525 and p=0.898, p=0.573, respectively). A summary of the litter parameters which had historical control data are presented in Table 4. The percent postimplantation loss, number of stillborn pups per litter, and the number of dead pups occurring on post-natal days 1-4 were elevated in all dose groups compared to historical control averages but were the most elevated in the corn oil control group. The average pup mass at birth was also slightly decreased in the corn oil control group compared to the NTO-treated groups and historical controls (see Appendix M).

Mean ± S.D.	Corn Oil Control	31.25 mg/kg	125 mg/kg	500 mg/kg	Historical Controls*
Length of Gestation (Days)	22.0 ± 0.00	22.1 ± 0.35	22.0 ± 0.47	22.0 ± 0.00	22.42 ± 0.53
# Implants/Female	15.3 ± 3.01	15.6 ± 2.60	15.5 ± 2.07	15.3 ± 2.25	15.51 ± 1.85
% Postimplantation Loss	14.8 ± 16.88	12.7 ± 8.82	12.5 ± 16.19	8.1 ± 7.89	8.13 ± 3.35
# Live Pups/Litter	12.8 ± 3.28	13.4 ± 2.35	13.4 ± 2.95	13.4 ± 2.13	14.14 ± 1.42
# Stillborn/Litter	1.8 ± 2.71	0.2 ± 0.44	0.4 ± 0.70	0.4 ± 0.74	0.24 ± 0.26
Dead Pups, PND 1-4 [#]	3.3 ± 6.04	0.3 ± 0.71	3.2 ± 6.23	2.4 ± 5.13	0.41 ± 0.39 ⁺
Sex Ratio (% Male)	45.3 ± 12.16	54.8 ± 13.80	54.4 ± 13.52	50.5 ± 15.32	49.68 ± 3.90
Birth Mass (Avg. All Pups)	5.9 ± 0.65	6.4 ± 0.61	6.2 ± 0.70	6.1 ± 0.89	6.33 ± 0.29

Table 4. Summary of Litter Parameters

* (Charles River Laboratories, 2006)

⁺ Historical controls reported as dead pups, PND 1-21

[#] Includes pups humanely euthanized due to total neglect by dam.

PND=post-natal day

7.11 Pathology

A gross pathological examination of the male pre-term mortality in the 31.25 mg/kg-d group was not possible due to the extent of tissue autolysis. In male rats, liver findings included 3 with a pale liver (one control and two 31.25 mg/kg-d animals) and 18 with a dark/mottled liver (three control, four 31.25 mg/kg-d, four 125 mg/kg-d, and seven 500 mg/kg-d animals). Three male rats per dose group were reported to have dark kidneys with the exception of the 31.25 mg/kg-d group with two.

A number of male rats throughout all dose groups were noted as having pale intestines either with or without yellow fluid present (five controls, five 31.25 mg/kg-d, eight 125 mg/kg-d, and eight 500 mg/kg-d animals). Three male controls, two 31.25 mg/kg-d, one 125 mg/kg-d, and two 500 mg/kg-d animals were observed with dark and/or enlarged spleens. One additional male in the 500 mg/kg-d group had a pale spleen and one in the 125 mg/kg-d group had a small spleen. All male animals in the 500 mg/kg-d group were noted as having small testes. Additional male gross pathology findings included one control with a small left testes and one 31.25 mg/kg-d animal with 2 pale brown 1 millimeter areas on the left lobe of the thymus.

In recovery male rats, six rats in both the control and 500 mg/kg-d groups were noted to have dark livers and five animals had dark spleens (three control and two 500 mg/kg-d animals). One control and three 500 mg/kg-d recovery males were observed with dark/mottled kidneys. Eight out of ten males in the 500 mg/kg-d recovery group were noted as having small testes. Additional recovery male gross pathology findings included one control with enlarged submandibular lymph nodes, one control with hydronephrosis of right kidney, and one 500 mg/kg-d male with hydronephrosis of right kidney.

In female rats, liver findings included 7 with a dark liver (three control, one 31.25 mg/kg-d, two 125 mg/kg-d, and one 500 mg/kg-d animals), one 125 mg/kg-d animal with a pale brown liver, and one control with a pale liver. Kidney findings included 4 with dark kidneys (two control, one 125 mg/kg-d, and one 500 mg/kg-d animals) and one 125 mg/kg-d female with left and right cystic kidneys. A number of female rats throughout all dose groups were noted as having pale intestines either with or without yellow fluid present (five controls, nine 31.25 mg/kg-d, eight 125 mg/kg-d, and seven 500 mg/kg-d animals). One female control and one 500 mg/kg-d female were observed with dark spleens. One female control had a 9 x 4 millimeter diverticulum on serosal side of the greater curvature of the stomach, 2 females had distended stomachs full of bedding (one 125 mg/kg-d and one 500 mg/kg-d animals), and one 500 mg/kg-d female had yellow fluid present in the stomach. Female lung findings included one control with red spots on the lung and two 125 mg/kg-d animals with mottled lungs. Additional female gross pathology findings included a scab on ventral chin, a mass in the fat near the ovaries, yellow-tinged mesenteric lymph nodes, enlarged submandibular lymph nodes, thin appearance, yellow-tinged subcutaneous fat, fluid-filled uterus, dilated uterus, yellow-stained fur, and a gas distended cecum. Gross pathological findings are individually identified in Appendix N.

7.12 Histopathology

Mortality occurred in one male rat at the 31.25 mg/kg-d dosage level but the extent of tissue autolysis at the time of necropsy complicated a thorough microscopic examination of harvested tissues and a cause of death could not be determined. Dark kidneys and dark spleens were noted throughout the male and female dose groups but did not have a correlating histologic finding. The dark organ appearance was likely due to blood congestion and was not considered treatment-related. Pale small intestines, typically in combination with the presence of yellow fluid, were also noted throughout all male and female dose groups. This observation was likely due to repeated oral corn oil administration and was confirmed microscopically, appearing as microvacuolation of the apical enterocytes.

In the liver, lymphocytic infiltration was noted in all male and female dose groups. Although the severity of this lesion may intensify with chemical exposures, a few isolated aggregates of

mononuclear cells are typically considered a background lesion (Thoolen, 2010). Lymphocytic infiltration (minimal to moderate) was observed in 9/10 males and 6/10 females in the control group, 9/10 males and 10/10 females at 31.25 mg/kg-d, 10/10 males and 8/10 females at 125 mg/kg-d, and 9/10 males and 6/10 females at 500 mg/kg-d. This observation was not considered treatment-related since incidence and severity was similar among all dose groups, including controls.

In the spleen, extramedullary hematopoesis and hemosiderosis was noted in the majority of male and female rats, including the females that did not become pregnant. Minimal to moderate extramedullary hematopoesis was observed in all male rats except for two in the 31.25 mg/kg-d group and in all female rats except for one control and one in the 500 mg/kg-d group. Minimal to moderate hematopoesis was noted in all male and female rats except for one male in the 31.25 mg/kg-d group. Both of these observations were not considered treatment-related since incidence and severity was similar among all dose groups, including controls.

A decrease in thymic cortical lymphocytes was noted in 5/8 controls, 3/9 31.25 mg/kg-d, 5/10 125 mg/kg-d, and 2/7 500 mg/kg-d pregnant females. In pregnant females, an early increase in thymic mass is followed by a marked reduction in cellularity of the cortex with the level of cellularity returning to normal once pregnancy is over. In addition, elevated progesterone levels during pregnancy negatively impact thymic mass whereas elevated prolactin levels during lactation have a stimulatory effect on the thymus (Pearse, 2006). Although this microscopic finding was observed in pregnant females in all dose groups, thymic mass was not different across dose groups. The finding was considered to be associated with pregnancy and not treatment-related.

NTO-related lesions were limited to the reproductive system in male rats. Severe tubular degeneration and atrophy was observed in the testes of 10/10 male rats given 500 mg/kg-d NTO. The majority of the testicular seminiferous tubules in these animals were shrunken, retaining only Sertoli cells, spermatogonia, and early stage spermatocytes (leptotene and zygotene). Few tubules retained pachytene spermatocytes and most were degenerate. One male control animal was noted to have a severely degenerative/atrophied left testis however the finding was considered to be a random congenital underdeveloped testis and not related to the study. Moderate hypospermia was observed in the epididymides of 3/10 500 mg/kg-d males while severe hypospermia/aspermia was observed in 7/10 500 mg/kg-d males. Moderate hypospermia was defined as absence of mature spermatids in the head and body of the epididymis with mature spermatids evident in the tail section. In animals with severe hypospermia/aspermia, mature spermatids were not observed in any epididymal segment. Minimal to mild cribiform change of the epididymis, defined as an infolding and bridging of the epithelium in segments of ducts that have undergone contraction due to decreased/absent sperm, was observed in 10/10 500 mg/kg-d male rats. Severe hypospermia/aspermia as well as cribiform change of the epididymis was also observed in the one male control animal with an underdeveloped testis.

Following a 4-week recovery period, complete recovery from observed testicular and epididymal lesions was not evident in male rats given 500 mg/kg-d NTO for 4 weeks. For recovery males, incidence and severity of testicular tubular degeneration/atrophy was reported separately for the left and right testes. Incidence and severity of tubular degeneration/atrophy for 500 mg/kg-d recovery males was as follows: 4/10 left testes and 4/8 right testes with mild degeneration, 4/10 left testes and 3/8 right testes with moderate degeneration, and 2/10 left testes and 1/8 right testes with severe degeneration. Two of the right testes in the 500 mg/kg-d recovery group were not available for microscopic evaluation. All spermatogonia and spermatocytes were present through all stages

for recovery males. Mild degeneration was defined as variable mature 13-18 and 19 spermatids missing while moderate degeneration indicated that spermatids 1-11/12 were generally present with some 7-10 spermatid loss and 13-18 variably present. No mature 19 spermatids were present with moderate degeneration. Severe degeneration was defined as stages I-V completely intact, stages VII-VIII missing mature 19 spermatids, and stages IX-XIV missing spermatids 9-14 with more completely atrophic tubules. Moderate hypospermia was observed in the epididymides of 7/9 500 mg/kg-d recovery males with 2/9 exhibiting severe hypospermia/aspermia. The testes and epididymides of all male control recovery animals were normal (see Appendix O).

8 Discussion

This study was conducted to provide additional information concerning the subacute (28 day) oral toxicity of NTO as well as provide preliminary reproductive/developmental toxicity information based on the results from previous studies. The previously performed subacute (14 day) and subchronic (90 day) oral toxicity studies identified the testes and epididymides as primary target organs for NTO-induced toxicity. In the subacute study, testes mass and mass ratios were reduced compared to controls in male rats administered 500 mg/kg-day NTO and above. Mean absolute epididymal mass was reduced in male rats given 1500 and 2000 mg/kg-d compared to controls. Histopathology was not performed on any tissues from the 14-day study. The subchronic study on NTO revealed reductions in both testes and epididymal mass and mass ratios at dosages of 315 mg/kg-day and above. Reductions in sperm counts were also noted at dosages of 315 mg/kg-day and above. Microscopic evaluation of the 90-day tissues revealed increased incidences of testicular hypoplasia, characterized by moderate to severe tubular degeneration/atrophy, at dosages of 315 mg/kg-day. Trace to mild hepatocellular hyperplasia was also observed in the livers of male and female rats administered 1000 mg/kg-d for 90 days (USAPHC (Provisional), 2010).

The results of the repeated dose toxicity portion of this study were generally in agreement with the previously reported subacute and subchronic studies. Dosages of NTO up to and including 500 mg/kg-d did not induce compound-related pre-term mortality and relevant clinical signs of toxicity were mainly limited to bright yellow-colored urine in the two highest dose groups. No differences between NTO-treated and control animals were observed for body mass, body mass change, food consumption, hematology, clinical chemistry, or prothrombin time.

NTO-induced toxicity was, once again, limited to the male reproductive organs following subacute (14- or 28-day) exposure. These test article-related lesions were characterized by severe testicular seminiferous tubule degeneration and moderate to severe hypospermia with cribiform change of the epididymides in 10/10 male 500 mg/kg-d rats. This spermatogenic disruption can be caused by a direct effect on the seminiferous epithelium, affecting either the Sertoli cell or any one of the germ cell populations, or may be a secondary response to altered hormone levels, altered vascular supply, or altered fluid balance within the testis or epididymis (Lanning et. al, 2002). Recent work has also shown that NTO does not appear to act directly as an anti-androgenic endocrine disrupting chemical (USAPHC, 2013). Since germ cells are entirely dependent on the coordinated functioning of all other cell types and processes within the testis, prolonged dosing with any testicular toxicant will typically result in germ cell degeneration or loss. In addition, each population of germ cells has its own sensitivity to different chemical toxicants. In repeated-dose studies of 4-13 weeks in duration using high dose levels, most testicular toxicants will produce a progressive germ cell loss (maturation depletion) resulting in tubules containing only Sertoli cells. Although also

sensitive to chemical damage, Sertoli and Leydig cells are extremely resistant to cell death and typically respond with biochemical disturbances. Both in this study as well as the previously-performed subchronic oral study with NTO, it was this germ cell maturation depletion that acted as a marker of injury but also reduced the specificity of the pattern of spermatogenic depletion. Since the pattern of disturbance is typically only seen during the early development of the lesion, it would be necessary to conduct a time course study to identify the earliest pathological changes (Creasy, 1997).

Following a 4-week recovery period, microscopic evaluation of the testes of the satellite 500 mg/kg-d male rats revealed that they had not completely recovered. Although all spermatogonia and spermatocytes were present through all of the stages, maturing spermatids were only variably present. Cauda epididymal sperm counts in the recovery 500 mg/kg-d males recovered slightly to 28.6% of recovery control counts, compared to 6.8% for the 500 mg/kg-d main study males, but no motile sperm were detected. It is possible that the 4-week duration of the recovery period may have prevented a more complete recovery in these animals. It has been reported that recovery studies should be timed as multiples of the spermatogenic process (8 weeks for rats) to allow for any reversible injury to the spermatogonia to work its way through maturation depletion and allow full recovery of all cell layers. In addition, there is often a lag period before all the cells reach full production capacity so it is possible that recovery may take even longer than 1 full period. In theory, if spermatogonia are still present then the lesion is potentially reversible but if the Sertoli cells are functionally compromised, spermatogenesis may not be supportable. Conversely, spermatogonia may be significantly depleted, but if the Sertoli cells are functionally intact and sufficient time is allowed for stem cell renewal and repopulation, substantial recovery may be seen (Creasy, 1997 and Lanning et. al., 2002). The lack of a defined mechanism for germ cell loss in this study as well as the length of the recovery period prevented a prediction of recovery from NTOinduced testicular injury.

The design of this study was based closely on the procedures outlined in OECD Health Effects Test Guideline 422 for a combined repeated-dose toxicity test with the reproduction/developmental screening test (OECD, 1996). These procedures included a 2-week pre-mating/dosing period prior to pair-housing for mating. The results of this study did not show any reduction in the number of females becoming pregnant between NTO-treated and control animals. Based upon the microscopic evaluation of the 500 mg/kg-d males tissues, revealing severe tubular degeneration/atrophy, and the sperm analysis, indicating a severe reduction in sperm count and no motile sperm, very few of the 500 mg/kg-d female rats should have become pregnant during the mating period. Although it is speculation at this point, the results observed were most likely a function of the pre-mating period duration. Had the pre-mating period been extended to a 6-8 week duration, the male gonadal regression observed would likely have progressed enough to result in male infertility at 500 mg/kg-d. Even though the spermatogenic cycle repeats approximately every 12.9 days in the Sprague-Dawley rat, the complete process of spermatogenesis requires approximately 56 days or 4.5 cycles (Creasy, 1997). The elongating spermatids shed during a previously unaffected spermatogenic cycle likely allowed for fertility to be observed in the male 500 mg/kg-d animals. None of the other reproductive/litter parameters evaluated for NTO-treated animals during this study exhibited differences compared to control animals or historical averages. By guideline, monitoring for developmental effects on the offspring only occurred on the day of birth (day 0) and the day of scheduled euthanasia (day 4) and was limited to a gross external examination. Both pre- and post-natal loss was highest in the corn oil control group compared to NTO-treated animals. Several litters throughout most of the dose groups, including controls, had to

be humanely euthanized due to total neglect/abandonment by the dam. All of the pups euthanized pre-term were included as post-natal deaths and only one dam in the 125 mg/kg-d group exhibited gross and microscopic findings upon necropsy that may have contributed to the abandonment. It is undetermined if treatment with NTO contributed to the dam's overall compromised and ill state. No gross abnormalities or abnormal behavior was observed in any of the pups at either observation time.

9 Conclusions

Daily oral exposure to male and female rats at dosages of 31.25, 125, and 500 mg/kg-d NTO in corn oil for four weeks did not induce compound-related pre-term mortality. Clinical signs of toxicity were mainly limited to bright yellow-colored urine at higher dosages with no changes in body mass, body mass gain, and food consumption compared to controls observed throughout the study period.

Treatment with NTO resulted in reductions in testes and epididymides mass and mass ratios in male rats given 500 mg/kg-d. Microscopic evaluation of these tissues revealed severe degeneration/atrophy of the testicular seminiferous tubules along with moderate to severe hypospermia and cribiform change of the epididymides. Sperm counts were reduced in the high dose group (500 mg/kg-d) with no motile sperm observed. Complete recovery was not evident in the high dose satellite group following a 4-week recovery period. Reductions in sperm counts with no motile sperm were also observed in the male satellite group. In female rats, differences between NTO treated and control animals were observed for brain and spleen, and uterus mass and mass ratios. Absolute brain mass was reduced in the 31.25 mg/kg-d dose group relative to controls. Spleen mass and spleen to body mass ratios were reduced in the 31.25 and 500 mg/kg-d dose groups relative to controls. No treatment-related microscopic findings were observed in female rats.

Under the stated study conditions, oral dosages of up to and including 500 mg/kg-d NTO did not appear to affect reproduction or development in Sprague-Dawley rats. Based upon the gross and microscopic findings in male rats following 4 weeks of treatment, as well as the results of the cauda epididymal sperm analysis, infertility would have likely been observed in the high dose males with an extended pre-mating dosing period. Gross external examinations of the offspring on the day of birth and on day 4 postpartum did not indicate that NTO presents a developmental hazard.

10 Point of Contact

Questions pertaining to this report should be referred to Lee C.B. Crouse at DSN 584-3980, commercial 410-436-3980, or by e-mail: usarmy.apg.medcom-phc.mbx.tox-info@mail.mil.

Prepared By:

TÉE C.B. CROÙŚE Biologist Toxicity Evaluation Program (TEP)

h Mar L

EMILY MAY LENT Toxicologist Toxicity Evaluation Program

20 March 2014 Date

<u>2019arch 2019</u> Date

Approved By:

ARTHUR J. O'NEILL Program Manager, Toxicity Evaluation

MARK S. JOHNSON Portfolio Director, Toxicology

20 MARCH ZOIH Date

<u> 20 MARCH 2014</u> Date

Appendix A

References

- BAE Systems Ordnance Systems, Inc. 2007. Material Safety Data Sheet (MSDS) on NTO. Prepared by BAE Systems Ordnance Systems, Inc., 4509 West Stone Drive, Kingsport, TN 37660-9982.
- Charles River Laboratories. 1993. Historical Control Data for Development and Reproductive Toxicity Studies using the CrI:CD BR Rat. Compiled by the Middle Atlantic Reproduction and Teratology Association.
- Charles River Laboratories. 2006. Clinical Laboratory Parameters for Crl:CD(SD) Rats. Prepared by M.L.A. Giknis, Ph.D. and C.B. Clifford, D.V.M., Ph.D.
- Creasy, D.M. 1997. Evaluation of Testicular Toxicity in Safety Evaluation Studies: The Appropriate Use of Spermatogenic Staging. *Toxicol. Pathol.*, 25(2): 119-131.
- Davies, P.J. and A. Provatas. 2006. Characterization of 2,4-Dinitroanisole: An Ingredient for Use in Low Sensitivity Melt Cast Formulations. *Defense Science and Technology Organization, Edinburgh South Australia.*
- Department of the Army. 2003. Regulation 70-1, Army Acquisition Policy. http://www.apd.army.mil/pdffiles/r70_1.pdf.
- Department of the Army. 2007a. Regulation 200-1, *Environmental Protection and Enhancement*. http://www.apd.army.mil/pdffiles/r200_1.pdf.
- Department of the Army. 2007b. Regulation 40-5, *Preventive Medicine*. http://www.apd.army.mil/pdffiles/r40_5.pdf.
- Department of the Army. 2008 (Rapid Action Revision 2009). Pamphlet 70-3, Army Acquisition Procedures for Insensitive Munitions/Unplanned Stimuli. http://www.apd.army.mil/pdffiles/p70_3.pdf.
- Department of Defense. 1996. Department of Defense Instruction 4715.4, Pollution Prevention. http://www.dtic.mil/whs/directives/corres/pdf/471504p.pdf.
- Duncan, K. 2002. Insensitive Munitions and the Army: Improving Safety and Survivability. Army Logistician PB700-02-1 Volume 34, Issue 1: 16-17.
- Lanning, L.L., Creasy, D.M., Chapin, R.E., Mann, P.C., Barlow, N.J., Regan, K.S., Goodman, D.G. 2002. Recommended Approaches for the Evaluation of Testicular and Epididymal Toxicity. *Toxicol. Pathol.*, 30(4): 507-520.
- Los Alamos National Laboratory. 1985. Report No. LA-10533-MS. *A, Toxicological Study of NTO*. Los Alamos National Laboratory, Los Alamos, New Mexico. Prepared by J.E. London and D.M. Smith.

Organization for Economic Cooperation and Development. 1996. OECD Guideline for Testing of

Chemicals: OECD 422. Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test.

Pearse, Gail. 2006. Histopathology of the Thymus. Toxicol. Pathol., 34: 515-547.

- Smith, M.W. and M.D. Cliff. 1999. NTO-Based Explosive Formulations: A Technology Review. Weapons Systems Division, DSTO Aeronautical and Maritime Research Laboratory, Salisbury South Australia 5108 Australia, DSTO-TR-0796.
- Spear, R.J., Louey, C.N. and M.G. Wolfson. 1989. A Preliminary Assessment of NTO as an Insensitive High Explosive. DSTO Materials Research Laboratory, Maribyrnong, Victoria 3032, Australia, MRL-TR-89-18.
- Thoolen B., Maronpot R.R., Harada T., Nyska A., Rousseaux C., Nolte T., Malarkey D.E., Kaufmann W., Kuttler K., Deschl U., Nakae D., Gregson R., Vinlove M.P., Bix A.E., Singh B., Belpoggi F., Ward J.M. 2010. Proliferative and Nonproliferative Lesions of the Rat and Mouse Hepatobiliary System. *Toxicol Pathol.*, 38:5S-81S.
- U.S. Army Environmental Command (USAEC). 2009. Final Report. FY09 Army Environmental Requirements and Technology Assessments (AERTA). Aberdeen Proving Ground Maryland.
- U.S. Army Public Health Command. 2013. Toxicology Report No. 87-XE-0FV5-12. Assessment of 3-Nitro-1,2,4-Triazol-5-One (NTO) as a Potential Endocrine Disrupting Chemical in Rats Using the Hershberger and Uterotrophic Bioassays. Aberdeen Proving Ground, Maryland.
- U.S. Army Public Health Command (Provisional). 2010. Toxicology Study No. 85-XC-0A6W-08. Subchronic Oral Toxicity of NTO in Rats. Aberdeen Proving Ground, Maryland.

APPENDIX B

QUALITY ASSURANCE STATEMENT

For: Toxicology Study No. 85-XC-0FP4-12, Protocol No. 0FP4-93-12-03-03, *"Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat, April – July 2012"*, the following critical phases were audited by the Quality Systems Office:

PRE IN-LIFE PHASE OF THE STUDY

Critical Phase Inspected/Audited	Date Inspected /Audited	Date Reported to Management/SD		
Study Protocol Good Laboratory Practice Standards and Animal Care Review	01/19/2012	01/19/2012		

IN-LIFE PHASE OF THE STUDY

	Data Increated	Date Reported		
Critical Phase Inspected/Audited	Date inspected	to		
	Audited	Management/SD		
Test System - Husbandry, Body Weights and Food Consumption,	05/18/2012	05/31/2012		
Test System - Identification and Observations	05/18/2012	05/31/2012		
Administration Procedures of the Test Substance by Oral Gavage Dose	05/18/2012	05/31/2012		
Compliance with Study Protocol Modification	05/24/2012	05/31/2012		
Study Personnel Training Records	05/29/2012	06/08/2012		
Co-Housing Period - Procedures, Observations and Raw Data Documentation	05/31/2012	06/07/2012		
Co-Housing Period - Special Husbandry Procedures	05/31/2012	06/07/2012		
Male Rats - Study Endpoint, Anesthesia, Euthanasia, Necropsy and Tissue Collection Procedures	06/05/2012	06/13/2012		
Sperm Extrusion and Viability and Motility Analysis Procedures	06/05/2012	06/13/2012		
Analytical Chemistry Support - Dosing Solution Concentration Verification	06/12/2012	06/18/2012		
Raw Data Documentation Procedures	07/02/2012	07/06/2012		
Study Final Animal In-Life Endpoint Criteria	07/02/2012	07/06/2012		

POST IN-LIFE PHASE OF THE STUDY

Critical Phase Inspected/Audited	Date Inspected /Audited	Date Reported to Management/SD		
Pathology Contributing Scientist Report Review	07/09/2013	07/09/2013		

APPENDIX B

QUALITY ASSURANCE STATEMENT

For: Toxicology Study No. 85-XC-0FP4-12, Protocol No. 0FP4-93-12-03-03, *"Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat, April – July 2012"*, the following critical phases were audited by the Quality Systems Office:

POST IN-LIFE PHASE OF THE STUDY (Continued)

Critical Phase Inspected/Audited	Date Inspected /Audited	Date Reported to Management/SD		
Final Study Report Review	10/17/2013	10/18/2013		
Study Raw Data Review	10/17/2013	10/18/2013		

Note 1 All findings were made known to the Study Director and the Program Manager at the time of the audit/inspection. If there were no findings during the inspection, the inspection was reported to Management and the Study Director on the date shown in the table.

Note 2 In addition to the study specific critical phase inspections listed here, general facility and process based inspection not specifically related to this study are done monthly or annually in accordance with QA Standard Operating Procedure.

Note 3 This report has been audited by the Quality Assurance Unit (QSO), and is considered to be an accurate account of the data generated and of the procedures followed

schal P. 14 Janve

Michael P. Kefauver Quality Assurance Specialist, QSO

21 march 2014

Date

Appendix C

Archives and Study Personnel

1. ARCHIVES.

a. All raw data, documentation, records, protocol, and a copy of the final report generated as a result of this study will be archived in room 1026, Building E-2100, USAPHC, for a minimum of five (5) years following submission of the final report to the Sponsor.

b. Records on animal receipt, diet, and facility environmental parameters will be archived by the Veterinary Medical Division, Toxicology Portfolio, for a minimum of five (5) years following submission of the final report to the Sponsor.

c. Some ancillary records pertaining to this study, such as instrument maintenance logs, animal room observation logs, etc., will not be archived until those logbooks have been completed. Once complete they will be archived in room 1026, Building E-2100, USAPHC.

Wet tissues, histology slides, and paraffin blocks are stored in building E-5158.

2. PERSONNEL.

a. Management

(1) Management (In-Life): COL Chris E. Hanson, Portfolio Director, Toxicology; Glenn J. Leach, Ph.D., Program Manager, Toxicity Evaluation Program (TEP); Dr. Mark S. Johnson, Ph.D., Program Manager, Health Effects Research Program (HERP).

(2) Management (Report): Mark S. Johnson, Portfolio Director, Toxicology; Arthur J. O'Neill, Program Manager, TEP; Dr. Michael Quinn, Ph.D., Program Manager, HERP.

- b. Study Director: Lee C.B. Crouse, Biologist, TEP.
- c. Quality Assurance: Michael P. Kefauver, Quality Assurance Specialist, Quality Systems Office.

d. Veterinary Support and Animal Care: Dawn C. Fitzhugh, DVM, LTC, VC; Robert Sunderland, Animal Health Technician; Rebecca Kilby, Animal Health Technician; Jason Williams, Animal Health Technician.

- e. Pathology Lab Coordinator: Patricia A. Beall, Biologist, TEP.
- f. Histopathology: Shannon M. Wallace, DVM, DACVP, LTC, VC, Pathologist, VMD.
- g. In-Life Support: Emily May Lent, Toxicologist, TEP.

h. Hematology, Clinical Chemistry, Urinalysis: Matthew A. Bazar, Biologist, TEP; Mark R. Way, Biologist, TEP.

i. Archivist: Martha L. Thompson, Data Acquisition Specialist, TEP.

Appendix D

Clinical Observations

Table D-1 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Daily Observations Male Rats

Group	Animal ID	Observation	First Day* Observed	Last Day* Observed
Corn Oil	12-0163	None	1222	12120
Control	12-0205	Barbering left front limb	25	28
	12-0206	None	20	2
	12-0207	Animal crumbling food on bottom of cage; Suspect food consumption	6	6
	12-0235	None		
	12-0254	None		
	12-0263	None		
	12-0267	Chromodacryorrhea right eye	22	22
	12-0284	None		
	12-0313	None		
31.25 mg/kg	12-0164	None		
	12-0165	Small sore on right side of mouth	5	6
		Dosing material on chin	17	17
	12-0225	None		
	12-0234	None		
	12-0243	None		
	12-0245	None		
	12-0255	Barbering both front limbs	13	28
	12-0262	None		
	12-0324	Dried red material around nose	16	21
	12-0351	Found dead	18	18
125 ma/ka	12-0187	None		
	12-0204	Dosing material on chin	2	2
	12-0223	Dosing material on chin	2	27
	12-0224	None	U	21
	12-0253	None		
	12-0275	Dosing material on chin: Likely aspirated	1	1
		Barbering both front limbs	6	28
	12-0293	Barbering both front limbs	8	28
	12-0296	Dosing material on chin	1	1
	12-0345	None		
	12-0354	Bright yellow stained bedding	0	0
500 ma/ka	12-0177	None		
ooo mgmg	12-0189	None		
	12-0203	None		
	12-0209	None		
	12-0236	Dosing material on chin	1	0
	12 0200	Congested breathing	15	15
	12-0256	Dosing material on chin	8	10
	12 0200	Slight congested breathing	14	14
	12-0297	None	14	14
	12-0314	Dosing material on chin	20	20
	12-0322	Dosing material on chin	1	1
		Dried red material around nose	21	22
		Small cut below right nostril	21	22
		Barbering both front limbs	25	28
	12-0341	None	20	20

* = Signs may be observed intermittently between first and last day.

Table D-2 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Daily Observations Female Rats

Group	Animal ID	Observation	First Day* Observed	Last Day* Observed
Corn Oil Control	12-0211 12-0220	Barbering both front limbs None	35	44
	12-0222	None		
	12-0260	Barbering both front limbs	31	42
	12-0289	Animal inadvertently given 1.15 ml of 6.25 mg/ml NTO suspension	4	4
	12-0298ª	Small scab behind left ear	41	42
	12-0306 12-0309	Barbering both front limbs None	22	42
	12-0317*	Chromodacryorrhea right eye	19	23
	12-0339	Chromodacryorrhea both eyes Barbering right front limb	24 43	24 44
31.25 mg/kg	12-0168 12-0170	Dosing material on chin None	5	33
	12-0201°	Dosing material on chin	8	16
	12-0221	Dried red material around nose and on both front limbs and head Dried red material around urogenital area	49 50	49 50
	12-0240	Barbering both front limbs	30	42
	12-0299ª	Barbering both front limbs	35	45
	12-0300	Dosing material on chin	22	22
	12-0346	None		
	12-0367 12-0369	Dried red material around nose None	37	37
125 ma/ka	12,0169	Dosing material on chin		
i zo mgrag	12-0105	Barbering both front limbs	27	45
		Blood and bright vellow staining of urogenital area	40	41
	12-0210	Dosing material on chin	5	8
	12-0212	None		575
	12-0227	Blood still visible in vaginal area on postpartum day 1	39	39
	12-0257	Barbering right front limb	18	18
		Barbering both front limbs	19	44
	12-0259	Animal inadvertently given 1.03 ml of 100 mg/ml NTO suspension	9	9
		Barbering both front limbs	23	45
		Blood and bright yellow staining of urogenital area	41	41
	12.0261	None	44	45
	12-0201	Dosing material on chin	2	2
	12-0291	Sores on right below ear and on left dorsal cervical area	6	45
		Blood and bright vellow staining of urogenital area	41	42
	12-0327	Barbering both front limbs	27	45
500 mg/kg	12-0166 12-0167	None		
	12-0171ª	Bright yellow stained bedding	0	0
		Kicked during dosing causing blood around mouth	7	7
		Congested breathing	7	10
		Dosing material on chin	12	41
	12-0198	None		
	12-0229ª	Dosing material on chin	0	0
	12-0258	Dosing material on chin	1	1
		Barbering both front limbs	29	34
		Dried red material around nose and on both front limbs	36	36
		Blood and bright yellow urine staining of urogenital area	37	38
	12 0270	Soft Stool	38	38
	12-0219	Barbaring high front limbs	24	28
		Concested breathing	29	42
		Blood and bright vellow urine staining of urogenital area	30	37
	12-0308°	None	51	51
	12-0336	Dosing material on chin	0	0
		Congested breathing	10	28
		Barbering both front limbs	39	42
	12-0348	Bright yellow stained bedding	0	0

a= Sperm plug was found but female was not pregnant. b= No sperm plug found and was not pregnant. c= No sperm plug found but female was pregnant. * = Signs may be observed intermittently between first and last day
Table D-3 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Daily Observations Recovery Male Rats

Group	Animal ID	Observation	First Day* Observed	Last Day* Observed
Corn Oil	12-0174	Small abrasion with scab on right dorsal cervical region	14	15
Control		Small area of hair loss on right dorsal cervical region	16	17
	12-0179	None		
	12-0194	None		
	12-0208	None		
	12-0272	None		
	12-0294	None		
	12-0304	Chromodacryorrhea right eye	16	16
		Barbering left front limb	19	21
		Barbering both front limbs	22	36
	12-0323	Dried red material around left eye	50	57
	12-0332	None		
	12-0365	None		
500 mg/kg	12-0176	Bright yellow-stained bedding	0	0
	12-0186	None		
	12-0215	Scab behind left ear	29	57
		Abrasions behind both ears	36	43
		Abrasion behind left ear	50	50
	12-0244	None		
	12-0283	None		
	12-0295	Bright yellow-stained bedding	0	0
		Dosing material on chin	22	22
	12-0302	None		
	12-0310	Dosing material on chin	0	0
		Barbering both front limbs	36	57
	12-0333	None		
	12-0363	Bright yellow-stained bedding	0	0

* = Signs may be observed intermittently between first and last day.

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix E

Individual and Summary of Body Mass Data

Table E-1 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Body Mass (grams) Male Rats

Group	Animal ID	Day 0	Day 7	Day 14	Day 21	Day 27*	Day 28**
	12-0163	337	397	448	468	499	486
Corn Oil	12-0205	327	379	422	451	489	464
Control	12-0206	304	363	415	453	492	473
	12-0207	320	379	432	470	512	483
	12-0235	378	446	507	544	581	572
	12-0254	323	377	425	461	492	483
	12-0263	333	391	441	476	517	507
	12-0267	361	424	478	521	558	540
	12-0284	364	419	481	511	541	515
	12-0313	349	402	458	484	517	500
	Mean	339.6	397.7	450.7	483.9	519.8	502.3
	SD	22.98	25.55	29.99	31.26	31.02	33.01
	12-0164	314	369	418	444	465	452
31.25 mg/kg	12-0165	324	378	425	462	501	488
	12-0225	332	395	447	472	505	493
	12-0234	318	365	400	430	458	440
	12-0243	326	375	418	424	455	441
	12-0245	341	387	440	472	504	477
	12-0255	312	352	391	420	437	425
	12-0262	363	431	487	527	576	557
	12-0324	364	432	482	508	552	526
	12-0351	372	438	493	(f)	(f)	(f)
	Mean	336.6	392.2	440.1	462.1	494.8	477.7
	SD	22.30	30.94	36.55	37.24	46.45	43.54
	12-0187	352	408	455	493	533	517
125 ma/ka	12-0204	335	376	417	457	496	478
	12-0223	342	400	451	481	521	500
	12-0224	356	412	436	470	513	488
	12-0253	300	349	391	419	446	426
	12-0275	348	392	435	463	488	472
	12-0293	336	394	440	467	484	473
	12-0296	320	367	407	427	457	447
	12-0345	326	375	418	436	467	444
	12-0354	367	416	459	484	514	494
	Mean	338.2	388.9	430.9	459.7	491.9	473.9
	SD	18.44	20.55	21.03	23.70	27.40	26.60
	12-0177	353	421	483	525	566	553
500 mg/kg	12-0189	369	409	456	480	524	505
	12-0203	321	373	423	450	488	465
	12-0209	344	398	460	494	537	513
	12-0236	350	413	449	494	536	508
	12-0256	320	362	378	395	430	411
	12-0297	364	430	455	493	531	515
	12-0314	380	418	454	469	503	486
	12-0322	300	339	380	377	394	382
	12-0341	348	380	412	447	476	448
	Mean	344.9	394.3	435.0	462.4	498.5	478.6
	SD	24.69	29.60	35.39	46.47	53.13	52.37

* Pre-fasted final body weights. ** Fasted final body weights

(f) = Animal died on study.

Table E-2 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Pre-Pregnancy Individual Body Mass (grams) Female Rats

Group	Animal ID	Day 0	Day 7	Day 14	Day 21	Day 28	Day 34	Day 41
	12-0211	224	245	264				
Corn Oil	12-0220	223	243	263				
Control	12-0222	216	222	251				
	12-0260	218	215	233				
	12-0289	194	215	233				
	12-0298ª	100	214	230				
	12-0200	204	214	230				
	12-0300	230	225	248				
	12-0303	200	200	240	045	220	004	0.40
	12-0317	238	253	204	315	336	331	342
	12-0339	195	200	224	245.0	222.0	004.0	
	mean	214.1	221.2	244.7	315.0	336.0	331.0	342.0
	50	15.34	15.59	15.30				
	12-0168	226	250	264				
31.25 ma/ka	12-0170	217	241	264				
5.5	12-0201°	228	238	272	295			
	12-0221	227	242	260	280			
	12-0240	200	225	237	200			
	12-0290ª	230	255	272				
	12-0200	200	230	252				
	12-0346	200	210	232				
	12.0367	200	210	223				
	12-0360	202	220	247				
	Mean	216.7	235.7	254 0	297.5			
	SD	12 03	13 00	14 33	10 61			
	UD	12.00	13.00	14.00	10.01			
	12-0169	213	231	244				
125 mg/kg	12-0210	224	240	247				
	12-0212	213	229	245				
	12-0227	222	244	265				
	12-0257	204	202	215				
	12-0259	207	224	241				
	12-0261	212	215	228				
	12-0278	238	246	258				
	12-0291	212	236	235				
	12-0327	223	241	261				
	Mean	216.8	230.8	243.9				
	SD	9.50	13.23	14.57				
	12-0166	211	228	245				
500 ma/ka	12-0167	220	220	240	267			
Soo mging	12 01718	220	239	240	207			
	12-01/1	220	230	247				
	12-0198	211	237	260				
	12-0229"	201	206	224				
	12-0258	216	214	228				
	12-0279	221	220	239				
	12-0308 ^c	229	249	255	300			
	12-0336	180	193	190				
	12-0348	227	230	242				
	Mean	214.4	224.6	237.5	283.5			
	SD	14.98	16.68	19.91	23.33			

a= Sperm plug was found but female was not pregnant.

b= No sperm plug found and was not pregnant.

c= No sperm plug found but female was pregnant.

Table E-3 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Gestational and Postpartum Individual Body Mass (grams) Female Rats

	1		Gestatio	nal Days		Postpar	tum Days
Group	Animal ID	Day 0	Day 7	Day 14	Day 20	Day 0	Day 4
	12-0211	265	306	348	410	365	356
Corn Oil	12-0220	272	317	365	442	313	333
Control	12-0222	256	300	345	424	335	341
	12-0260	242	289	344	415	275	ND
	12-0289	231	290	330	410	290	304
	12-0298 ^a						
	12-0306	242	282	325	399	283	270
	12-0309	251	295	338	413	295	313
	12-0317 ^b						
	12-0339	231	269	308	383	246	267
	Mean	248.8	293.5	337.9	412.0	300.3	312.0
	SD	15.04	14.73	17.10	17.20	36.98	34.33
	12-0168	268	320	367	440	329	ND
31.25 mg/kg	12-0170	266	322	375	480	334	342
0.0	12-0201 ^c					328	335
	12-0221	293	344	389	453	305	343
	12-0240	243	279	323	385	314	ND
	12-0299 ^a						
	12-0300	256	288	318	387	292	319
	12-0346	224	257	296	363	265	296
	12-0367	254	294	330	397	292	283
	12-0369	262	303	341	421	297	311
	Mean	258.3	300.9	342.4	415.8	306.2	318.4
	SD	20.02	27.50	31.89	39.71	22.40	23.27
	12-0169	255	309	354	427	266	315
125 mg/kg	12-0210	262	313	352	407	363	364
	12-0212	250	297	341	412	323	325
	12-0227	272	322	368	435	335	335
	12-0257	232	280	319	393	284	311
	12-0259	250	302	340	405	273	243
	12-0261	245	295	346	421	303	336
	12-0278	272	333	388	493	379	370
	12-0291	252	285	334	400	273	294
	12-0327	263	303	340	408	319	313
	Mean	255.3	303.9	348.2	420.1	311.8	320.6
	SD	11.74	15.31	18.08	27.08	37.16	34.20
	12-0166	263	304	299	383	316	321
500 mg/kg	12-0167	270	310	345	417	320	343
	12-0171 ^a						
	12-0198	264	315	353	439	326	351
	12-0229 ^a						
	12-0258	230	287	336	399	277	312
	12-0279	248	287	338	372	264	274
	12-0308°	1210213		100000	0.0700.000	336	352
	12-0336	192	236	282	350	255	ND
	12-0348	236	277	329	419	322	320
	Mean	243.3	288.0	326.0	397.0	302.0	324.7
	SD	27.12	26.76	25.85	30.77	31.46	27.51

a= Sperm plug was found but female was not pregnant.

b= No sperm plug found and was not pregnant.

c= No sperm plug found but female was pregnant.

ND = No data

Table E-4 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Body Mass (grams) Recovery Male Rats

	1		D	osing Perio	bd	1		Rec	overy Peri	od	
Group	Animal ID	Day 0	Day 7	Day 14	Day 21	Day 28	Day 35	Day 42	Day 49	Day 55*	Day 56**
	12-0174	329	386	446	499	546	579	600	620	635	618
Corn Oil	12-0179	343	418	472	530	582	610	623	655	673	653
Control	12-0194	385	439	482	536	595	627	640	670	685	663
	12-0208	319	381	434	474	525	546	572	593	610	595
	12-0272	355	414	465	508	552	567	584	613	635	617
	12-0294	339	393	452	487	529	550	575	603	611	588
	12-0304	367	423	474	512	555	571	602	625	642	625
	12-0323	304	361	410	454	493	526	556	585	592	572
	12-0332	288	329	366	396	431	446	462	482	500	482
	12-0365	347	400	450	480	502	528	559	567	580	558
	Mean	337.6	394.4	445.1	487.6	531.0	555.0	577.3	601.3	616.3	597.1
	SD	28.95	32.36	34.96	40.89	47.45	50.27	48.66	52.07	52.49	52.25
	12-0176	371	426	477	517	562	588	602	621	632	611
500 mg/kg	12-0186	357	428	476	518	556	568	595	616	621	599
	12-0215	349	407	461	513	552	570	581	619	636	614
	12-0244	310	359	405	439	469	493	502	518	524	510
	12-0283	290	333	371	402	439	460	486	509	523	510
	12-0295	335	393	443	484	513	536	572	600	619	602
	12-0302	379	426	482	525	564	603	636	666	684	664
	12-0310	357	400	450	484	528	566	598	617	644	621
	12-0333	298	342	380	422	462	473	505	529	554	528
	12-0363	334	393	430	465	501	527	548	561	582	561
	Mean SD	338.0 30.42	390.7 34.88	437.5 40.28	476.9 43.74	514.6 45.62	538.4 49.32	562.5 50.27	585.6 52.91	601.9 53.98	582.0 52.20

* Pre-fasted final body weights. ** Fasted final body weights

(f) = Animal died on study.

Table E-5 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Body Mass (grams) Male Rats

		Corn Oil	NTO in Corn Oil				
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg		
					2000 20		
Day 0	Mean	339.6	336.6	338.2	344.9		
	S.D.	22.98	22.30	18.44	24.69		
	N	10	10	10	10		
Day 7	Mean	397.7	392.2	388.9	394.3		
	S.D.	25.55	30.94	20.55	29.60		
	N	10	10	10	10		
Day 14	Mean	450.7	440.1	430.9	435.0		
	S.D.	29.99	36.55	21.03	35 39		
0.5	N	10	10	10	10		
Dav 21	Mean	483.9	462.1	459.7	462 4		
100	S.D.	31.26	37.24	23.70	46.47		
	N	10	9	10	10		
Dav 27*	Mean	519.8	494 8	491 9	498 5		
	S.D.	31.02	46 45	27 40	53 13		
	N	10	9	10	10		
Day 28**	Mean	502.3	477 7	473 9	478.6		
	SD	33.01	43 54	26.60	52 37		
	N	10	9	10	10		

* Pre-fasted final body weights.

** Fasted final body weights

Table E-6Protocol No. 0FP4-93-12-03-03Repeated-Dose and Reproductive/DevelopmentalToxicity of NTO in the Rat

Summary of Pre-Pregnancy Body Mass (grams) Female Rats

		Corn Oil	NTO in Corn Oil				
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg		
Day 0	Mean	214.1	216.7	216.8	214.4		
a an	S.D.	15.34	12.03	9.5	14.98		
	N	10	10	10	10		
Day 7	Mean	227.2	235.7	230.8	224.6		
0440700000000 000	S.D.	15.59	13	13.23	16.68		
	N	10	10	10	10		
Day 14	Mean	244.7	254.9	243.9	237.5		
.	S.D.	15.30	14.33	14.57	19.91		
	N	10	10	10	10		
	1						

Table E-7 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Gestational and Postpartum Body Mass (grams) Female Rats

		Corn Oil	I NTO in Corn Oil		
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg
Gestational Days					
Day 0	Mean	248.8	258.3	255.3	243.3
	S.D.	15.04	20.02	11.74	27.12
	N	8	8	10	7
Day 7	Mean	293.5	300.9	303.9	288.0
	S.D.	14.73	27.50	15.31	26.76
	N	8	8	10	7
Day 14	Mean	337.9	342.4	348.2	326.0
	S.D.	17.10	31.89	18.08	25.85
	N	8	8	10	7
Day 20	Mean	412.0	415.8	420.1	397.0
	S.D.	17.20	39.71	27.08	30.77
	N	8	8	10	7
Postpartum Days					
Day 0	Mean	300.3	306.2	311.8	302.0
	S.D.	36.98	22.40	37.16	31.46
	N	8	9	10	8
Day 4	Mean	312.0	318.4	320.6	324.7
	S.D.	34.33	23.27	34.20	27.51
	N	7	7	10	7

Table E-8 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Body Mass (grams) Recovery Male Rats

	1	Corn Oil	NTO in Corn Oil
Period		Control	500 mg/kg
Day 0	Mean	337.6	338.0
	S.D.	28.95	30.42
	N	10	10
Day 7	Mean	394.4	390.7
	S.D.	32 36	34 88
	N	10	10
D44			107.5
Day 14	Mean	445.1	437.5
	S.D.	34.96	40.28
	N	10	10
Day 21	Mean	487.6	476.9
	S.D.	40.89	43.74
	N	10	10
Day 28	Mean	531.0	514.6
Duj 10	SD	47 45	45 62
	N	10	10
Day 25		555.0	500.4
Day 35	Mean	555.0	538.4
	S.D.	50.27	49.32
	N	10	10
Day 42	Mean	577.3	562.5
	S.D.	48.66	50.27
	N	10	10
Day 49	Mean	601.3	585.6
,	SD	52 07	52 91
	N	10	10
Day 55*	Mean	616.3	601.9
	S.D.	52.49	53.98
	N	10	10
Day 56**	Mean	597 1	582.0
	S.D.	52.25	52 20
	N	10	10
			· •

* = Unfasted final body weight.

* = Fasted final body weight.

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix F

Individual and Summary of Body Mass Gain Data

Table F-1 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Body Mass Gains (grams) Male Rats

Group	Animal ID	Days 0-7	Days 7-14	Days 14-21	Days 21-27
Control	10 0162	60	E1	20	24
Control	12-0103	60	01	20	31
	12-0205	52	43	29	38
	12-0206	59	52	38	39
	12-0207	59	53	38	42
	12-0235	68	61	37	37
	12-0254	54	48	36	31
	12-0263	58	50	35	41
	12-0267	63	54	43	37
	12-0284	55	62	30	30
	12-0313	53	56	26	33
	Mean	58.1	53.0	33.2	35.9
	S.D.	4.91	5.72	6.84	4.36
31.25 ma/ka	12-0164	55	49	26	21
e nightg	12-0165	54	47	37	39
	12-0225	63	52	25	33
	12-0234	47	35	30	28
	12-0243	49	43	6	31
	12-0245	46	53	32	32
	12-0255	40	39	29	17
	12-0262	68	56	40	49
	12-0324	68	50	26	44
	12-0351	66	55	(f)	(f)
	Mean	55.6	47.9	27.9	32.7
	S.D.	10.15	6.95	9.66	10.26
125 ma/ka	12-0187	56	47	38	40
	12-0204	41	41	40	39
	12-0223	58	51	30	40
	12-0224	56	24	34	43
	12-0253	49	42	28	27
	12-0275	44	43	28	25
	12-0293	58	46	27	17
	12-0296	47	40	20	30
	12-0345	49	43	18	31
	12-0354	49	43	25	30
	Mean	50.7	42.0	28.8	32.2
	S.D.	6.00	7.10	7.08	8.20
500 mg/kg	12-0177	68	62	42	41
	12-0189	40	47	24	44
	12-0203	52	50	27	38
	12-0209	54	62	34	43
	12-0236	63	36	45	42
	12-0256	42	16	17	35
	12-0297	66	25	38	38
	12-0314	38	36	15	34
	12-0322	39	41	-3	17
	12-0341	32	32	35	29
	Mean	49.4	40.7	27.4	36.1
	S.D.	12.99	14.94	14.66	8.14

(f) = Animal died on study.

Table F-2 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Pre-Pregnancy Individual Body Mass Gains (grams) Female Rats

Group	Animal ID	Days 0-7	Days 7-14	
	12-0211	21	19	
Corn Oil	12-0220	20	20	
Control	12-0222	6	29	
Control	12-0260	-3	18	
	12-0289	21	18	
	12-0205	15	16	
	12-0206	18	15	
	12-0309	5	13	
	12-0303	15	11	
	12-0339	13	16	
	Mean	13.1	17.5	
	SD	8.02	4.88	
	30	0.02	4.00	
	12-0168	24	14	
31.25 mg/kg	12-0170	24	23	
	12-0201	10	34	
	12-0221	15	18	
	12-0240	25	12	
	12-0299	25	17	
	12-0300	8	22	
	12-0346	10	19	
	12-0367	26	19	
	12-0369	23	14	
	Mean	19.0	19.2	
	SD	7.35	6.27	
	12-0169	18	13	
125 mg/kg	12-0210	16	7	
	12-0212	16	16	
	12-0227	22	21	
	12-0257	-2	13	
	12-0259	17	17	
	12-0261	3	13	
	12-0278	8	12	
	12-0291	24	-1	
	12-0327	18	20	
	Mean	14.0	13.1	
	SD	7.91	6.09	
	12-0166	17	17	
500 mg/kg	12-0167	19	6	
	12-0171	2	17	
	12-0198	26	23	
	12-0229	5	18	
	12-0258	-2	14	
	12-0279	-1	19	
	12-0308	20	6	
	12-0336	13	-3	
	12-0348	3	12	
	Mean	10.2	12.9	
	SD	9.99	7.81	

Table F-3 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Gestational and Postpartum Individual Body Mass Gains (grams) Female Rats

		l.	Ge	Postpartum Days		
Group	Animal ID	Days 0-7	Days 7-14	Days 14-20	Days 20 - PP Day 0	Days 0-4
	12-0211	41	42	62	-45	-9
Corn Oil	12-0220	45	48	77	-129	20
Control	12-0222	44	45	79	-89	6
	12-0260	47	55	71	-140	ND
	12-0289	59	40	80	-120	14
	12-02988					
	12-0200	40	43	74	-116	-13
	12-0300	44	43	75	-118	18
	12-0003		45	75	-110	10
	12-0317	38	30	75	-137	21
	12-0335	44.9	39	7.1	-137	21
	SD	44.0 6 46	£ 12	5.67	-111.0	0.1
	30	0.40	0.13	5.67	31.24	14.04
	12-0168	52	47	73	-111	ND
31.25 mg/kg	12-0170	56	53	105	-146	8
	12-0201°					7
	12-0221	51	45	64	-148	38
	12-0240	36	44	62	-71	ND
	12-0299 ^a					
	12-0300	32	30	69	-95	27
	12-0346	33	39	67	-98	31
	12-0367	40	36	67	-105	-9
	12-0369	41	38	80	-124	14
	Mean	37.9	36.9	65.2	-99.8	14.5
	SD	16.62	15.38	27.72	44.74	16.22
	12-0169	54	45	73	-161	40
125 ma/ka	12-0210	51	39	55	-44	1
izo mging	12-0212	47	44	71	-80	2
	12-0212	50	46	67	-100	2
	12-0257	48	39	74	-100	27
	12-0259	52	38	65	-132	-30
	12-0261	50	51	75	-118	33
	12-0201	61	55	105	-114	0
	12-0291	33	49	66	-197	-5
	12-0327	40	37	68	-89	-6
	Mean	48.6	44.3	71.9	-108.3	8.8
	SD	7.63	6.09	12.99	31.21	23.35
	12-0166	41	-5	84	-67	5
500 ma/ka	12-0167	40	35	72	-97	23
	12-0171ª					20
	12-0108	51	38	96	112	25
	12 00008	51	50	00	-115	20
	12-0229	67	40	00	400	05
	12-0258	57	49	63	-122	35
	12-0279	39	51	34	-108	10
	12-0308				11123-22	16
	12-0336	44	46	68	-95	ND
	12-0348	41	52	90	-97	-2
	Mean	44.7	38.0	71.0	-99.9	16.0
	SD	6.75	20.03	19.14	17.55	12.73

a= Sperm plug was found but female was not pregnant.

b= No sperm plug found and was not pregnant.

c= No sperm plug found but female was pregnant.

ND = No data

Table F-4 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

	Dosing Period						Recovery Period			
Group	Animal ID	Days 0-7	Days 7-14	Days 14-21	Days 21-28	Days 28-35	Days 35-42	Days 42-49	Days 49-55	
				1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 -	1770/100 100 100	Anna ann	20191 0 08-078 - 2008	1999-199 8 -1999 - 1999 - 1999 -		
	12-0174	57	60	53	47	33	21	20	15	
Corn Oil	12-0179	75	54	58	52	28	13	32	18	
Control	12-0194	54	43	54	59	32	13	30	15	
	12-0208	62	53	40	51	21	26	21	17	
	12-0272	59	51	43	44	15	17	29	22	
	12-0294	54	59	35	42	21	25	28	8	
	12-0304	56	51	38	43	16	31	23	17	
	12-0323	57	49	44	39	33	30	29	7	
	12-0332	41	37	30	35	15	16	20	18	
	12-0365	53	50	30	22	26	31	8	13	
	Mean	56.8	50.7	42.5	43.4	24.0	22.3	24.0	15.0	
	SD	8.46	6.85	9.89	10.21	7.38	7.26	7.18	4.62	
	12-0176	55	51	40	45	26	14	19	11	
500 mg/kg	12-0186	71	48	42	38	12	27	21	5	
	12-0215	58	54	52	39	18	11	38	17	
	12-0244	49	46	34	30	24	9	16	6	
	12-0283	43	38	31	37	21	26	23	14	
	12-0295	58	50	41	29	23	36	28	19	
	12-0302	47	56	43	39	39	33	30	18	
	12-0310	43	50	34	44	38	32	19	27	
	12-0333	44	38	42	40	11	32	24	25	
	12-0363	59	37	35	36	26	21	13	21	
	Mean	52.7	46.8	39.4	37.7	23.8	24.1	23.1	16.3	
	SD	9.10	6.89	6.11	5.17	9.35	9.83	7.34	7.38	

Individual Body Mass Gains (grams) Recovery Male Rats

Table F-5 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Body Mass Gains (grams) Male Rats

		Corn Oil	NTO in Corn Oil				
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg		
Davis 0.7		50.4	55.0	50.7	10.4		
Days 0-7	wean	58.1	0.00	50.7	49.4		
	S.D.	4.91	10.15	5.69	12.99		
	N	10	10	10	10		
Days 7-14	Mean	53.0	47.9	42.0	40.7		
170	S.D.	5.72	6.95	6.74	14.94		
	N	10	10	10	10		
Days 14-21	Mean	33.2	27.9	28.8	27.4		
12	S.D.	6.84	9.66	6.72	14.66		
	N	10	9	10	10		
Days 21-27	Mean	35.9	32.7	32.2	36.1		
•	S.D.	4.36	10.26	7.78	8.14		
	N	10	9	10	10		
	1						

Table F-6 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Body Mass Gains (grams) Female Rats

	I	Corn Oil	NTO in Corn Oil				
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg		
Days 0-7	Mean	13.1	19.0	14.0	10.2ª		
•	S.D.	8.02	7.35	7.91	9.99		
	N	10	10	10	10		
Days 7-14	Mean	17.5	19.2	13.1	12.9 ^a		
	S.D.	4.88	6.27	6.09	7.81		
	N	10	10	10	10		

^a = Significantly reduced compared to 31.25 mg/kg-day group (p=0.006).

Table F-7 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Gestational and Postpartum Body Mass Gains (grams) Female Rats

	1	Corn Oil	il NTO in Corn Oil			
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg	
Gestational Days						
Days 0-7	Mean	44.8	37.9	48.6	44.7	
	S.D.	6.45	16.62	7.63	6.75	
	N	8	8	10	7	
Days 7-14	Mean	44.4	36.9	44.3	38.0	
	S.D.	5.13	15.38	6.09	20.03	
	N	8	8	10	7	
Days 14-20	Mean	74.1	65.2	71.9	71.0	
	S.D.	5.67	27.72	12.99	19.14	
	N	8	8	10	7	
Day 20 - PP Day 0	Mean	-111.8	-99.8	-108.3	-99.9	
	S.D.	31.24	44.74	31.21	17.55	
	N	8	8	10	7	
Postpartum Days						
Days 0-4	Mean	8.1	14.5	8.8	16.0	
	S.D.	14.04	16.22	23.35	12.73	
	N	7	7	10	7	

Table F-8 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Body Mass Gains (grams) Recovery Male Rats

		Corn Oil	NTO in Corn Oil
Period		Control	500 mg/kg
Dosing Period			
Days 0-7	Mean	56.8	52.7
	S.D.	8.46	9.10
	N	10	10
Days 7-14	Mean	50.7	46.8
	S.D.	6.85	6.89
	N	10	10
Days 14-21	Mean	42.5	39.4
	S.D.	9.89	6.11
	N	10	10
Days 21-28	Mean	43.4	37.7
	S.D. ´	10.21	5.17
	N	10	10
Recovery Period			
Days 28-35	Mean	24.0	23.8
	S.D.	7.38	9.35
	N	10	10
Days 35-42	Mean	22.3	24.1
	S.D.	7.26	9.83
	N	10	10
Days 42-49	Mean	24.0	23.1
	S.D.	7.18	7.34
	N	10	10
Days 49-55	Mean	15.0	16.3
	S.D.	4.62	7.38
	N	10	10

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix G

Individual and Summary of Food Consumption

Table G-1 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Food Consumption (grams) Male Rats

Group	Animal ID	Days 0-7	Days 7-14	Days 14-21	Days 21-27
				-	
	12-0163	217.5	209.1	Р	153.5
Corn Oil	12-0205	184.8	184.8	Р	154.0
Control	12-0206	190.0	187.9	Р	160.4
	12-0207	294.6	382.4*	Р	346.5*
	12-0235	245.4	242.1	Р	211.2
	12-0254	220.7	212.2	P	174.4
	12-0263	200.1	204.5	Р	176.6
	12-0267	217.4	220.7	P	P
	12-0284	220.0	231.3	P	167.7
	12-0313	212.4	225.6	Р	160.5
	Mean	220.29	213.13		169.79
	SD	31.297	19.082		18.807
	12-0164	194.3	187 1	P	140 5
31.25 ma/ka	12-0165	201.2	191.0	P	172 1
	12-0225	210.9	207.2	P	176.6
	12-0234	186.0	169.9	P	P
	12-0243	202.6	205.0	P	160.0
	12-0245	198.9	207.4	P	171.9
	12-0255	191.3	195.1	Р	Р
	12-0262	226.9	226.1	Р	186.2
	12-0324	262.4	246.4	Р	185.4
	12-0351	224.0	221.9	Р	(f)
	Mean	209.85	205.71		170.39
	SD	22.744	21.850		15.918
	12-0187	212 3	203 1	P	171.0
125 ma/ka	12-0204		167.8		162.0
120 mg/kg	12-0204	226.8	226.7	P	197.0
	12-0223	220.0	208.0	P	184.1
	12-0253	183.8	182.2	P	151.6
	12-0275	204 5	200.4	P	150.0
	12-0203	204.0	202.4	P	145.1
	12-0296	190.0	179 7	P	147.8
	12-0345	211 7	198.4	P	157 3
	12-0354	198.0	194.7	P	167.9
	Mean	205.91	196.39	•	163.37
	SD	13.247	15.688		13.721
	12-0177	247.3	250.6	Р	P
500 ma/ka	12-0189	208.9	213.2	P	173 9
	12-0203	200.2	199.3	P	174.2
	12-0209	214.6	226.9	P	P
	12-0236	236.9	203.7	P	191.4
	12-0256	192.9	150.4	P	160.2
	12-0297	244.8	200.0	P	177.4
	12-0314	199.4	210.4	P	161.6
	12-0322	165.7	179.5	P	112.7
	12-0341	210.8	188.6	P	164.7
	Mean	212.15	202.26		164.51
	SD	25.311	26.956		23.246

* Animal crumbling food on cage floor.

Suspect food consumption

(f) = Animal died on study. P = Animal pair-housed. No food consumption

Table G-2 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Pre-Pregnancy Individual Food Consumption (grams) Female Rats

Group	Animal ID	Days 0-7	Days 7-14	Net
	12-0211	134.8	131 0	266.7
Corn Oil	12-0211	130.7	130.8	261.5
Control	12-0220	118.0	134.6	201.5
Control	12-0222	114.7	104.0	232.0
	12-0200	114.7	123.7	230.4
	12-0209	133.7	107.7	2/1.4
	12-0290	132.0	123.3	200.9
	12-0300	122.4	110.9	241.3
	12-0309	113.0	113.0	220.8
	12-0317	145.0	142.7	287.7
÷	12-0339	125.5	121.0	247.1
	Mean	127.12	127.82	254.94
	50	10.025	9.224	17.779
	12-0168	149.8	138.4	288.2
31.25 mg/kg	12-0170	141.3	139.3	280.6
	12-0201	132.7	141.4	274.1
	12-0221	127.0	128.9	255.9
	12-0240	123.8	118.3	242.1
	12-0299	140.7	138.8	279.5
	12-0300	128.0	126.0	254
	12-0346	116.5	120.7	237.2
	12-0367	137.6	134.7	272.3
	12-0369	127.0	124.1	251.1
	Mean	132.44	131.06	263.50
	SD	9.902	8.503	17.637
	12 0100	404.0	444.0	000 5
	12-0109	121.5	111.2	232.5
125 mg/kg	12-0210	135.0	122.3	257.3
	12-0212	121.1	118.4	239.5
	12-0227	139.0	139.8	2/9.6
	12-0257	103.8	111.7	215.5
	12-0259	119.7	122.5	242.2
	12-0201	120.3	121.9	248.2
	12-0276	120.2	130.1	256.3
	12-0291	122.1	120.2	242.3
	Mean	124 71	124.20	2/0.0
	SD	10.107	9.923	19.427
	12-0166	118.4	122.2	240.6
500 mg/kg	12-0167	119.7	114.1	233.8
	12-0171	130.2	106.3	236.5
	12-0198	134.2	130.0	264.2
	12-0229	109.1	119.5	228.6
	12-0258	113.5	124.6	238.1
	12-0279	109.2	128.1	237.3
	12-0308	131.3	118.5	249.8
	12-0336	110.1	85.3	195.4
	12-0348	123.5	95.9	219.4
	Mean	119.92	114.45	234.37
	30	9.000	14.505	10.100

Table G-3 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Gestational and Postpartum Individual Food Consumption (grams) Female Rats

			Gesta		Postpartum Days	
Group	Animal ID	Days 0-7	Days 7-14	Days 14-20	Days 20-PP 0	Days 0-4
	12-0211	156.4	180.1	167.1	57.4	105.4
Corn Oil	12-0220	153.5	182.9	160.4	8.1	107.2
Control	12-0222	153	175.8	163.9	32.6	134.8
	12-0260	168.7	199.7	168.8	58.6	ND
	12-0289	178.3	192.4	159	22	124.2
	12-0298"					
	12-0306	147.3	162	138.9	11.7	65.4
	12-0309	147.6	176.6	144.7	8.5	94.9
	12-0317 ^D					
	12-0339	137.1	154.8	145.3	4.6	30.3
	Mean	155.24	178.04	156.01	25.44	94.60
	SD	12.944	14.676	11.417	22.022	35.951
	10 0100	1010	000 4	170 5		
24 05 mm//m	12-0168	184.6	203.1	173.5	33.8	ND
31.25 mg/kg	12-0170	172.6	197.9	183	24.7	130.4
	12-0201	100				119.8
	12-0221	165.5	187.7	145.4	11.2	89.9
	12-0240	138.9	155.7	136.4	31.8	ND
	12-0299"	1212-021-02	1912 2012	22200	10000000	
	12-0300	143.7	158.6	153.1	31.6	111.1
	12-0346	140.2	155.8	146.1	23.9	117.6
	12-0367	155	163.3	149.5	6.7	75.5
	12-0369	102.0	165.1	139	8.7	105.3
	SD	100.04	10 620	103.20	21.00	107.09
	30	10.432	19.039	16.514	11.112	18.833
	12-0169	160.8	174	152.6	10.6	55.2
125 mg/kg	12-0210	170.1	200	185.2	ND	106.3
	12-0212	157.5	178.8	165	61	78.3
	12-0227	194	214.2	157.7	26.4	110
	12-0257	149.2	162.8	166.7	16.5	134.2
	12-0259	171.9	181.5	150	5.2	5.1
	12-0261	169.9	188.1	171	40.1	150.7
	12-0278	189.6	215	205	19.5	103
	12-0291	138.1	163.2	162.3	82	148.5
	12-0327	155.5	174.2	153.9	30	77.8
	Mean	165.66	185.18	166.94	32.37	96.91
	SD	17.246	18.983	16.904	25.034	44.873
	10.0166	140 7	100.0	100 7	54.0	101.0
500 ma/ka	12-0160	149.7	122.3	130.7	51.3	101.9
500 mg/kg	12-0107	141.2	140.0	143	52.2	03.0
	12-0171	167.0	407.0	100	00.4	440 5
	12-0190	107.2	107.0	160	30.1	143.5
	12-0229	170 7	100.4	450		00.0
	12-0258	1/9./	199.1	159	11.1	62.6
	12-02/9	100.0	191.3	96.2	23.1	87.4
	12-0308	400.0	450.0	440.0	00.5	134.6
	12-0336	149 4	158.8	140.8	20.3	ND 100.0
	12-0348	148.4	1/3	165	31.3	106.8
	Mean	153.57	168.70	142.96	31.34	102.94
	30	10.904	21.304	23.323	15.462	28.573

a= Sperm plug was found but female was not pregnant.

b= No sperm plug found and was not pregnant.

c= No sperm plug found but dam was pregnant.

ND= No data

Table G-4 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Food Consumption (grams) Recovery Male Rats

			Dosir	ng Period		Recovery Period				
Group	Animal ID	Days 0-7	Days 7-14	Days 14-21	Days 21-28	Days 28-35	Days 35-42	Days 42-49	Days 49-55	Net
	12-0174	196.9	208.2	213.1	217.8	242.1	240.2	234.5	202.2	1755.0
Corn Oil	12-0179	238.3	236.0	247.8	243.2	271.4	237.7	245.5	202.0	1921.9
Control	12-0194	213.1	208.0	222.3	222.3	256.4	242.6	238.8	199.7	1803.2
	12-0208	205.2	201.7	189.5	200.3	214.0	218.5	220.4	184.1	1633.7
	12-0272	229.8	222.3	221.7	217.4	225.1	224.3	247.1	199.9	1787.6
	12-0294	218.6	222.5	206.5	212.3	224.7	214.9	222.4	180.6	1702.5
	12-0304	212.7	195.1	196.9	197.8	207.4	218.3	218.8	187.2	1634.2
	12-0323	214.2	207.8	210.2	203.8	237.9	246.8	246.4	192.1	1759.2
	12-0332	186.2	183.6	184.0	193.3	206.6	210.1	217.8	179.4	1561.0
	12-0365	229.1	217.0	205.8	193.7	215.1	225.2	220.7	184.8	1691.4
	Mean	214.41	210.22	209.78	210.19	230.07	227.86	231.24	191.20	1724.97
	SD	15.751	15.026	18.330	15.635	21.623	12.941	12.448	9.100	103.271
	12-0176	232.9	222.3	219.7	214.8	231.1	225.3	228.1	183.1	1757.3
500 mg/kg	12-0186	225.3	211.2	200.0	191.5	211.6	212.1	209.2	171.2	1632.1
	12-0215	216.8	219.4	215.4	216.5	226.4	218.2	239.1	191.5	1743.3
	12-0244	199.6	198.1	199.5	192.6	206.6	197.2	199.3	159.3	1552.2
	12-0283	180.5	173.7	172.8	164.5	191.7	194.7	202.3	168.2	1448.4
	12-0295	205.0	201.6	206.3	178.1	202.8	222.5	225.2	193.3	1634.8
	12-0302	223.2	215.8	214.8	208.6	241.4	253.4	264.4	208.4	1830.0
	12-0310	208.4	201.7	185.4	196.6	226.0	226.9	243.0	202.9	1690.9
	12-0333	191.7	183.3	194.7	196.0	215.9	216.4	225.3	195.6	1618.9
	12-0363	228.4	209.5	211.9	202.9	224.3	223.0	218.3	192.2	1710.5
	Mean SD	211.18 17.141	203.66 15.580	202.05 14.776	196.21 16.071	217.78 14.874	218.97 16.447	225.42 19.870	186.57 15.830	1661.84 109.684

Table G-5 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Food Consumption (grams) Male Rats

		Corn Oil	NTO in Corn Oil				
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg		
				-			
Days 0-7	Mean	220.29	209.85	205.91	212.15		
	S.D.	31.297	22.744	13.247	25.311		
	N	10	10	9	10		
Days 7-14	Mean	213.13	205.71	196.39	202.26		
	S.D.	19.082	21.850	15.688	26.956		
	N	9	10	10	10		
Days 14-21	Mean S.D.	∷ ★	*	*	*		
	N	0	0	0	0		
Days 21-27	Mean	169.79	170.39	163.37	164.51		
050	S.D.	18.807	15.918	13.721	23.246		
	N	8	7	10	8		

* = All animals were pair-housed for mating during this period.

Table G-6 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Food Consumption (grams) Female Rats - Pre-Pregnancy

		Corn Oil	NTO in Corn Oil			
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg	
Days 0-7	Mean	127.12	132.44	124.71	119.92	
20	S.D.	10.025	9.902	10.107	9.568	
	Ν	10	10	10	10	
Days 7-14	Mean	127.82	131.06	124.29	114.45	
	S.D.	9.224	8.503	9.923	14.505	
	N	10	10	10	10	
Net	Mean	254.94	263.50	249.00	234.37 ^a	
	S.D.	17.779	17.637	19.427	18.166	
	N	10	10	10	10	
	1					

^a = Significantly reduced compared to 31.25 mg/kg-day group (p=0.006).

Table G-7 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Gestational and Postpartum Food Consumption (grams) Female Rats

	I	Corn Oil	NTO in Corn Oil			
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg	
Gestational Days	εī.					
Days 0-7	Mean	155.24	158.04	165.66	153.57	
	S.D.	12.944	16.432	17.246	15.964	
	N	8	8	10	7	
Days 7-14	Mean	178.04	173.40	185.18	168.70	
	S.D.	14.676	19.639	18.983	27.304	
	N	8	8	10	7	
Days 14-20	Mean	156.01	153.25	166.94	142.96	
	S.D.	11.417	16.514	16.904	23.323	
	N	8	8	10	7	
Days 20- PP 0	Mean	25.44	21.55	32.37	31.34	
	S.D.	22.022	11.112	25.034	15.462	
	N	8	8	10	7	
Postpartum Days						
Days 0-4	Mean	94.60	107.09	96.91	102.94	
	S.D.	35.951	18.833	44.873	28.573	
	N	7	7	10	7	

Table G-8 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Food Consumption (grams) Recovery Male Rats

		Corn Oil	NTO in Corn Oil
Period		Control	500 mg/kg
Dave 0-7	Mean	214 41	211 18
Days 0-1	SD	15 751	17 141
	N	10	10
Davs 7-14	Mean	201.22	203.66
	S.D.	15.026	15.580
	N	10	10
Days 14-21	Mean	209.78	202.05
•	S.D.	18.330	14.776
	N	10	10
Days 21-28	Mean	210.19	196.21
8	S.D.	15.635	16.071
	N	10	10
Days 28-35	Mean	230.07	217.78
	S.D.	21.623	14.874
	N	10	10
Days 35-42	Mean	227.86	218.97
	S.D.	12.941	16.447
	N	10	10
Days 42-49	Mean	231.24	225.42
	S.D.	12.448	19.870
	N	10	10
Days 49-55	Mean	191.20	186.57
	S.D.	9.100	15.830
	N	10	10
Net	Mean	1724.97	1661.84
	S.D.	103.271	109.684
	N	10	10

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix H

Individual and Summary of Organ Mass Data

Table H-1 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Organ Mass Male Rats

ABSOLUTE ORGAN MASS (grams)

Group	Animal ID	Body Weight*	Adrenals	Brain	Heart	Kidneys	Epididymides	Liver	Spleen	Testes	Thymus
								10.010		0.000	0.400
121 121	12-0163	486	0.068	2.157	1.809	3.532	1.143	19.240	0.866	3.682	0.463
Corn Oil	12-0205	464	0.098	2.112	1.768	3.166	1.311	16.425	0.770	3.489	0.707
Control	12-0206	473	0.091	2.188	1.775	3.240	1.267	17.650	0.795	3.449	0.619
	12-0207	483	0.088	2.036	1.851	3.271	1.256	17.244	0.934	3.933	0.701
	12-0235	572	0.094	2.162	1.902	3.781	1.420	20.204	0.852	3.656	0.759
	12-0254	483	0.077	2.145	1.719	3.161	0.911	15.267	1.011	2.541	0.654
	12-0263	507	0.079	2.143	2.018	3.332	1.263	17.842	0.958	3.794	0.682
	12-0267	540	0.068	2.001	2.274	3.372	1.436	18.032	0.941	3.631	0.638
	12-0284	515	0.118	1.954	1.928	3.712	1.162	18.451	1.378	3.841	0.600
2	12-0313	500	0.079	2.364	1.886	3.172	1.600	16.787	0.839	3.519	0.634
	Mean	502.3	0.0860	2.1262	1.8930	3.3739	1.2769	17.7142	0.9344	3.5535	0.6457
	SD	33.01	0.01523	0.11397	0.16013	0.22721	0.18770	1.41119	0.17329	0.38858	0.07987
	12-0164	452	0.074	2.096	1.656	3,699	1,167	18,725	0.846	3.911	0.522
31.25 ma/ka	12-0165	488	0.077	2,107	1.753	3.420	1.274	19,904	0.770	3,808	0.604
•	12-0225	493	0.071	2 297	1 685	3 427	1 253	18 955	0.879	3 867	0.643
	12-0234	440	0.060	2 043	1 416	2 694	1 178	14 380	0.685	3 387	0.660
	12-0243	441	0.081	2 163	1 622	3 064	1 198	15 059	0.791	3 615	0.592
	12-0245	477	0.094	2 111	1 690	3 518	1 207	17 450	0.814	3 502	0.655
	12-0255	425	0 106	2 209	1 731	2 932	1 176	12 456	0.929	3 362	0.522
	12-0262	557	0.079	2 151	2 126	3 906	1 436	19 949	0.966	3 785	0.845
	12-0324	526	0 109	2 218	1 821	3 582	1 147	18 247	0.000	3 432	0.794
	12-0351	(f)	(f)	(f)	(f)	(f)	(f)	(f)	(f)	(f)	(f)
	Mean	477.7	0.0834	2,155	1.7222	3.3602	1.2262	17,2361	0.8532	3.6299	0 6486
	SD	43.54	0.01633	0.07697	0.18856	0.38887	0.08860	2.65667	0.10066	0.21723	0.11021
	1000	0000.0000		1990,000,000	97.2.575.745.74						
	12-0187	517	0.079	2.115	1.937	3.285	1.213	17.612	0.903	3.734	0.677
125 mg/kg	12-0204	478	0.082	2.134	1.855	2.949	1.426	17.883	0.995	3.932	0.722
	12-0223	500	0.071	2.213	1.974	3.440	1.300	18.239	0.833	3.667	0.582
	12-0224	488	0.079	2.241	1.580	3.501	1.263	16.797	0.862	3.707	0.654
	12-0253	426	0.091	2.172	1.708	2.936	1.204	14.057	0.879	3.913	0.605
	12-0275	472	0.085	2.268	1.738	3.226	1.386	16.890	0.777	3.840	0.537
	12-0293	473	0.073	2.191	1.748	3.006	1.426	16.286	0.902	3.519	0.506
	12-0296	447	0.082	2.189	1.663	3.043	1.280	14.915	0.792	4.128	0.509
	12-0345	444	0.095	2.221	1.707	3.065	1.394	16.014	0.838	3.798	0.542
	12-0354	494	0.111	2.279	1.829	3.169	1.274	15.964	0.853	3.385	0.609
	Mean	473.9	0.0848	2.2023	1.7739	3.1620	1.3166	16.4657	0.8634	3.7623	0.5943
	SD	28.04	0.01175	0.05341	0.12335	0.19884	0.08463	1.31029	0.06224	0.21267	0.07325
	12-0177	553	0.091	2.217	1.813	3,263	0.769	18,511	1,169	1,718	0.977
500 ma/ka	12-0189	505	0.063	2.050	1.567	3 629	0.591	17 764	0.895	1 546	0.613
	12-0203	465	0.082	2 147	1 647	3 023	0 702	14 872	0.875	1 442	0.631
	12-0209	513	0.080	2 162	1 961	3 706	0.812	18 999	0.882	1 699	0.543
	12-0236	508	0 104	2 038	1.862	2 920	0.848	18 484	0.882	1 146	0.841
	12-0256	411	0.082	2 114	1 545	2 850	0.812	13 845	0.757	1 425	0.458
	12-0297	515	0.117	2.120	1 781	4 064	1 063	18 519	1 258	1 621	0.631
	12-0314	486	0 120	2 135	1 729	3 472	1.061	ND	0.939	1 393	0.510
	12-0322	382	0.089	2 082	1.585	2 598	0.818	12 167	0.708	1 445	0.571
	12-0341	448	0.084	2.107	1.792	3.255	0.817	16,203	0.883	1.315	0.539
	Mean	478.6	0.0912	2,1172	1,7282	3,2780	0.8293	16.5960	0.9248	1.4750	0.6314
	SD	52.37	0.01766	0.05304	0.13856	0.44738	0.14382	2.45914	0.16826	0.17658	0.15934

(f) = Animal died on study * = Final fasted body weight

ND = No data

Table H-2 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Organ Mass Female Rats

ABSOLUTE ORGAN MASS (grams)

Group	Animal ID	Body Weight*	Adrenals	Brain	Heart	Kidnevs	Liver	Ovaries	Snleen	Thymus	Literus	Implantation Sites	Corpora
Group	Anniario	body Weight	Auronaia	Dram	Tioart	Manoya	LIVOI	Ovalles	opicen	mymus	Otorus	Gittes	Luica
	12-0211	341	0.084	2.020	1.396	2.080	12.634	0.123	0.788	0.392	0.607	8	20
Corn Oil	12-0220	331	0.071	2.096	1.338	1.933	15.635	0.118	0.985	0.455	0.602	17	17
Control	12-0222	323	0.074	2.033	1.244	2.102	12.394	0.137	0.734	0.482	0.664	16	19
	12-0260	266	0.111	1.997	0.947	2.095	9.820	0.173	0.489	0.191	0.794	15	15
	12-0289	287	0.098	1.906	1.207	1.866	11.627	0.146	0.788	0.243	0.582	17	21
	12-0298ª.d												
	12-0306	270	0.084	2.044	1.114	2.146	11.084	0.142	0.657	0.273	0.848	16	16
	12-0309	300	0.102	2.051	1.207	2.289	13.008	0.182	0.731	0.208	0.669	16	16
	12-0317 ^b												
	12-0339	249	0.075	1.890	0.963	1.964	ND	0.214	ND	0.296	0.589	17	18
	Mean	295.9	0.0874	2.004625	1.1770	2.059375	12.3146	0.154375	0.7389	0.3175	0.669375	15.3	17.8
	SD	33.51	0.01468	0.07173	0.16162	0.13427	1.81771	0.03273	0.14979	0.11180	0.09999	3.01	2.12
	12-0168	336	0.104	1.972	1.359	2.486	11.802	0.152	0.649	0.348	0.850	16	16
31.25 mg/kg	12-0170	329	0.104	1.921	1.393	2.241	15.412	0.181	0.812	0.236	0.662	20	20
	12-0201°	317	0.067	1.966	1.107	2.103	13.134	0.127	0.593	0.185	0.486	17	18
	12-0221	325	0.078	2.013	1.158	1.969	14.391	0.138	0.648	0.096	0.722	18	19
	12-0240	299	0.053	1.862	1.038	1.692	10.906	0.156	0.544	0.288	0.618	12	12
	12-0299*												
	12-0300	293	0.096	1.935	1.150	2.103	12.102	0.165	0.598	0.282	0.838	13	15
	12-0346	261	0.095	1.872	1.045	1.762	10.247	0.154	0.601	0.367	0.598	13	13
	12-0367	278	0.064	1.857	1.001	1.789	9.622	0.126	0.568	0.360	0.551	15	15
8	12-0369	293	0.069	1.884	1.162	2.089	11.294	0.100	0.547	0.165	0.602	16	17
	Mean	303.4	0.0811	1.920222	1.1570	2.0260	12.1011	0.1443	0.6178	0.2586	0.6586	15.6	16.1
	SD	25.12	0.01904	0.05548	0.13698	0.25356	1.90478	0.02424	0.08203	0.09524	0.12387	2.60	2.67
	12-0169	289	0 163	1 931	1 120	2 304	12 178	0 140	0 742	0 118	0.069	17	23
125 ma/ka	12-0210	344	0.064	1 989	1 479	2 186	11 950	0.125	0.774	0.435	0.500	16	16
ing ing ing	12-0212	303	0.091	1.976	1 123	1 932	11 641	0 173	0.614	0.400	0.616	13	13
	12-0227	318	0.088	2 123	1 315	1 995	11 766	0 152	0.547	0.137	0.010	15	15
	12-0257	293	0.000	2 006	1 170	1 677	11 089	0 163	0.671	0.141	0.710	15	15
	12-0259	238	0.106	1 993	1 015	2 102	8 831	0 181	0.484	0.217	0.720	18	19
	12-0261	313	0.091	2.001	1.226	2,110	13 261	0 185	0.660	0.338	0.696	17	17
	12-0278	343	0.102	2.089	1.560	2.511	13 849	0.134	0.591	0.320	0 757	18	18
	12-0291	283	0.084	1.812	1.042	2,294	11.547	0.137	0.573	0.179	0 719	14	14
	12-0327	293	0.101	2.006	1.021	2.284	10.944	0.138	0.638	0.291	0.891	12	16
	Mean	301.7	0.0980	1.9926	1.2071	2.1395	11.7056	0.1528	0.6294	0.2546	0.7522	15.5	16.6
	SD	30.93	0.02566	0.08395	0.19012	0.23383	1.35617	0.02135	0.08766	0.10010	0.10591	2.07	2.88
	12-0166	294	0.073	1,905	1,108	1,706	11.092	0.124	0.623	0 228	0.623	16	25
500 ma/ka	12-0167	322	0.069	1 995	1.061	2 139	12 561	0 111	0.616	0 234	0.699	19	33
	12-0171ª	16502020						0.111	0.010	0.201	0.000	10	00
	12-0198	319	0.090	2 006	1 205	2 062	12 532	0 142	0.670	0 159	0.497	14	16
	12-0229*	010	0.000	2.000	1.200	2.002	12.002	0.142	0.070	0.105	0.407	14	10
	12 0229	200	0.000	1 020	4 454	1 000	10 700	0.400	0.505	0.075	4 005-3		
	12-0258	200	0.096	1.936	1.154	1.920	10.720	0.196	0.535	0.375	1.385**	17	17
	12-02/9	2/5	0.079	2.051	1.057	2.239	9.804	0.123	0.398	0.218	0.503	16	16
	12-0308"	323	0.093	2.083	1.525	2.265	11.814	0.197	0.716	0.323	0.681	12	23
	12-0336	262	0.033**	1.834	1.006	1.779	9.729	0.122	0.490	0.253	0.478	13	13
3	12-0348	323	0.058	2.072	1.169	2.219	11.209	0.122	0.611	0.295	0.633	15	15
	Mean	300.8	0.0797	1.9853	1.1606	2.0411	11.1901	0.1421	0.5824	0.2606	0.5863	15.3	19.8
	50	24.34	0.01402	0.08756	0.16133	0.21601	1.08191	0.03461	0.10275	0.06775	0.09463	2.25	6.73

a= Sperm plug was found but female was not pregnant.

b= No sperm plug found and was not pregnant.

c= No sperm plug found but female was pregnant.

d= Animal was not fasted prior to necropsy.

* = Fasted final body weights.

*2= Only 1 adrenal weight was obtained.

*3 = Identified as outlier and dropped from analysis.

ND = No data

Table H-3 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Organ Mass Recovery Male Rats

ABSOLUTE ORGAN MASS (grams)

Group	Animal ID	Body Weight*	Adrenals	Brain	Heart	Kidneys	Epididymides	Liver	Spleen	Testes	Thymus
	12-0174	618	0.059	2.219	2.055	3.624	1.427	22.590	1.245	4.031	0.459
Corn Oil	12-0179	653	0.062	2.378	2.282	4.042	1.350	24,950	1.567	3.871	0.554
Control	12-0194	663	0.073	2.294	2.234	4.319	1.354	24.909	1.044	3.457	0.489
	12-0208	595	0.082	2.286	1.784	3.732	1.442	19.590	0.929	3.411	0.670
	12-0272	617	0.081	2.352	2.041	4.023	1.429	23.169	1.027	3.535	0.529
	12-0294	588	0.064	2.166	2.061	3.644	1.189	19.069	1.148	3.679	0.455
	12-0304	625	0.068	2.226	1.979	3.959	1.106	19.694	1.103	3.896	0.493
	12-0323	572	0.070	2.114	1.818	3.558	0.920	21.455	0.956	3.157	0.396
	12-0332	482	0.068	2.228	1.986	3.634	1.157	17.010	0.814	3.385	0.336
	12-0365	558	0.050	2.175	1.795	3.596	1.194	18.963	0.984	3.520	0.415
	Mean	597.1	0.0677	2.2438	2.0035	3.8131	1.2568	21.1399	1.0817	3.5942	0.4796
	SD	52.25	0.00972	0.08356	0.17160	0.25580	0.17183	2.70018	0.20864	0.27121	0.09268
	12-0176	611	0.061	2.242	1.929	3.708	0.771	22.502	1.338	1.707	0.406
500 mg/kg	12-0186	599	0.058	2.243	2.079	3.985	0.959	21.862	1.163	2.543	0.496
	12-0215	614	0.056	2.394	2.100	3.601	0.872	20.602	1.549	2.212	0.636
	12-0244	510	0.072	2.103	1.663	3.412	0.807	16.128	0.865	2.577	0.428
	12-0283	510	0.071	2.203	1.916	3.880	0.439	17.906	1.066	1.885	0.381
	12-0295	602	0.051*1	2,188	1.960	3.929	0.477	19,711	1 276	2 517	0 468
	12-0302	664	0.072	2.446	2.049	4.106	0.542	22,938	1.097	2 317	0.381
	12-0310	621	0.083	2.336	1.938	3.824	0.683	21,591	1.062	2.126	0.469
	12-0333	528	0.077	2.090	1.827	3.702	0.739	17.057	0.863	1.862	0.459
	12-0363	561	0.064	2.158	2.039	3.452	0.738	17.299	1.082	1.775	0.545
	Mean SD	582.0 52.20	0.0682 0.00905	2.2403 0.11900	1.9500 0.13174	3.7599 0.22723	0.7027 0.16969	19.7596 2.49649	1.1361 0.20936	2.1521 0.33229	0.4669 0.07859

* = Final fasted body weight

*1 = Only 1 adrenal weighed

Table H-4 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Organ Mass Male Rats

ORGAN MASS RELATIVE TO BODY MASS

Group	Animal ID	Adrenals	Brain	Heart	Kidneys	Epididymides	Liver	Spleen	Testes	Thymus
	10 0400	0.00014	0.0044	0.0007	0 0072	0.0004	0.0206	0.0019	0.0076	0.0010
00"	12-0163	0.00014	0.0044	0.0037	0.0073	0.0024	0.0396	0.0018	0.0076	0.0010
Com Oli	12-0205	0.00021	0.0046	0.0038	0.0008	0.0028	0.0354	0.0017	0.0075	0.0015
Control	12-0206	0.00019	0.0046	0.0038	0.0068	0.0027	0.0373	0.0017	0.0073	0.0013
	12-0207	0.00018	0.0042	0.0038	0.0068	0.0026	0.0357	0.0019	0.0081	0.0015
	12-0235	0.00016	0.0038	0.0033	0.0066	0.0025	0.0353	0.0015	0.0064	0.0013
	12-0254	0.00016	0.0044	0.0036	0.0065	0.0019	0.0316	0.0021	0.0053	0.0014
	12-0263	0.00016	0.0042	0.0040	0.0066	0.0025	0.0352	0.0019	0.0075	0.0013
	12-0267	0.00013	0.0037	0.0042	0.0062	0.0027	0.0334	0.0017	0.0067	0.0012
	12-0284	0.00023	0.0038	0.0037	0.0072	0.0023	0.0358	0.0027	0.0075	0.0012
3	12-0313	0.00016	0.0047	0.0038	0.0063	0.0032	0.0336	0.0017	0.0070	0.0013
	Mean	0.000172	0.00425	0.00377	0.00672	0.00254	0.03529	0.00186	0.00709	0.00129
	SD	3.188E-05	0.000374	0.000233	0.000333	0.000350	0.002190	0.000331	0.000805	0.000160
	12-0164	0.00016	0.0046	0.0037	0.0082	0.0026	0.0414	0.0019	0.0087	0.0012
31.25 mg/kg	12-0165	0.00016	0.0043	0.0036	0.0070	0.0026	0.0408	0.0016	0.0078	0.0012
	12-0225	0.00014	0.0047	0.0034	0.0070	0.0025	0.0384	0.0018	0.0078	0.0013
	12-0234	0.00014	0.0046	0.0032	0.0061	0.0027	0.0327	0.0016	0.0077	0.0015
	12-0243	0.00018	0.0049	0.0037	0.0069	0.0027	0.0341	0.0018	0.0082	0.0013
	12-0245	0.00020	0.0044	0.0035	0.0074	0.0025	0.0366	0.0017	0.0073	0.0014
	12-0255	0.00025	0.0052	0.0041	0.0069	0.0028	0.0293	0.0022	0.0079	0.0012
	12-0262	0.00014	0.0039	0.0038	0.0070	0.0026	0.0358	0.0017	0.0068	0.0015
	12-0324	0.00021	0.0042	0.0035	0.0068	0.0022	0.0347	0.0019	0.0065	0.0015
	12-0351	(f)	(f)	(f)	(f)	(f)	(f)	(f)	(f)	(f)
	Mean	0.000176	0.00454	0.00361	0.00703	0.00258	0.03599	0.00179	0.00764	0.00135
	SD	3.727E-05	0.000392	0.000245	0.000542	0.000169	0.003868	0.000189	0.000664	0.000134
	12-0187	0.00015	0.0041	0.0037	0.0064	0.0023	0.0341	0.0017	0.0072	0.0013
125 mg/kg	12-0204	0.00017	0.0045	0.0039	0.0062	0.0030	0.0374	0.0021	0.0082	0.0015
	12-0223	0.00014	0.0044	0.0039	0.0069	0.0026	0.0365	0.0017	0.0073	0.0012
	12-0224	0.00016	0.0046	0.0032	0.0072	0.0026	0.0344	0.0018	0.0076	0.0013
	12-0253	0.00021	0.0051	0.0040	0.0069	0.0028	0.0330	0.0021	0.0092	0.0014
	12-0275	0.00018	0.0048	0.0037	0.0068	0.0029	0.0358	0.0016	0.0081	0.0011
	12-0293	0.00015	0.0046	0.0037	0.0064	0.0030	0.0344	0.0019	0.0074	0.0011
	12-0296	0.00018	0.0049	0.0037	0.0068	0.0029	0.0334	0.0018	0.0092	0.0011
	12-0345	0.00021	0.0050	0.0038	0.0069	0.0031	0.0361	0.0019	0.0086	0.0012
	12-0354	0.00022	0.0046	0.0037	0.0064	0.0026	0.0323	0.0017	0.0069	0.0012
	Mean	0.000180	0.00466	0.00375	0.00668	0.00279	0.03473	0.00183	0.00798	0.00125
	SD	2.893E-05	0.0003	0.000212	0.000327	0.000249	0.001649	0.000154	0.000826	0.000139
	12-0177	0.00016	0 0040	0.0033	0 0059	0.0014	0.0335	0.0021	0.0031	0.0018
500 mg/kg	12-0189	0.00012	0.0041	0.0031	0.0072	0.0012	0.0352	0.0018	0.0031	0.0012
5 5	12-0203	0.00018	0.0046	0.0035	0.0065	0.0015	0.0320	0.0019	0.0031	0.0014
	12-0209	0.00016	0.0042	0.0038	0.0072	0.0016	0.0370	0.0017	0.0033	0.0011
	12-0236	0.00020	0.0040	0.0037	0.0057	0.0017	0.0364	0.0017	0.0023	0.0017
	12-0256	0.00020	0.0051	0.0038	0.0069	0.0020	0.0337	0.0018	0.0035	0.0011
	12-0297	0.00023	0.0041	0.0035	0.0079	0.0021	0.0360	0.0024	0.0031	0.0012
	12-0314	0.00025	0.0044	0.0036	0.0071	0.0022	ND	0.0019	0.0029	0.0010
	12-0322	0.00023	0.0055	0.0041	0.0068	0.0021	0.0319	0.0019	0.0038	0.0015
	12-0341	0.00019	0.0047	0.0040	0.0073	0.0018	0.0362	0.0020	0.0029	0.0012
	Mean	0.000192	0.00447	0.00363	0.00686	0.00175	0.03464	0.00193	0.00310	0.00131
	SD	3.799E-05	0.000503	0.000317	0.000653	0.000342	0.001945	0.000216	0.000401	0.000250

(f) = Animal died on study ND = No data

Table H-5 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Organ Mass Female Rats

ORGAN MASS RELATIVE TO BODY MASS

Group	Animal ID	Adrenals	Brain	Heart	Kidneys	Liver	Ovaries	Spleen	Thymus	Uterus
	12 0211	0 0002	0.0050	0.0041	0.0061	0.0270	0.0004	0 0022	0.0011	0.0019
Corn Oil	12-0211	0.0002	0.0059	0.0041	0.0061	0.0370	0.0004	0.0023	0.0014	0.0018
Control	12-0220	0.0002	0.0003	0.0040	0.0056	0.0472	0.0004	0.0030	0.0014	0.0010
Control	12-0222	0.0002	0.0003	0.0039	0.0005	0.0364	0.0004	0.0023	0.0015	0.0021
	12-0260	0.0004	0.0075	0.0036	0.0079	0.0369	0.0007	0.0018	0.0007	0.0030
	12-0289	0.0003	0.0066	0.0042	0.0065	0.0405	0.0005	0.0027	0.0008	0.0020
	12-0298	0.0000	0.0070		0.0070					
	12-0306	0.0003	0.0076	0.0041	0.0079	0.0411	0.0005	0.0024	0.0010	0.0031
	12-0309	0.0003	0.0068	0.0040	0.0076	0.0434	0.0006	0.0024	0.0007	0.0022
	12-0317		0.0070							
23	12-0339	0.0003	0.0076	0.0039	0.0079	ND	0.0009	ND	0.0012	0.0024
	Mean	0.00030	0.00684	0.00397	0.00704	0.04064	0.00054	0.00243	0.00106	0.00230
	SD	0.000068	0.000652	0.000206	0.000885	0.003719	0.000169	0.000362	0.000295	0.000510
	12-0168	0.0003	0.0059	0.0040	0.0074	0.0351	0.0005	0.0019	0.0010	0.0025
31.25 mg/kg	12-0170	0.0003	0.0058	0.0042	0.0068	0.0468	0.0006	0.0025	0.0007	0.0020
	12-0201°	0.0002	0.0062	0.0035	0.0066	0.0414	0.0004	0.0019	0.0006	0.0015
	12-0221	0.0002	0.0062	0.0036	0.0061	0.0443	0.0004	0.0020	0.0003	0.0022
	12-0240	0.0002	0.0062	0.0035	0.0057	0.0365	0.0005	0.0018	0.0010	0.0021
	12-0299 ^a									
	12-0300	0.0003	0.0066	0.0039	0.0072	0.0413	0.0006	0.0020	0.0010	0.0029
	12-0346	0.0004	0.0072	0.0040	0.0068	0.0393	0.0006	0.0023	0.0014	0.0023
	12-0367	0.0002	0.0067	0.0036	0.0064	0.0346	0.0005	0.0020	0.0013	0.0020
10	12-0369	0.0002	0.0064	0.0040	0.0071	0.0385	0.0003	0.0019	0.0006	0.0021
	Mean	0.00027	0.00636	0.00381	0.00667	0.03976	0.00048	0.00204	0.00087	0.00217
	SD	0.000063	0.000420	0.000281	0.000557	0.004128	0.000083	0.000216	0.000361	0.000373
	12-0169	0.0006	0.0067	0.0039	0.0080	0.0421	0.0005	0.0026	0.0004	0.0033
125 mg/kg	12-0210	0.0002	0.0058	0.0043	0.0064	0.0347	0.0004	0.0023	0.0013	0.0019
	12-0212	0.0003	0.0065	0.0037	0.0064	0.0384	0.0006	0.0020	0.0007	0.0020
	12-0227	0.0003	0.0067	0.0041	0.0063	0.0370	0.0005	0.0017	0.0010	0.0023
	12-0257	0.0003	0.0068	0.0040	0.0057	0.0378	0.0006	0.0023	0.0005	0.0025
	12-0259	0.0004	0.0084	0.0043	0.0088	0.0371	0.0008	0.0020	0.0009	0.0033
	12-0261	0.0003	0.0064	0.0039	0.0067	0.0424	0.0006	0.0021	0.0011	0.0022
	12-0278	0.0003	0.0061	0.0045	0.0073	0.0404	0.0004	0.0017	0.0009	0.0022
	12-0291	0.0003	0.0064	0.0037	0.0081	0.0408	0.0005	0.0020	0.0006	0.0025
5	12-0327	0.0003	0.0068	0.0035	0.0078	0.0374	0.0005	0.0022	0.0010	0.0030
	Mean	0.00033	0.00666	0.00399	0.00715	0.03881	0.00052	0.00209	0.00083	0.00253
	SD	0.000104	0.000688	0.000325	0.001004	0.002497	0.000113	0.000255	0.000276	0.000517
	12-0166	0 0002	0 0065	0.0038	0.0058	0 0377	0.0004	0 0021	0.0008	0.0021
500 ma/ka	12-0167	0.0002	0.0062	0.0033	0.0066	0.0390	0.0003	0.0021	0.0003	0.0021
ooo mgmg	12-0171ª	0.0002	0.0002	0.0000	0.0000	0.0000	0.0005	0.0013	0.0007	0.0022
	12-0198	0.0003	0.0063	0.0038	0.0065	0.0393	0.0004	0.0021	0.0005	0.0015
	12-0229ª									
	12-0258	0.0003	0.0067	0.0040	0.0067	0.0372	0.0007	0.0019	0.0013	0.0048*
	12-0279	0.0003	0.0075	0.0038	0.0081	0.0359	0.0004	0.0014	0.0008	0.0018
	12-0308°	0.0003	0.0064	0.0047	0.0070	0.0366	0.0006	0.0022	0.0010	0.0021
	12-0336	ND	0.0070	0.0038	0.0068	0.0371	0.0005	0.0019	0.0010	0.0018
	12-0348	0.0002	0.0064	0.0036	0.0069	0.0347	0.0004	0.0019	0.0009	0.0020
	Mean	0.00026	0.00663	0.00386	0.00680	0.03719	0.00047	0.00193	0.00087	0.00193
	SD	0.000052	0.000421	0.000406	0.000655	0.001526	0.000114	0.000236	0.000235	0.000227

a= Sperm plug was found but dam was not pregnant.

b= No sperm plug found and was not pregnant.

c= No sperm plug found but dam was pregnant.

d= Animal was not fasted prior to necropsy.

* = Identified as an outlier.

ND = No data

Table H-6 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Organ Mass Recovery Male Rats

ORGAN MASS RELATIVE TO BODY MASS

Group	Animal ID	Adrenals	Brain	Heart	Kidneys	Epididymides	Liver	Spleen	Testes	Thymus
	12-0174	0.00010	0.0036	0.0033	0.0059	0.0023	0.0366	0.0020	0.0065	0.0007
Corn Oil	12-0179	0.00009	0.0036	0.0035	0.0062	0.0021	0.0382	0.0024	0.0059	0.0008
Control	12-0194	0.00011	0.0035	0.0034	0.0065	0.0020	0.0376	0.0016	0.0052	0.0007
	12-0208	0.00014	0.0038	0.0030	0.0063	0.0024	0.0329	0.0016	0.0057	0.0011
	12-0272	0.00013	0.0038	0.0033	0.0065	0.0023	0.0376	0.0017	0.0057	0.0009
	12-0294	0.00011	0.0037	0.0035	0.0062	0.0020	0.0324	0.0020	0.0063	0.0008
	12-0304	0.00011	0.0036	0.0032	0.0063	0.0018	0.0315	0.0018	0.0062	0.0008
	12-0323	0.00012	0.0037	0.0032	0.0062	0.0016	0.0375	0.0017	0.0055	0.0007
	12-0332	0.00014	0.0046	0.0041	0.0075	0.0024	0.0353	0.0017	0.0070	0.0007
3	12-0365	0.00009	0.0039	0.0032	0.0064	0.0021	0.0340	0.0018	0.0063	0.0007
	Mean	0.000114	0.00378	0.00337	0.00641	0.00211	0.03535	0.00181	0.00605	0.00080
	SD	1.838E-05	0.000325	0.000306	0.000441	0.000268	0.002474	0.000255	0.000528	0.000127
	12-0176	0.00010	0.0037	0.0032	0.0061	0.0013	0.0368	0.0022	0.0028	0.0007
500 mg/kg	12-0186	0.00010	0.0037	0.0035	0.0067	0.0016	0.0365	0.0019	0.0042	0.0008
	12-0215	0.00009	0.0039	0.0034	0.0059	0.0014	0.0336	0.0025	0.0036	0.0010
	12-0244	0.00014	0.0041	0.0033	0.0067	0.0016	0.0316	0.0017	0.0051	0.0008
	12-0283	0.00014	0.0043	0.0038	0.0076	0.0009	0.0351	0.0021	0.0037	0.0007
	12-0295	ND	0.0036	0.0033	0.0065	0.0008	0.0327	0.0021	0.0042	0.0008
	12-0302	0.00011	0.0037	0.0031	0.0062	0.0008	0.0345	0.0017	0.0035	0.0006
	12-0310	0.00013	0.0038	0.0031	0.0062	0.0011	0.0348	0.0017	0.0034	0.0008
	12-0333	0.00015	0.0040	0.0035	0.0070	0.0014	0.0323	0.0016	0.0035	0.0009
	12-0363	0.00011	0.0038	0.0036	0.0062	0.0013	0.0308	0.0019	0.0032	0.0010
	Mean	0.000119	0.00386	0.00336	0.00649	0.00121	0.03388	0.00195	0.00372	0.00081
	SD	2.122E-05	0.000219	0.000224	0.000524	0.000307	0.002015	0.000288	0.000635	0.000136

ND = No data

Table H-7 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Organ Mass Male Rats

ORGAN MASS RELATIVE TO BRAIN MASS

Corr Oli 12-0183 0.03153 0.8397 1.6375 0.5298 8.9198 0.4015 1.7070 0.2146 Control 12-0206 0.04490 0.8371 1.4991 0.6207 7.7770 0.3464 1.6576 0.3229 12-0207 0.04322 0.9091 1.6666 0.6169 8.4695 0.4587 1.9317 0.3443 12-0254 0.03980 0.877 1.7488 0.6568 9.3451 0.3941 1.8917 0.3443 12-0267 0.03986 1.8774 0.4247 7.1715 0.4713 1.1846 0.3049 12-0267 0.03986 1.8977 0.5477 9.4427 0.7052 1.8657 0.3049 12-0264 0.06039 0.8867 1.6327 0.7015 0.4706 1.8658 0.3274 12-0164 0.03531 0.7979 1.3418 0.6768 7.0111 0.3569 0.3333 1.6579 0.3333 1.6579 0.3863 1.8268 0.22747 0.04061 1.8685 <t< th=""><th>Group</th><th>Animal ID</th><th>Adrenals</th><th>Heart</th><th>Kidneys</th><th>Epididymides</th><th>Liver</th><th>Spleen</th><th>Testes</th><th>Thymus</th></t<>	Group	Animal ID	Adrenals	Heart	Kidneys	Epididymides	Liver	Spleen	Testes	Thymus
12-0163 0.03193 0.03193 0.03193 0.03193 0.03395 0.02207 0.04400 0.0371 1.4991 0.0207 7.7770 0.3546 1.6520 0.3346 Control 12-0205 0.04480 0.8771 1.4980 0.5791 8.0667 0.3633 1.5770 0.35467 1.3317 0.3346 12-0255 0.04348 0.8797 1.7488 0.6568 9.3451 0.3941 1.6910 0.3511 12-0254 0.03086 0.8014 1.4737 0.4427 7.1752 1.9467 0.3182 12-0267 0.03086 0.8017 1.5849 0.5547 9.4472 7.0261 0.8657 0.3071 12-0313 0.0342 0.7978 1.3418 0.6768 7.1011 0.3549 1.4866 0.2490 31.25 mg/kg 12-0164 0.03511 0.7011 1.7648 0.3576 7.0387 0.3331 1.6579 0.3231 12-0245 0.04463 0.80201 1.5629 0.60468 8.9337										
Corn toli 12-0250 0.04640 0.8371 1.4991 0.6207 7.776 0.3945 1.5273 0.2229 Control 12-0207 0.04322 0.0991 1.6066 0.6169 8.4685 0.4587 1.8371 0.3441 12-0205 0.04322 0.0991 1.7666 0.6169 8.4685 0.4587 1.8371 0.3441 12-0254 0.03590 0.8014 1.4737 0.7176 0.4170 1.7742 0.3115 12-0257 0.03598 1.5384 1.6857 0.5847 9.4427 0.7052 1.9857 0.30441 12-0267 0.03939 1.59278 0.5947 9.4427 0.7052 1.9857 0.30441 12-0313 0.040677 0.83399 1.59278 0.60066 8.33756 0.44310 1.57520 0.30449 31.25 mg/kg 12-0165 0.03521 0.7901 1.5648 0.9327 1.6855 0.2277 1.6855 0.2277 1.6855 0.2277 1.6855 0.22737 1.6852		12-0163	0.03153	0.8387	1.6375	0.5299	8.9198	0.4015	1.7070	0.2146
Control 12:0206 0.04159 0.8112 1.4009 0.5/91 8.0067 0.3833 1.5/73 0.2229 0.04348 0.8797 1.7488 0.66568 9.3451 0.3941 1.8169 0.3561 12:0255 0.04348 0.8797 1.7488 0.66568 9.3451 0.3941 1.8169 0.3561 12:0253 0.03580 0.8014 1.4737 0.4247 7.1175 0.41713 1.1846 0.3049 12:0253 0.03586 0.9417 1.5548 0.5894 8.3257 0.4470 1.7704 0.3182 12:0284 0.06039 0.9867 1.8957 0.5947 9.4427 0.77052 1.9657 0.3071 12:0213 0.03342 0.7978 1.3418 0.6768 7.1011 0.3549 1.4685 0.2862 Mean 0.040677 0.8399 1.59569 0.60166 6.33766 0.44310 1.67820 0.3044 30:008531 0.105959 0.159569 0.60166 6.33766 0.44310 1.67820 0.3044 31.25 mg/kg 12:0164 0.03531 0.7901 1.7648 0.5568 8.9337 0.4036 1.8659 0.22490 12:0224 0.02937 0.6931 1.3186 0.5766 7.0387 0.3353 1.6579 0.3231 12:0155 0.03954 0.3920 1.9232 0.6047 9.4466 0.3654 1.8073 0.22867 12:0255 0.04799 0.4633 1.3186 0.5766 7.0387 0.3353 1.6579 0.3231 12:0453 0.04453 0.8006 1.6655 0.5718 8.2622 0.3355 1.6559 0.3231 12:0453 0.04453 0.8006 1.6655 0.5718 8.2622 0.3355 1.6559 0.3231 12:0453 0.04453 0.8006 1.6655 0.5718 8.2622 0.3355 1.6559 0.3231 12:0455 0.04799 0.7836 1.3273 0.5324 5.5388 0.4206 1.5220 0.2365 12:0224 0.02937 0.7836 1.3619 0.6676 7.0387 0.3353 1.6579 0.3231 12:0453 0.04453 0.8006 1.6655 0.5718 8.2622 0.3355 1.6559 0.3201 12:0245 0.04919 0.7864 1.3517 0.5534 5.6388 0.4206 1.5220 0.2365 12:0224 0.03973 0.9814 1.8159 0.5676 8.00435 0.39569 1.5220 0.2365 12:0224 0.04973 0.9813 1.5597 0.5595 8.00435 0.39538 1.6559 0.3201 12:0245 0.04914 0.8210 1.6150 0.5171 8.2268 0.4504 1.5473 0.3580 12:0252 0.04799 0.786 1.3517 0.5535 8.3022 0.4206 1.5454 0.3226 12:0224 0.03326 0.98210 1.5545 0.5674 8.3466 0.5764 0.5173 0.3274 12:0224 0.03326 0.98210 1.5545 0.5674 8.3460 0.4491 1.7566 0.3228 12:0324 0.04914 0.8210 1.6150 0.5171 8.2258 0.4504 1.5473 0.3580 12:0254 0.04971 8.0262 0.5536 7.4853 0.3464 1.4525 0.3201 12:0254 0.04971 8.026 0.5575 0.3363 1.66557 0.3268 12:0274 0.33725 0.9158 1.5522 0.5535 8.3272 0.4270 1.7655 0.3201 12:0224 0.03322 0.7578 1.3220 0.5536 7.48251 0.3946 1.6570 0.2239 12:0234 0.03735 0.9158	Corn Oil	12-0205	0.04640	0.8371	1.4991	0.6207	7.7770	0.3646	1.6520	0.3348
12-0207 0.04322 0.9091 1.0005 0.6169 8.4695 0.4397 0.3347 0.3511 12-0235 0.03440 0.8797 1.7488 0.6568 9.3451 0.3941 1.6910 0.3511 12-0264 0.03990 0.8014 1.4737 0.4247 7.1175 0.4713 1.8146 0.3162 12-0284 0.06039 0.9867 1.5897 0.5604 8.3257 0.4470 1.7704 0.3178 12-0284 0.06039 0.9867 1.5997 0.55068 8.33766 0.44310 1.67820 0.3071 12-0135 0.03351 0.105959 0.55569 0.081560 0.846434 0.102708 0.227471 0.040725 31.25 mg/kg 12-0165 0.03654 0.8320 1.6232 0.6046 8.5337 0.4036 1.6713 0.22737 12-0243 0.02937 0.6831 1.3186 0.5568 8.9337 0.4036 0.26867 12-0245 0.04453 0.83941 0.55319 0.5	Control	12-0206	0.04159	0.8112	1.4808	0.5791	8.0667	0.3633	1.5763	0.2829
12-0235 0.04348 0.8797 1.7488 0.6868 9.3451 0.3941 1.8910 0.3314 12-0254 0.03390 0.8141 1.7370 0.3141 1.8910 0.3314 12-0265 0.03398 1.1364 1.6852 0.7176 9.0115 0.4703 1.8146 0.3188 12-0264 0.00630 0.9867 1.8997 0.5547 9.4427 0.7552 1.9657 0.03741 12-0131 0.03342 0.7778 1.3418 0.6768 7.1011 0.3549 1.62720 0.30449 SD 0.006531 0.105595 0.55569 0.081560 8.3576 0.44310 1.67820 0.30449 31.25 mg/kg 12-0164 0.03531 0.7901 1.7648 0.5568 8.9337 0.4036 1.8659 0.22497 31.25 mg/kg 12-0164 0.03745 0.7336 1.4919 0.5455 8.2521 0.3857 0.4268 1.8073 0.2231 12-0243 0.024453 0.80601 1.6855 <td></td> <td>12-0207</td> <td>0.04322</td> <td>0.9091</td> <td>1.6066</td> <td>0.6169</td> <td>8.4695</td> <td>0.4587</td> <td>1.9317</td> <td>0.3443</td>		12-0207	0.04322	0.9091	1.6066	0.6169	8.4695	0.4587	1.9317	0.3443
12-024 0.03990 0.8014 1.4737 0.4247 7.1175 0.4713 1.17846 0.30192 12-0263 0.03396 0.9417 1.5546 0.5894 9.4427 0.77052 1.9657 0.3071 12-0284 0.06039 0.9867 1.8897 0.5947 9.4427 0.7052 1.9657 0.3071 12-0284 0.0342 0.7378 1.3418 0.5768 7.1011 0.3249 1.4886 0.2682 Mean 0.0085318 0.105559 0.155589 0.681580 0.846434 0.102708 0.227471 0.0040725 31.25 mg/kg 12-0164 0.03531 0.7901 1.7648 0.5568 8.9337 0.4036 1.8559 0.2490 12-0254 0.03974 0.7336 1.41919 0.5455 2.5221 0.3857 1.6713 0.23231 12-0243 0.03745 0.7499 1.4166 0.5536 6.9221 0.3857 1.6713 0.2321 12-0245 0.044799 0.7335 1.3275		12-0235	0.04348	0.8797	1.7488	0.6568	9.3451	0.3941	1.6910	0.3511
12-0283 0.03866 0.9417 1.5548 0.5894 8.3257 0.4470 1.7704 0.3182 12-0287 0.03396 1.3841 1.6852 0.7176 9.0115 0.4703 1.8416 0.3182 12-0213 0.03342 0.7978 1.3418 0.6768 7.1011 0.3249 1.4886 0.28682 Mean 0.040677 0.8399 1.55279 0.60066 8.35766 0.44310 1.67820 0.20491 31.25 mg/kg 12-0164 0.03531 0.7901 1.7648 0.5568 8.9337 0.4036 1.8659 0.227471 0.040725 31.25 mg/kg 12-0164 0.03531 0.7901 1.7648 0.5568 8.9337 0.4036 1.8659 0.22847 12-0224 0.03091 0.7336 1.4819 0.5568 8.9237 0.4335 1.6579 0.3231 12-0225 0.04453 0.8006 1.6665 0.5718 8.2622 0.3856 1.6713 0.2737 12-0225 0.04799 <td></td> <td>12-0254</td> <td>0.03590</td> <td>0.8014</td> <td>1.4737</td> <td>0.4247</td> <td>7.1175</td> <td>0.4713</td> <td>1.1846</td> <td>0.3049</td>		12-0254	0.03590	0.8014	1.4737	0.4247	7.1175	0.4713	1.1846	0.3049
12-0267 0.03398 1.1864 1.8852 0.7176 9.0115 0.4703 1.8146 0.3188 12-0284 0.00039 0.9867 1.5897 0.50076 7.1011 0.3549 1.8486 0.2682 Mean 0.00085318 0.105959 0.15959 0.0601680 0.85766 0.43310 1.67820 0.00449 31.25 mg/kg 12-0164 0.03531 0.7901 1.7648 0.5568 8.9337 0.4036 1.8659 0.2490 31.25 mg/kg 12-0164 0.03531 0.7901 1.7648 0.5568 8.9337 0.4036 1.8659 0.227471 0.04490 31.25 mg/kg 12-0254 0.03937 0.6931 1.3186 0.5766 7.0387 0.3353 1.6579 0.3231 12-0243 0.03475 0.7499 1.4166 0.5539 6.9621 0.3657 1.6579 0.3323 12-0254 0.04473 0.8984 1.8159 0.6576 9.2743 0.4491 1.7596 0.3928 12		12-0263	0.03686	0.9417	1.5548	0.5894	8.3257	0.4470	1.7704	0.3182
12-0224 0.06039 0.9867 1.8997 0.5947 9.4427 0.7052 1.9857 0.3071 12-0313 0.03342 0.7798 1.3418 0.6768 7.1011 0.3549 1.4867 0.3044 SD 0.0085318 0.105959 0.159589 0.081580 0.846434 0.102708 0.227471 0.040725 31.25 mg/kg 12-0164 0.03531 0.7901 1.7648 0.5568 8.9337 0.4036 1.8659 0.224471 0.040725 12-0124 0.03091 0.7336 1.4919 0.5455 8.5221 0.8677 0.3353 1.6579 0.3231 12-0224 0.03091 0.7336 1.4919 0.5455 8.5621 0.3667 1.6713 0.2737 12-0254 0.04453 0.8006 1.6665 0.5718 8.2622 0.3856 1.6758 0.3321 12-0254 0.04914 0.82101 1.5150 0.5517 8.2272 0.4206 1.5220 0.2363 12-0254 0.03943 </th <td></td> <td>12-0267</td> <td>0.03398</td> <td>1.1364</td> <td>1.6852</td> <td>0.7176</td> <td>9.0115</td> <td>0.4703</td> <td>1.8146</td> <td>0.3188</td>		12-0267	0.03398	1.1364	1.6852	0.7176	9.0115	0.4703	1.8146	0.3188
12-031 0.03342 0.7976 1.3418 0.6768 7.1011 0.3549 1.4866 0.2862 Mean 0.040677 0.53939 1.55279 0.50066 0.835766 0.44310 1.67620 0.30443 31.25 mg/kg 12-0165 0.03654 0.8320 1.6232 0.6047 9.4466 0.3654 1.8073 0.227471 0.040725 31.25 mg/kg 12-0165 0.03654 0.8320 1.6232 0.6047 9.4466 0.3654 1.8073 0.227471 0.4036 1.8659 0.22799 12-0224 0.03937 0.6931 1.3186 0.5766 7.0387 0.3353 1.6579 0.3237 12-0245 0.04453 0.8066 1.6665 0.5718 8.2662 0.3654 1.6202 0.23580 12-0254 0.04914 0.8014 1.8150 0.6676 9.2743 0.4491 1.5730 0.3580 12-0254 0.03976 0.799131 1.55597 0.55958 8.00435 0.39538 1.68597		12-0284	0.06039	0.9867	1.8997	0.5947	9.4427	0.7052	1.9657	0.3071
Mean 0.040677 0.83939 1.58279 0.60056 8.35766 0.4310 1.67820 0.30449 SD 0.0085318 0.105559 0.159569 0.081680 0.846434 0.102708 0.227471 0.040725 31.25 mg/kg 12-0164 0.03554 0.03520 16222 0.6047 9.4466 0.3654 1.8659 0.22867 12-0225 0.03745 0.7499 1.4166 0.5556 8.2521 0.3827 1.6835 0.2737 12-0243 0.023745 0.7499 1.4166 0.5559 6.9621 0.3857 1.6579 0.3321 12-0245 0.04453 0.8006 1.6655 0.5718 8.2662 0.3856 1.5220 0.2331 12-0252 0.04791 0.7836 1.3273 0.5324 5.6388 0.42061 1.5220 0.3328 12-0324 0.04914 0.8210 1.5150 0.5171 8.2268 0.4504 1.5220 0.33514 0.18027 0.30108 12-0324 0.03		12-0313	0.03342	0.7978	1.3418	0.6768	7.1011	0.3549	1.4886	0.2682
SD 0.0085318 0.105959 0.159589 0.081580 0.846434 0.102708 0.227471 0.040725 31.25 mg/kg 12-0164 0.03531 0.7901 1.7648 0.5568 8.9337 0.4036 1.8659 0.2490 31.25 mg/kg 12-0165 0.03654 0.8320 1.6232 0.6047 9.4466 0.3627 1.6635 0.2297 12-0224 0.0391 1.3186 0.5766 7.0387 0.3857 1.6579 0.3231 12-0245 0.04453 0.6961 1.6665 0.5718 8.2662 0.3856 1.5220 0.2383 12-0255 0.04799 0.7836 1.3273 0.5324 5.6386 0.4206 1.5220 0.2383 12-0321 (f) (f) <th></th> <th>Mean</th> <th>0.040677</th> <th>0.89399</th> <th>1.59279</th> <th>0.60066</th> <th>8.35766</th> <th>0.44310</th> <th>1.67820</th> <th>0.30449</th>		Mean	0.040677	0.89399	1.59279	0.60066	8.35766	0.44310	1.67820	0.30449
12-0164 0.03531 0.7901 1.7648 0.5568 8.9337 0.4036 1.8659 0.2490 31.25 mg/kg 12-0165 0.03554 0.8320 1.6232 0.6047 9.4466 0.3554 1.8073 0.2867 12-0224 0.02937 0.6931 1.3186 0.5766 7.03353 1.6713 0.2737 12-0243 0.02937 0.6931 1.3186 0.5778 8.2662 0.3865 1.6589 0.3103 12-0255 0.04453 0.8006 1.6665 0.5718 8.2662 0.3865 1.5598 0.3928 12-0262 0.03673 0.9884 1.8159 0.6676 9.2743 0.4491 1.7596 0.3928 12-0321 (f)		SD	0.0085318	0.105959	0.159589	0.081580	0.846434	0.102708	0.227471	0.040725
12-0164 0.03531 0.7901 1.7648 0.5568 8.9337 0.4035 1.8635 0.2487 12-0125 0.03664 0.86320 1.6222 0.6047 9.4466 0.3854 1.6933 0.2287 12-0225 0.03091 0.7336 1.4919 0.5455 8.2521 0.3857 1.6713 0.2287 12-0245 0.04453 0.7499 1.4166 0.55718 8.2662 0.3865 1.6579 0.3231 12-0245 0.04453 0.8061 1.8665 0.5718 8.2662 0.3866 1.5520 0.2383 12-0262 0.03673 0.9884 1.8159 0.6676 9.2743 0.4491 1.7596 0.3928 12-0324 0.04914 0.8210 1.6150 0.5171 8.2288 0.4041 1.5473 0.3560 12-0187 0.03735 0.9158 1.5532 0.5735 8.3272 0.4270 1.7655 0.3201 12-0224 0.03208 0.8920 1.5545 0.5874 8.2		10.0101								
31.25 mg/kg 12-015 0.03544 0.8320 1.6232 0.0047 9.4465 0.3554 1.8073 0.2879 12-0224 0.0391 0.7336 1.4199 0.5455 8.2521 0.3857 1.6579 0.3231 12-0243 0.02937 0.6931 1.3186 0.5766 7.0387 0.3353 1.6579 0.3231 12-0245 0.04453 0.8006 1.6665 0.5718 8.2662 0.38657 1.6713 0.2733 12-0252 0.04914 0.7366 1.3273 0.5324 5.6388 0.4206 1.5220 0.32861 12-0351 () </th <td></td> <td>12-0164</td> <td>0.03531</td> <td>0.7901</td> <td>1.7648</td> <td>0.5568</td> <td>8.9337</td> <td>0.4036</td> <td>1.8659</td> <td>0.2490</td>		12-0164	0.03531	0.7901	1.7648	0.5568	8.9337	0.4036	1.8659	0.2490
12-0225 0.03991 0.7335 1.4919 0.5455 8.2521 0.3827 1.8835 0.2799 12-0244 0.03745 0.7999 1.4166 0.55539 6.9621 0.3657 1.6713 0.2737 12-0245 0.04453 0.8006 1.6665 0.5718 8.2662 0.3856 1.6589 0.3231 12-0255 0.04919 0.7836 1.3273 0.5324 5.6388 0.4206 1.5220 0.2363 12-0252 0.03673 0.9884 1.8159 0.6676 9.2743 0.4491 1.7566 0.3928 12-0351 (f)	31.25 mg/kg	12-0165	0.03654	0.8320	1.6232	0.6047	9.4466	0.3654	1.8073	0.2867
12-0243 0.02397 0.05397 1.3186 0.05766 7.0387 0.03353 1.8579 0.32231 12-0245 0.04453 0.8006 1.6665 0.5539 6.6821 0.3853 1.6579 0.2233 12-0245 0.04453 0.8006 1.6665 0.5718 8.2662 0.3856 1.6520 0.2383 12-0262 0.03673 0.9884 1.8159 0.6676 9.2743 0.4491 1.7596 0.3928 12-0321 (f)		12-0225	0.03091	0.7336	1.4919	0.5455	8.2521	0.3827	1.6835	0.2799
12-0243 0.03445 0.7499 1.4166 0.5539 6.9521 0.3657 1.5713 0.2737 12-0245 0.04799 0.7836 1.3273 0.5324 5.6388 0.4206 1.5220 0.2363 12-0252 0.03873 0.9884 1.8159 0.6676 9.2743 0.4491 1.7596 0.3928 12-0324 0.04914 0.8210 1.6150 0.5171 8.2268 0.4504 1.5473 0.3580 12-0325 0.0070590 0.08862 0.799131 1.5597 0.56958 8.00435 0.39538 1.68597 0.30109 SD 0.0070590 0.083415 0.181448 0.044747 1.24252 0.039146 0.112027 0.050662 125 mg/kg 12-0187 0.03735 0.9158 1.5532 0.5735 8.3272 0.4270 1.7655 0.3201 12-0224 0.03326 0.7950 1.5622 0.5636 7.4953 0.3346 1.6570 0.22630 12-0224 0.03320 0.797		12-0234	0.02937	0.6931	1.3186	0.5766	7.0387	0.3353	1.6579	0.3231
12-0245 0.04453 0.8006 1.6665 0.5718 8.2662 0.3856 1.6589 0.3103 12-0252 0.03673 0.9884 1.8159 0.5324 5.6388 0.4206 1.5220 0.2363 12-0252 0.03673 0.9884 1.8159 0.6676 9.2743 0.4491 1.7596 0.3928 12-0351 (f) (f) <td></td> <td>12-0243</td> <td>0.03745</td> <td>0.7499</td> <td>1.4166</td> <td>0.5539</td> <td>6.9621</td> <td>0.3657</td> <td>1.6713</td> <td>0.2737</td>		12-0243	0.03745	0.7499	1.4166	0.5539	6.9621	0.3657	1.6713	0.2737
12-0255 0.04799 0.7836 1.3273 0.5324 5.6388 0.4206 1.5220 0.2363 12-0262 0.03673 0.8884 1.8159 0.6676 9.2743 0.4491 1.7596 0.3928 12-0351 (f)		12-0245	0.04453	0.8006	1.6665	0.5718	8.2662	0.3856	1.6589	0.3103
12-0262 0.039/3 0.9844 1.8159 0.05676 9.2/43 0.4491 1.7596 0.3928 12-0324 0.04914 0.8210 1.6150 0.5171 8.2268 0.4504 1.5473 0.3680 12-0351 (f)		12-0255	0.04799	0.7836	1.3273	0.5324	5.6388	0.4206	1.5220	0.2363
12:0324 0.04914 0.8210 1.6150 0.5171 8:2288 0.4504 1.5473 0.3380 12:0351 (f) <		12-0262	0.03673	0.9884	1.8159	0.6676	9.2743	0.4491	1.7596	0.3928
12-0351 (f)		12-0324	0.04914	0.8210	1.6150	0.51/1	8.2268	0.4504	1.5473	0.3580
Mean 0.033662 0.793131 1.55997 0.55988 8.00435 0.39538 1.68597 0.30109 SD 0.0070590 0.083415 0.181448 0.044747 1.24252 0.039146 0.112027 0.050662 125 mg/kg 12-0187 0.03208 0.8920 1.5545 0.5735 8.3272 0.4270 1.7655 0.3201 12-0223 0.03208 0.8920 1.5545 0.5874 8.2418 0.3764 1.6570 0.22830 12-0224 0.03525 0.7050 1.5622 0.5636 7.4953 0.3846 1.6542 0.2918 12-0275 0.03748 0.7663 1.4224 0.6111 7.4471 0.3426 1.6931 0.2368 12-0296 0.03746 0.7597 1.3901 0.5847 6.8136 0.3678 1.8858 0.2325 12-0296 0.03747 0.7686 1.3800 0.6276 7.2103 0.3773 1.7100 0.2440 12-0354 0.44671 0.8025 1.3905 <th>2</th> <th>12-0351</th> <th>(1)</th> <th>(1)</th> <th>(1)</th> <th>(f)</th> <th>(1)</th> <th>(1)</th> <th>(1)</th> <th>(†)</th>	2	12-0351	(1)	(1)	(1)	(f)	(1)	(1)	(1)	(†)
SD 0.0070590 0.03345 0.181448 0.044747 1.24252 0.039146 0.112027 0.050662 125 mg/kg 12-0187 0.03735 0.9158 1.5532 0.5735 8.3272 0.4270 1.7665 0.3201 125 mg/kg 12-0223 0.03208 0.8920 1.5545 0.5874 8.2418 0.3764 1.6570 0.2630 12-0224 0.03525 0.7050 1.5622 0.5636 7.4953 0.3846 1.6542 0.2918 12-0275 0.03748 0.7663 1.4224 0.6111 7.4471 0.3426 1.6931 0.2368 12-0295 0.03746 0.7597 1.3901 0.5847 6.8136 0.3618 1.8858 0.2325 12-0345 0.04277 0.7666 1.3800 0.6276 7.2103 0.3773 1.7100 0.2440 12-0345 0.04875 0.806346 1.43586 0.59805 7.0488 0.3763 0.118989 0.037256 500 mg/kg 12-0177 0.04		Mean	0.038662	0.799131	1.55997	0.56958	8.00435	0.39538	1.68597	0.30109
125 mg/kg 12-0187 0.03735 0.9158 1.5532 0.5735 8.3272 0.4270 1.7655 0.3201 125 mg/kg 12-0224 0.03843 0.6893 1.3819 0.6682 8.3800 0.4663 1.8425 0.3383 12-0223 0.03208 0.8920 1.5545 0.5674 8.2418 0.3764 1.6570 0.2630 12-0224 0.03525 0.7050 1.5622 0.5636 7.4953 0.3846 1.6542 0.2918 12-0275 0.03748 0.7663 1.4224 0.6111 7.4471 0.3426 1.6931 0.2368 12-0295 0.03322 0.7597 1.3901 0.5647 6.8136 0.3618 1.8858 0.2325 12-0345 0.40477 0.7686 1.3800 0.6276 7.2103 0.3773 1.7100 0.2440 12-0345 0.40471 0.80536 1.43586 0.59805 7.48251 0.33266 1.71012 0.27033 500 mg/ms/m 0.666028		30	0.0070590	0.083415	0.181448	0.044747	1.24252	0.039146	0.112027	0.050662
125 mg/kg 12-0137 0.03735 0.9136 1.3532 0.5735 8.3272 0.4270 1.7655 0.3201 125 mg/kg 12-0224 0.03843 0.8693 1.3819 0.6682 8.3800 0.4663 1.8425 0.3383 12-0224 0.03525 0.7050 1.5642 0.5636 7.4953 0.3846 1.6570 0.2683 12-0225 0.04190 0.7864 1.3517 0.5543 6.4719 0.4047 1.8016 0.2785 12-0275 0.03748 0.7663 1.4224 0.6111 7.4471 0.3426 1.6931 0.2368 12-0296 0.03746 0.7597 1.3720 0.6508 7.4331 0.4117 1.6061 0.2309 12-0345 0.04871 0.8025 1.3901 0.5847 6.8136 0.3973 1.7100 0.2440 12-0345 0.04871 0.8025 1.3905 0.55907 7.0048 0.3743 1.4853 0.2672 500 mg/kg 12-0177 0.04105		10 0107	0 00705	0.0450	4 5500	0.5705	0.0070	0 4070	4 7055	
125 mg/kg 12-0204 0.0343 0.0593 1.3819 0.05674 8.3800 0.4663 1.8422 0.3383 12-0223 0.03208 0.8920 1.5545 0.5874 8.2418 0.3764 1.6570 0.2630 12-0223 0.03208 0.7660 1.5642 0.5636 7.4953 0.3846 1.6542 0.2918 12-0275 0.03748 0.7663 1.4224 0.6111 7.4471 0.3426 1.6931 0.2368 12-0296 0.03746 0.7597 1.3901 0.5847 6.8136 0.3618 1.8858 0.2325 12-0345 0.04871 0.8025 1.3905 0.5590 7.0048 0.3743 1.4853 0.2672 Mean 0.038475 0.806346 1.43586 0.59805 7.48251 0.39266 1.71012 0.27033 SD 0.0048987 0.066028 0.085191 0.039823 0.655775 0.035683 0.118989 0.037256 500 mg/kg 12-0177 0.04105 0.8178	12E malka	12-0107	0.03735	0.9156	1.0032	0.5735	0.3272	0.4270	1.7655	0.3201
12-0223 0.03205 0.03205 0.03205 0.03704 0.2416 0.0764 1.6570 0.2830 12-0224 0.03255 0.7050 1.5622 0.5636 7.4953 0.3846 1.6542 0.2918 12-0275 0.03748 0.7663 1.4224 0.6111 7.4471 0.3426 1.6931 0.2368 12-0293 0.03322 0.7978 1.3720 0.6508 7.4331 0.4117 1.6061 0.2309 12-0296 0.03746 0.7597 1.3901 0.5847 6.8136 0.3618 1.8858 0.2325 12-0345 0.04277 0.7686 1.3800 0.6276 7.2103 0.3773 1.7100 0.2440 12-0354 0.04871 0.8025 1.3905 0.5590 7.0048 0.3743 1.4853 0.2672 SD 0.004897 0.806346 1.43586 0.59805 7.44251 0.39266 1.71012 0.27033 SD 0.0048987 0.66028 0.085191 0.039823	125 mg/kg	12-0204	0.03043	0.0093	1.3019	0.0002	0.3000	0.4003	1.8425	0.3383
12-0224 0.03325 0.7030 1.3622 0.03636 7.4933 0.3846 1.6542 0.2918 12-0253 0.04190 0.7864 1.3517 0.5543 6.4719 0.4047 1.8016 0.2785 12-0275 0.03748 0.7663 1.4224 0.6111 7.4471 0.3426 1.6931 0.2308 12-0296 0.03746 0.7597 1.3901 0.5847 6.8136 0.3618 1.8858 0.2325 12-0245 0.04277 0.7686 1.3800 0.6276 7.2103 0.3773 1.7100 0.2440 12-0354 0.04871 0.8025 1.3905 0.5590 7.048 0.3743 1.4853 0.2672 Mean 0.038475 0.806346 1.43586 0.59805 7.48251 0.39266 1.7102 0.27033 SD 0.0048987 0.066028 0.085191 0.039823 0.655775 0.035683 0.118989 0.037266 12-0177 0.04105 0.8178 1.4718 0.3469		12-0223	0.03208	0.8920	1.0040	0.5874	8.2418	0.3764	1.6570	0.2630
12-0235 0.04130 0.7664 1.3517 0.3543 6.4719 0.4047 1.8016 0.2785 12-0275 0.03748 0.7663 1.4224 0.6111 7.4471 0.3426 1.6931 0.2368 12-0293 0.03332 0.77978 1.3720 0.6508 7.4331 0.4117 1.6061 0.2309 12-0296 0.03746 0.7597 1.3901 0.5847 6.8136 0.3618 1.8858 0.2275 12-0345 0.04277 0.7686 1.3800 0.6276 7.2103 0.3773 1.7100 0.2440 12-0354 0.04871 0.8025 1.3905 0.5590 7.0048 0.3743 1.4853 0.2672 Mean 0.038475 0.806346 1.43586 0.59805 7.48251 0.39266 1.71012 0.27033 500 mg/kg 12-0177 0.04105 0.8178 1.4718 0.3469 8.3496 0.5273 0.7749 0.4407 12-0177 0.04105 0.8178 1.4718		12-0224	0.03525	0.7050	1.3022	0.5636	7.4953	0.3846	1.6542	0.2918
12-0273 0.03746 0.7633 1.4224 0.6111 7.4471 0.3426 1.6931 0.2368 12-0293 0.03332 0.7978 1.3720 0.6508 7.4331 0.4117 1.6061 0.2309 12-0296 0.03746 0.7597 1.3901 0.5847 6.8136 0.3618 1.8858 0.2325 12-0345 0.04277 0.7686 1.3800 0.6276 7.2103 0.3773 1.7100 0.2440 12-0354 0.04871 0.8025 1.3905 0.5590 7.0048 0.3743 1.4853 0.2672 Mean 0.038475 0.806346 1.43586 0.59805 7.48251 0.39266 1.71012 0.27033 SD 0.0048987 0.066028 0.085191 0.039823 0.655775 0.035683 0.118989 0.037256 500 mg/kg 12-0177 0.04105 0.8178 1.4718 0.3469 8.3496 0.5273 0.7749 0.4407 500 mg/kg 12-0177 0.04105 0.8178		12-0200	0.04190	0.7669	1.3017	0.5543	0.4/19	0.4047	1.8016	0.2785
12-0233 0.03322 0.7976 1.3720 0.0306 7.4331 0.4117 1.6061 0.2309 12-0296 0.03746 0.7597 1.3901 0.5847 6.8136 0.3618 1.8858 0.2325 12-0345 0.04277 0.7686 1.3800 0.6276 7.2103 0.3773 1.7100 0.2440 12-0354 0.04871 0.8025 1.3905 0.5590 7.0048 0.3743 1.4853 0.2672 Mean 0.038475 0.806346 1.43586 0.59805 7.48251 0.39266 1.71012 0.27033 SD 0.0048987 0.066028 0.085191 0.039823 0.655775 0.035683 0.118989 0.037256 12-0177 0.04105 0.8178 1.4718 0.3469 8.3496 0.5273 0.7749 0.4407 12-0203 0.03819 0.7671 1.4080 0.3270 6.9269 0.4075 0.6716 0.2939 12-0204 0.05103 0.9136 1.4328 0.4161		12-02/0	0.03740	0.7003	1.4224	0.0111	7.4471	0.3420	1.0931	0.2368
12-0230 0.03740 0.7686 1.3801 0.0847 5.8136 0.3818 1.8858 0.2325 12-0345 0.04871 0.8025 1.3800 0.6276 7.2103 0.3773 1.7100 0.2440 12-0354 0.04871 0.8025 1.3905 0.5590 7.0048 0.3743 1.4853 0.2672 Mean 0.038475 0.806346 1.43586 0.59805 7.48251 0.39266 1.71012 0.27033 SD 0.0048987 0.066028 0.085191 0.039823 0.655775 0.035683 0.118989 0.037256 500 mg/kg 12-0177 0.04105 0.8178 1.4718 0.3469 8.3496 0.5273 0.7749 0.4407 500 mg/kg 12-0177 0.04105 0.8178 1.4718 0.3469 8.3496 0.5273 0.7749 0.4407 12-0203 0.03819 0.7671 1.4080 0.3270 6.9269 0.4075 0.6716 0.2939 12-0204 0.05103 0.9136		12-0200	0.03746	0.7507	1 2001	0.0508	6.0426	0.9610	1.0001	0.2309
12-0343 0.04277 0.7080 1.3000 0.0273 7.2103 0.3733 1.7100 0.2440 12-0354 0.04871 0.8025 1.3905 0.5590 7.0048 0.3743 1.4853 0.2672 Mean 0.038475 0.806346 1.43586 0.59805 7.48251 0.39266 1.71012 0.27033 SD 0.0048987 0.066028 0.085191 0.039823 0.655775 0.035683 0.118989 0.037256 500 mg/kg 12-0177 0.04105 0.8178 1.4718 0.3469 8.3496 0.5273 0.7749 0.4407 500 mg/kg 12-0177 0.04105 0.8178 1.4718 0.3469 8.3496 0.5273 0.7749 0.4407 12-0203 0.03819 0.7671 1.4080 0.3270 6.9269 0.4075 0.6716 0.2939 12-0204 0.05103 0.9136 1.4328 0.4161 9.0697 0.4328 0.5623 0.4127 12-0236 0.05103 0.9136		12-0230	0.04277	0.7696	1 3900	0.5047	7.0100	0.3010	1.0000	0.2325
Mean 0.038475 0.806346 1.43586 0.59805 7.48251 0.39266 1.71012 0.27033 SD 0.0048987 0.066028 0.085191 0.039823 0.6555775 0.035683 0.118989 0.037256 12-0177 0.04105 0.8178 1.4718 0.3469 8.3496 0.5273 0.7749 0.4407 12-0177 0.04105 0.8178 1.4718 0.3270 6.9269 0.4075 0.6714 0.2990 12-0203 0.03819 0.7671 1.4080 0.3270 6.9269 0.4075 0.6716 0.2939 12-0209 0.03700 0.9070 1.7142 0.3756 8.7877 0.4080 0.7858 0.2512 12-0236 0.05103 0.9136 1.4328 0.4161 9.0697 0.4328 0.5623 0.4127 12-0256 0.03879 0.7308 1.3482 0.3841 6.5492 0.3581 0.6741 0.2167 12-0297 0.05519 0.8401 1.9170 0.5014		12-0354	0.04271	0.8025	1 3005	0.5590	7.0048	0.37/3	1./100	0.2440
SD 0.0048987 0.066028 0.085191 0.039823 0.655775 0.035683 0.118989 0.037256 500 mg/kg 12-0177 0.04105 0.8178 1.4718 0.3469 8.3496 0.5273 0.7749 0.4407 500 mg/kg 12-0177 0.04105 0.8178 1.4718 0.32883 8.6654 0.4366 0.7541 0.2990 12-0203 0.03819 0.7671 1.4080 0.3270 6.9269 0.4075 0.6716 0.2939 12-0209 0.03700 0.9070 1.7142 0.3756 8.7877 0.4080 0.7858 0.2512 12-0236 0.05103 0.9136 1.4328 0.4161 9.0697 0.4328 0.5623 0.4127 12-0256 0.03879 0.7308 1.3482 0.3841 6.5492 0.3581 0.6741 0.2167 12-0297 0.05519 0.8401 1.9170 0.5014 8.7354 0.5934 0.7646 0.2976 12-0341 0.05621 0.8098		Mean	0.038475	0.806346	1 43586	0.55805	7 49254	0.30266	1 71012	0.2072
500 mg/kg 12-0177 0.04105 0.8178 1.4718 0.3469 8.3496 0.5273 0.7749 0.4407 500 mg/kg 12-0177 0.04105 0.8178 1.4718 0.3469 8.3496 0.5273 0.7749 0.4407 500 mg/kg 12-0189 0.03073 0.7644 1.7702 0.2883 8.6654 0.4366 0.7541 0.2990 12-0203 0.03819 0.7671 1.4080 0.3270 6.9269 0.4075 0.6716 0.2939 12-0209 0.03700 0.9070 1.7142 0.3756 8.7877 0.4080 0.7858 0.2512 12-0236 0.05103 0.9136 1.4328 0.4161 9.0697 0.4328 0.5623 0.4127 12-0256 0.03879 0.7308 1.3482 0.3841 6.5492 0.3581 0.6741 0.2167 12-0297 0.05519 0.8401 1.9170 0.5014 8.7354 0.5934 0.7646 0.2976 12-0321 0.04275		SD	0.030473	0.000040	0.085191	0.39803	0 655775	0.35200	0.449090	0.27033
12-0177 0.04105 0.8178 1.4718 0.3469 8.3496 0.5273 0.7749 0.4407 500 mg/kg 12-0189 0.03073 0.7644 1.7702 0.2883 8.6654 0.4366 0.7541 0.2990 12-0203 0.03819 0.7671 1.4080 0.3270 6.9269 0.4075 0.6716 0.2939 12-0209 0.03700 0.9070 1.7142 0.3756 8.7877 0.4080 0.7858 0.2512 12-0236 0.05103 0.9136 1.4328 0.4161 9.0697 0.4328 0.5623 0.4127 12-0297 0.05519 0.8401 1.9170 0.5014 8.7354 0.5934 0.7646 0.2976 12-0297 0.05621 0.8098 1.6262 0.4970 ND 0.4398 0.6525 0.2389 12-0314 0.05621 0.8098 1.6262 0.4970 ND 0.4398 0.6525 0.2389 12-0324 0.04275 0.7613 1.2478 0.3929 <th></th> <th>00</th> <th>0.0040307</th> <th>0.000020</th> <th>0.003131</th> <th>0.033023</th> <th>0.000770</th> <th>0.033003</th> <th>0.110305</th> <th>0.037230</th>		00	0.0040307	0.000020	0.003131	0.033023	0.000770	0.033003	0.110305	0.037230
500 mg/kg 12-0189 0.03073 0.7644 1.7702 0.2883 8.6654 0.4366 0.7541 0.2990 12-0203 0.03819 0.7671 1.4080 0.3270 6.9269 0.4075 0.6716 0.2939 12-0209 0.03700 0.9070 1.7142 0.3275 6.9269 0.4075 0.6716 0.2939 12-0209 0.03700 0.9070 1.7142 0.3756 8.7877 0.4080 0.7858 0.2512 12-0236 0.05103 0.9136 1.4328 0.4161 9.0697 0.4328 0.5623 0.4127 12-0256 0.03879 0.7308 1.3482 0.3841 6.5492 0.3581 0.6741 0.2167 12-0297 0.05519 0.8401 1.9170 0.5014 8.7354 0.5934 0.7646 0.2976 12-0314 0.05621 0.8098 1.6262 0.4970 ND 0.4398 0.6525 0.2389 12-0322 0.04275 0.7613 1.2478 0.3929		12-0177	0 04105	0 8178	1 4718	0.3469	8 3496	0 5273	0 7749	0 4407
12-0203 0.03819 0.7671 1.4080 0.3270 6.9269 0.4075 0.6716 0.2339 12-0203 0.03819 0.7671 1.4080 0.3270 6.9269 0.4075 0.6716 0.2339 12-0209 0.03700 0.9070 1.7142 0.3756 8.7877 0.4080 0.7858 0.2512 12-0236 0.05103 0.9136 1.4328 0.4161 9.0697 0.4328 0.5623 0.4127 12-0256 0.03879 0.7308 1.3482 0.3841 6.5492 0.3581 0.6741 0.2167 12-0297 0.05519 0.8401 1.9170 0.5014 8.7354 0.5934 0.7646 0.2976 12-0314 0.05621 0.8098 1.6262 0.4970 ND 0.4398 0.6525 0.2389 12-0322 0.04275 0.7613 1.2478 0.3929 5.8439 0.3401 0.6940 0.2743 12-0341 0.03987 0.8505 1.5449 0.3878 7.6901 <td>500 ma/ka</td> <td>12-0189</td> <td>0.03073</td> <td>0 7644</td> <td>1 7702</td> <td>0 2883</td> <td>8 6654</td> <td>0.4366</td> <td>0.7541</td> <td>0.2000</td>	500 ma/ka	12-0189	0.03073	0 7644	1 7702	0 2883	8 6654	0.4366	0.7541	0.2000
12-0209 0.03700 0.9070 1.7142 0.3756 8.7877 0.4080 0.7858 0.2512 12-0209 0.03700 0.9136 1.4328 0.4161 9.0697 0.4328 0.5623 0.4127 12-0256 0.03879 0.7308 1.3482 0.3841 6.5492 0.3581 0.6741 0.2167 12-0297 0.05519 0.8401 1.9170 0.5014 8.7354 0.5934 0.7646 0.2976 12-0314 0.05621 0.8098 1.6262 0.4970 ND 0.4398 0.6525 0.2389 12-0322 0.04275 0.7613 1.2478 0.3929 5.8439 0.3401 0.6940 0.2743 12-0341 0.03987 0.8505 1.5449 0.3878 7.6901 0.4191 0.6241 0.2558 Mean 0.04308 0.816251 1.54810 0.39169 7.84642 0.43626 0.69582 0.29807 SD 0.0083560 0.062299 0.207629 0.067445 1.154303 0.074751 0.073336 0.073163	eee mgmg	12-0203	0.03819	0 7671	1 4080	0.3270	6 9269	0.4075	0.6716	0.2000
12-0236 0.05103 0.9136 1.4328 0.4161 9.0697 0.4328 0.5623 0.4127 12-0256 0.03879 0.7308 1.3482 0.3841 6.5492 0.3581 0.6741 0.2167 12-0297 0.05519 0.8401 1.9170 0.5014 8.7354 0.5934 0.7646 0.2976 12-0314 0.05621 0.8098 1.6262 0.4970 ND 0.4398 0.6525 0.2389 12-0322 0.04275 0.7613 1.2478 0.3929 5.8439 0.3401 0.6940 0.2743 12-0341 0.03987 0.8505 1.5449 0.3878 7.6901 0.4191 0.6241 0.2558 Mean 0.04308 0.816251 1.54810 0.39169 7.84642 0.43626 0.69582 0.29807 SD 0.0083560 0.062299 0.207629 0.067445 1.154303 0.074751 0.073336 0.073163		12-0209	0.03700	0 9070	1 7142	0.3756	8 7877	0.4080	0.7858	0.2505
12-0256 0.03879 0.7308 1.3482 0.3841 6.5492 0.3581 0.6741 0.2167 12-0256 0.03879 0.7308 1.3482 0.3841 6.5492 0.3581 0.6741 0.2167 12-0297 0.05519 0.8401 1.9170 0.5014 8.7354 0.5934 0.7646 0.2976 12-0314 0.05621 0.8098 1.6262 0.4970 ND 0.4398 0.6525 0.2389 12-0322 0.04275 0.7613 1.2478 0.3929 5.8439 0.3401 0.6940 0.2743 12-0341 0.03987 0.8505 1.5449 0.3878 7.6901 0.4191 0.6241 0.2558 Mean 0.04308 0.816251 1.54810 0.39169 7.84642 0.43626 0.69582 0.29807 SD 0.0083560 0.062299 0.207629 0.067445 1.154303 0.074751 0.073336 0.073163		12-0236	0.05103	0.9136	1 4328	0.4161	9 0697	0.4328	0.5623	0.4127
12-0297 0.05519 0.8401 1.9170 0.5014 8.7354 0.5934 0.7646 0.2976 12-0297 0.05621 0.8098 1.6262 0.4970 ND 0.4398 0.6525 0.2389 12-0322 0.04275 0.7613 1.2478 0.3929 5.8439 0.3401 0.6940 0.2743 12-0341 0.03987 0.8505 1.5449 0.3878 7.6901 0.4191 0.6241 0.2558 Mean 0.04308 0.816251 1.54810 0.39169 7.84642 0.43626 0.69582 0.29807 SD 0.0083560 0.062299 0.207629 0.067445 1.154303 0.074751 0.073336 0.073163		12-0256	0.03879	0.7308	1 3482	0.3841	6 5492	0.4520	0.5025	0.9167
12-0314 0.05621 0.8098 1.6262 0.4970 ND 0.4398 0.6525 0.2389 12-0322 0.04275 0.7613 1.2478 0.3929 5.8439 0.3401 0.6940 0.2743 12-0341 0.03987 0.8505 1.5449 0.3878 7.6901 0.4191 0.6241 0.2558 Mean 0.04308 0.816251 1.54810 0.39169 7.84642 0.43626 0.69582 0.29807 SD 0.0083560 0.062299 0.207629 0.067445 1.154303 0.074751 0.073336 0.073163		12-0297	0.05519	0.8401	1 9170	0.5014	8 7354	0.5934	0.7646	0.2076
12-0322 0.04275 0.7613 1.2478 0.3929 5.8439 0.3401 0.6940 0.2743 12-0341 0.03987 0.8505 1.5449 0.3878 7.6901 0.4191 0.6241 0.2558 Mean 0.04308 0.816251 1.54810 0.39169 7.84642 0.43626 0.69582 0.29807 SD 0.0083560 0.062299 0.207629 0.067445 1.154303 0.074751 0.073336 0.073163		12-0314	0.05621	0 8008	1.6262	0.4970	ND	0.0004	0.6525	0.2390
12-0341 0.03987 0.8505 1.5449 0.3878 7.6901 0.4191 0.6241 0.2558 Mean 0.04308 0.816251 1.54810 0.39169 7.84642 0.43626 0.69582 0.29807 SD 0.0083560 0.062299 0.207629 0.067445 1.154303 0.074751 0.073336 0.073163		12-0322	0.04275	0 7613	1 2478	0.3929	5 8430	0.3401	0.6040	0.2303
Mean 0.04308 0.816251 1.54810 0.39169 7.84642 0.43626 0.69582 0.29807 SD 0.0083560 0.062299 0.207629 0.067445 1.154303 0.074751 0.073336 0.073163		12-0341	0.03987	0.8505	1 5449	0.3878	7 6901	0.4191	0.6241	0.2558
SD 0.0083560 0.062299 0.207629 0.067445 1.154303 0.074751 0.073336 0.073163	1	Mean	0.04308	0.816251	1 54810	0 39469	7 84642	0.43636	0.60592	0.20007
		SD	0.0083560	0.062299	0.207629	0.067445	1.154303	0.074751	0.073336	0.073163

(f) = Animal died on study. ND = No data
Table H-8 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Organ Mass Female Rats

ORGAN MASS RELATIVE TO BRAIN MASS

Group	Animal ID	Adrenals	Heart	Kidneys	Liver	Ovaries	Spleen	Thymus	Uterus
	10 0011	0.0446	0 6014	1 0207	6 0545	0.0600	0 2001	0 1041	0 2005
0 01	12-0211	0.0416	0.6911	1.0297	0.2545	0.0609	0.3901	0.1941	0.3005
Corn Oli	12-0220	0.0339	0.6384	0.9222	7.4594	0.0563	0.4699	0.2171	0.2872
Control	12-0222	0.0364	0.6119	1.0339	6.0964	0.0674	0.3610	0.23/1	0.3266
	12-0260	0.0556	0.4742	1.0491	4.9174	0.0866	0.2449	0.0956	0.3976
	12-0289	0.0514	0.6333	0.9790	6.1002	0.0766	0.4134	0.1275	0.3054
	12-0298	0.0444	0.5450	4 0 400	5 4007	0.0005			
	12-0306	0.0411	0.5450	1.0499	5.4227	0.0695	0.3214	0.1336	0.4149
	12-0309	0.0497	0.5885	1.1160	6.3423	0.0887	0.3564	0.1014	0.3262
	12-0317	0.0007	0 5005	4 0000	ND	0.4400	N/D	0 4500	0.0440
3	12-0339	0.0397	0.5095	1.0392	NU	0.1132	ND	0.1566	0.3116
	Mean	0.04367	0.58648	1.02/38	6.08470	0.07741	0.36532	0.15/8/	0.33375
	50	0.007694	0.0/242/	0.056595	0.794392	0.018435	0.071189	0.053004	0.046801
	12-0168	0.0527	0.6891	1,2606	5,9848	0.0771	0.3291	0 1765	0.4310
31.25 ma/ka	12-0170	0.0541	0.7251	1.1666	8.0229	0.0942	0.4227	0.1229	0.3446
	12-0201 ^c	0.0341	0.5631	1.0697	6.6806	0.0646	0.3016	0.0941	0.2472
	12-0221	0.0387	0.5753	0.9781	7.1490	0.0686	0.3219	0.0477	0.3587
	12-0240	0.0285	0.5575	0.9087	5.8571	0.0838	0.2922	0.1547	0.3319
	12-0299ª						20120120		
	12-0300	0.0496	0.5943	1.0868	6.2543	0.0853	0.3090	0.1457	0.4331
	12-0346	0.0507	0.5582	0.9412	5.4738	0.0823	0.3210	0.1960	0.3194
	12-0367	0.0345	0.5390	0.9634	5.1815	0.0679	0.3059	0.1939	0.2967
	12-0369	0.0366	0.6168	1.1088	5.9947	0.0531	0.2903	0.0876	0.3195
	Mean	0.04218	0.60205	1.05378	6.28874	0.07519	0.32153	0.13545	0.34247
	SD	0.009612	0.064352	0.115919	0.877311	0.0127	0.040195	0.051361	0.059851
	12-0169	0.0844	0.5800	1.1932	6.3066	0.0725	0.3843	0.0611	0.5013
125 mg/kg	12-0210	0.0322	0.7436	1.0990	6.0080	0.0628	0.3891	0.2187	0.3298
	12-0212	0.0461	0.5683	0.9777	5.8912	0.0876	0.3107	0.0997	0.3117
	12-0227	0.0415	0.6194	0.9397	5.5422	0.0716	0.2577	0.1460	0.3382
	12-0257	0.0449	0.5833	0.8360	5.5279	0.0813	0.3345	0.0703	0.3589
	12-0259	0.0532	0.5093	1.0547	4.4310	0.0908	0.2428	0.1089	0.3919
	12-0261	0.0455	0.6127	1.0545	6.6272	0.0925	0.3298	0.1689	0.3478
	12-0278	0.0488	0.7468	1.2020	6.6295	0.0641	0.2829	0.1532	0.3624
	12-0291	0.0464	0.5751	1.2660	6.3725	0.0756	0.3162	0.0988	0.3968
	12-0327	0.0503	0.5090	1.1386	5.4556	0.0688	0.3180	0.1451	0.4442
	Mean	0.04932	0.60473	1.07614	5.87917	0.07676	0.31661	0.12706	0.37830
	SD	0.013571	0.082526	0.132039	0.673204	0.010765	0.047633	0.048267	0.057677
500	12-0166	0.0383	0.5816	0.8955	5.8226	0.0651	0.3270	0.1197	0.3270
500 mg/kg	12-0167	0.0346	0.5318	1.0722	6.2962	0.0556	0.3088	0.1173	0.3504
	12-01/1	0.0440	0 0007	4 0070					
	12-0198	0.0449	0.6007	1.0279	6.2473	0.0708	0.3340	0.0793	0.2428
	12-0229	0.0.00	0.0004	0.0017					
	12-0258	0.0496	0.5961	0.9917	5.5372	0.1012	0.2763	0.1937	0.7154*
	12-02/9	0.0385	0.5154	1.0917	4.8094	0.0600	0.1941	0.1063	0.2452
	12-0306	0.0446	0.7321	1.0874	5.6/16	0.0946	0.3437	0.1551	0.3269
	12-0336	0.0290	0.5485	0.9700	5.3048	0.0665	0.2672	0.1379	0.2606
	12-0348	0.0280	0.5642	1.0709	5.4097	0.0589	0.2949	0.1424	0.3055
	Mean	0.03979	0.58380	1.02592	5.63735	0.07159	0.29325	0.13145	0.29407
	SD	0.00725	0.067032	0.069245	0.492747	0.017017	0.048403	0.034413	0.043972

a= Sperm plug was found but dam was not pregnant.

b= No sperm plug found and was not pregnant.

c= No sperm plug found but dam was pregnant.

d= Animal was not fasted prior to necropsy.

* = Identified as an outlier.

ND = No data

Table H-9 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Organ Mass Recovery Male Rats

ORGAN MASS RELATIVE TO BRAIN MASS

Group	Animal ID	Adrenals	Heart	Kidneys	Epididymides	Liver	Spleen	Testes	Thymus
	12-0174	0.02659	0.9261	1.6332	0.6431	10.1803	0.5611	1.8166	0.2068
Corn Oil	12-0179	0.02607	0.9596	1.6997	0.5677	10.4920	0.6590	1.6278	0.2330
Control	12-0194	0.03182	0.9738	1.8827	0.5902	10.8583	0.4551	1.5070	0.2132
	12-0208	0.03587	0.7804	1.6325	0.6308	8.5696	0.4064	1.4921	0.2931
	12-0272	0.03444	0.8678	1.7105	0.6076	9.8508	0.4366	1.5030	0.2249
	12-0294	0.02955	0.9515	1.6824	0.5489	8.8038	0.5300	1.6985	0.2101
	12-0304	0.03055	0.8890	1.7785	0.4969	8.8473	0.4955	1.7502	0.2215
	12-0323	0.03311	0.8600	1.6831	0.4352	10.1490	0.4522	1.4934	0.1873
	12-0332	0.03052	0.8914	1.6311	0.5193	7.6346	0.3654	1.5193	0.1508
	12-0365	0.02299	0.8253	1.6533	0.5490	8.7186	0.4524	1.6184	0.1908
	Mean	0.030151	0.89250	1.69870	0.55886	9.41042	0.48137	1.60263	0.21315
	SD	0.0039993	0.061915	0.079020	0.063773	1.034005	0.084271	0.119169	0.036656
	12-0176	0.02721	0.8604	1.6539	0.3439	10.0366	0.5968	0.7614	0.1811
500 mg/kg	12-0186	0.02586	0.9269	1.7766	0.4276	9.7468	0.5185	1.1337	0.2211
	12-0215	0.02339	0.8772	1.5042	0.3642	8.6057	0.6470	0.9240	0.2657
	12-0244	0.03424	0.7908	1.6224	0.3837	7.6690	0.4113	1.2254	0.2035
	12-0283	0.03223	0.8697	1.7612	0.1993	8.1280	0.4839	0.8557	0.1729
	12-0295	ND	0.8958	1.7957	0.2180	9.0087	0.5832	1.1504	0.2139
	12-0302	0.02944	0.8377	1.6787	0.2216	9.3778	0.4485	0.9473	0.1558
	12-0310	0.03553	0.8296	1.6370	0.2924	9.2427	0.4546	0.9101	0.2008
	12-0333	0.03684	0.8742	1.7713	0.3536	8.1612	0.4129	0.8909	0.2196
	12-0363	0.02966	0.9449	1.5996	0.3420	8.0162	0.5014	0.8225	0.2525
	Mean	0.030488	0.87071	1.68006	0.31462	8.79927	0.50581	0.96213	0.20869
	SD	0.0045721	0.045475	0.094798	0.078107	0.802050	0.080507	0.154481	0.033995

ND = No data

Table H-10 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Absolute Organ Mass (grams) Male Rats

	1	Corn Oil	NTO in Corn Oil					
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg			
Body Weight	Mean	502.3	477.7	473.9	478.6			
	S.D.	33.01	43.54	28.04	52.37			
	N	10	9	10	10			
Adrenals	Mean	0.0860	0.0834	0.0848	0.0912			
	S.D.	0.01523	0.01633	0.01175	0.01766			
	N	10	9	10	10			
Brain	Mean	2.1262	2.155	2.2023	2.1172			
	S.D.	0.11397	0.07697	0.05341	0.05304			
	N	10	9	10	10			
Heart	Mean	1.8930	1.7222	1.7739	1.7282			
	S.D.	0.16013	0.18856	0.12335	0.13856			
	N	10	9	10	10			
Kidneys	Mean	3.3739	3.3602	3.1620	3.2780			
	S.D.	0.22721	0.38887	0.19884	0.44738			
	N	10	9	10	10			
Epididymides	Mean	1.2769	1.2262	1.3166	0.8293ª			
	S.D.	0.18770	0.08860	0.08463	0.14382			
	N	10	9	10	10			
Liver	Mean	17.7142	17.2361	16.4657	16.5960			
	S.D.	1.41119	2.65667	1.31029	2.45914			
	N	10	9	10	9			
Spleen	Mean	0.9344	0.8532	0.8634	0.9248			
	S.D.	0.17329	0.10066	0.06224	0.16826			
	N	10	9	10	10			
Testes	Mean	3.5535	3.6299	3.7623	1.4750 ^b			
	S.D.	0.38858	0.21723	0.21267	0.17658			
	N	10	9	10	10			
Thymus	Mean	0.6457	0.6486	0.5943	0.6314			
	S.D.	0.07987	0.11021	0.07325	0.15934			
	N	10	9	10	10			

^a = Significantly reduced compared to all other dose groups (p=0.000 for all).

^b = Significantly reduced compared to all other dose groups (p=0.000 for all).

Table H-11 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Absolute Organ Mass (grams) Female Rats

	1	Corn Oil	NTO in Corn Oil				
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg		
Body Weight	Mean	295.9	303.4	301.7	300.8		
	S.D.	33.51	25.12	30.93	24.34		
	N	8	9	10	8		
Adrenals	Mean	0.0874	0.0811	0.0980	0.0797		
	S.D.	0.01468	0.01904	0.02566	0.01402		
	N	8	9	10	7		
Brain	Mean	2.004625	1.920222ª	1.9926	1.9853		
	S.D.	0.07173	0.05548	0.08395	0.08756		
	N	8	9	10	8		
Heart	Mean	1.1770	1.1570	1.2071	1.1606		
	S.D.	0.16162	0.13698	0.19012	0.16133		
	N	8	9	10	8		
Kidneys	Mean	2.059375	2.0260	2.1395	2.0411		
	S.D.	0.13427	0.25356	0.23383	0.21601		
	N	8	9	10	8		
Liver	Mean	12.3146	12.1011	11.7056	11.1901		
	S.D.	1.81771	1.90478	1.35617	1.08191		
	N	7	9	10	8		
Ovaries	Mean	0.154375	0.1443	0.1528	0.1421		
	S.D.	0.03273	0.02424	0.02135	0.03461		
	N	8	9	10	8		
Spleen	Mean	0.7389	0.6178 ^b	0.6294	0.5824 ^b		
	S.D.	0.14979	0.08203	0.08766	0.10275		
	N	7	9	10	8		
Thymus	Mean	0.3175	0.2586	0.2546	0.2606		
	S.D.	0.11180	0.09524	0.10010	0.06775		
	N	8	9	10	8		
Uterus	Mean	0.669375	0.6586	0.7522	0.5863 ^c		
	S.D.	0.09999	0.12387	0.10591	0.09463		
	N	8	9	10	7		

^a = Significantly reduced compared to controls (p=0.024).

^b = Significantly reduced compared to controls (p=0.035 & 0.008).

^c = Significantly reduced compared to 125 mg/kg-day group (p=0.027).

Table H-12 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Absolute Organ Mass (grams) Recovery Male Rats

Period		Corn Oil Control	NTO in Corn Oil 500 mg/kg
			eee manag
Body Weight	Mean	597.1	582.0
	S.D.	52.25	52.20
	N	10	10
Adrenals	Mean	0.0677	0.0682
	S.D.	0.00972	0.00905
	N	10	9
D		0.0400	0.0400
Brain	Mean	2.2438	2.2403
	S.D.	0.08356	0.11900
	N	10	10
Heart	Mean	2.0035	1.9500
	S.D.	0.17160	0.13174
	N	10	10
			1.50
Kidneys	Mean	3.8131	3.7599
101479-140-14 1 920	S.D.	0.25580	0.22723
	N	10	10
Epididymides	Mean	1.2568	0.7027 ^a
	S.D.	0.17183	0.16969
	N	10	10
Liver	Moon	21 1200	10 7506
LIVEI	SD	270018	2 40640
	N.D.	10	2.49049
	Ľ	10	10
Spleen	Mean	1.0817	1,1361
	S.D.	0.20864	0.20936
	N	10	10
Testes	Mean	3.5942	2.1521 ^b
	S.D.	0.27121	0.33229
	Ν	10	10
Thymus	Mean	0.4706	0.4660
inymus	SD	0.4790	0.4009
	N.D.	0.09200	0.07659
	ľ	10	10

^a = Significantly reduced compared to controls (p=0.000).

 ^b = Significantly reduced compared to controls (p=0.000).

Table H-13 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Organ Mass Relative to Body Mass Male Rats

		Corn Oil	NTO in Corn Oil				
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg		
Adrenals	Mean	0.000172	0.000176	0.000180	0.000192		
	S.D.	3.188E-05	3.727E-05	2.893E-05	3.799E-05		
	N	10	9	10	10		
Brain	Mean	0.00425	0.00454	0.00466	0.00447		
	S.D.	0.00037413	0.000391617	0.0003002	0.0005031		
	N	10	9	10	10		
Heart	Mean	0.00377	0.00361	0.00375	0.00363		
	S.D.	0.000233	0.000245	0.000212	0.000317		
	N	10	9	10	10		
Kidneys	Mean	0.00672	0.00703	0.00668	0.00686		
	S.D.	0.000333	0.000542	0.000327	0.000653		
	N	10	9	10	10		
Epididymides	Mean	0.00254	0.00258	0.00279	0.00175ª		
	S.D.	0.000350	0.000169	0.000249	0.000342		
	N	10	9	10	10		
Liver	Mean	0.03529	0.03599	0.03473	0.03464		
	S.D.	0.002190	0.003868	0.001649	0.001945		
	N	10	9	10	9		
Spleen	Mean	0.00186	0.00179	0.00183	0.00193		
	S.D.	0.000331	0.000189	0.000154	0.000216		
	N	10	9	10	10		
Testes	Mean	0.00709	0.00764	0.00798	0.00310 ^b		
	S.D.	0.000805	0.000664	0.000826	0.000401		
	N	10	9	10	10		
Thymus	Mean	0.00129	0.00135	0.00125	0.00131		
	S.D.	0.000160	0.000134	0.000139	0.000250		
	N	10	9	10	10		

^a = Significantly reduced compared to all other dose groups (p=0.000 for all).

^b = Significantly reduced compared to all other dose groups (p=0.000 for all).

Table H-14 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Organ Mass Relative to Body Mass Female Rats

		Corn Oil	NT	O in Corn O	il
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg
Adrenals	Mean	0.00030	0.00027	0.00033	0.00026
	S.D.	0.000068	0.000063	0.000104	0.000052
	N	8	9	10	7
Brain	Mean	0.00684	0.00636	0.00666	0.00663
	S.D.	0.000652	0.000420	0.000688	0.000421
	N	8	9	10	8
Heart	Mean	0.00397	0.00381	0.00399	0.00386
	S.D.	0.000206	0.000281	0.000325	0.000406
	N	8	9	10	8
Kidneys	Mean	0.00704	0.00667	0.00715	0.00680
	S.D.	0.000885	0.000557	0.001004	0.000655
	N	8	9	10	8
Liver	Mean	0.04064	0.03976	0.03881	0.03719
	S.D.	0.003719	0.004128	0.002497	0.001526
	N	7	9	10	8
Ovaries	Mean	0.00054	0.00048	0.00052	0.00047
	S.D.	0.000169	0.000083	0.000113	0.000114
	N	8	9	10	8
Spleen	Mean	0.00243	0.00204ª	0.00209	0.00193 ^a
	S.D.	0.000362	0.000216	0.000255	0.000236
	N	7	9	10	8
Thymus	Mean	0.00106	0.00087	0.00083	0.00087
	S.D.	0.000295	0.000361	0.000276	0.000235
	N	8	9	10	8
Uterus	Mean	0.00230	0.00217	0.00253	0.00193
	S.D.	0.000510	0.000373	0.000517	0.000227
	N	8	9	10	7

^a = Significantly reduced compared to controls (p=0.031 & 0.005).

Table H-15 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Organ Mass Relative to Body Mass Recovery Male Rats

		Corn Oil	NTO in Corn Oil
Period		Control	500 mg/kg
Adrenals	Mean	0.000114	0.000119
	S.D.	1.838E-05	2.122E-05
	N	10	9
Brain	Mean	0.00378	0.00386
	S.D.	0.000324868	0.000219369
	N	10	10
Heart	Mean	0.00337	0.00336
	S.D.	0.000306	0.000224
	N	10	10
Kidneys	Mean	0.00641	0.00649
	S.D.	0.000441	0.000524
	N	10	10
Epididymides	Mean	0.00211	0.00121ª
	S.D.	0.000268	0.000307
	N	10	10
Liver	Mean	0.03535	0.03388
	S.D.	0.002474	0.002015
	N	10	10
Spleen	Mean	0.00181	0.00195
	S.D.	0.000255	0.000288
	N	10	10
Testes	Mean	0.00605	0.00372 ^b
	S.D.	0.000528	0.000635
	N	10	10
Thymus	Mean	0.00080	0.00081
	S.D.	0.000127053	0.000136063
	N	10	10

^a = Significantly reduced compared to controls (p=0.000).

 ^b = Significantly reduced compared to controls (p=0.000).

Table H-16 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Organ Mass Relative to Brain Mass Male Rats

		Corn Oil	NTO in Corn Oil				
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg		
Adrenals	Mean	0.040677	0.038662	0.038475	0.043080		
	S.D.	0.0085318	0.0070590	0.0048987	0.0083560		
	N	10	9	10	10		
Heart	Mean	0.89399	0.79913	0.80635	0.81625		
	S.D.	0.105959	0.083415	0.066028	0.062299		
	N	10	9	10	10		
Kidneys	Mean	1.59279	1.55997	1.43586	1.54810		
	S.D.	0.159589	0.181448	0.085191	0.207629		
	N	10	9	10	10		
Epididymides	Mean	0.60066	0.56958	0.59805	0.39169ª		
	S.D.	0.081580	0.044747	0.039823	0.067445		
	N	10	9	10	10		
Liver	Mean	8.35766	8.00435	7.48251	7.84642		
	S.D.	0.846434	1.242520	0.655775	1.154303		
	N	10	9	10	9		
Spleen	Mean	0.44310	0.39538	0.39266	0.43626		
	S.D.	0.102708	0.039146	0.035683	0.074751		
	N	10	9	10	10		
Testes	Mean	1.67820	1.68597	1.71012	0.69582 ^b		
	S.D.	0.227471	0.112027	0.118989	0.073336		
	N	10	9	10	10		
Thymus	Mean	0.30449	0.30109	0.27033	0.29807		
	S.D.	0.040725	0.050662	0.037256	0.073163		
	N	10	9	10	10		

^a = Significantly reduced compared to all other dose groups (p=0.000 for all).

^b = Significantly reduced compared to all other dose groups (p=0.000 for all).

Table H-17 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Organ Mass Relative to Brain Mass Female Rats

		Corn Oil	NTO in Corn Oil					
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg			
Adrenals	Mean	0.04367	0.04218	0.04932	0.03979			
	S.D.	0.007694	0.009612	0.0135711	0.0072499			
	N	8	9	10	7			
Heart	Mean	0.58648	0.60205	0.60473	0.58380			
	S.D.	0.072427	0.064352	0.0825256	0.0670317			
	N	8	9	10	8			
Kidneys	Mean	1.02738	1.05378	1.07614	1.02592			
	S.D.	0.056595	0.115919	0.132039	0.0692448			
	N	8	9	10	8			
Liver	Mean	6.08470	6.28874	5.87917	5.63735			
	S.D.	0.794392	0.877311	0.6732044	0.492747			
	N	7	9	10	8			
Ovaries	Mean	0.07741	0.07519	0.07676	0.07159			
	S.D.	0.018435	0.012700	0.0107646	0.0170166			
	N	8	9	10	8			
Spleen	Mean	0.36532	0.32153	0.31661	0.29325			
	S.D.	0.071189	0.040195	0.0476333	0.0484033			
	N	7	9	10	8			
Thymus	Mean	0.15787	0.13545	0.12706	0.13145			
	S.D.	0.053004	0.051361	0.0482673	0.0344125			
	N	8	9	10	8			
Uterus	Mean	0.33375	0.34247	0.37830	0.29407 ^a			
	S.D.	0.046801	0.059851	0.0576766	0.043972			
	N	8	9	10	7			

^a = Significantly reduced compared to 125 mg/kg-day group (p=0.016).

Table H-18 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary Organ Mass Relative to Brain Mass Recovery Male Rats

		Corn Oil	NTO in Corn Oil
Period		Control	500 mg/kg
Adrenals	Mean	0.030151	0.030488
	S.D.	0.0039993	0.0045721
	N	10	9
Heart	Mean	0.89250	0.87071
	S.D.	0.061915	0.045475
	N	10	10
Kidneys	Mean	1.69870	1.68006
	S.D.	0.079020	0.094798
	N	10	10
Epididymides	Mean	0.55886	0.31462ª
	S.D.	0.063773	0.078107
	N	10	10
Liver	Mean	9.41042	8.79927
	S.D.	1.034005	0.802050
	N	10	10
Spleen	Mean	0.48137	0.50581
	S.D.	0.084271	0.080507
	N	10	10
Testes	Mean	1.60263	0.96213 ^b
	S.D.	0.119169	0.154481
	N	10	10
Thymus	Mean	0.21315	0.20869
	S.D.	0.036656	0.033995
	N	10	10

^a = Significantly reduced compared to controls (p=0.000).

^b = Significantly reduced compared to controls (p=0.000).

Table H-19 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Organ Mass Non-Pregnant Female Rats

ABSOLUTE ORGAN MASS (grams)

Group	Animal ID	Body Weight*	Adrenals	Brain	Heart	Kidneys	Liver	Ovaries	Spleen	Thymus	Uterus	Implantation Sites	Corpora Lutea
Control	12-0298 ^{a,d}	280	0.065	1.931	0.978	1.842	8.793	0.180	0.509	0.476	0.585	n/a	n/a
	12-0317 ^b	330	0.063	2.046	1.052	1.892	9.424	0.148	0.527	0.394	0.492	n/a	n/a
ė	Mean SD	305.0 35.36	0.0640 0.00141	1.9885 0.08132	1.0150 0.05233	1.867 0.03536	9.1085 0.44618	0.164 0.02263	0.5180 0.01273	0.4350 0.05798	0.5385 0.06576		
31.25 mg/kg	12-0299 ^a	330	0.076	1.934	1.159	2.292	9.806	0.184	0.754	0.528	0.619	n/a	n/a
50046 - 20050	Mean SD	330.0	0.0760	1.934	1.1590	2.2920	9.8060	0.1840	0.7540	0.5280	0.6190		
500 mg/kg	12-0171 ^a	304	0.066	1.916	1.025	1.843	9.692	0.129	0.605	0.307	0.413	n/a	n/a
	12-0229 ^a	258	0.075	1.956	0.984	1.856	7.504	0.119	0.510	0.350	0.851	n/a	n/a
5	Mean	281.0	0.0705	1.9360	1.0045	1.8495	8.5980	0.1240	0.5575	0.3285	0.6320		
	SD	32.53	0.00636	0.02828	0.02899	0.00919	1.54715	0.00707	0.06718	0.03041	0.30971		

a= Sperm plug was found but dam was not pregnant.

b= No sperm plug found and was not pregnant.

d= Animal was not fasted prior to necropsy.

Table H-20 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Organ Mass Non-Pregnant Female Rats

ORGAN MASS RELATIVE TO BODY MASS

Group	Animal ID	Adrenals	Brain	Heart	Kidneys	Liver	Ovaries	Spleen	Thymus	Uterus
Corn Oil	12-0298 ^a	0.0002	0.0069	0.0035	0.0066	0.0314	0.0006	0.0018	0.0017	0.0021
Control	12-0317 ^D	0.0002	0.0062	0.0032	0.0057	0.0286	0.0004	0.0016	0.0012	0.0015
i.	Mean	0.00021	0.00655	0.00334	0.00616	0.02998	0.00055	0.00171	0.00145	0.00179
	SD	0.000029	0.000492	0.000216	0.000598	0.002012	0.000137	0.000156	0.000358	0.000423
31.25 mg/kg	12-0299 ^a	0.0002	0.0059	0.0035	0.0069	0.0297	0.0006	0.0023	0.0016	0.0019
	Mean	0.00023	0.00586	0.00351	0.00695	0.02972	0.00056	0.00228	0.00160	0.00188
	SD									
500 ma/ka	12-0171 ^a	0.0002	0.0063	0.0034	0.0061	0.0319	0.0004	0.0020	0.0010	0.0014
0.0	12-0229 ^a	0.0003	0.0076	0.0038	0.0072	0.0291	0.0005	0.0020	0.0014	0.0033
	Mean	0.00025	0.00694	0.00359	0.00663	0.03048	0.00044	0.00198	0.00118	0.00233
	SD	0.000052	0.000904	0.000313	0.000800	0.001977	0.000026	0.000009	0.000245	0.001372

a= Sperm plug was found but dam was not pregnant.

b= No sperm plug found and was not pregnant.

Table H-21 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Organ Mass Non-Pregnant Female Rats

ORGAN MASS RELATIVE TO BRAIN MASS

Group	Animal ID	Adrenals	Heart	Kidneys	Liver	Ovaries	Spleen	Thymus	Uterus
Corn Oil	12-0298 ^a	0.0337	0.5065	0.9539	4.5536	0.0932	0.2636	0.2465	0.3030
Control	12-0317°	0.0308	0.5142	0.9247	4.6061	0.0723	0.2576	0.1926	0.2405
	Mean	0.04138	0.57125	1.00977	5.75028	0.07848	0.34204	0.17020	0.32134
	SD	0.008354	0.071515	0.062587	0.955934	0.017137	0.077046	0.05498	0.051036
31.25 mg/kg	12-0299 ^a	0.0393	0.5993	1.1851	5.0703	0.0951	0.3899	0.2730	0.3201
1000 8000 B	Mean	0.04189	0.60177	1.06691	6.16690	0.07718	0.32837	0.14920	0.34022
	SD	0.009108	0.060678	0.116914	0.912475	0.013534	0.043624	0.065094	0.056871
500 mg/kg	12-0171 ^a	0.0344	0.5350	0.9619	5.0585	0.0673	0.3158	0.1602	0.2156
	12-0229 ^a	0.0383	0.5031	0.9489	3.8364	0.0608	0.2607	0.1789	0.4351
	Mean	0.03903	0.57085	1.01181	5.39937	0.07009	0.29225	0.13908	0.34245
	SD	0.006528	0.065555	0.067994	0.723554	0.015413	0.044664	0.034626	0.145965

a= Sperm plug was found but dam was not pregnant.

b= No sperm plug found and was not pregnant.

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix I

Individual and Summary of Sperm Analysis Data

Table I-1 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Sperm Analysis Male Rats

	Animal/Sample	Sperm	Sample	Sperm Count/
Dose	ID	Count (million)*	Weight (grams)	Sample (million/gram)*
	12-0163	35.05	0.209	167.7000
Corn Oil	12-0205	33.25	0.216	153.9500
Control	12-0206	30.95	0.179	172.9000
	12-0207	35.55	0.225	158.0500
	12-0235	38.40	0.275	139.5500
	12-0254	37.70	0.243	155.2500
	12-0263	40.15	0.226	177.7000
	12-0267	54.75	0.249	219.8500
	12-0284	31.55	0.206	153.3500
	12-0313	39.35	0.217	181.5500
0	Mean	37.67	0.2245	167.98500
	SD	6.79	0.02641	22.294008
	12-0164	41.05	0.222	184.9500
31.25 mg/kg	12-0165	39.75	0.258	154.2000
	12-0225	37.10	0.208	178.3000
	12-0234	30.80	0.216	142.7000
	12-0243	34.45	0.203	169.5000
	12-0245	23.65	0.198	119.5000
	12-0255	23.15	0.197	117.5500
	12-0262	49.10	0.242	202,9500
	12-0324	22.35	0.200	111 9000
	12-0351	(f)	(f)	(f)
	Mean	33.5	0.216	153.50556
	SD	9.28	0.02136	32.790123
	12-0187	34.25	0.213	160,9000
125 mg/kg	12-0204	48.00	0.270	177.6500
00	12-0223	27.85	0.222	125,6000
	12-0224	27.10	0.201	134 9000
	12-0253	23.80	0.220	108 1500
	12-0275	47.20	0 230	205 2000
	12-0293	32 60	0.238	137 0500
	12-0296	7.80	0.178	43 8500
	12-0345	42.85	0.231	185 5000
	12-0354	36.60	0.196	186,6500
	Mean	32.805	0.2199	146.54500
	SD	12.11	0.02538	47.638444
	0.5.50			
	12-0177	0.90	0.115	7.8000
500 ma/ka	12-0189	3.20	0.103	31,0500
3.3	12-0203	0.90	0.082	10,9500
	12-0209	0.30	0 121	2 1000
	12-0236	2.55	0.116	22 0500
	12-0256	0.40	0.099	3 9000
	12-0297	2.05	0 114	17 9500
	12-0314	1.65	0.120	16 3000
	12-0322	0.15	0.008	1 3000
	12-0341	0.15	0.090	1 2500
19	Mean	1 2	0.102	11 46500
	SD	1.08	0.1070	10 160900
	50	1.00	0.01234	10.130609

(f) = Animal died on study* = Value represents average of 2 readings for each animal.

Table I-2 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Sperm Analysis Recovery Male Rats

Dose	Animal/Sample ID	Sperm Count (million)*	Sample Weight (grams)	Sperm Count/ Sample (million/gram)*
	12-0174	34.40	0.263	130.8000
Corn Oil	12-0179	59.00	0.310	190.2000
Control	12-0194	38.00	0.271	140.2000
	12-0208	36.70	0.282	130.1500
	12-0272	50.10	0.305	164.3500
	12-0294	36.45	0.323	112.8500
	12-0304	16.65	0.318	52.3000
	12-0323	10.60	0.247	42.9500
	12-0332	25.35	0.288	87.9500
	12-0365	11.50	0.320	36.0000
	Mean	31.875	0.2927	108.77500
	SD	15.98	0.02652	52.617040
	12-0176	5.85	0.121	48.6000
500 mg/kg	12-0186	5.90	0.142	41.4000
	12-0215	2.95	0.156	18.8500
	12-0244	3.85	0.133	28.8500
	12-0283	8.85	0.140	63.0500
	12-0295	3.45	0.131	26.3500
	12-0302	1.95	0.112	17.1000
	12-0310	4.85	0.128	38.0000
	12-0333	1.80	0.126	14.2000
	12-0363	2.05	0.138	14.8500
	Mean	4.2	0.1327	31.12500
	SD	2.24	0.01223	16.343895

(f) = Animal died on study* = Value represents average of 2 readings for each animal.

Table I-3 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Sperm Analysis Male Rats

	I	Corn Oil	NTO in Corn Oil							
Period		Control	31.25 mg/kg	125 mg/kg	500 mg/kg					
Sperm Count	Mean	167.98500	153.50556	146.54500	11.46500 ^a					
(million/gram sample)	S.D.	22.294008	32.790123	47.638444	10.150809					
	N	10	9	10	10					

Summary of Sperm Analysis Recovery Male Rats

Period		Corn Oil Control	NTO in Corn Oil 500 mg/kg
Sperm Count	Mean	108.77500	31.12500 ^b
(million/gram sample)	S.D.	52.617040	16.343895
an tha na an an an an tha an	N	10	10

^a = Significantly reduced compared to all other dose groups (p=0.000 for all).

^b = Significantly reduced compared to controls (p=0.000).

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix J

Individual and Summary of Clinical Chemistry Data

Table J-1 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Clinical Chemistry Results Male Rats

	Animal	ALB	ALKP	ALT	AST	BUN	Ca	CHOL	CREA	GLOB	GLU	LDH	PHOS	TBIL	TP	Na	к	CI	
Dose	ID	(g/dL)	(U/L)	(U/L)	(U/L)	(mg/dL)	(mg/dL)	(mg/dL)	(mg/dL)	(g/dL)	(ma/dL)	(U/L)	(mg/dL)	(mg/dL)	(a/dL)	(mmol/L)	(mmol/L)	(mmol/L)	NOTES
		10	11	1	101	1	(((18/	1	1	((13	(((
	12-0163	3.3	211	60	82	13	11.5	69	0.5	3.2	314	499	11.8	0.5	65	150	10.3	104	
Control	12-0205	3.3	130	60	97	18	11.1	57	0.6	33	155	733	11.7	0.9	6.6	152	11.0	105	
	12-0206	33	227	53	79	14	11.5	75	0.6	3.6	152	88	12.0	0.4	6.8	155	87	102	
	12-0207	32	162	55	106	21	11.2	39	0.6	35	143	845	11.6	0.7	67	150	11.2	105	
	12.0235	39	182	64	74	ND	11.9	74	0.5	39	273	ND	12.8	13	7.8	ND	ND	ND	22
	12.0254	3.5	313	55	88	10	11.0	58	0.4	2.1	202	172	0.8	0.6	6.6	157	80	106	55
	12.0263	3.5	255	60	00	13	11.0	82	0.4	3.1	202	672	11.1	0.0	6.0	152	0.5	100	
	12-0203	3.5	200	64	02	13	12.0	70	0.5	3.3	204	072	10.0	0.0	0.0	155	9.7	104	ALL HILLIGE ADT
	12-0207	3.0	147	54	00		12.0	10	0.5	3.4	220	1004	12.0	0.5	7.0	155	9.7	103	T.T GIULION AST
	12-0204	3.2	240	40	72	10	11.0	43	0.0	3.0	142	201	10.6	1.0	0.0	150	10.6	105	
	12-0313	3.4	240	40	12	10	11.9	00	0.4	3.2	240	391	10.6	0.5	6.6	ND	ND	ND	
	Mean	3.42	209.1	55.2	88.3	14.1	11.6	62.5	0.52	3.41	205.1	604.3	11.44	0.74	6.82	151.9	10.01	104.3	
	50	0.215	55.25	6.68	13.14	3.52	0.42	14.03	0.079	0.242	58.98	342.39	0.844	0.280	0.374	1.81	0.923	1.28	
	12 0164	2.2	140	40	50	10			0.0	2.2	000	101	40.7	0.5					
21.25 ma/ka	12-0104	3.3	140	49	59	12	11.7	55	0.0	3.2	202	401	12.7	0.5	6.6	151	11.1	104	
31.25 mg/kg	12-0105	3.2	210	45	60	11	11.0	74	0.3	3.1	180	4/2	9.1	0.5	6.4	150	6.8	103	
	12-0225	NU	ND	NU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	55
	12-0234	3.1	229	63	82	17	11.0	14	0.4	3.4	134	/24	11.5	0.8	6.6	149	11.0	103	
	12-0243	3.5	316	51	81	12	11.6	80	0.6	3.1	295	239	11.2	0.4	6.6	148	9.5	102	
	12-0245	3.4	284	51	88	12	11.6	68	0.5	3.3	227	798	11.7	0.9	6.6	151	10.3	102	
	12-0255	3.4	188	69	94	14	11.6	47	0.5	3.3	182	789	11.4	0.9	6.8	153	9.4	102	
	12-0262	3.3	262	53	72	14	11.8	96	0.6	2.9	237	431	12.4	0.5	6.2	152	9.4	101	1:1 dilution AST
	12-0324	3.4	202	47	104	11	11.6	80	0.6	3.6	168	694	11.5	0.7	6.9	151	10.0	104	
	12-0351	(1)	(1)	(1)	(1)	(f)	(f)	(1)	(f)	(f)	(f)	(1)	(f)	(1)	(f)	(f)	(f)	(f)	
	Mean	3.33	230.6	53.5	80.6	12.9	11.5	71.8	0.51	3.24	210.6	576.0	11.44	0.65	6.59	150.6	9.69	102.6	
	SD	0.128	54.88	8.26	14.97	2.03	0.31	15.31	0.113	0.213	53.68	203.23	1.077	0.200	0.217	1.60	1.348	1.06	
	12 0197	25	211	40	70		10.0	CE	0.5	2.2	120	404		0.0	0.7	450		100	
125 malka	12 0204	3.3	161	50	70	19	10.8	60	0.5	3.3	130	401	11.0	0.3	0.7	153	8.9	102	1:1 dilution LDH
120 mg/kg	12-0204	3.3	101	50	67	10	11.4	55	0.6	3.1	217	383	12.0	0.4	6.4	153	9.8	105	
	12-0223	3.3	223	32	70	10	11.4	00	0.5	5.5	217	691	13.2	0.8	8.8	151	9.8	102	
	12-0224	3.2	200	49	13	13	11.1	15	0.7	2.9	158	459	11.0	0.6	6.1	150	9.6	103	
	12-0253	ND	NU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10. The 100
	12-02/5	3.5	242	48	124	11	11.0	58	0.4	3.1	146	650	12.5	0.6	6.6	151	10.3	105	1:1 dilution AST
	12-0293	ND	ND	ND	ND	NU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	SS
	12-0296	3.4	2//	60	76	11	11.9	70	0.6	2.9	274	540	13.5	0.4	6.3	ND	ND	ND	
	12-0345	3.6	312	52	87	10	12.5	78	0.6	3.1	302	495	13.9	0.7	6.7	ND	ND	ND	
	12-0354	3.6	223	56	87	15	11.7	74	0.6	3.0	232	523	11.6	0.5	6.6	153	9.7	105	
	Mean	3.43	231.9	51.9	82.9	12.9	11.5	70.1	0.56	3.36	209.5	517.8	12.34	0.54	6.78	151.8	9.68	103.7	
	SD	0.149	46.05	4.22	18.14	2.10	0.53	11.26	0.092	0.873	61.34	109.40	1.121	0.169	0.845	1.33	0.454	1.51	
	12 0177	20	100	7.	447		11.0	00			000	407	10.5		12.2				
E00 malka	12-0177	3.0	102	11	04	14	11.9	86	0.4	3.4	238	197	12.8	0.6	7.2	153	9.5	104	
SUU mg/kg	12-0189	3.4	1/1	51	81	15	11.0	76	0.5	3.3	255	793	12.1	0.9	6.8	151	10.6	102	
	12-0203	3.3	220	55	92	14	11.6	69	0.5	3.6	217	730	11.7	0.8	6.9	154	8.6	105	
	12-0209	3.0	188	66	242	10	11.0	51	0.4	3.4	110	634	10.8	0.6	6.4	154	8.9	105	1:2 dilution AST
	12-0236	3.4	181	64	99	14	11.7	58	0.4	3.7	218	1401	13.3	1.4	7.1	ND	ND	ND	
	12-0256	3.6	135	45	77	14	112	42	0.4	3.5	200	1542	13.5	1.7	7.0	ND	ND	ND	
	12-0297	3.4	190	60	80	12	12.1	66	0.6	3.4	222	701	12.0	0.9	6.8	151	10.3	104	
	12-0314	3.7	193	50	59	16	12.1	54	0.5	3.6	258	694	13.0	0.8	7.3	ND	ND	ND	
	12-0322	3.4	335	56	122	11	11.6	70	0.5	3.3	216	371	13.5	0.7	6.7	ND	ND	ND	
	12-0341	3.6	204	62	76	15	11.7	76	0.4	3.2	229	493	12.9	0.6	6.8	ND	ND	ND	
	Mean	3.46	199.9	58.0	104.5	13.5	11.6	64.8	0.46	3.44	216.3	755.6	12.56	0.90	6.90	152.6	9.58	104.0	
	SD	0.227	52.37	8.06	52.01	1.90	0.41	13.41	0.070	0.158	41.46	419.99	0.885	0.368	0.262	1.52	0.864	1.22	

(f) = Animal died on study ND = No data SS = Short sample

Table J-2 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Clinical Chemistry Results Female Rats

<u> </u>	Animet	ALP		AL 7		DUN	C.	CHOI	CREA	01.08	0111	IDV	PHOP	-	TOU	TD	Na	v	CI	
Dose	Animal	ALB Inidia	ALKP	11/1	11/1	(mo/di)	Imoldi	(ma/dl)	Imaid	laid!	(ma/di)	(UA)	(mald)		ma/dl)	(ald)	(mmol/L)	(mmol/l)	(mmol/L)	NOTES
0020	10	(grut)	(0/L)	(UIL)	(UIL)	(ingrac)	(ingrac)	(ingrac)	(ingrac)	(group)	(ingrat)	(0/L)	(ingrac)	- 1	ing/or)	(giut)	(AnnovL)	(IIIIIO/L)	(minove)	nviea
	12-0211	33	166	92	110	20	11.6	69	0.8	34	105	389	10.0		04	67	152	92	104	slightly ligemic
Control	12-0220	28	221	109	143	14	11.7	78	03	29	159	323	12.1		0.4	5.6	147	10.0	108	linemic
Control	12.0222	33	132	75	91	16	11.3	103	07	31	107	551	11.1		0.4	6.5	150	8.6	108	slightly bemolyzed
	12-0260	3.0	105	67	132	3	121	47	04	28	166	737	13.2		0.3	57	151	7.6	105	anging nemoryzed
	12.0289	3.6	51	88	104	20	11.2	79	0.4	32	91	2708	11 3		17	6.8	149	0.8	105	1/2 dilution LDH, bemolyzed
	12-0298*				104				0.4			2100	11.5			0.0	143	3.0	105	
	12-0306	30	303	112	91	12	123	71	0.5	29	230	388	12.8		0 1	59	148	9.0	104	
	12.0309	3.1	175	85	99	17	11.6	80	04	31	113	391	85		0.1	63	152	65	106	
	12-0317°						11.0						0.0	307	0.1	0.0	102	0.0	100	
	12-0339	33	91	82	70	6	13.2	66	0.5	29	254	251	14.2		0.3	62	149	11.2	103	
	Mean	3.18	155.5	88.8	105.0	13.5	11.9	74.1	0.50	3.04	153.1	717.3	11.65	-	0.46	6.21	149.8	8 99	105.4	
	SD	0.249	79.93	15.51	23.46	6.23	0.65	15.79	0.169	0.200	61.18	818.23	1.832		0.515	0.449	1.83	1.458	1.85	
			10.00			0.20	0.00		0.100	0.200	01.10	010.20	1.001		0.010	0.110	1.00	1.400	1.00	
	12-0168	3.4	100	63	67	14	12.2	62	0.7	2.4	170	340	11.4	<	0.1	5.8	147	9.4	103	
31.25 ma/ka	12-0170	3.4	125	87	69	12	12.9	81	0.5	2.7	276	220	12.5		0.3	6.1	149	10.0	104	
	12-0201°	3.5	130	88	94	19	12.1	72	0.4	2.8	213	741	15.4		0.8	6.3	149	10.6	105	hemolyzed, lipemic
	12-0221	2.6	249	112	126	17	11.2	92	0.4	2.7	145	315	11.0		03	5.3	149	80	105	
	12-0240	3.5	248	101	95	21	12.8	127	0.6	3.3	92	273	13.3		0.3	6.7	148	10.3	102	
	12-0299*				100.001											-				
	12-0300	3.0	91	64	72	10	11.5	86	0.4	2.8	151	425	10.2		0.3	5.8	150	8.3	106	slightly lipernic
	12-0346	3.5	92	87	141	25	11.9	64	0.5	3.2	119	700	13.6		0.9	6.7	149	11.6	108	slightly lipemic and hemolyzed
	12-0367	2.7	150	226	126	16	11.6	60	0.4	2.5	134	546	10.7		0.5	5.2	148	8.9	103	slightly lipernic and hemolyzed
	12-0369	2.9	185	126	108	17	11.6	62	0.6	2.7	158	326	9.9	<	0.1	5.6	148	9.2	105	•
	Mean	3.17	152.2	106.0	99.8	16.8	12.0	78.4	0.50	2.79	162.0	431.8	12.00	1.000	0.40	5.94	148.6	9.59	104.6	
	SD	0.367	62.20	49.40	27.37	4.58	0.58	21.61	0.112	0.293	54.34	188.40	1.829		0.283	0.550	0.88	1.150	1.81	
	12-0169	3.8	100	65	92	11	12.5	71	0.6	2.8	188	795	12.1		0.2	6.6	150	10.8	104	
125 mg/kg	12-0210	3.7	107	46	82	20	11.4	78	0.6	3.0	109	337	11.4		0.4	6.7	152	9.8	107	slightly lipernic
	12-0212	3.1	154	87	118	16	11.9	77	0.6	3.1	118	587	11.1		0.5	6.2	155	9.1	105	slightly lipernic
	12-0227	2.8	182	75	88	9	11.7	75	0.4	2.7	102	334	11.6	<	0.1	5.5	153	8.0	107	lipemic
	12-0257	3.1	193	91	103	18	11.4	63	0.5	2.9	96	506	10.7		0.2	6.1	152	8.3	106	lipemic
	12-0259	3.6	130	87	95	4	12.4	45	0.4	2.8	195	504	10.5		0.2	6.4	147	9.0	99	
	12-0261	3.4	135	132	206	23	12.2	74	0.5	2.6	105	2979	13.1		0.7	6.0	150	10.6	107	1:1 dilution LDH, slightly lipemic and hemolyzed
	12-0278	3.3	98	95	95	14	11.8	63	0.8	3.0	138	315	11.5	<	0.1	6.3	149	9.0	100	slightly lipemic
	12-0291	2.4	120	117	103	14	10.8	52	0.6	2.7	157	282	10.7	<	0.1	5.1	149	9.1	105	
	12-0327	3.1	131	85	87	14	11.6	40	0.6	2.8	167	296	9.8	_	0.1	5.9	150	10.7	106	
	Mean	3.23	135.0	88.0	106.9	14.3	11.8	63.8	0.56	2.84	137.5	693.5	11.25		0.26	6.08	150.7	9.44	104.6	
	SD	0.427	32.62	24.29	36.29	5.48	0.51	13.81	0.117	0.158	37.03	819.43	0.922		0.207	0.489	2.31	0.995	2.88	
			122	1000			10.205	1217	10212-1	22.22	0.03625	1222237	1/2/12/1							
	12-0166	3.5	93	67	72	16	12.4	81	0.5	3.2	127	371	15.5		0.2	6.7	151	9.6	108	
500 mg/kg	12-0167	3.5	109	60	66	18	12.3	75	0.5	2.9	123	244	12.5		0.4	6.4	149	12.3	106	
	12.0198	3.6	G1	70	05	20	124	75	0.7	2.8	184	374	146		0.2	6.2	154	0.2	107	-Bobth Boomle
	12-0229*	0.0	31			20	12.4	13	0.7	2.0	104	3/4	14.0		0.2	0.5	134	9.2	107	signuy ipemic
	12-0258	3.5	96	73	79	8	12.1	56	0.5	2.8	155	340	12.4		0.2	6.3	150	9.9	106	slightly lipernic
	12-0279	32	178	124	118	8	12.0	68	0.4	2.6	163	443	13.4		0.1	5.8	147	6.6	102	lipemic
	12-0308°	3.2	93	100	110	15	11.7	60	0.7	2.8	108	503	12.8		0.4	6.0	148	12.3	108	lipemic
	12-0336	3.4	97	115	114	14	12.4	81	0.5	2.9	144	654	13.0	<	0.1	6.3	146	12.9	107	hemolyzed
-	12-0348	3.3	270	96	81	17	12.1	64	0.5	3.1	148	421	12.8		0.5	6.3	ND	ND	ND	lipemic
	Mean	3.39	128.4	89.3	91.9	14.5	12.2	70.0	0.54	2.89	144.0	418.8	13.38		0.26	6.26	149.3	10.40	106.3	
	SD	0.136	64.17	23.15	20.21	4.41	0.25	9.47	0.106	0.189	24.27	121.92	1.104		0.151	0.267	2.69	2.245	2.06	

a= Sperm plug was found but female was not pregnant. b= No sperm plug found and was not pregnant. c= No sperm plug found but female was pregnant. (f) = Animal died on study ND = No data SS = Short sample

12

Table J-3 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Clinical Chemistry Results Recovery Male Rats

	Animal	ALB	ALKP	ALT	AST	BUN	Ca	CHOL	CREA	GLOB	GLU	LDH	PHOS	т	BIL	TP	Na	к	CI	
Dose	ID	(g/dL)	(U/L)	(U/L)	(U/L)	(mg/dL)	(mg/dL)	(mg/dL)	(mg/dL)	(g/dL)	(mg/dL)	(U/L)	(mg/dL)	(m)	g/dL)	(g/dL)	(mmol/L)	(mmol/L)	(mmol/L)	NOTES
	12 0174	24	110	40	E 1	17	11.2	121	0.5	2.2	242	200	10.7		0.5		450		404	
Control	12-0174	3.4	0.0	40	51	17	11.3	131	0.5	3.2	242	290	10.7		0.5	0.0	153	7.5	104	
Control	12-0175	3.7	111	29	65		11.5	33	0.5	3.2	207	422	11.0		0.0	7.0	151	10.6	106	
	12.0104	3.5	101	20	75	24	11.0	10	0.7	2.0	300	270	11.7		0.3	0.3	149	11.3	103	
	12-0200	3.0	152	20	00	17	11.9	00	0.7	3.3	214	430	11.5		0.5	0.9	153	8.6	104	
	12-0272	3.3	100	20	90	15	11.0	70	0.6	3.4	320	545	11.2		0.5	0.0	150	9.4	103	
	12-0294	3.5	109	39	80	15	11.5	79	0.5	3.5	220	5/5	10.8		0.7	7.0	151	8.3	104	slightly hemolyzed
	12-0304	3.5	101	45	69	10	12.5	67	0.6	3.2	2/9	340	11.0		0.3	6.7	152	8.3	106	
	12-0323	3.5	150	40	100	19	12.5	110	0.5	3.5	195	441	9.3		0.4	7.0	152	7.6	105	
	12-0332	3.0	1/5	52	60	19	12.8	113	8.0	3.1	261	354	12.0		0.3	6.8	151	11.1	107	
	12-0365	3.7	96	40	64	13	12.7	114	0.7	3.2	281	369	10.8		0.4	6.9	151	9.1	102	
	Mean	3.53	121.9	41.0	71.8	17.0	12.0	96.1	0.61	3.24	253.1	405.5	11.08		0.47	6.78	151.3	9.18	104.4	
	SD	0.125	28.76	7.62	14.73	2.45	0.54	21.54	0.110	0.207	43.04	98.38	0.776		0.170	0.230	1.25	1.393	1.58	
	12-0176	3.7	121	24	77	18	11.9	123	0.5	3.4	290	388	11.5		0.6	7.1	153	9.1	105	
500 mg/kg	12-0186	3.5	110	27	63	14	11.4	109	0.5	3.1	208	83	10.6		0.4	6.6	150	9.3	104	
	12-0215	3.5	156	45	68	13	11.8	104	0.6	3.1	285	265	11.7		0.5	6.5	153	8.4	106	
	12-0244	3.2	123	32	42	17	11.5	75	0.7	3.1	207	330	9.9		0.3	6.3	152	9.3	105	
	12-0283	3.6	103	52	105	35	11.3	94	0.6	3.5	165	784	12.8		0.7	7.1	152	9.8	105	slightly hemolyzed
	12-0295	3.2	91	44	55	20	11.5	68	0.4	3.5	196	540	9.8		0.3	6.6	152	8.2	104	,
	12-0302	3.4	115	41	59	16	11.4	86	0.5	3.8	233	374	10.4		0.2	7.2	147	11.0	100	
	12-0310	3.4	114	45	58	18	12.1	77	0.5	3.2	208	310	10.3	<	0.1	6.5	149	8.9	104	
	12-0333	3.7	151	47	51	15	12.3	93	0.7	3.2	245	288	11.5		0.4	6.9	149	10.0	103	
	12-0363	3.4	85	55	71	14	12.2	93	0.6	3.3	191	372	10.5		0.4	6.7	152	8.6	104	
	Mean	3.46	116.9	41.2	64.9	18.0	11.7	92.2	0.56	3.32	222.8	373.4	10.90		0.39	6.75	150.9	9.26	104.0	
	SD	0.178	22.82	10.33	17.33	6.36	0.37	16.75	0.097	0.230	40.47	184.34	0.945		0.179	0.306	2.02	0.838	1.63	

Table J-4 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Clinical Chemistry Male Rats

	1	Corn Oil	NT	O in Corn C	DII
		Control	31.25 mg/kg	125 mg/kg	500 mg/kg
ALB	Mean	3 42	3 33	3 43	3.46
(a/dL)	S.D.	0.215	0.128	0 149	0 227
(3)	N	10	8	8	10
ALK P	Mean	209.1	230.6	231.9	199.9
(U/L)	S.D.	55.25	54.88	46.05	52.37
	N	10	8	8	10
ALT	Mean	55.2	53.5	51.9	58.0
(U/L)	S.D.	6.68	8.26	4.22	8.06
	N	10	8	8	10
AST	Mean	88.3	80.6	82.9	104.5
(U/L)	S.D.	13.14	14.97	18.14	52.01
	N	10	8	8	10
BUN	Mean	14.1	12.9	12.9	13.5
(mg/dL)	S.D.	3.52	2.03	2.10	1.90
	N	9	8	8	10
CA	Mean	11.5	11.5	11.5	11.6
(mg/dL)	S.D.	0.42	0.31	0.53	0.41
	N	10	8	8	10
CHOL	Mean	62.5	71.8	70.1	64.8
(mg/dL)	S.D.	14.03	15.31	11.26	13.41
	N	10	8	8	10
CREA	Mean	0.52	0.51	0.56	0.46
(mg/dL)	S.D.	0.079	0.113	0.092	0.070
	N	10	8	8	10
GLOB	Mean	3.41	3.24	3.36	3.44
(g/dL)	S.D.	0.242	0.213	0.873	0.158
	N	10	8	8	10
GLU	Mean	205.1	210.6	209.5	216.3
(mg/dL)	S.D.	58.98	53.68	61.34	41.46
	N	10	8	8	10
LDH	Mean	604.3	576.0	517.8	755.6
(U/L)	S.D.	342.39	203.23	109.40	419.99
	N	9	8	8	10
PHOS	Mean	11.44	11.44	12.34	12.56
(mg/dL)	S.D.	0.844	1.077	1.121	0.885
	N	10	8	8	10
TBIL	Mean	0.74	0.65	0.54	0.90ª
(mg/dL)	S.D.	0.280	0.200	0.169	0.368
	N	10	8	8	10
тр	Mean	6.82	6.59	6.78	6.90
(g/dL)	S.D.	0.374	0.217	0.845	0.262
	N	10	8	8	10
Na	Mean	151.9	150.6	151.8	152.6
(mmol/L)	S.D.	1.81	1.60	1.33	1.52
	N	8	8	6	5
к	Mean	10.01	9.69	9.68	9.58
(mmol/L)	S.D.	0.923	1.348	0.454	0.864
	N	8	8	6	5
CI	Mean	104.3	102.6	103.7	104.0
(mmol/L)	S.D.	1.28	1.06	1.51	1.22
	N	8	8	6	5

* = Significantly greater than 125 mg/kg-day group (p=0.023).

Table J-5 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Clinical Chemistry Female Rats

	1	Corn Oil	NT	O in Corn O	ii -
		Control	31.25 mg/kg	125 mg/kg	500 mg/kg
ALB	Mean	3.18	3.17	3.23	3.39
(g/dL)	S.D.	0.249	0.367	0.427	0.136
	N	8	9	10	8
ALK P	Mean	155.5	152.2	135.0	128.4
(U/L)	S.D.	79.93	62.20	32.62	64.17
	N	8	9	10	8
ALT	Mean	88.8	106.0	88.0	89.3
(U/L)	S.D.	15.51	49.40	24.29	23.15
	N	8	9	10	8
AST	Mean	105.0	99.8	106.9	91.9
(U/L)	S.D.	23.46	27.37	36.29	20.21
	N	8	9	10	8
BUN	Mean	13.5	16.8	14.3	14.5
(mg/dL)	S.D.	6.23	4.58	5.48	4.41
	N	8	9	10	8
СА	Mean	11.9	12.0	11.8	12.2
(mg/dL)	S.D.	0.65	0.58	0.51	0.25
	N	8	9	10	8
CHOL	Mean	74.1	78.4	63.8	70.0
(mg/dL)	S.D.	15.79	21.61	13.81	9.47
	N	8	9	10	8
CREA	Mean	0.50	0.50	0.56	0.54
(mg/dL)	S.D.	0.169	0.112	0.117	0.106
	N	8	9	10	8
GLOB	Mean	3.04	2.79	2.84	2.89
(g/dL)	S.D.	0.200	0.293	0.158	0.189
	N	8	9	10	8
GLU	Mean	153.1	162.0	137.5	144.0
(mg/dL)	S.D.	61.18	54.34	37.03	24.27
	N	8	9	10	8
LDH	Mean	717.3	431.8	693.5	418.8
(U/L)	S.D.	818.23	188.40	819.43	121.92
	N	8	9	10	8
PHOS	Mean	11.65	12.00	11.25	13.38°
(mg/dL)	S.D.	1.832	1.829	0.922	1.104
	N	8	9	10	8
TBIL	Mean	0.46	0.40	0.26	0.26
(mg/dL)	S.D.	0.515	0.283	0.207	0.151
	N	8	9	10	8
TP	Mean	6.21	5.94	6.08	6.26
(g/dL)	S.D.	0.449	0.550	0.489	0.267
	N	8	9	10	8
Na	Mean	149.8	148.6	150.7	149.3
(mmol/L)	S.D.	1.83	0.88	2.31	2.69
	N	8	9	10	7
к	Mean	8.99	9.59	9.44	10.40
(mmol/L)	S.D.	1.458	1.150	0.995	2.245
	N	8	9	10	7
CI	Mean	105.4	104.6	104.6	106.3
(mmol/L)	S.D.	1.85	1.81	2.88	2.06
	N	8	9	10	7

* = Significantly greater than 125 mg/kg-day group (p=0.022).

Table J-6 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Clinical Chemistry Recovery Male Rats

		Corn Oil Control	NTO in Corn Oil 500 mg/kg
ALB	Mean	3.53	3.46
(g/dL)	S.D.	0.125	0.178
,	N	10	10
ALK P	Mean	121.9	116.9
(U/L)	S.D.	28.76	22.82
••	N	10	10
ALT	Mean	41.0	41.2
(U/L)	S.D.	7.62	10.33
	N	10	10
AST	Mean	71.8	64.9
(U/L)	S.D.	14.73	17.33
	N	10	10
BUN	Mean	17.0	18.0
(mg/dL)	S.D.	2.45	6.36
	N	10	10
CA	Mean	12.0	11.7
(mg/dL)	S.D.	0.54	0.37
	N	10	10
CHOL	Mean	96.1	92.2
(mg/dL)	S.D.	21.54	16.75
	N	10	10
CREA	Mean	0.61	0.56
(mg/dL)	S.D.	0.110	0.097
	N	10	10
GLOB	Mean	3.24	3.32
(g/dL)	S.D.	0.207	0.230
	N	10	10
GLU	Mean	253.1	222.8
(mg/dL)	S.D.	43.04	40.47
	N	10	10
LDH	Mean	405.5	373.4
(U/L)	S.D.	98.38	184.34
	N	10	10
PHOS	Mean	11.08	10.90
(mg/dL)	S.D.	0.776	0.945
	N	10	10
TBIL	Mean	0.47	0.39
(mg/dL)	S.D.	0.170	0.179
	N	10	10
ТР	Mean	6.78	6.75
(g/dL)	S.D.	0.230	0.306
	N	10	10
Na	Mean	151.3	150.9
(mmol/L)	S.D.	1.25	2.02
	N	10	10
к	Mean	9.18	9.26
(mmol/L)	S.D.	1.393	0.838
	N	10	10
СІ	Mean	104.4	104.0
(mmol/L)	S.D.	1.58	1.63
	IN	10	10

Table J-7 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Clinical Chemistry Results Non-Pregnant Female Rats

	Animal	ALB	ALKP	ALT	AST	BUN	Ca	CHOL	CREA	GLOB	GLU	LDH	PHOS	TBIL	TP	Na	к	CI	
Dose	ID	(g/dL)	(U/L)	(U/L)	(U/L)	(mg/dL)	(mg/dL)	(mg/dL)	(mg/dL)	(g/dL)	(mg/dL)	(U/L)	(mg/dL)	(mg/dL)	(g/dL)	(mmol/L)	(mmol/L)	(mmol/L)	NOTES
Control	12-0298ª	3.5	182	73	79	13	12.3	80	0.5	2.7	197	335	9.2	0.3	6.3	149	8.7	103	
	12-0317	4.1	124	29	92	15	11.3	62	0.5	3.0	126	550	11.2	0.7	7.1	153	10.3	106	
	Mean	3.80	153.0	51.0	85.5	14.0	11.80	71.0	0.50	2.85	161.5	442.5	10.20	0.50	6.70	151.0	9.50	104.5	
	SD	0.424	41.01	31.11	9.19	1.41	0.707	12.73	0.000	0.212	50.20	152.03	1.414	0.283	0.566	2.83	1.131	2.12	
31.25 mg/kg	12-0299 ^a	3.8	77	47	78	16	11.6	62	0.8	3.2	155	374	8.9	< 0.1	7.0	154	8.5	105	
	Mean	3.80	77.0	47.0	78.0	16.0	11.60	62.0	0.80	3.20	155.0	374.0	8.90	0.10	7.00	154.0	8.50	105.0	
	SD																		
500 mg/kg	12-0171 ^a	4.1	121	45	98	19	11.8	63	0.6	3.2	159	441	10.9	0.5	7.2	150	10.0	105	
	12-0229ª	4.2	89	39	66	11	12.1	83	0.7	2.5	115	441	14.5	0.4	6.7	150	11.6	108	
	Mean	4.15	105.0	42.0	82.0	15.0	11.95	73.0	0.65	2.85	137.0	441.0	12.70	0.45	6.95	150.0	10.80	106.5	
	SD	0.071	22.63	4.24	22.63	5.66	0.212	14.14	0.071	0.495	31.11	0.00	2.546	0.071	0.354	0.00	1.131	2.12	

a= Sperm plug was found but female was not pregnant.

b= No sperm plug found and was not pregnant.

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix K

Individual and Summary of Hematology Data

Table K-1
Protocol No. 0FP4-93-12-03-03
Repeated-Dose and Reproductive/Developmental
Toxicity of NTO in the Rat

Individual Hematology Results Male Rats

	Animal	WBC	N	EU	Ľ	YM .	MO	NO	EC	DS	BA	SO	RBC	HGB	HCT	MCV	MCH	MCHC	RDW	PLT	MPV
Group	ID	(K/uL)	(K/uL)	(%N)	(K/uL)	(%L)	(K/uL)	(%M)	(K/uL)	(%E)	(K/uL)	(%B)	(M/uL)	(g/dL)	(%)	(fL)	(pg)	(g/dL)	(%)	(K/uL)	(fL)
								And Denne V							1.0000000						
	12-0163	16.200	1.530	9.490	12.900	79.600	0.768	4.750	0.139	0.858	0.850	5.260	8.66	16.10	47.1	54.4	18.6	34.2	15.2	734.0	4.58
Control	12-0205	15.600	2.250	14.400	12.300	78.700	0.497	3.190	0.101	0.651	0.481	3.080	8.46	17.70	49.7	58.7	20.9	35.6	14.6	621.0	5.69
	12-0206	15.900	4.810	30.200	8.180	51.500	1.330	8.360	0.085	0.533	1.490	9.400	8.93	17.70	49.8	55.7	19.9	35.6	16.1	229.0	6.65
	12-0207	14.400	1.620	11.200	7.630	53.000	2.510	17.400	0.053	0.371	2.600	18.100	8.29	16.90	47.0	56.8	20.4	35.9	15.0	821.0	5.35
	12-0235	16.100	1.630	10.100	12.100	75.000	1.060	6.600	0.167	1.030	1.170	7.280	8.75	19.40	48.2	55.1	22.1	40.2	17.7	470.0	6.18
	12-0254	14.000	1.760	12.600	9.960	71.000	0.695	4.950	0.077	0.550	1.540	11.000	8.07	16.30	46.6	57.7	20.2	34.9	15.0	791.0	4.86
	12-0263	11.900	1.680	14.100	8.730	73.300	0.715	6.010	0.109	0.911	0.675	5.670	7.94	16.40	44.2	55.7	20.7	37.1	13.2	967.0	5.04
	12-0267	12.800	1.270	9.970	9.870	77.400	0.695	5.450	0.107	0.842	0.808	6.330	8.60	17.00	47.1	54.7	19.8	36.2	13.8	398.0	5.98
	12-0284	17.600	2.210	12.600	13.900	79.200	0.703	3.990	0.144	0.817	0.611	3.470	8.15	16.70	47.4	58.1	20.5	35.3	14.3	685.0	6.41
	12-0313	13.700	1.190	8.690	11.200	81.700	0.529	3.870	0.137	1.000	0.645	4.710	8.44	18.10	47.3	56.0	21.4	38.3	14.2	1093.0	5.46
	Mean	14.8200	1.9950	13.3350	10.6770	72.0400	0.9502	6.4570	0.1119	0.7563	1.0870	7.4300	8.429	17.230	47.44	56.29	20.45	36.33	14.91	680.90	5.620
	SD	1.75613	1.04635	6.23552	2.12753	10.90700	0.60111	4.12636	0.03495	0.21898	0.64607	4.49093	0.3167	1.0100	1.595	1.477	0.949	1.775	1.266	262.166	0.6853
	1291227	10000	222	1.00000	2.2.5	÷24															
	12-0164	9.200	1.180	12.800	6.940	75.400	0.377	4.090	0.082	0.893	0.620	6.730	8.96	16.50	47.6	53.1	18.4	34.6	14.7	570.0	5.10
31.25 mg/kg	12-0165	14.700	1.150	7.810	11.900	81.200	0.540	3.680	0.051	0.350	1.020	6.960	8.18	15.80	45.0	55.0	19.3	35.2	14.9	409.0	6.22
	12-0225	7.040	1.070	15.200	5.310	75.500	0.321	4.560	0.059	0.832	0.277	3.940	8.10	16.70	44.1	54.4	20.5	37.8	14.0	659.0	5.67
	12-0234	18.400	1.980	10.700	13.500	73.300	1.270	6.930	0.125	0.682	1.530	8.310	9.08	18.00	50.0	55.1	19.9	36.1	16.8	868.0	5.10
	12-0243	18.000	1.260	7.000	14.600	80.700	0.659	3.660	0.166	0.918	1.390	7.700	8.44	16.80	47.0	55.7	19.9	35.7	14.5	913.0	4.95
	12-0245	12.300	1.570	12.800	9.060	73.900	0.816	6.650	0.139	1.130	0.684	5.580	8.13	16.10	44.7	55.0	19.8	36.1	14.9	574.0	6.23
	12-0255	15.300	1.430	9.330	11.500	75.600	1.210	7.940	0.089	0.584	1.010	6.580	8.73	17.20	47.0	53.9	19.7	36.6	16.4	819.0	5.45
	12-0262	13.000	1.980	15.300	8.940	69.000	0.719	5.540	0.119	0.918	1.200	9.280	7.89	16.50	44.0	55.8	20.9	37.5	15.3	1076.0	4.94
	12-0324	19.400	1.210	6.230	16.900	87.100	0.582	3.000	0.155	0.801	0.558	2.880	8.46	16.20	44.9	53.1	19.1	36.0	15.9	450.0	5.57
50 .	12-0351	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(f)	(f)	(f)	(f)	(f)	(f)	(f)	(1)	(f)	(1)	(1)
	Mean	14.1489	1.4256	10.7967	10.9611	76.8556	0.7216	5.1167	0.1094	0.7898	0.9210	6.4400	8.441	16.644	46.03	54.57	19.72	36.18	15.27	704.22	5.470
	50	4.21118	0.34861	3.42866	3.74054	5.32943	0.33238	1.72554	0.04125	0.22699	0.41528	2.03677	0.4102	0.6540	2.002	1.015	0.740	1.017	0.923	226.552	0.5019
	10 0107	6 070	0.070	14.000	E 460	78 200	0.242	4 600	0.000	0.070	0.400	0.050	0.40		40.0						5.40
125 malka	12.0107	12 700	1 380	10.100	0.070	78.300	0.313	4.500	0.020	0.372	0.196	2.650	0.40	10.40	40.2	54.5	19.3	35.4	16.0	1023.0	5.19
120 mg/kg	12-0204	12.700	2 100	17.000	9.970	63 200	0.307	2.900	0.001	1 210	0.975	11.000	0.10	10.50	40.7	57.0	20.3	35.3	15.3	959.0	5.83
	12-0223	12.900	1 400	11,600	0.140	74 000	0.000	6.040	0.169	1.310	1.530	11.900	9.08	17.80	47.9	52.7	19.6	37.2	16.2	663.0	5.16
	12.0224	15 600	3 660	22.900	9.000	63 300	1 120	7 220	0.109	0.240	0.774	6.000	7.90	15.30	42.0	53.5	19.3	36.0	15.7	1002.0	5.22
	12-0235	10.000	1 030	17 700	7 420	68 200	0.944	7.250	0.040	1 110	0.993	6.390	0.00	17.70	40.0	50.3	20.5	30.3	14.0	/13.0	5.07
	12-0273	27 600	2 730	9.870	22 000	79 700	1 260	1.150	0.120	0.850	1 280	3.270	0.90	19.20	40.0	56.0	19.0	30.3	14.0	908.0	4.95
	12-0200	18 700	2 380	12 700	14 400	76 000	0.027	4.040	0.237	0.035	0.937	4.900	0.29	10.20	47.1	50.0	22.0	30.7	10.0	016.0	5.04
	12-0230	17 900	2.000	11 700	12 500	69 700	1.630	9 110	0.1/5	0.935	1 550	9.660	0.09 P.41	17.50	40.4	50.4	21.5	30.0	10.2	1268.0	5.39
	12-0354	20 100	2 600	12 900	16 100	80 100	0.556	2 770	0 127	0.630	0.716	3 560	8 74	17.80	40.0	56.6	20.0	35.0	15.3	482.0	5.64
S. -	Mean	15.6270	2.1212	14.0270	11.5510	73,3000	0.8689	5 6650	0.1301	0.8301	0.9528	6 1780	8 529	17 320	47 16	55 30	20.33	36.73	15.54	878 60	5 380
	SD	5.76098	0.75846	4.03911	4.87200	6.64881	0.40377	2.08512	0.06405	0.35101	0.43333	2.67501	0.3581	0.9578	2.003	1.636	0.919	1.215	0.589	248 878	0.3051
																					0.0001
	12-0177	18.700	1.270	6.800	15,700	83.900	0.785	4.190	0.128	0.681	0.837	4.470	7.81	16.20	44.6	57.1	20.8	36.4	15.3	626.0	6 22
500 mg/kg	12-0189	13.200	1.780	13,500	9.660	72,900	0.571	4.310	0.224	1.690	1.010	7.650	9.04	17.10	48.2	53.4	18.9	35.5	15.1	594 0	574
	12-0203	11.600	0.989	8.520	9.330	80,300	0.477	4.110	0.073	0.631	0.751	6.460	8.51	17.70	49.4	58.0	20.8	35.8	15.5	676.0	5 82
	12-0209	2.540	0.497	19.600	1.750	68.900	0.128	5.040	0.007	0.290	0.157	6.200	7.64	16.30	46.1	60.3	21.3	35 3	14.9	870.0	5 49
	12-0236	15.200	1.510	9.920	10,300	67,900	1.330	8,710	0.191	1.260	1.860	12 200	8 39	18 20	47 3	56.3	217	38.5	16.8	372 0	6.52
	12-0256	12.100	1.330	11.000	9.270	76,600	0.808	6.670	0.086	0.715	0.609	5.030	8.95	19.00	49.5	55.3	21.2	38.4	15.8	464 0	5 35
	12-0297	16.900	2.580	15.200	10.300	61.000	1.650	9,750	0.283	1.680	2.090	12,300	7.84	17.00	45.2	57.6	21.7	37.6	14.2	192.0	5 37
	12-0314	19.700	2.180	11.100	15.500	78.900	0.819	4.160	0.262	1.330	0.883	4.490	8.39	18.90	47.9	57.1	22.5	39.5	16.1	528.0	5.81
	12-0322	21.300	2.110	9.900	16.400	77.300	1.300	6.130	0.213	1.000	1.220	5,710	8.69	18.00	47.6	54.9	20.7	37.7	14.5	455.0	5.56
	12-0341	12.000	1.970	16.400	7.810	65.100	1.090	9.050	0.080	0.662	1.060	8.800	8.21	17.50	45.6	55.6	21.4	38.5	15.6	899.0	4.90
00	Mean	14.3240	1.6216	12.1940	10.6020	73.2800	0.8958	6.2120	0.1547	0.9939	1.0477	7.3310	8.347	17.590	47.14	56.56	21.10	37.32	15.38	567.60	5.678
	SD	5.39559	0.62373	3.92896	4.39965	7.35464	0.45396	2.22952	0.09249	0.47751	0.56988	2.92260	0.4779	0.9689	1.709	1.916	0.943	1.471	0.764	216.396	0.4596

(f) = Animal died on study

Table K-2 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Hematology Results Female Rats

	Animal	WBC	N	EU	Ľ	YM	MO	NO	E	DS	BA	so	RBC	HGB	HCT	MCV	MCH	MCHC	RDW	PLT	MPV
Group	ID	(K/uL)	(K/uL)	(%N)	(K/uL)	(%L)	(K/uL)	(%M)	(K/uL)	(%E)	(K/uL)	(%B)	(M/uL)	(g/dL)	(%)	(fL)	(pg)	(g/dL)	(%)	(K/uL)	(fL)
	12-0211	5.360	1.340	25.100	3.780	70.500	0.166	3.100	0.007	0.125	0.062	1.170	7.20	14.90	42.4	58.9	20.7	35.1	16.0	857.0	5.27
Control	12-0220	15.500	6.540	42.100	6.860	44.200	1.250	8.050	0.115	0.741	0.758	4.880	6.34	13.10	35.7	56.4	20.6	36.6	15.7	658.0	5.44
	12-0222	15.100	2.830	18.800	11.400	75.900	0.429	2.850	0.069	0.460	0.310	2.060	6.97	14.60	39.7	56.9	21.0	36.8	16.8	562.0	5.29
	12-0260	13.500	3.620	26.900	8.050	59.700	0.727	5.390	0.041	0.301	1.050	7.750	7.48	15.10	42.1	56.3	20.2	35.9	17.4	957.0	4.78
	12-0289	19.700	5.240	26.600	13.000	66.200	1.050	5.320	0.108	0.547	0.247	1.250	6.58	14.30	37.1	56.4	21.7	38.4	15.3	1206.0	5.33
	12-0298ª.d																				
	12-0306	15.300	4.780	31.200	8.490	55.400	1.220	7.950	0.035	0.226	0.807	5.260	6.97	13.30	35.5	50.9	19.1	37.6	14.8	1355.0	5.44
	12-0309	12,200	5.550	45.500	4.910	40.200	1.020	8.380	0.051	0.421	0.673	5.510	6.28	12.90	33.7	53.6	20.5	38.2	15.2	1133.0	5.35
	12-0317 ^b																				
132	12-0339	5.730	1.130	19.800	2.880	50.300	1.410	24.600	0.032	0.551	0.271	4.730	6.76	13.70	37.6	55.5	20.2	36.4	16.6	1141.0	5.00
	Mean	12.7988	3.8788	29.5000	7.4213	57.8000	0.9090	8.2050	0.0573	0.4215	0.5223	4.0763	6.823	13.988	37.98	55.61	20.50	36.88	15.98	983.63	5.238
	SD	4.96601	1.98955	9.71567	3.56558	12.64798	0.43289	6.96830	0.03781	0.19883	0.34510	2.34600	0.4154	0.8509	3.164	2.404	0.745	1.135	0.896	276.455	0.2308
	12-0168	9.320	2.250	24.200	5.990	64.300	0.672	7.200	0.037	0.395	0.366	3.920	7.11	14.10	39.2	55.0	19.8	36.0	15.9	888.0	4.98
31.25 mg/kg	12-0170	7.480	3.180	42.500	2.950	39.400	0.757	10.100	0.049	0.656	0.550	7.350	6.58	13.10	37.5	57.0	19.9	34.9	16.7	953.0	4.84
	12-0201°	7.110	2.730	38.300	3.490	49.100	0.562	7.900	0.022	0.303	0.310	4.360	7.33	14.50	39.2	53.4	19.7	36.9	15.9	1073.0	6.21
	12-0221	10.700	1.900	17.700	8.160	76.000	0.415	3.870	0.040	3.720	0.215	2.000	5.92	11.70	31.7	53.6	19.7	36.8	14.9	1285.0	5.19
	12-0240	15.100	4.030	26.700	10.500	69.600	0.386	2.560	0.041	0.274	0.136	0.898	7.28	14.70	40.2	55.2	20.2	36.5	17.4	1300.0	5.13
	12-0299ª																				
	12-0300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12-0346	11.500	4.270	37.000	5.010	43.400	1.340	11.600	0.037	0.321	0.882	7.650	8.17	16.60	43.9	53.7	20.4	37.9	16.9	666.0	5.24
	12-0367	16.500	2.700	16.300	12.900	78.000	0.601	3.640	0.072	0.437	0.273	1.650	7.20	14.80	39.2	54.5	20.6	37.7	14.7	697.0	4.90
22	12-0369	7.910	1.490	18.900	5.230	66.100	0.859	10.900	0.047	0.590	0.282	3.570	6.96	13.70	38.2	54.8	19.7	35.8	14.8	1130.0	5.45
	Mean	10.7025	2.8188	27.7000	6.7788	60.7375	0.6990	7.2213	0.0431	0.8370	0.3768	3.9248	7.069	14.150	38.64	54.65	20.00	36.56	15.90	999.00	5.243
	SD	3.51700	0.97533	10.27160	3.48158	14.84317	0.30416	3.53025	0.01424	1.17286	0.23716	2.50615	0.6453	1.4223	3.395	1.169	0.355	0.994	1.038	242.477	0.4380
	22127222	7.027252525	100000000	000000000000	0022520	120000000000															
	12-0169	5.930	0.735	12.400	4.920	83.000	0.191	3.230	0.060	1.020	0.022	0.378	7.14	14.50	42.3	59.2	20.2	34.2	19.9	1041.0	4.71
125 mg/kg	12-0210	6.050	1.010	16.700	4.550	75.200	0.301	4.970	0.020	0.334	0.170	2.800	7.62	16.00	44.9	58.9	21.0	35.6	17.6	1220.0	5.54
	12-0212	7.250	1.060	14.700	5.550	76.500	0.502	6.930	0.018	0.246	0.119	1.650	7.01	14.70	41.0	58.4	20.9	35.8	16.1	776.0	5.08
	12-0227	5.490	1.870	34.000	3.130	57.000	0.355	6.470	0.017	0.304	0.122	2.230	6.62	13.10	33.8	51.0	19.8	38.8	17.1	1205.0	5.24
	12-0257	7.170	1.780	24.900	4.440	62.000	0.819	11.400	0.035	0.490	0.091	1.260	6.70	14.20	38.8	58.0	21.2	36.6	18.8	939.0	5.19
	12-0259	11.100	3.410	30.700	6.130	55.100	1.190	10.700	0.017	0.156	0.370	3.320	7.91	15.90	45.0	56.9	20.1	35.3	17.4	1085.0	4.26
	12-0261	15.100	3.570	23.600	9.840	65.200	1.160	7.670	0.052	0.343	0.477	3.160	7.05	14.60	40.0	56.7	20.8	36.6	17.3	1043.0	5.37
	12-0278	9.270	2.430	26.200	5.430	58.500	0.952	10.300	0.040	0.433	0.428	4.620	7.21	14.30	39.1	54.3	19.8	36.5	16.8	1565.0	5.07
	12-0291	20.900	10.300	49.400	8.340	39.900	1.270	6.090	0.073	0.351	0.882	4.220	5.84	12.10	32.8	56.2	20.8	36.9	14.8	1465.0	4.91
	12-0327	10,100	3.700	36.500	5.430	53.500	0.708	6.980	0.040	0.395	0.261	2.570	6.91	13.50	38.9	56.3	19.6	34.7	14.9	1215.0	5.38
	mean	9.8360	2.9865	26.9100	5.7760	62.5900	0.7448	7.4740	0.0372	0.4072	0.2942	2.6208	7.001	14.290	39.66	56.59	20.42	36.10	17.07	1155.40	5.075
	20	4.88061	2.79315	11.26336	1.95869	12.81392	0.39592	2.61598	0.01978	0.23466	0.25708	1.30578	0.5644	1.1865	4.054	2.455	0.583	1.297	1.575	234.582	0.3744
	12,0166	10 100	4 430	43 700	4 070	40 200	1 100	11 700	0.042	0 400	0.000	2.040	0.00								
500 ma/ka	12-0100	ND	4.430	43.700	4.070	40.200	1.190	11.700	0.043	0.422	0.399	3.940	6.92	14.20	40.0	57.7	20.5	35.5	17.4	1253.0	4.91
See myrky	12-0107	ND	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12.0108	8 340	4 140	40 600	2 050	25 200	0 771	0.250	0.000	0.050	0 405	E 570	7 00	44.70	40.0						
	12-0190	0.340	4.140	49.000	2.950	35.300	0.771	9.250	0.022	0.259	0.465	5.570	7.33	14.70	40.8	55.7	20.1	36.1	16.1	586.0	6.14
	12.0258	6 360	1 450	22 800	2 600	E8 600	0 701	11.000	0.045	0.740	0.000	0.000	7.00	45.40							-
	12-0230	12 200	6 660	£0.200	3.000	37,600	0.701	7.440	0.045	0.710	0.566	8.890	7.23	15.10	40.1	55.5	20.8	37.5	18.3	1162.0	5.19
	12-02/9	14 500	2 050	20.200	7 000	55 100	0.9/9	20.200	0.080	0.001	0.549	4.150	6.39	13.40	34.6	54.2	20.9	38.6	15.9	516.0	4.66
	12.0336	9,420	2,850	20.300	5.400	57 200	2.950	20.300	0.055	0.378	0.569	3.920	7.14	15.10	39.3	55.1	21.2	38.4	15.9	1108.0	4.98
	12-0330	9.970	3 510	35 200	4 430	44 500	1 360	13 600	0.100	0.416	0.638	6.900	6.20	13.70	40.7	55.9	18.8	33.6	16.7	1257.0	6.07
5 7	Maan	10 2700	3 6667	35 6420	4.430	44.000	1.300	14 2057	0.420	0.416	0.025	6.270	0.29	15.10	30.3	5/./	24.0	41.6	16.3	929.0	5.24
	SD	2 77995	1.000/	12 50370	4.1129	40.00/1	1.2131	11.2857	0.1101	0.6680	0.5730	0.9486	6.940	14.471	38.83	65.97	20.90	37.33	16.66	973.00	6.313
	30	2.1/005	1.03564	12.092/0	1.03/69	3.49366	0.01682	4.//4/0	0.13934	0.28904	0.13875	2.19825	0.4315	0.7135	2.411	1.302	1.577	2.675	0.898	309.181	0.5740

ND = No data

a= Sperm plug was found but dam was not pregnant.
b= No sperm plug found and was not pregnant.
c= No sperm plug found but dam was pregnant.
d= Animal was not fasted prior to necropsy.

Table K-3 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO In the Rat

Individual Hematology Results Recovery Male Rats

	Animal	WBC	N	EU	Ľ	YM	MO	ONO	E	DS	BA	SO	RBC	HGB	HCT	MCV	MCH	MCHC	RDW	PLT	MPV
Group	ID	(K/uL)	(K/uL)	(%N)	(K/uL)	(%L)	(K/uL)	(%M)	(K/uL)	(%E)	(K/uL)	(%B)	(M/uL)	(g/dL)	(%)	(fL)	(pg)	(g/dL)	(%)	(K/uL)	(fL)
	12.0174	11 800	0.042	7 070	0 240	78 200	0.864	7 310	0 120	1 100	0 627	5 200	0.10	15 60	42.2	517	10.0	26.9	16.2	1000.0	4.74
Control	12-0174	20.200	1 620	9.000	16 900	92 200	0.004	4.570	0.130	0.722	0.037	3.390	7.50	14.00	42.5	51.7	19.0	30.0	16.2	1009.0	4.71
Control	12-0175	12 500	1.000	0.090	0.000	74.000	0.922	7 800	0.140	1 410	0.007	3.310	7.52	14.00	41.0	54.5	19.7	30.2	10.2	1244.0	4.79
	12.0208	11 800	0.852	7 220	0.970	83 700	0.571	5 100	0.004	0.700	0.000	2 120	0.00	16.30	40.1	50.9	10.4	30.1	10.0	747.0	1.04
	12-0200	13 000	0.866	6 250	11 100	80.400	1.010	7 300	0.094	1 240	0.500	4 840	7.00	16.20	44.0	53.0	19.3	30.1	10.0	059.0	4.91
	12-0272	19 600	1 970	10.000	14 500	74 200	1 700	8 700	0.171	1.240	1.050	4.040	0.72	15.20	42.3	53.4	19.2	30.0	15.0	958.0	5.11
	12-0204	20 300	1.860	9 150	16,000	78.500	1.490	7 310	0.327	1.440	0.738	3,630	0.72	16.30	44.0	40.7	10.3	30.0	17.2	901.0	5.00
	12-0304	11 300	0.905	8.020	8.830	78 300	0.878	7 780	0.292	1.500	0.730	4 420	9.00	12.00	45.1	49.7 53.4	10.0	30.2	11.2	1433.0	5.79
	12.0332	8 320	1 300	15 600	5 430	65 200	0.070	10 000	0.103	1.500	0.433	6 740	0.07	10.90	40.0	52.4	10.7	35.0	15.0	977.0	5.02
	12-0365	14 800	1 730	11 700	10,900	73 500	1 080	7 290	0.304	2 050	0.803	5 430	8.82	16.00	40.0	52.5	10.0	36.5	17.7	677.0	4.82
	Mean	14 4520	1 3255	9 3670	11 1880	76 9300	1 0425	7 4080	0 1940	1 3492	0.6882	4 9360	8 384	15 770	43.72	52.34	18.84	36.09	46.29	095 70	5 266
	SD	4 21082	0 43882	2 67719	3 55698	5 47521	0 32050	1 74768	0.08253	0 39798	0.0002	1 35861	0.304	0 9141	93.72	1 445	0.527	0 209	10.23	305.70	0.200
	00	4.21002	0.40001	2.01715	0.00000	0.4/021	0.52000	1.74700	0.00200	0.55750	0.15000	1.30001	0.0370	0.3141	2.001	1.440	0.027	0.356	0.321	203.030	0.4310
	12-0176	13.000	1.830	14.000	9.160	70.500	0.876	6.740	0.261	2.010	0.869	6.690	8.90	15.70	43.9	49.3	17.7	35.9	17.2	992.0	5.04
500 mg/kg	12-0186	12.200	0.802	6.580	10.300	84.600	0.468	3.840	0.074	0.606	0.533	4.380	8.64	15.40	43.0	49.8	17.9	35.9	17.5	1020.0	4.94
	12-0215	19.700	1.730	8.800	16.200	82.600	0.656	3.340	0.269	1.370	0.764	3.890	7.65	14.80	40.2	52.5	19.3	36.7	17.4	1255.0	5.62
	12-0244	16.500	1.210	7.320	13.900	84.300	0.802	4.860	0.127	0.773	0.444	2.690	8.60	15.90	44.8	52.1	18.5	35.6	15.6	889.0	4.96
	12-0283	5.620	0.979	17.400	4.080	72.600	0.365	6.500	0.052	0.923	0.143	2.550	7.96	15.90	44.1	55.4	20.0	36.1	16.6	967.0	5.13
	12-0295	19.600	1.740	8.860	15.300	78.000	1.570	8.020	0.222	1.130	0.778	3.970	7.74	15.20	42.1	54.4	19.7	36.1	15.2	1135.0	5.09
	12-0302	11.800	1.040	8.800	9.150	77.300	1.020	8.580	0.182	1.530	0.453	3.820	9.23	17.00	47.1	51.0	18.4	36.0	16.9	906.0	4.79
	12-0310	13.000	1.690	13.000	9.090	70.100	1.290	9.930	0.254	1.960	0.643	4.960	7.69	15.20	42.8	55.7	19.8	35.6	15.3	982.0	5.49
	12-0333	17.100	1.600	9.390	14.000	81.800	0.808	4.740	0.161	0.944	0.542	3.170	8.34	16.10	45.1	54.0	19.3	35.8	16.0	947.0	5.13
	12-0363	13.300	1.350	10.100	10.100	76.000	0.971	7.290	0.228	1.710	0.651	4.890	8.03	15.70	43.1	53.7	19.5	36.3	15.6	1022.0	4.77
	Mean	14.1820	1.3971	10.4250	11.1280	77.7800	0.8826	6.3840	0.1830	1.2956	0.5820	4.1010	8.278	15.690	43.62	52.79	19.01	36.00	16.33	1011.50	5.096
	SD	4.21865	0.37065	3.35649	3.68810	5.48408	0.36032	2.15503	0.07798	0.49694	0.20944	1.22679	0.5501	0.6082	1.866	2.237	0.821	0.330	0.893	109.674	0.2745

(f) = Animal died on study

Table K-4 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Hematology Male Rats

		Corn Oil	NT	O in Corn O	il	
		Control	31.25 mg/kg	125 mg/kg	500 mg/kg	
WBC	Mean	14.8200	14.1489	15.6270	14.3240	
(K/uL)	S.D.	1.75613	4.21118	5.76098	5.39559	
•	N	10	9	10	10	
NEU	Mean	13.3350	10.7967	14.0270	12.1940	
(%N)	S.D.	6.23552	3.42866	4.03911	3.92896	
	N	10	9	10	10	
LYM	Mean 72.0400 76.8		76.8556	73.3000	73.2800	
(%L)	S.D.	10.90700	5.32943	6.64881	7.35464	
	N	10	9	10	10	
MONO	Mean	6.4570	5.1167	5.6650	6.2120	
(%M)	S.D.	4.12636	1.72554	2.08512	2.22952	
	N	10	9	10	10	
EOS	Mean	0.7563	0.7898	0.8301	0.9939	
(%E)	S.D.	0.21898	0.22599	0.35101	0.47751	
	N	10	9	10	10	
BASO	Mean	7.4300	6.4400	6.1780	7.3310	
(%B)	S.D.	4.49093	2.03677	2.67501	2.92260	
	N	10	9	10	10	
RBC	Mean	8.429	8.441	8.529	8.347	
(M/uL)	S.D.	0.3167	0.4102	0.3581	0.4779	
	N	10	9	10	10	
HGB	Mean	17.230	16.644	17.320	17.590	
(g/dL)	S.D.	1.0100	0.6540	0.9578	0.9689	
	N	10	9	10	10	
нст	Mean	47.44	46.03	47.16	47.14	
(%)	S.D.	1.595	2.002	2.003	1.709	
	N	10	9	10	10	
MCV	Mean	56.29	54.57	55.30	56.56ª	
(fL)	S.D.	1.477	1.015	1.636	1.916	
	N	10	9	10	10	
мсн	Mean	20.45	19.72	20.33	21.10 ^b	
(pg)	S.D.	0.949	0.740	0.919	0.943	
	N	10	9	10	10	
мснс	Mean	36.33	36.18	36.73	37.32	
(g/dL)	S.D.	1.775	1.017	1.215	1.471	
	N	10	9	10	10	
RDW	Mean	14.91	15.27	15.54	15.38	
(%)	S.D.	1.266	0.923	0.589	0.764	
	N	10	9	10	10	
PLT	Mean	680.90	704.22	878.60	567.60°	
(K/uL)	S.D.	262.166	226.552	248.878	216.396	
2047/0457 X	N	10	9	10	10	
MPV	Mean 5.620		5,470	5,380	5.678	
(fL)	S.D.	0.6853	0.5019	0.3051	0.4596	
080000	N	10	9	10	10	

^a = Significantly greater than 31.25 mg/kg-day group (p=0.041).

^b = Significantly greater than 31.25 mg/kg-day group (p=0.010).

^c = Signficantly less than 125 mg/kg-day group (p=0.031).

Table K-5 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Hematology Female Rats

	1	Corn Oil	NT	O in Corn O	Dil		
		Control	31.25 mg/kg	125 mg/kg	500 mg/kg		
WBC	Mean	12,7988	10,7025	9.8360	10.2700		
(K/uL)	S.D.	4,96601	3,51700	4,88061	2,77885		
(,	N	8	8	10	7		
NEU	Mean	29.5000	27.7000	26.9100	35.5429		
(%N)	S.D.	9,71567	10,27160	11,26336	12,59270		
	N	8	8	10	7		
LYM	Mean	57.8000	60.7375	62.5900	46.6571		
(%L)	S.D.	12.64798	14.84317	12.81392	9.49366		
	N	8	8	10	7		
MONO	Mean	8.2050	7.2213	7.4740	11.2857		
(%M)	S.D.	6.96830	3.53025	2.61598	4.77470		
	N	8	8	10	7		
EOS	Mean	0.4215	0.8370	0.4072	0.5580		
(%E)	S.D.	0.19883	1.17286	0.23466	0.28904		
	N	8	8	10	7		
BASO	Mean	4.0763	3.9248	2.6208	5.9486 ^ª		
(%B)	S.D.	2.34600	2.50615	1.30578	2.19825		
	N	8	8	10	7		
RBC	Mean	6.823	7.069	7.001	6.940		
(M/uL)	S.D.	0.4154	0.6453	0.5644	0.4315		
	N	8	8	10	7		
HGB	Mean	13.988	14.150	14.290	14.471		
(g/dL)	S.D.	0.8509	1.4223	1.1865	0.7135		
	N	8	8	10	7		
нст	Mean	37.98	38.64	39.66	38.83		
(%)	S.D.	3.164	3.395	4.054	2.411		
	N	8	8	10	7		
MCV	Mean	55.61	54.65	56.59	55.97		
(fL)	S.D.	2.404	1.169	2.455	1.302		
	N	8	8	10	7		
мсн	Mean	20.50	20.00	20.42	20.90		
(pg)	S.D.	0.745	0.355	0.583	1.577		
	N	8	8	10	7		
мснс	Mean	36.88	36.56	36.10	37.33		
(g/dL)	S.D.	1.135	0.994	1.297	2.575		
	N	8	8	10	7		
RDW	Mean	15.98	15.90	17.07	16.66		
(%)	S.D.	0.896	1.038	1.575	0.898		
	N	8	8	10	7		
PLT	Mean	983.63	999.00	1155.40	973.00		
(K/uL)	S.D.	276.455	242.477	234.582	309.181		
	N		8	10	7		
MPV	MPV Mean		5.243	5.075	5.313		
(fL)	S.D.	0.2308	0.4380	0.3744 0.574			
	N	8	8	10	7		

^a = Significantly greater than the 125 mg/kg-day group (p=0.015).

Table K-6 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Hematology Recovery Male Rats

		Corn Oil Control	NTO in Corn Oil 500 mg/kg
WBC (K/uL)	Mean S.D.	14.4520 4.21082	14.1820 4.21865
	N	10	10
NEU	Mean	9.3670	10.4250
(%N)	S.D. N	2.67719 10	3.35649 10
LYM	Mean	76.9300	77.7800
(%L)	S.D. N	5.47521 10	5.48408 10
MONO	Mean	7.4080	6.3840
(%M)	S.D. N	1.74768 10	2.15503 10
EOS	Mean	1.3492	1.2956
(%E)	S.D. N	0.39798 10	0.49694 10
BASO	Mean	4.9360	4.1010
(%B)	S.D. N	1.35861 10	1.22679 10
RBC	Mean	8.384	8.278
(M/uL)	S.D. N	0.5978 10	0.5501 10
HGB	Mean	15.770	15.690
(g/dL)	S.D. N	0.9141 10	0.6082 10
нст	Mean	43.72	43.62
(%)	S.D. N	2.501 10	1.866 10
MCV	Mean	52.21	52.79
(fL)	S.D. N	1.445 10	2.237 10
мсн	Mean	18 84	19.01
(pg)	S.D.	0.527	0.821
мснс	Mean	36.09	36.00
(g/dL)	S.D.	0.398	0.330
	N	10	10
RDW (%)	Mean S.D.	16.29 0.927	16.33 0.893
	N	10	10
PLT (K/uL)	Mean S.D	985.70 205.098	1011.50
()	N	10	10
MPV	Mean	5.266	5.096
(11)	5.D. N	10	0.2745 10

Table K-7 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Hematology Results Non-Pregnant Female Rats

	Animal	WBC	N	EU	Ľ	YM	MC	NO	E	os	BA	so	RBC	HGB	HCT	MCV	MCH	MCHC	RDW	PLT	MPV
Group	ID	(K/uL)	(K/uL)	(%N)	(K/uL)	(%L)	(K/uL)	(%M)	(K/uL)	(%E)	(K/uL)	(%B)	(M/uL)	(g/dL)	(%)	(fL)	(pg)	(g/dL)	(%)	(K/uL)	(fL)
	-97.7901																				
Corn Oil	12-0298 ^{a,d}	12.900	2.580	20.100	8.920	69.400	0.596	4.640	0.161	1.250	0.597	4.650	7.27	15.50	41.1	56.5	21.3	37.8	14.2	1087.0	5.68
Control	12-0317°	8.870	0.499	5.620	7.680	86.600	0.328	3.700	0.098	1.100	0.265	2.980	8.54	17.50	46.7	54.7	20.5	37.4	14.4	1026.0	5.57
	Mean	10.8850	1.5395	12.8600	8.3000	78.0000	0.4620	4.1700	0.1295	1.1750	0.4310	3.8150	7.905	16.500	43.90	55.60	20.90	37.60	14.30	1056.50	5.625
	SD	2.84964	1.47149	10.23891	0.87681	12.16224	0.18950	0.66468	0.04455	0.10607	0.23476	1.18087	0.8980	1.4142	3.960	1.273	0.566	0.283	0.141	43.134	0.0778
31.25 mg/kg	12-0299 ^ª	11.600	0.910	7.830	10.300	88.500	0.156	1.340	0.079	0.679	0.190	1.630	7.79	16.10	43.4	55.8	20.7	37.1	14.8	1176.0	5.62
14-49 PO380	Mean	11.6000	0.9100	7.8300	10.3000	88.5000	0.1560	1.3400	0.0790	0.6790	0.1900	1.6300	7.790	16.100	43.40	55.80	20.70	37.10	14.80	1176.00	5.620
	SD																				
500 mg/kg	12-0171 ^a	11.700	0.532	4.560	10.100	86.300	0.475	4.070	0.099	0.844	0.492	4.210	8.54	16.20	46.0	53.9	19.0	35.2	16.5	1180.0	5.13
	12-0229 ^a	4.620	0.293	6.340	3.900	84.500	0.197	4.280	0.420	0.899	0.185	4.010	8.41	15.50	43.4	51.6	18.4	35.6	15.9	1027.0	5.05
	Mean	8.1600	0.4125	5.4500	7.0000	85.4000	0.3360	4.1750	0.2595	0.8715	0.3385	4.1100	8.475	15.850	44.70	52.75	18.70	35.40	16.20	1103.50	5.090
	SD	5.00632	0.16900	1.25865	4.38406	1.27279	0.19658	0.14849	0.22698	0.03889	0.21708	0.14142	0.0919	0.4950	1.838	1.626	0.424	0.283	0.424	108.187	0.0566

a= Sperm plug was found but dam was not pregnant.

b= No sperm plug found and was not pregnant.

d= Animal was not fasted prior to necropsy.

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix L

Individual and Summary of Prothrombin Time Data

Table L-1 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Prothrombin Time Results Male Rats

			PT		
	Animal	Prothr	ombin Time	(sec)	
Dose	ID	Channel A	Channel B	Average	NOTES
	12-0163	10.5	11.4	11.0	plasma slightly hemolyzed/lipemic
Control	12-0205	10.5	10.1	10.3	plasma slightly hemolyzed/lipemic
	12-0206	9.5	9.6	9.6	plasma slightly hemolyzed/lipemic
	12-0207	9.5	9.7	9.6	plasma slightly hemolyzed/lipemic
	12-0235	9.8	9.5	9.7	plasma hemolyzed/lipemic
	12-0254	9.9	9.8	9.9	plasma slightly hemolyzed/lipemic
	12-0263	10.0	9.7	9.9	plasma slightly hemolyzed/lipemic
	12-0267	9.7	93	9.5	plasma slightly hemolyzed/lipemic
	12-0284	10.2	11.0	10.6	plasma slightly hemolyzed/linemic
	12-0313	7.5	9.4	8.5	plasma slightly hemolyzed/lipemic
	Mean	9 71	9.95	9.83	picenie enginity nemetyzeeniperine
	SD	0.856	0 701	0.687	
	00	0.000	0.701	0.007	
	12-0164	10.7	10.4	10.6	plasma slightly hemolyzed/linemic
31 25 ma/ka	12-0165	10.7	10.4	10.0	plasma bemolyzed/lipemic
o n.zo mg/kg	12-0100	10.0	9.5	0.9	plasma hemolyzed/lipemic
	12-0220	10.0	10.0	10.1	plasma nemolyzed/lipemic
	12-0204	0.8	0.6	0.7	plasma signily ipenic
	12-0245	9.0	9.0	5.7	plasma normal
	12-0245	0.4	9.7	9.1	plasma slightly hemolyzed/lipemic
	12-0255	0.5	0.4	10.0	plasma slightly hemolyzed/lipemic
	12-0202	9.7	10.2	10.0	plasma slightly nemolyzed/lipemic
	12-0324	9.0	9.2	9.4	plasma slightly lipemic
3	12-0351	(1)	(1)	(1)	
	Mean	9.69	9.71	9.70	
	SD	0.779	0.643	0.656	
405	40.0407	10.0	10.1		
125 mg/kg	12-0107	10.0	10.1	10.1	plasma slightly hemolyzed/lipemic
	12-0204	9.8	9.7	9.8	plasma normal
	12-0223	9.4	8.6	9.0	plasma hemolyzed/lipemic
	12-0224	9.2	9.4	9.3	plasma slightly hemolyzed/lipemic
	12-0253	10.0	9.3	9.7	plasma slightly hemolyzed/lipemic
	12-0275	9.3	9.3	9.3	plasma slightly lipemic
	12-0293	9.8	9.4	9.6	plasma slightly hemolyzed/lipemic
	12-0296	9.7	6.4	8.1	plasma slightly hemolyzed/lipemic
	12-0345	10.2	10.0	10.1	plasma slightly hemolyzed/lipemic
	12-0354	9.5	9.9	9.7	plasma lipemic
	Mean	9.69	9.21	9.45	
	SD	0.331	1.080	0.597	
222		2.5	201		
500 mg/kg	12-0177	9.4	9.2	9.3	plasma slightly hemolyzed/lipemic
	12-0189	9.9	9.6	9.8	plasma slightly hemolyzed/lipemic
	12-0203	10.8	10.7	10.8	plasma slightly hemolyzed/lipemic
	12-0209	9.9	9.4	9.7	plasma slightly hemolyzed/lipemic
	12-0236	8.8	9.6	9.2	plasma slightly hemolyzed/lipemic
	12-0256	9.7	10.3	10.0	plasma slightly hemolyzed/lipemic
	12-0297	9.1	9.5	9.3	plasma slightly hemolyzed/lipemic
	12-0314	8.7	9.6	9.2	plasma slightly hemolyzed/lipemic
	12-0322	10.5	10.3	10.4	plasma slightly hemolyzed/lipemic
	12-0341	9.2	9.4	9.3	plasma lipemic
	Mean	9.60	9.76	9.68	
	SD	0.694	0.493	0.549	

(f) = Animal died on study
Table L-2 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Prothrombin Time Results Female Rats

			PT		
	Animal	Prothr	ombin Time	(sec)	
Dose	ID	Channel A	Channel B	Average	NOTES
				ga 16	15 US2001 MASS - 15
	12-0211	8.6	9.0	8.8	plasma slightly lipemic
Control	12-0220	8.9	8.7	8.8	plasma lipemic
	12-0222	9.2	8.5	8.9	plasma slightly hemolyzed
	12-0260	13.9	15.2	14.6	plasma lipemic
	12-0289 12-0298 ^{a,d}	8.3	8.3	8.3	plasma normal
	12-0306	9.4	9.3	9.4	plasma normal
	12-0309 12-0317⁵	8.5	8.2	8.4	plasma normal
	12-0339	9.4	9.2	9.3	plasma normal
	Mean	9.53	9.55	9.54	
	SD	1.816	2.318	2.060	
	12-0168	9.4	9.4	9.4	plasma slightly lipemic
1.25 mg/kg	12-0170	8.6	8.7	8.7	plasma normal
	12-0201°	8.9	9.3	9.1	plasma hemolyzed
	12-0221	9.3	9.2	9.3	plasma normal
	12-0240 12-0299ª	9.3	9.2	9.3	plasma slightly lipemic
	12-0300	8.5	8.4	8.5	plasma normal
	12-0346	9.6	9.7	9.7	plasma slightly hemolyzed/lipemic
	12-0367	9.6	9.3	9.5	plasma slightly hemolyzed/lipemic
	12-0369	9.0	9.1	9.1	plasma normal
	Mean	9.13	9.14	9.14	
	SD	0.406	0.384	0.383	
125 mg/kg	12-0169	9.3	9.0	9.2	plasma normal
	12-0210	8.9	9.2	9.1	plasma slightly lipemic
	12-0212	9.1	8.9	9.0	plasma lipemic
	12-0227	8.9	8.6	8.8	plasma lipemic
	12-0257	8.9	9.2	9.1	plasma lipemic
	12-0259	9.3	8.8	9.1	plasma slightly lipemic
	12-0261	9.1	8.3	8.7	plasma lipemic
	12-0278	8.7	8.3	8.5	plasma slightly lipemic
	12-0291	9.7	9.7	9.7	plasma normal
	12-0327	9.3	9.9	9.6	plasma normal
	Mean SD	9.12 0.290	8.99 0.534	9.06 0.373	
500 ma/ka	12-0166	9.3	9.4	9.4	plasma normal
	12-0167	9.1	9.3	9.2	plasma normal
	12-0171ª		0.5		
	12-0198 12-0229 ^a	8.8	8.5	8.7	plasma slightly lipemic
	12-0258	10.0	9.1	9.6	plasma slightly lipemic
	12-0279	9.1	8.8	9.0	plasma lipemic
	12-0308°	9.2	12.1	10.7	plasma lipemic
	12-0336	10.0	8.9	9.5	plasma normal
	12-0348	9.0	9.5	9.3	plasma lipemic
	Mean	9.31	9.45	9.38	
	SD	0.449	1.121	0.587	

a= Sperm plug was found but dam was not pregnant.

b= No sperm plug found and was not pregnant.

c= No sperm plug found but dam was pregnant.

d= Animal was not fasted prior to necropsy.

Table L-3 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Prothrombin Time Results Recovery Male Rats

			PT		
	Animal	Prothr	ombin Time	(sec)	
Dose	ID	Channel A	Channel B	Average	NOTES
	12-0174	10.4	10.2	10.3	plasma normal
Control	12-0179	9.6	9.2	9.4	plasma normal
	12-0194	9.3	9.6	9.5	plasma normal
	12-0208	8.7	8.7	8.7	plasma normal
	12-0272	9.6	9.6	9.6	plasma normal
	12-0294	9.3	9.6	9.5	plasma normal
	12-0304	9.7	9.5	9.6	plasma normal
	12-0323	10.0	9.7	9.9	plasma normal
	12-0332	9.5	9.8	9.7	plasma normal
	12-0365	9.6	10.0	9.8	plasma normal
	Mean	9.57	9.59	9.58	
	SD	0.447	0.415	0.406	
	12-0176	9.8	95	97	nlasma normal
500 ma/ka	12-0186	9.5	94	9.5	plasma normal
eee mg.ng	12-0215	11.2	9.7	10.5	plasma normal
	12-0244	9.6	94	9.5	plasma normal
	12-0283	8.5	8.5	85	plasma normal
	12-0295	94	97	9.6	plasma normal
	12-0302	9.0	89	9.0	plasma normal
	12-0310	9.5	9.5	9.5	plasma normal
	12-0333	9.3	9.8	9.6	plasma normal
	12-0363	10.4	10.3	10.4	plasma normal
	Mean	9.62	9.47	9.55	process includes
	SD	0.742	0.492	0.571	

Table L-4 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Summary of Prothrombin Times

Male Rats

	I	Corn Oil	NTC) in Corn Oil	
		Control	31.25 mg/kg	125 mg/kg	500 mg/kg
Average	Mean	9.83	9.70	9.45	9.68
PT	S.D.	0.687	0.656	0.597	0.549
	N	10	9	10	10
	1				

Female Rats

		Corn Oil	NTO in Corn Oil						
	_	Control	31.25 mg/kg	125 mg/kg	500 mg/kg				
Average	Mean	9.54	9.14	9.06	9.38				
PT	S.D.	2.060	0.383	0.373	0.587				
	N	8	9	10	8				

Recovery Male Rats

		Corn Oil Control	NTO in Corn Oil 500 mg/kg
Average	Mean	9.58	9.55
PT	S.D.	0.406	0.571
	N	10	10

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix M

Reproductive/Developmental Data

Table M-1 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Litter Information

		DAY 0 OR 1 LITTER OBSERVATIONS							DAY 4 OBSERVATIONS					
		POSTPARTUM	# GESTATION	# PUPS	LITTER	LIVE LITTER				# PUPS/	LITTER			
GROUP	DAM ID	DAY 0	DAYS	ALIVE	DEAD	WEIGHT (grams)	# MALES	# FEMALES	OBSERVATIONS	LITTER	WEIGHT (grams)	# MALES	# FEMALES	OBSERVATIONS
CONTROL	12-0220	6/19/2012	22	15	1	87.2	8	7	1 stillborn male	15	124.8	6	9	
	12-0339	6/15/2012	22	12	0	56.9	7	5		0				b
	12-0309	6/15/2012	22	15	5	89.7	5	10	5 stillborn males	15	131.4	5	10	
	12-0298	n/a												
	12-0260	6/13/2012	22	14	1	75.1	5	9	1 stillborn male ^a	0				
	12-0222	6/16/2012	22	13	0	83.4	7	6		13	131.5	7	6	
	12-0211	6/16/2012	22	8	0	55.5	2	6		8	91.7	2	6	
	12-0317	n/a												
	12-0289	6/15/2012	22	17	0	99.4	9	8		17	146.8	9	8	
	12-0306	6/14/2012	22	8	7	46.6	4	4	2 stillborn males	8	82.4	4	4	
-		Mean	22	12.8	1.8	74.23	5.9	6.9	o stillborn ternales	9.5	118.10	5.5	7.2	
		S.D.	O	3.28	2.71	19.051	2.30	2.03		6.70	25.284	2.43	2.23	

a= Litter was euthanized on 6/15/12 due to complete neglect by dam. Pups were cold with no millk visible in their stomachs. No visible abnormalities.

13 pups remaining at time of euthanasia with litter weight of 62.2 grams.

b= 3 of the pups were found dead on 6/17/12 and all other pups were consumed by dam.

Table M-2 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Litter Information

		DAY 0 OR 1 LITTER OBSERVATIONS							DAY 4 OBSERVATIONS					
		POSTPARTUM	# GESTATION	# PUPS	LITTER	LIVE LITTER				# PUPS/	LITTER			
GROUP	DAM ID	DAY 0	DAYS	ALIVE	DEAD	WEIGHT (grams)	# MALES	# FEMALES	OBSERVATIONS	LITTER	WEIGHT (grams)	# MALES	# FEMALES	OBSERVATIONS
31.25	12-0300	6/15/2012	22	10	0	74.9	6	4		10	115.9	6	4	
mg/kg	12-0168	6/13/2012	22	12	1	85.6	7	5	1 stillborn male 1 male runt	12	122.7	7	5	1 male runt
	12-0240	6/13/2012	22	12	0	77.5	5	7		12	113	5	7	
	12-0367	6/14/2012	22	12	0	69.4	8	4		12	110.1	8	4	
	12-0170	6/17/2012	23	17	o	106.7	6	11	2 male runts ^a	15	150.4	5	10	1 male runt ^b
	12-0221	6/26/2012	22	15	1	95.1	7	8	1 stillborn female 2 males w/abrasions	15	123.7	7	8	
	12-0299	n/a												
	12-0201	6/19/2012	Unknown	15	0	83.4	8	7		15	133.6	8	7	
	12-0369	6/16/2012	22	16	0	96.1	13	3		15	136.3	13	2	ь
	12-0346	6/14/2012	22	12	0	76.7	6	6		12	119.4	6	6	
		Mean	22.1	13.4	0.2	85.04	7.3	6.1 2.47		13.1	125.01	7.2	5.9	

a= 1 male pup was discovered dead on 6/19/12 weighing 3.6 grams.

b= 1 female pup was not found and was likely consumed by dam.

Table M-3 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Litter Information

				DA	Y 0 OR 1	LITTER OBSERV	ATIONS				DAY	4 OBSERV	ATIONS	
		POSTPARTUM	# GESTATION	# PUPS	LITTER	LIVE LITTER				# PUPS/	LITTER			
GROUP	DAM ID	DAY 0	DAYS	ALIVE	DEAD	WEIGHT (grams) # MALES	# FEMALES	OBSERVATIONS	LITTER	WEIGHT (grams)	# MALES	# FEMALES	OBSERVATIONS
							_					-		
125	12-0212	6/15/2012	22	12	0	78.9	5	7		12	117.6	5	7	
mg/kg	12-0169	6/16/2012	23	15	2	77.3	10	5	2 stillborn males	0				а
	12-0257	6/15/2012	22	14	0	83.6	7	7		14	132.2	7	7	1 female runt
	12-0227	6/14/2012	22	15	0	98.6	9	6		14	132.6	8	6	
	12-0210	6/16/2012	22	7	0	49.4	2	5		6	72.9	2	4	b
	12-0291	6/17/2012	22	14	0	91.4	7	7		14	122.6	7	7	
	12-0278	6/16/2012	21	17	0	103.7	8	9		17	151	8	9	
	12-0261	6/14/2012	22	15	0	90.5	10	5		15	141.3	10	5	
	12-0259	6/17/2012	22	15	1	76.4	11	4	1 stillborn male	0				c
	12-0327	6/17/2012	22	10	1	71.4	6	4	1 stillborn male	10	98.9	6	4	
		Mean	22.0	13.4	0.4	82.12	7.5	5.9		10.2	121.14	6.6	6.1	
		S.D.	0.47	2.95	0.70	15.448	2.72	1.60		6.16	25.037	2.39	1.73	

a= 8 dead pups and 5 live pups were found on postpartum day 1. 2 pups were missing and likely consumed by dam.

Remaining 5 pups were missing and likely consumed by dam on postpartum day 2.

b= 1 female pup was missing on postpartum day 4 and was likely consumed by dam.

c= Entire litter was abandoned by dam. Pups were not nursing and were cold. All 15 pups euthanized on 6/18/12 with a litter weight of 74.0 grams.

Table M-4 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Litter Information

				DA	Y 0 OR 1	LITTER OBSERVA	OBSERVATIONS				DAY 4 OBSERVATIONS				
		POSTPARTUM	# GESTATION	# PUPS	LITTER	LIVE LITTER				# PUPS/	LITTER				
GROUP	DAM ID	DAY 0	DAYS	ALIVE	DEAD	WEIGHT (grams)	# MALES	# FEMALES	OBSERVATIONS	LITTER	WEIGHT (grams)	# MALES	# FEMALES	OBSERVATIONS	
500	12-0167	6/20/2012	22	12	1	80.8	7	5	2 male runts	11	109	5	6	1 male runt ^c	
mg/kg									1 stillborn male						
	12-0308	6/15/2012	Unknown	10	0	76	4	6		10	136	4	6		
	12-0336	6/13/2012	22	11	0	70.6	6	5		11	111.4	6	5		
	12-0348	6/14/2012	22	15	0	95.2	8	7	1 female runt	14	132	8	6	d	
	12-0171	n/a													
	12-0279	6/14/2012	22	16	0	83.1	6	10		15	112.6	6	9	1 male/1 female rui	
	12-0229	n/a													
	12-0198	6/15/2012	22	14	0	89.3	11	3		14	145.9	11	3		
	12-0258	6/14/2012	22	15	2	72.2	8	7	2 stillborn males	0				a	
	12-0166	6/17/2012	22	14	0	79.4	4	10	4 female runts	13	122.9	3	10	3 female runts b	
									1 male runt						
		Mean	22.0	13.4	0.4	80.83	6.8	6.6		11.0	124.26	6.1	6.4		
		S.D.	0.00	2.13	0.74	8.349	2.31	2.45		4.78	14.154	2.67	2.37		

a= Entire litter was abandoned by dam. Pups were not nursing and were cold. All 15 pups euthanized on 6/15/12 with a litter weight of 66.3 grams.

Remaining 5 pups were missing and likely consumed by dam on postpartum day 2.

b= 1 male pup was found dead on 6/18/12 weighing 3.7 grams.

c= 1 of the male runts was missing and likely consumed by dam.

d= 1 female runt was missing and likely consumed by dam.

Table M-5 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Reproductive/Developmental Tabular Summary Table

OBSERVATIONS	VALUES						
	Control	31.25 mg/kg	125 mg/kg	500 mg/kg			
Pairs started (N)	10	10	10	10			
Females showing evidence of copulation (N)	9	9	10	9			
Eemales achieving pregnancy (N)	8	9	10	8			
Conceiving days 1-5 (N)	8	8	10	7			
Conceiving days 6-13 (N)	1	1	0	2			
Pregnancy = 21 days (N)	0	0	1	0			
Pregnancy = 22 days (N)	8	7	8	7			
Pregnancy = 23 days (N)	0	1	1	0			
Unknown (sperm plug not found)	0	1	0	1			
Dams with live young born (N)	8	9	10	8			
Dams with live young at day 4 pp (N)	6	9	9	7			
Corpora lutea/dam (mean)	17.8	16.1	16.6	19.8			
Implants/dam (mean)	15.3	15.6	15.5	15.3			
Live pups/dam at birth (mean)	12.8	13.4	13.4	13.4			
Live pups/dam at day 4 (mean)	12.7	13.1	13	12.6			
Sex ratio (m/f) at birth (mean) (live pups)	0.9	1.5	1.38	1.28			
Sex ratio (m/f) at day 4 (mean) (live pups)	0.8	1.74	1.3	1.24			
Litter weight at birth (mean) (live pups)	74.23	85.04	82.12	80.8			
Litter weight at day 4 (mean) (live pups)	118.1	125.01	115.9	124 3			
ABNORMAL PUPS (including stillbirths)			11010				
Day 0							
Dams with 0	4	6	7	4			
Dams with 1	2	1	2	1			
Dams with 2	37703	2	1	1			
Dams with 3		1. The second	1 77 6	1			
Dams with 4				1			
Dams with 5+	2			1			
LOSS OF OFFSPRING	-			-			
Pre-implantation (CL's - implantations)							
Females with 0	4	5	7	4			
Females with 1	1	3	1	1.71			
Females with 2	-	1		1			
Females with 3	1	-					
Females with 4	1		1				
Females with 5+	1		1	3			
Pre-natal (implantations - live births)	1.00			2			
Females with 0	2	2	2	З			
Females with 1	2	1	3	5			
Females with 2	1	1	3	4			
Females with 3	1	4	1				
Females with 4		1	-				
Females with 5+	2	-	1	1			
Post-natal (live births - alive at post natal day 4)*	17 7 7		1000	: *			
Females with 0	6	7	7	3			
Females with 1	U	1	2	4			
Females with 2		1	- -	0.50			
Females with 3							
Females with 4							
Females with 5+	2		1	1			
	-			10 7 1			

*Pups/litters that were humanely euthanized due to total neglect included as post-natal deaths

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix N

Gross Pathology Data

Table N-1 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Gross Necropsy Findings Male Rats

Group	Animal ID	Gross Findings
	12-0163	Mildly pale liver
Corn Oil	12-0205	Dark red liver; Mildly dark spleen
Control	12-0206	Pale Intestine
	12-0207	Mildly pale intestine with yellow fluid throughout; Dark kidneys
	12-0235	None
	12-0254	Very small left testes
	12-0263	Slightly pale intestine
	12-0267	Mildly enlarged, dark spleen; Dark kidneys
	12-0284	Dark red liver; Dark kidneys; Enlarged, dark spleen; Pale small intestine with bright yellow fluid throughout
	12-0313	Dark liver; Pale small intestine with bright yellow fluid
	12-0164	Dark red liver; 2 pale brown 1 mm areas on left lobe of thymus
31.25 mg/kg	12-0165	Mildly pale liver; Yellow material in stomach
	12-0225	Mildly pale liver; Pale small intestine with bright yellow material throughout
	12-0234	Pale small intestine with bright yellow fluid throughout
	12-0243	Bright yellow material in small intestine
	12-0245	Dark red liver; Dark kidneys; Pale small intestine with bright yellow fluid throughout
	12-0255	Dark kidneys; Mildly dark spleen; Pale small intestine with bright yellow fluid throughout
	12-0262	Mildly dark liver
	12-0324	Dark liver; Dark spleen
	12-0351	Found dead on 5/25/12
	12-0187	Pale small intestine with bright yellow material throughout
125 mg/kg	12-0204	Mildly dark spleen; Mottled red liver; Pale small intestine with bright yellow fluid throughout
	12-0223	Pale small intestine with bright yellow material throughout
	12-0224	Pale intestine with bright yellow fluid throughout
	12-0253	Dark red liver; Dark kidneys; Pale small intestine with pale yellow fluid throughout
	12-0275	Dark liver; Pale small intestine with bright yellow fluid throughout
	12-0293	Mildly dark kidneys
	12-0296	Pale small intestine with bright yellow material throughout
	12-0345	Dark liver; Slightly small spleen; Dark kidneys
	12-0354	Pale small intestine with bright yellow material throughout
10000 100	12-0177	Small testes; Mildly enlarged spleen; Pale intestine with bright yellow material throughout
500 mg/kg	12-0189	Small testes; Dark red liver
	12-0203	Small testes; Pale small intestine with bright yellow material throughout
	12-0209	Small testes; Multi-focally red mottled liver; Bright yellow fluid in small intestine
	12-0236	Small testes; Dark red liver; Dark kidneys; Pale small intestine with bright yellow fluid throughout
	12-0256	Small testes; Dark liver; Dark kidneys; Pale small intestine with bright yellow fluid throughout
	12-0297	Small testes; Mildly dark liver; Enlarged dark spleen; Pale intestine with bright yellow material throughout
	12-0314	Small testes; Dark liver; Pale red spleen; Pale intestine with bright yellow material throughout
	12-0322	Small testes
	12-0341	Small testes; Dark liver; Dark kidneys; Pale small intestine with bright yellow fluid throughout

Table N-2 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Gross Necropsy Findings Female Rats

Group	Animal ID	Gross Findings
	12 0211	Dark liver: Mildly dark kidaova: Mildly dark anloon
Corp Oil	12-0211	Valley fluid in intesting
Control	12-0220	Mildly dark liver
Control	12-0222	7 x 5 mm scab on ventral chin: Pale liver
	12-0289	Multiple red spots on lower lobe of lung
	12 0200	Pale small intestine
	12-0290	Park kidneys: Pale small intestine
	12-0300	None
	12 0317 ^b	Dark liver: Bale intestine: 0 x 4 mm "diverticulum" on serenal side of greater superture of stemach
	12-0317	No mucosal defect noted. Musculature annears to be distending out from defect
	12-0339	Right yellow fluid throughout intestine: Both ovaries have fluid-filled overs
	12 0000	bright yellow hald throughout intestine, both ovalles have hald-hiled bysts
	12-0168	Pale small intestine with bright yellow fluid present; Yellow-tinged mesenteric lymph nodes
31.25 mg/kg	12-0170	Pale small intestine
	12-0201 ^c	5 x 2 mm mass in fat near ovary; Yellow fluid in intestine
	12-0221	Yellow liquid in stomach and intestine
	12-0240	Dark liver; Pale small intestine with small amount of bright yellow fluid present
	12-0299ª	Pale small intestine
	12-0300	Bright yellow fluid throughout intestine
	12-0346	Mildly enlarged submandibular lymph nodes; Pale small intestine
	12-0367	Pale small intestine with bright yellow fluid present
	12-0369	None
	10 0100	N/ H - M + 1 +
125 mm///m	12-0169	Yellow fluid in small intestine Mildle and motified lunger. Mildle ded. lines Delete allow 0. id. is intention
125 mg/kg	12-0210	Richt vollow fuid throughout intesting
	12-0212	Pale intestine
	12-0227	Print vellow fluid throughout intestine
	12-0259	Yellow-tinged subcutaneous brown fat: Pale, brown liver: Mottled red lungs: Mildly dark kidneys:
	12 0200	Thin with minimal visceral fat
	12-0261	Mildly distended stomach with bedding: Pale small intestine
	12-0278	Mildly enlarged submandibular lymph nodes: Mildly dark liver: Pale intestine
	12-0291	Pale small intestine
	12-0327	Dark liver; Right kidney cystic and enlarged; Left kidney cystic
500 malka	12-0166	Mildly dark liver and spleen
500 mg/kg	12-0107	Vellow fluid in stomach, Pale Intestine
	12-01/1	Yellow fluid in intestine
	12-0190	Mildle fleid starte
	12-0229	Milaly fluid-filled uterus Dilatad utarua. Mildlu daek kidaava: Briatt vallav fluid is assall istaatiss
	12-0250	Dilated uterus, Milidiy dark kidneys, Bright yellow fluid in small intestine Bele vellow steiping of fur on obdemon and vulue. Mildly good distanded secure
	12-02/9	Fale yellow stanling of ful of abdomen and vulva, mildly gas-distended cecum
	12-0308	Small amount of fluid in amoli intesting
	12-0330	Mildly distanded stomach with hadding: Bala amali intesting
	12-0340	windry distended stormach with bedding, rale small intestine
	a= Sperm n	lug was found but female was not pregnant.
	b= No speri	n plug found and was not pregnant.
		같은 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 것 같아요. 가지 않아요

c= No sperm plug found but female was pregnant.

Table N-3 Protocol No. 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

Individual Gross Necropsy Findings Recovery Male Rats

Group Animal ID Gross Findings

Corn Oil	12-0174	Mildly enlarged sub-mandibular lymph nodes; Mildly dark liver
Control	12-0179	Mildly dark liver; Mildly dark spleen
	12-0194	Dark spleen; Dark kidneys; Hydronephrosis of right kidney
	12-0208	Dark liver
	12-0272	None
	12-0294	Dark liver; Dark spleen
	12-0304	Dark liver
	12-0323	None
	12-0332	Dark liver
	12-0365	None
500 mg/kg	12-0176	Small testes; Mildly enlarged, dark spleen
	12-0186	Dark liver
	12-0215	Small testes; Dark, enlarged spleen, Dark kidneys
	12-0244	Small testes
	12-0283	Small testes; Dark liver
	12-0295	Small right testes
	12-0302	Dark liver; Mildly dark, mottled kidneys
	12-0310	Small testes; Dark liver; Dark, mottled kidneys
	12-0333	Small testes; Dark liver; Hydronephrosis of right kidney
	12-0363	Small testes: Dark liver

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix O

Histopathology Report

Pathology report for 0FP4-93-12-03-03 Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

11 JULY 2013

Prepared by Shannon M. Wallace, DVM, Diplomate, ACVP

Performing Laboratory

U.S. Army Public Health Command Portfolio of Toxicology (MCHB-IP-TEP) 5158 Blackhawk Road Aberdeen Proving Ground, MD 21010-5403

1. TABLE OF CONTENTS

1.	TABLE OF CONTENTS	2
2.	INTRODUCTION	3
3.	METHODS	3
4.	RESULTS	4
	4.1 Clinical Pathology	.4
	4.2 Gross necropsy observations	5
	4.3 Gross necropsy correlating to litter observations	5
	4.4 Microscopic findings	.5
5.	DISCUSSION	9
6.	REFERENCES	.11
7.	HISTOPATHOLOGY DATA	12
8.	GLP COMPLIANCE STATEMENT	33

2. INTRODUCTION

As a result of an initiative by the Department of Defense (DOD) to improve munitions safety, the US Army is developing insensitive munitions (IM) for incorporation into its inventory of conventional military munitions systems. Despite the slightly lower performance of NTO compared to TNT, there has been a renewed interest in NTO use in explosive formulations based on its lower sensitivity as a melt-cast medium observed during testing and the less stringent shipping requirements. To support possible fielding of these PAX explosives, additional reproductive/developmental toxicity data in a mammalian system needs to be generated to assess the occupational health hazards associated with the use and production of this material.

The primary objective of this study was to determine the initial reproductive and developmental toxicity of NTO through the use of a screening test. The secondary objective of this study was to confirm the effects of repeated-dose exposure to NTO using different exposure durations and dose levels than previously evaluated.

3. METHODS

Animals were oral gavaged with NTO suspended/dissolved in corn oil. Forty adult Sprague Dawley rats of each sex (N=80) were randomly distributed into 3 dose groups, 31.25 mg/kg, 125 mg/kg, 500 mg/kg and a vehicle control group (10 rats of each sex per dose group). Rats were exposed daily to control, 31.25, 125, and 500 mg/kg-day NTO 7 days/week for a maximum of 56 days.

In addition to the main study, 10 male rats per group were added to serve as a satellite recovery groups for the highest dose group and the control group. These animals were dosed concurrently with the main study animals for the appropriate time period and held for a period of at least 14 days (not to exceed one month) following cessation of dosing. Animals used as satellite/recovery animals were not mated but were anesthetized, bled, and necropsied with selected tissues sent for histopathological evaluation. The purpose of the satellite group is to evaluate the reversibility, persistence, or delayed occurrence of toxic effects associated with repeated exposure to NTO.

Dosing of both sexes began 2 weeks prior to mating following an acclimatization period of no less than 5 days. Dosing was continued in both sexes during the 2 week mating period. Male rats were dosed with NTO for the minimum dosing period of 28 days. Following the 28-day dosing period, male rats were anesthetized, bled, and necropsied with selected tissues collected, weighed, and submitted for histopathological evaluation. Female rats with no evidence of copulation (presence of sperm plug) following the 2week mating period were dosed and euthanized 24-26 days after the last day of the mating period. These animals were anesthetized, bled, and necropsied with selected tissues collected, weighed, and submitted for histopathological evaluation. Daily dosing of the parental females were continued throughout pregnancy and at least up to, and including, day 3 post-partum or the day before sacrifice. However, in order to allow for overnight fasting of dams prior to blood collection, the pups were euthanized on postpartum day 4 with euthanasia of the dams occurring the next day. Gross external examinations of all pups occurred on the day they were euthanized. Parental females were also anesthetized, bled, and necropsied with selected tissues collected, weighed, and submitted for histopathological evaluation.

All adult animals in the study were subjected to a full, detailed gross necropsy including careful examination of the external surface of the body, all orifices, and the cranial. thoracic and abdominal cavities and their contents. Special attention was paid to the organs of the reproductive system. All gross pathology changes were recorded on CHPPM Form 402-R-E. The following organs and tissues, or representative samples. were preserved in a suitable medium for histopathological examination: all gross lesions; brain (including sections of medulla/pons, cerebellar cortex and cerebral cortex); pituitary; thyroid parathyroid; thymus; lungs and trachea; pharynx; larynx; nose; heart; bone marrow (either femur, sternum or rib at the costochondral junction); salivary glands; liver; spleen; kidney; adrenals; pancreas; testes; uterus; aorta; esophagus; stomach; duodenum; jejunum; ileum; cecum; colon; rectum; urinary bladder; representative lymph node; peripheral nerve; trachea; sternum with bone marrow; mammary gland; thigh musculature; eyes; femur (including articular surface); spinal cord at three levels (cervical, midthoracic, and lumbar) and exorbital lachrymal glands. In addition, the following organs were weighed: liver, kidneys, adrenals, gonads, spleen, brain, epididymides, uterus, thymus and heart. Prior to being weighed, organs were carefully dissected and trimmed to remove fat and other tissue in a uniform manner. All routine tissues were preserved in formalin fixative; testes and epididymis were preserved in Modified Davidson's fixative. Unless otherwise, individually specified. left epididymis and left testis were evaluated for each male. In the 500mg/kg recovery group, both right and left testis were generally examined.

All tissues were selectively trimmed and placed in cassettes labeled with protocol number, animal identification number and laboratory assigned accession number. Cassettes were placed in labeled formalin or Modified Davidson's 70% filled containers, and transported to the US Army Institute of Chemical Defense (USAMRICD) for processing. Tissues were routinely processed, paraffin embedded, microtomed at 5*u*m and stained routinely with routine hematoxylin and eosin.

The pathologist examined slides for compound-induced histopathologic changes via light microscopy. The prevelance and severity of findings were graded as compared to controls. Control animals were examined for background findings and all findings were recorded. Findings, in all animals and groups, were assigned as none, minimal, mild, moderate or severe.

4. RESULTS

4.1 Clinical Pathology

For the main study group males, statistically significant differences between dose groups were only present for total bilirubin (TBIL) and inorganic phosphorus (PHOS). For TBIL, the 500 mg/kg dose group had a significantly higher value compared to the 125 mg/kg dose group. For PHOS, even though the p-value was less than .05, the post-hoc test found no significant differences between dose groups after adjusting for

multiple comparisons. Increased TBIL can be associated with hemolysis and liver pathology. In sections of liver examined, there were no significant hepatocellular or biliary system findings that would indicate a cause for this increased value. The cause and significance of the TBIL increase is undetermined.

In the male recovery group, there were no significant differences found between the control group and 500 mg/kg dose group averages for any of the seventeen clinical chemistry measures.

The only significant difference in female clinical chemistry results was in inorganic phosphorus (PHOS) where the 500 mg/kg dose had a higher mean PHOS level than the 125 mg/kg dose. Increased phosphorous can be due to renal failure, hemolysis, hypervitaminosis D, hypoparathyroidism, or osteolytic bone lesions. There were no additional clinical pathology results in support of these possible differential causes, the cause and significance of the increased phosphorous in this group is undetermined.

4.2 Gross necropsy findings

Dark kidneys and dark spleens were noted equivalently across all groups. There was no correlated histologic finding. This varied gross color observation is likely due to blood congestion and is not treatment related. Pale small intestines, in male rats, were recorded in 5/10 controls, 4/9 of 31.25 mg/kg, 8/10 of 125 mg/kg, and 8/10 of 500 mg/kg. In pregnant female rats, pale small intestines were recorded in 1/8 controls, 4/9 of 31.25 mg/kg and 2/9 of 500 mg/kg. This observation was likely due to oral corn oil administration. This was confirmed microscopically, appearing as microvacuolation of apical enterocytes. This finding is not compound treatment related.

4.3 Gross necropsy/microscopic finding correlating to litter observations

Animal #-0259 in the 125 mg/kg group was observed with 1 dead pup on postpartumday 0 and the remaining pups were euthanized on post-partum day 1 due to neglect by the dam. Gross necropsy observations in this female were an overall thin body condition with yellow tinged subcutaneous brown fat, minimal visceral fat, pale brown liver, mottled red lungs and mildly dark kidneys. Microscopic findings included renal tubular vacuolation, interpreted as tubular degeneration, hepatocellular glycogen accumulation and apoptosis and severe thymic atrophy. Renal and hepatic findings can be related to a primary disease process, however, they can also be due severe physiological stress, and a high catabolic state such as pregnancy which can compromise organ function. This female's general compromised and ill state may have contributed to the abandonment of the pups. It is undetermined if the NTO exposure contributed to findings. Of the other female rats noted to have dead or runt pups or euthanasias due to neglect, there were no significant correlative microscopic findings to explain the litter observations.

4.4 Microscopic findings

Hepatic lymphocytic infiltration was noted in all males and females, all dose groups, as well as controls. Few isolated aggregates of mononuclear cells can be considered a background lesion, however, severity of this lesion may intensify with chemical

exposures. (Thoolen 2010) Increase in dosage did not affect the frequency of this lesion. It was, therefore, considered a background finding.

Main Study Males

Extramedullary hematopoesis was noted in the majority of males in all treatment groups. The incidence and severity was observed at a similar rate across all treated groups, did not increase with dose, and is, therefore, not treatment related.

Table 1. Incidence and severity of Splenic EMH Males- Main Study					
Dose group	Control	31.25 mg/kg	125 mg/kg	500 mg/kg	
None	0/10	2/10	0/10	0/10	
Minimal EMH	5/10	3/10	1/10	3/10	
Mild EMH	5/10	4/10	9/10	7/10	
Moderate EMH		1/10			
Severe EMH					

Test article-related lesions were present in the testes and epididymis of all 10/10 500 mg/kg rats. The majority of testicular seminiferous tubules were shrunken, retaining only Sertoli cells, spermatogonia and leptotene and zygotene spermatocytes. Few tubules retained pachytene spermatocytes, however, most were degenerate. Severe degeneration/atrophy of the left testis was observed in control animal 12-0254. This finding is considered to be congenital; an underdeveloped testis and not related to the study.

Table 2. Incidence and severity of Testicular lesions- Main Study					
Dose group	Control	31.25 mg/kg	125 mg/kg	500 mg/kg	
Normal	9/10	10/10	10/10		
Minimal tubular degeneration/atrophy					
Mild tubular degeneration/atrophy					
Moderate tubular degeneration/atrophy					
Severe tubular degeneration/atrophy	1/10			10/10	

Moderate or complete absence of sperm was observed in all 500 mg/kg males. Moderate hypospermia was defined as absence of mature spermatids in the head and body of the epididymis with mature spermatids evident in the tail section. Mature spermatids were not found in any epididymal segment in severe hypospermia/aspermia animals.

Cribiform change of the epididymis was observed in 10/10 500 mg/kg rats of minimal and mild severity. Control rat #0254 was noted to have moderate cribiform change. Cribiform change is an infolding and bridging of the epithelium in segments of ducts that have undergone contraction. It is often seen in the distal corpus/proximal caput in association with decreased/absent sperm and ductular atrophy.(Creasy 2012)

Table 3. Incidence and severity of Epididymal lesions- Main Study					
Dose group	Control	31.25 mg/kg	125 mg/kg	500 mg/kg	
Normal	9/10	10/10	10/10		
Mild hypospermia					
Moderate hyposerpermia				3/10	
Severe hypospermia/aspermia	1/10			7/10	

Recovery Males

Complete recovery was not evident in these males. All spermatogonia and spermatocytes were present through all stages. Descriptively, tubules were graded as follows:

Mild degeneration/atrophy was defined as: Variable mature 13-18 and 19 spermatids missing.

Moderate degeneration/atrophy defined as: All spermatogonia and spermatocytes present through all stages. Spermatids 1-11/12 generally present with some 7-10 spermatid loss 13-18 variably present. No mature 19s.

Severe degeneration/atrophy observed: by stage, I-V completely intact. Stages VII-VIII missing spermatid 19 and stages IX-XIV missing 9-14 spermatids with more completely atrophic tubules.

Dose group	Control	500 mg/kg	
	Left	Left	Right
Normal	10/10	0/10	0/8
Minimal tubular degeneration/atrophy		0/10	0/8
Mild tubular degeneration/atrophy		4/10	4/8
Moderate tubular degeneration/atrophy		4/10	3/8
Severe tubular degeneration/atrophy		2/10	1/8

One male was excluded from the incidence rate for hypospermia due to the absence of the tail in sections examined.

Table 5. Incidence and severity of Epididymal lesions- Recovery				
Dose group	Control	500mg/kg		
Normal	10/10			
Mild hypospermia				
Moderate hypospermia		7/9	11.11	
Severe hypospermia/aspermia		2/9		

Main Study Females

Microscopically, a decrease in cortical lymphocytes was observed in pregnant controls and dose groups. In pregnant females, an early increase in thymic weight is followed by a marked reduction in cellularity of the cortex. The level of cellularity returns to normal once pregnancy is over. Increased levels of progesterone during pregnancy have a negative effect on thymic weight, whereas increased prolactin occurring during lactation has a stimulatory effect on the thymus.(Pearse 2006) Although thymic cortical cellularity decreased, weight did not change across pregnant animals so this microscopic finding was considered to be associated with pregnancy and not treatment related.

Table 6. Incidence of Thymic findings Pregnant Females

Dose group	Control	31.25mg/kg	125mg/kg	500mg/kg
None	3/8	6/9	5/10	5/7
Cortical lymphocyte loss/increased medullary lymphyocytes	5/8	3/9	5/10	2/7

Extramedullary hematopoeisis was noted in all pregnant females. The incidence and severity was observed at a similar rate across all treated groups, did not increase with dose and therefore, no dose effect was observed.

Table 7. Incidence and severity of Splenic EMH Pregnant Females- Main Study					
Dose group	Control	31.25mg/kg	125mg/kg	500mg/kg	
None					
Minimal EMH	2/8	3/9	2/10	2/8	
Mild EMH	2/8	3/9	4/10	5/8	
Moderate EMH	4/8	3/9	4/10	1/8	
Severe EMH					

5. DISCUSSION

Testicular toxicants can target multiple sites within the male reproductive system. Toxicants can act directly on testicular blood supply and cells (leydig cells, sertoli cells, spermatogonia, spermatocytes, spertmatids, spermatozoa) or at extratesticular sites (hypothalamus-pituitary axis and central nervous system) resulting in direct damage to those cells or those cells they physiologically support.

Repetitive and prolonged dosing, regardless of the mechanism of toxicity, will result in germ cell damage and loss. Germ cells are affected because they are dependent on the function and processes of other cell types within the testis; a disruption of the germ cell supporting environment often results in their death (Creasy 1997). Since progressive germ cell loss occurs throughout a repeat dose, long term study, the end result is often seminiferous tubules lined only by Sertoli cells. Even though Sertoli cells are sensitive to alterations in function, they are extremely resistant to cell death (Creasy 2001).

In all 500mg/kg main study males, severe tubular degeneration/atrophy was observed, with retention of Sertoli cells and minimal retention of all first layer germ cells.

If it is necessary to elucidate the target cell, a time course study should be performed in order to identify the earliest stage of pathologic change. The most interesting time period then should be chosen for an in-depth analysis (Creasy 1997).

All spermatogonia and spermatocytes were present through all stages for recovery 500 mg/kg males. Maturing spermatids were variably present. Complete recovery was not evident in these males. Recovery periods should be timed as multiples of the spermatogenic process, 8 weeks in rats. In theory, this allows for any reversible injury to spermatogonia at the end of the dosing period to work its way through the maturation depletion and allow full recovery of all cell layers. If recovery is delayed or the recovery period is less than the 6-8 week duration, the testes may show a more severe weight loss and depletion of germ cells in the recovery animals than was present in the terminal kill animals. This is predictable, given the kinetics of cell division and multiplication and the progressive maturation depletion of the descendant cohorts of cells during the recovery period. (Creasy 1997).

6. REFERENCES

Creasy DM (2001). Pathogenesis of male reproductive toxicity. Toxicol Pathol, 29(1): 64-76.

Creasy DM (1997). Evaluation of testicular toxicity in safety evaluation studies: The appropriate use of spermatogenic staging. Toxicol Pathol, 25(2): 119-131.

Creasy D, Bube A, DeRijk E, Kandori H, Kuwahara M, Masson R, Nolte T, Reams R, Regan K, Rehm S, Rogerson P, Whitney K (2013). Proliferative and nonproliferative lesions of the rat and mouse male reproductive system. Toxicol Pathol, 40: 40S-121S.

Foley GL (2001). Overview of male reproductive pathology. Toxicol Pathol, 29(1): 49-63.

Lanning LL, Creasy DM, Chapin RE, Mann PC, Barlow NJ, Regan KS, Goodman DG (2002). Recommended approaches for the evaluation of testicular and epididymal toxicity. Toxicol Pathol, 30(4): 507-520.

Nolte T, Harleman JH, Jahn W (1995). Histopathology of chemically induced testicular atrophy in rats. Exp Toxic Pathol, 47: 267-286.

Pearse, Gail (2006). Histopathology of the Thymus. Toxicol Pathol, 34: 515-547.

Thoolen B, Maronpot RR, Harada T, Nyska A, Rousseaux C, Nolte T, Malarkey DE, Kaufmann W, Kuttler K, Deschl U, Nakae D, Gregson R, Vinlove MP, Bix AE, Singh B, Belpoggi F, Ward JM (2010) Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicol Pathol, 38:5S-81S.

7. HISTOPATHOLOGY DATA

MALES

Control

12-0163

1. Kidney, left and right: Infiltrates, mononuclear, interstitial, multifocal, mild.

2. Liver: Infiltrates, mononuclear, multifocal, random, mild.

3. Liver: EMH, focal, minimal.

4. Spleen: Hemosiderosis, multifocal, minimal.

5. Spleen: EMH, multifocal, minimal.

5. Small intestine; thymus; testis; epididymis: No significant findings.

Gross necropsy findings: Mildly pale liver.

12-0205

- 1. Kidney, left: Basophilic tubules, multifocal, minimal with rare mononuclear infiltrates.
- 2. Kidney, right: No significant findings.
- 3. Liver: Infiltrates, mononuclear, multifocal, random, minimal.
- 4. Liver: EMH, focal, minimal.
- 5. Spleen: Hemosiderosis, multifocal, minimal.
- 6. Spleen: EMH, multifocal, minimal.
- 7. Thymus; testis; epididymis: No significant findings.

Gross necropsy findings: Dark, red liver. Mildly dark spleen.

12-0206

- 1. Kidney, left: Cystic tubule, focal, with fibrosis.
- 2. Kidney, left: Basophilic tubules, multifocal, minimal with mononuclear interstitial infiltrates.
- 3. Kidney, right; jejunum; thymus; testis; epididymis: No significant findings.
- 4. Spleen: Hemosiderosis, multifocal, minimal.
- 5. Spleen: EMH, multifocal, minimal.
- 6. Liver: Infiltrates, mononuclear, multifocal, random, minimal.

7. Liver: EMH, focal, minimal

Gross necropsy findings: Pale intestines.

12-0207

- 1. Liver: Vacuolation, micro- and macro, diffuse, moderate.
- 2. Liver: EMH, focal, minimal.
- 3. Kidney, right and left; jejunum; thymus; testis; epididymis: No significant findings.
- 4. Spleen: EMH, multifocal, mild.
- 5. Spleen: Hemosiderosis, multifocal, minimal.

Gross necropsy findings: Mildly pale intestine with bright yellow fluid; stomach has moderate amounts of bedding; Dark kidneys.

12-0235

- 1. Kidney, right and left: Infiltrates, mononuclear, interstitial, multifocal, minimal.
- 2. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 3. Liver: Vacuolation, micro-, diffuse, moderate.

- 4. Spleen: EMH, multifocal, mild.
- 5. Spleen: Hemosiderosis, multifocal, mild.
- 6. Thymus; testis; epididymis: No significant findings.

Gross necropsy findings: None. *Note: right and left kidney each cross cut; unable to distinguish between right and left

12-0254

- 1. Testis, left: Tubular degeneration/atrophy, diffuse, severe.
- 2. Epididymis: Aspermia, diffuse, severe with cribiform change and eosinophilic cauda tubular debris.
- 3. Kidney, left: Cystic tubule, focal, moderate.
- 4. Spleen: EMH, multifocal, mild.
- 5. Spleen: Hemosiderosis, multifocal, minimal.
- 6. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 7. Liver: EMH, focal, minimal.
- 8. Liver: Vacuolation, micro-, diffuse, moderate.

Gross necropsy findings: Small left testis.

12-0263

- 1. Kidney, right and left; small intestine; testis: No significant findings.
- 2. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 3. Liver: Vacuolation, micro-, diffuse, moderate
- 4. Spleen: EMH, multifocal, mild.
- 5. Spleen: Hemosiderosis, multifocal, mild.
- 6. Epididymis: Infiltrates, mononuclear, interstitial, multifocal, minimal.

Gross necropsy findings: Slightly pale intestine.

12-0267

- 1. Kidney, left: Basophilic tubules, multifocal, mild with mononuclear infiltrates.
- 2. Spleen: EMH, multifocal, mild.
- 3. Spleen: Hemosiderosis, multifocal, mild
- 4. Liver: Vacuolation, micro- and macro-, diffuse, moderate.
- 5. Liver: Cystic degeneration, focal, minimal.
- 7. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 6. Thymus; testis; epididymis: No significant findings.

Gross necropsy findings: Mildly enlarged dark spleen. Dark kidney.

12-0284

- 1. Kidney, right: Infiltrates, mononuclear, focal, minimal.
- 2. Spleen: EMH, multifocal, minimal.
- 3. Spleen: Hemosiderosis, multifocal, minimal.
- 4. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 5. Liver: Vacuolation, micro- and macro-, diffuse, moderate.
- 6. Kidney, left; thymus; small intestine; testis; epididymis: No significant findings.

Gross necropsy findings: Dark, red liver. Dark kidneys. Enlarged dark spleen. Pale small intestine with bright yellow fluid.

12-0313

- 1. Kidney, left: Infiltrates, mononuclear, multifocal, mild with basophilic tubules.
- 2. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 3. Liver: Vacuolation, micro-, diffuse, moderate.
- 4. Spleen: EMH, multifocal, minimal.
- 5. Spleen: Hemosiderosis, multifocal, mild.
- 6. Small intestine, enterocytes: Microvacuolation, diffuse, mild.
- 7. Kidney, right; thymus; testis; epididymis: No significant findings.

Gross necropsy findings: Dark liver. Pale small intestine with bright yellow fluid.

500mg/kg

12-0177

- 1. Kidney, left: Basophilic tubules, focal, mild.
- 2. Spleen: EMH, multifocal, mild.
- 3. Spleen: Hemosiderosis, multifocal, minimal.
- 4. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 5. Liver: EMH, rare.
- 6. Small intestine, enterocytes: Microvaculation, diffuse, severe.
- 7. Testes, right and left: Degeneration/atrophy, tubular, diffuse, severe.
- 8. Epididymis, head, body, tail: Aspermia, diffuse, severe with minimal cellular debris and tubular dilatation.
- 9. Epididymis, body: Cribiform change, mild.
- 10. Kidney, right; thymus: No significant findings.

Gross necropsy findings: Small testes. Mildly enlarged spleen. Pale intestine with bright yellow fluid. Missing pituitary.

12-0189

- 1. Kidney, left: Infiltrates, mononuclear, interstitial, multifocal, mild with rare basophilic tubules.
- 2. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 3. Liver: Micro- and macrovacuolation, diffuse, moderate.
- 4. Liver: EMH, focal, minimal.
- 5. Spleen: EMH, multifocal, mild.
- 6. Spleen: Hemosiderosis, multifocal, minimal.
- 7. Testes, right and left: Degeneration/atrophy, tubular, diffuse, severe.
- 8. Epididymis, head, body, tail: Aspermia, diffuse, severe with minimal cellulular debris and tubular dilatation.
- 9. Epididymis, body: Cribiform change, mild.
- 10. Epididymis, head: Infiltrates, lymphocytic, perivascular, focal, minimal.

12. Kidney, right; thymus: No significant findings.

Gross necropsy findings: Small testes. Dark red liver.

<u>12-0203</u>

- 1. Kidney, left: Basophilic tubules, focal, minimal.
- 2. Spleen: EMH, multifocal, mild.
- 3. Spleen: Hemosiderosis, multifocal, minimal.
- 4. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 5. Liver: Microvacuolation, diffuse, moderate.

6. Testes, right and left: Degeneration/atrophy, tubular, diffuse, severe with interstitial eosinophilic amorphous material (fluid).

7. Epididymis, head, body, tail: Aspermia, diffuse, severe with minimal tubular dilatation.

8. Epididymis, body: Cribiform change, mild.

9. Thymus: Apoptosis, cortical, multifocal, mild with tingible body macrophages.

10. Kidney, right; small intestine : No significant findings.

Gross necropsy findings: Small testes. Pale small intestine with bright yellow fluid.

12-0209

- 1. Kidney, left and right: Infiltrates, mononuclear, multifocal, mild with basophilic tubules.
- 2. Spleen: EMH, multifocal, moderate.
- 3. Spleen: Hemosiderosis, multifocal, minimal.
- 4. Liver: Micro- and macrovacuolation, diffuse, moderate.

5. Testes, right and left: Degeneration/atrophy, tubular, diffuse, severe with interstitial eosinophilic amorphous material (fluid).

6. Epididymis, head, body: Hypospermia, multifocal, moderate with minimal tubular dilatation.

- 7. Epididymis, body: Cribiform change, mild.
- 8. Epididymis, tail: Cellular debris and mature spermatids.
- 9. Small intestine, enterocytes: Microvacuolation, diffuse, moderate.
- 10. Thymus: No significant findings.

Gross necropsy findings: Small testes. Liver multifocal mottled red. Pale small intestine. Bedding in stomach. Bright yellow fluid in small intestine.

12-0236

- 1. Liver: Micro- and macrovacuolation, diffuse, moderate.
- 2. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 3. Spleen: EMH, multifocal, moderate.
- 4. Spleen: Hemosiderosis, multifocal, mild.
- 5. Testes, right and left: Degeneration/atrophy, tubular, diffuse, severe.
- 6. Epididymis, head, body: Aspermia, diffuse, severe with minimal tubular dilatation.
- 7. Epididymis, body: Cribiform change, minimal.
- 8. Epididymis, tail: Cellular debris and rare spermatid fragments.
- 9. Kidney, right and left; small intestine; thymus: No significant findings.

Gross necropsy findings: Small testes. Dark red liver. Dark kidney. Pale small intestine with bright yellow fluid.

12-0256

- 1. Kidney, left: Basophilic tubules, multifocal, minimal.
- 2. Spleen: EMH, multifocal, mild.
- 3. Spleen: Hemosiderosis, multifocal, minimal.
- 4. Liver: Micro- and macrovacuolation, diffuse, moderate.
- 5. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 6. Small intestine, enterocytes: Microvacuolation, diffuse, severe.
- 7. Epididymis, head, body, tail: Aspermia, diffuse, severe with minimal tubular dilatation.
- 8. Epididymis, body: Cribiform change, mild.
- 9. Epididymis, tail: Cellular debris, mild.
- 10. Testes, right and left: Degeneration/atrophy, tubular, diffuse, severe with mild eosinophilic amorphous interstitial material (fluid).
- 11. Kidney, right; thymus: No significant findings.

Gross necropsy findings: Small testes. Dark liver. Dark kidneys. Pale small intestine with bright yellow fluid.

12-0297

- 1. Kidney, right: Basophilic tubules, focal, minimal.
- 2. Kidney, left: Infiltrates, mononuclear, focal, moderate with basophilic tubules.
- 3. Spleen: EMH, multifocal, mild.
- 4. Spleen: Hemosiderosis, multifocal, minimal.
- 5. Liver: Micro- and macrovacuolation, diffuse, moderate.
- 6. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 7. Epididymis, head, body: Aspermia, diffuse, severe with minimal tubular dilatation.
- 8. Epididymis, body: Cribiform change, mild.
- 9. Epididymis, tail: Cellular debris, moderate with rare mature spermatids.
- 10. Small intestine, enterocytes: Microvacuolation, diffuse, severe.
- 11. Testes, right and left: Degeneration/atrophy, tubular, diffuse, severe.
- 12. Thymus: No significant findings.

Gross necropsy findings: Small testes. Mildly dark liver. Enlarged, dark spleen. Pale intestines with bright yellow fluid content.

12-0314

- 1. Kidney, right and left; thymus: No significant findings.
- 2. Liver: Microvacuolation, diffuse, mild.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 4. Spleen: EMH, multifocal, mild.
- 5. Spleen: Hemosiderosis, multifocal, moderate.
- 6. Small intestine, enterocytes: Microvacuolation, diffuse, moderate.
- 7. Epididymis, head, body: Hypospermia, multifocal, moderate with minimal tubular dilatation.
- 8. Epididymis, body: Cribiform change, mild.
- 9. Epididymis, tail: Cellular debris, moderate with spermatids.
- 10. Testes, right and left: Degeneration/atrophy, tubular, diffuse, severe.

Gross necropsy findings: Small testes. Dark liver. Pale-red spleen. Pale small intestine with bright yellow material.

12-0322

- 1. Kidney, left: Infiltrates, mononuclear, interstitial, focal, minimal.
- 2. Liver: Microvacuolation, diffuse, mild.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 4. Spleen: Hemosiderosis, multifocal, moderate.
- 5. Spleen: EMH, multifocal, minimal.
- 6. Testes, right and left: Degeneration/atrophy, tubular, diffuse, severe with eosinophilic amorphous interstitial material (fluid)
- 7. Epididymis, head, body, tail: Aspermia, diffuse, severe with minimal tubular dilatation.
- 8. Epididymis, body: Cribiform change, mild.
- 9. Epididymis, tail: Cellular debris, minimal.

10. Kidney, right; thymus: No significant findings.

Gross necropsy findings: Small testes.

12-0341

- 1. Kidney, left: Basophilic tubules, multifocal, mild with minimal mononuclear infiltrates.
- 2. Small intestine, enterocytes: Microvacuolation, diffuse, moderate.
- 3. Spleen: Hemosiderosis, multifocal, mild.
- 4. Spleen: EMH, multifocal, minimal.
- 5. Liver: Micro- and macrovacuolation, diffuse, mild.
- 6. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 7. Epididymis, head, body: Hypospermia, multifocal, moderate with minimal tubular dilatation.
- 8. Epididymis, body: Cribiform change, mild.
- 9. Epididymis, tail: Cellular debris, moderate with spermatids.
- 10. Testes, right and left: Degeneration/atrophy, tubular, diffuse, severe.
- 11. Kidney, right; thymus: No significant findings.

Gross necropsy findings: Dark liver. Small testes. Dark kidneys. Pale small intestine with bright yellow fluid.

125mg/kg

12-0187

- 1. Kidney, left: Infiltrates, mononuclear, pelvic, focal, minimal.
- 2. Liver: Micro- and macrovacuolation, diffuse, moderate.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 4. Spleen: Hemosiderosis, multifocal, mild.
- 5. Spleen: EMH, multifocal, mild.
- 6. Right kidney; thymus; right epididymis; right testis: No significant findings.

Gross necropsy findings: Small amount of bedding n stomach. Bright yellow material in small intestine. Pale small intestine.

12-0204

- 1. Kidney, right: Basophilic tubules, focal, minimal.
- 2. Kidney, left: Fibrosis, focal, mild with basophilic tubules and mononuclear infiltrates.
- 3. Liver: Micro- and macrovacuolation, diffuse, moderate.
- 4. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 6. Spleen: Hemosiderosis, multifocal, minimal.
- 7. Spleen: EMH, multifocal, mild.

8. Thymus; testis; epididymis: No significant findings.

Gross necropsy findings: Mildly dark spleen. Mottled, red liver. Pale small intestine with bright yellow fluid.

12-0223

- 1. Kidney, right and left: Infiltrates, mononuclear, multifocal, minimal with rare basophilic tubules.
- 2. Liver: Microvacuolation, multifocal, minimal.
- 3. Liver: Infiltrates, multifocal and random, minimal.
- 4. Spleen: Hemosiderosis, multifocal, mild.
- 5. Spleen: EMH, multifocal, mild.
- 6. Epididymis, right: Infiltrates, interstitial, focal, minimal.

7. Thymus; right testis: No significant findings.

Gross necropsy findings: Pale small intestine with bright yellow fluid.

12-0224

- 1. Kidney, right: Basophilic tubules, focal, minimal.
- 2. Liver: Microvacuolation, multifocal, minimal.
- 3. Liver: Infiltrates, multifocal and random, minimal.
- 4. Spleen: Hemosiderosis, multifocal, mild.
- 5. Spleen: EMH, multifocal, mild
- 6. Kidney, left; thymus; testes; epididymis: No significant findings.
- 7. Testis: Exfoliation, germ cell, multifocal, mild.
- 8. Epididymis: Infiltrates, lymphocytic, interstitial, multifocal, minimal.

Gross necropsy findings: Pale intestine with bright yellow fluid. Bedding in stomach.

<u>12-0253</u>

- 1. Kidney, left: Tubular cystic dilatation, focal, mild with minimal mononuclear infiltrates.
- 2. Spleen: Hemosiderosis, multifocal, minimal.
- 3. Spleen: EMH, multifocal, mild.
- 4. Liver: Infiltrates, multifocal and random, mild.
- 5. Liver: EMH, focal, minimal.
- 6. Epididymis, interstitium: Infiltrates, mononuclear, multifocal, mild.
- 7. Kidney, right; thymus; testis; epididymis: No significant findings.

Gross necropsy findings: Dark, red liver. Pale small intestine with pale yellow fluid. Dark kidneys.

12-0275

- 1. Kidney, left: Infiltrates, mononuclear, focally extensive, mild with basophilic tubules and fibrosis.
- 2. Spleen: Hemosiderosis, multifocal, mild.
- 3. Spleen: EMH, multifocal, mild.
- 4. Liver: Microvacuolation, multifocal, minimal.
- 5. Liver: Infiltrates, multifocal and random, minimal.
- 6. Kidney, right; thymus; testis; epididymis: No significant findings.

Gross necropsy findings: Dark red liver. Pale small intestine with pale yellow fluid.

12-0293

- 1. Kidney, left: Infiltrates, mononuclear, multifocal, mild with basophilic tubules.
- 2. Kidney, right: Basophilic tubules, focal, minimal.
- 3. Spleen: Hemosiderosis, multifocal, minimal.
- 4. Spleen: EMH, multifocal, mild.
- 5. Liver: Microvacuolation, multifocal, minimal.
- 6. Liver: Infiltrates, multifocal and random, mild.
- 7. Thymus; testis; epididymis: No significant findings.

Gross necropsy findings: Mildly dark kidneys.

12-0296

1. Kidney, left: Basophilic tubules, focally extensive, moderate with mononuclear infiltrates, fibrosis and cystic tubular dilatation.

- 2. Spleen: Hemosiderosis, multifocal, mild.
- 3. Spleen: EMH, multifocal, minimal.
- 4. Liver: Microvacuolation, multifocal, minimal.
- 5. Liver: Infiltrates, multifocal and random, mild.

6. Epididymis, tail: Infiltrates, mononuclear, interstitial, focal, mild.

7. Kidney, right; thymus; testis: No significant findings.

Gross necropsy findings: Pale small intestine. Bright yellow fluid in small intestine.

12-0345

- 1. Kidney, right and left: Basophilic tubules, multifocal, minimal.
- 2. Liver: Micro- and macrovacuolation, multifocal, minimal.
- 3. Liver: Infiltrates, multifocal and random, minimal.
- 4. Spleen: Hemosiderosis, multifocal, mild.
- 5. Spleen: EMH, multifocal, mild.
- 6. Thymus; testis; epididymis: No significant findings.

Gross necropsy findings: Dark liver. Slightly small spleen. Dark kidneys.

12-0354

- 1. Kidney, right and left: Basophilic tubules, multifocal, minimal.
- 2. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 3. Spleen: Hemosiderosis, multifocal, mild.
- 4. Spleen: EMH, multifocal, mild.
- 5. Thymus; testis; epididymis: No significant findings.

Gross necropsy findings: Pale small intestine with bright yellow fluid. Bedding in stomach.

31.25mg/kg

12-0164

- 1. Spleen: Hemosiderosis, multifocal, minimal.
- 2. Liver: Microvacuolation, multifocal, minimal.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 4. Adipose, peri-epididymal: Microgranuloma, focal, minimal.

5. Kidney, right and left; thymus; right and left testes; epididymis: No significant findings.

Gross necropsy findings: Dark red liver. Thymus: left lobe – 2 pale brown 1mm diameter areas.

12-0165

- 1. Kidney, right and left: Infiltrates, mononuclear, multifocal, minimal.
- 2. Liver: Micro- and macrovacuolation, multifocal, minimal.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 4. Spleen: Hemosiderosis, multifocal, mild.
- 5. Spleen: EMH, multifocal, moderate.
- 6. Thymus; left testis; epididymis: No significant findings.
- 7. Lymph node, thymic: Draining hemorrhage, diffuse, moderate.

Gross necropsy findings: Mildly pale liver. Yellow material in stomach.

12-0225

- 1. Kidney, left: Basophilic tubules, multifocal, mild with minimal mononuclear infiltrates.
- 2. Spleen: EMH, multifocal, minimal.
- 3. Spleen: Hemosiderosis, multifocal, minimal.
- 4. Liver: Microvacuolation, multifocal, minimal.
- 5. Liver: Infiltrates, multifocal and random, minimal.
- 6. Kidney, right; left testis; epididymis: No significant findings.

Gross necropsy findings: Mildly pale liver. Pale small intestine with bright yellow material.

12-0234

- 1. Kidney, left: Infiltrates, mononuclear, multifocal, mild with basophilic tubules.
- 2. Spleen: Hemosiderosis, multifocal, mild.
- 3. Spleen: EMH, multifocal, mild.
- 4. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 5. Liver: Microvacuolation, diffuse, moderate.
- 6. Kidney, right; thymus; testis; epididymis: No significant findings.

Gross necropsy findings: Moderate bedding in stomach. Pale small intestine with bright yellow fluid.

12-0243

- 1. Kidney, left: Infiltrates, mononuclear, multifocal, minimal with basophilic tubules.
- 2. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 3. Liver: Microvacuolation, diffuse, mild.
- 4. Spleen: Hemosiderosis, multifocal, minimal.
- 5. Spleen: EMH, multifocal, minimal.
- 6. Kidney, right; thymus; testis; epididymis: No significant findings.

Gross necropsy findings: Bright yellow material in small intestine.

12-0245

- 1. Kidney, right: Pelvic dilatation, diffuse, mild.
- 2. Kidney, left: Infiltrates, mononuclear, multifocal, mild with basophilic tubules and fibrosis.
- 3. Spleen: Hemosiderosis, multifocal, mild.
- 4. Spleen: EMH, multifocal, mild.
- 5. Liver: Infiltrates, mononuclear, multifocal and random, moderate.
- 6. Liver: Microvacuolation, multifocal, minimal.
- 7. Thymus; epididymis; testis: No significant findings.

Gross necropsy findings: Dark, red liver. Pale small intestine with bright yellow fluid. Dark kidneys.

12-0255

- 1. Spleen: EMH, multifocal, minimal.
- 2. Spleen: Hemosiderosis, multifocal, minimal.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 4. Liver: Microvacuolation, diffuse, mild.
- 5. Kidney, right and left; thymus; testis; epididymis: No significant findngs.

Gross necropsy findings: Dark kidneys. Mildly dark spleen. Pale small intestines with bright yellow fluid.

<u>12-0262</u>

- 1. Spleen: Hemosiderosis, multifocal, mild.
- 2. Spleen: EMH, multifocal, mild.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 4. Liver: Microvacuolation, diffuse, mild.
- 5. Kidney, right and left; testis; epididymis: No significant findings.

Gross necropsy findings: Mildly dark liver. Bedding in stomach.

12-0324

- 1. Kidney, left: Cystic tubular dilatation, multifocal, mild.
- 2. Kidney, left: Mineral, focal, minimal.
- 3. Spleen: EMH, multifocal, mild.
- 4. Spleen: Hemosiderosis, multifocal, mild.
- 5. Liver: Micro- and macrovacuolation, diffuse, moderate.
- 6. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 7. Liver: EMH, focal, minimal.
- 8. Testis, left: Residual bodies, atypical, multifocal, mild. (stage XIII)
- 9. Kidney, right; thymus; epididymis: No significant findings.

Gross necropsy findings: Dark liver. Dark spleen.

12-0351 (died)

1. Kidney, right and left: Autolysis, multifocal, moderate.

2. Liver: Macrovacuolation, diffuse, moderate.

3. Liver; thymus: Congestion, diffuse, severe.

4. Spleen; thymus; testes; epididymis: Autolysis, multifocal, mild.

Gross necropsy findings: Animal found dead. Partial tissues saved.

RECOVERY

Control

<u>12-0174</u>

1. Epididymis: Infiltrates, mononuclear, interstitial, multifocal, minimal.

2. Testis, left: No significant findings.

Gross necropsy findings: Mildly enlarged submandibular lymph nodes. Mildly dark liver.

12-0179

1. Testis, left; epididymis: No significant findings.

Gross necropsy findings: Mildly dark liver. Mildly dark spleen.

<u>12-0194</u>

1. Testis, left; epididymis: No significant findings.

Gross necropsy findings: Dark spleen. Dark kidneys. Hydronephrosis, right kidney.

12-0208

1. Testis, left; epididymis: No significant findings.

Gross necropsy findings: Dark liver

12-0272

1. Testis, left; epididymis: No significant findings.

2. Adipose, epididymis: Infiltrates, mononuclear, multifocal, minimal.

Gross necropsy findings: No gross lesions noted.

12-0294

1. Testis, left; Atrophy, tubular, focal, minimal. (1 tubule)

2. Epididymis: No significant findings.

Gross necropsy findings: Dark liver. Dark spleen.

12-0304

- 1. Epididymis, body: Cribiform change, diffuse, moderate.
- 2. Epididymis, head and body: Hypospermia, multifocal, mild.
- 3. Testis, left: Infiltrates, lymphocytic, perivascular, focal, minimal.

Gross necropsy findings: Dark liver

12-0323

- 1. Testis, left: Atrophy, tubular, focal. (one tubule)
- 2. Epididymis, head: Hypospermia, multifocal, minimal.

Gross necropsy findings: No gross lesions noted

<u>12-0332</u>

- 1. Testis, left: Atrophy, tubular, focal. (2 tubules)
- 2. Epididymis: No significant findings.

Gross necropsy findings: Dark liver.

12-0365

- 1. Testis, left: No significant findings.
- 2. Epididymis, head: Infiltrates, mononuclear, interstitial, multifocal, minimal.

Gross necropsy findings:

500 mg/kg

12-0176

1. Testes, right and left: Degeneration/atrophy, tubular, multifocal, moderate with rare macrovacuolation.

2. Epididymis, head and body: Hypospermia, multifocal, moderate with mild sloughed germ cells and rare interstitial mononuclear infiltrates.

- 3. Epididymis, tail: Mature spermatids and cellular debris, moderate.
- 4. Epididymis, body: Cribiform change, diffuse, moderate.

Gross necropsy findings: Small testes. Mildly enlarged dark spleen.

12-0186

- 1. Testis, left: Degeneration/atrophy, tubular, multifocal, moderate.
- 2. Epididymis, head and body: Hypospermia, multifocal, moderate with mild sloughed germ cells.
- 3. Epididymis, tail: Mature spermatids and cellular debris, moderate.
- 4. Epididymis, body: Cribiform change, diffuse, moderate.

Gross necropsy findings: Dark liver.

12-0215

- 1. Testis, left: Degeneration/atrophy, tubular, multifocal, severe with multinucleated giant cells.
- 2. Testis, right: Degeneration, tubular, multifocal, mild with rare macrovacuolation.
- 3. Epididymis, head: Cellular debris, diffuse, moderate.
- 4. Epdidymis, left, body and tail: Cellular debris, minimal.
- 5. Epididymis, left, head, body and tail: Aspermia, diffuse, severe.
6. Epididymis, left, body: Cribiform change, diffuse, mild.

Gross necropsy findings: Small testes. Dark, enlarged spleen. Dark kidneys.

12-0244

- 1. Testes, right and left : Degeneration/atrophy, tubular, diffuse, mild with rare macrovacuolation.
- 2. Epididymis, left, head and body: Hypospermia, multifocal, moderate with minimal cellular debris.
- 3. Epididymis, left, tail: Mature spermatids, diffuse, moderate with minimal cellular debris.
- 4. Epididymis, left, body: Cribiform change, diffuse, mild.

Gross necropsy findings: Small testes.

12-0283

- 1. Testes, right and left: Degeneration/atrophy, tubular, diffuse, mild.
- 2. Epdidiymis, left, tail: Mature spermatids, diffuse, moderate.
- 3. Epididymis, left, body: Hypospermia, multifocal, moderate.

Gross necropsy findings: Small testes. Dark liver. Moderate amounts of bedding in gastrointestinal system.

12-0295

- 1. Testis, left: Degeneration, tubular, diffuse, moderate with severe tubular dilatation.
- 2. Testis, right: Degeneration, tubular, diffuse, moderate.
- 3. Epididymis, tail: Mature spermatids, moderate.
- Note: Lumen of head and body of epididymis was not evaluated; cut did not allow for lumen evaluation.

Therefore, this epididymis was excluded from incidence table.

Gross necropsy findings: Small testis, right.

12-0302

1. Testis, left: Degeneration/atrophy, tubular, diffuse, moderate with tubular dilatation and few multinucleated giant cells.

- 2. Epididymis, left, body: Cribiform change, diffuse, moderate.
- 3. Epididymis, left, head, body: Hypospermia, multifocal, moderate.

4. Epididymis, left, tail: Mature spermatids, moderate.

Gross necropsy findings: Dark liver. Mildly dark, mottled kidneys.

12-0310

- 1. Testis, left: Degeneration, tubular, diffuse, mild.
- 2. Testis, right: Degeneration, tubular diffuse, moderate with dilatation and Sertoli cell vacuolation.
- 3. Epididymis, left: Aspermia, diffuse, severe with minimal cellular debris.

Gross necropsy findings: Small testes. Dark liver. Dark, mottled kidneys.

12-0333

- 1. Testis, left and right: Degeneration/atrophy, diffuse, mild.
- 2. Epididymis, left, head and body: Hypospermia, multifocal, moderate with some cellular debris.
- 3. Epididymis, left, body: Cribiform change, diffuse, moderate.
- 4. Epididymis, left, tail: Mature sperm, moderate with cellular debris.

Gross necropsy findings: Small testes. Dark liver. Right kidney, hydronephrosis.

12-0363

1. Testis, left and right: Degeneration/atrophy, diffuse, severe.

- 2. Epididymis, left, head, body: Hypospermia, multifocal, moderate, with minimal cellular debris.
- 3. Epididymis, left, body: Cribiform change, diffuse, mild.
- 4. Epididymis, left, tail: Mature sperm, moderate with cellular debris.

Gross necropsy findings: Small testes. Dark liver.

FEMALES

Control

12-0211

1. Kidney, left: Infiltrates, mononuclear, focal, minimal.

- 2. Spleen: EMH, multifocal, moderate.
- 3. Spleen: Hemosiderosis, multifocal, mild.
- 4. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 5. Liver: Microvacuolation, diffuse, minimal.
- 6. Kidney, right; thymus; ovary; uterus: No significant findings.

Gross necropsy findings: Dark liver. Mildly dark kidneys. Mildly dark spleen.

12-0220

- 1. Spleen: EMH, multifocal, moderate.
- 2. Spleen: Hemosiderosis, multifocal, minimal.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 4. Liver: EMH, multifocal, minimal.
- 5. Liver: Macrovacuolation, portal and midzonal, multifocal, mild.
- 6. Thymus: Minimal cortical lymphocyte apoptosis and tingible body macrophages, mildly increased

medullary lymphocytes, focal loss of corticomedullary junction.

6. Kidney, right and left; small intestine; thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Bedding in stomach. Yellow fluid in intestines.

<u>12-0222</u>

- 1. Spleen: EMH, multifocal, moderate.
- 2. Spleen: Hemosiderosis, multifocal, mild.
- 3. Liver: Microvacuolation, multifocal, minimal.
- 4. Kidney, right and left; thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Mildly dark liver.

12-0260

- 1. Kidney, left: Basophilic tubules, multifocal, mild with mononuclear infiltrates.
- 2. Liver: Macrovacuolation and glycogen change, portal and midzonal, diffuse, moderate.
- 3. Spleen: EMH, multifocal, minimal.
- 4. Spleen: Hemosiderosis, multifocal, mild.

5. Thymus: Decreased cortical lymphocytes, increased medullary lymphocytes, no discernible corticomedullary junction.

6. Kidney, right; uterus; ovary; thymus: No significant findings.

Gross necropsy findings: Pale liver.

12-0289

- 1. Liver: Infiltrates, mononuclear, multifocal and random, mild with individual hepatocellular necrosis.
- 2. Spleen: EMH, multifocal, mild.
- 3. Spleen: Hemosiderosis, multifocal, minimal.
- 4. Lung: Extravascated red blood cells, multifocal, mild.
- 5. Thymus: Minimally decreased medullary lymphocytes.
- 6. Kidney, right and left; thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Multiple red spots, lower lobe of lung. Bedding in stomach.

12-0298* -not pregnant

- 1. Kidney, left: Fibrosis, focal mild with mononuclear infiltrates, tubular loss and cystic tubules.
- 2. Spleen: EMH, multifocal, minimal.
- 3. Spleen: Hemosiderosis, multifocal, moderate.
- 4. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 5. Kidney, right; thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Pale small intestines. Not pregnant.

<u>12-0306</u>

- 1. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 2. Spleen: EMH, multifocal, minimal.
- 3. Spleen: Hemosiderosis, multifocal, minimal.

4. Thymus: Decreased cortical lymphocytes, increased medullary lymphocytes, no discernible corticomedullary junction.

5. Kidney, right and left; thymus; small intestine; uterus; ovary: No significant findings.

Gross necropsy findings: Dark kidneys. Pale small intestine

<u>12-0309</u>

- 1. Kidney, left: Mineral, focal, minimal.
- 2. Spleen: EMH, multifocal, mild.
- 3. Spleen: Hemosiderosis, multifocal, minimal.
- 4. Liver: Necrosis, coagulative, mutifocal, mild with mononuclear infiltrates.
- 5. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 6. Liver: Microvacuolation, multifocal, mild.
- 7. Kidney, right; thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Bedding in stomach.

12-0317*- not pregnant

- 1. Spleen: Hemosiderosis, multifocal, moderate.
- 2. Small intestine, enterocytes: Microvacuolation, diffuse, severe.

3. Kidney, right and left; liver; thymus; stomach: No significant findings.

Gross necropsy findings: Stomach: 9mmx4, "diverticulum" on serosal side of greater curvature. No mucosal defect noted. Musculature appears to be distending from defect.

12-0339

1. Kidney, right and left, cortex: Epithelial vacuolation, diffuse, severe.

2. Kidney, right and left, cortex: Basophilic tubules, multifocal, moderate with intra-tubular cellular debris.

3. Spleen: EMH, multifocal, moderate.

4. Spleen: Hemosiderosis, multifocal, minimal.

5. Thymus, cortex: Mildly increased cortical lymphocytic apoptosis with tangible body macrophages, increased medullary lymphocytes with no discernible corticomedullary junction.

6. Liver: Vacuolation, multifocal and random, mild with glycogen accumulation.

7. Uterus, ovary: No significant findings.

Gross necropsy findings: Bright yellow fluid in intestines. Bedding in cecum. Fluid filled cysts, right and left ovaries.

31.25mg/kg

12-0168

- 1. Spleen: EMH, multifocal, moderate.
- 2. Spleen: Hemosiderosis, multifocal, mild.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 4. Liver: Microvacuolation, multifocal, minimal.
- 5. Small intestine, enterocytes: Microvacuolation, multifocal, mild.
- 6. Lymph node, mesenteric: Lipid laden macrophages, sinus, mild.
- 7. Kidney, left and right; thymus: No significant findings.

Gross necropsy findings: Small amount of bedding in stomach. Pale small intestines with bright yellow fluid, yellow tinged mesenteric lymph nodes.

12-0170

- 1. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 2. Liver: EMH, focal, minimal.
- 3. Liver: Microvacuolation, diffuse, mild.
- 4. Spleen: EMH, multifocal, moderate.
- 5. Spleen: Hemosiderosis, multifocal, minimal.
- 6. Kidney, right and left; thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Pale small intestines.

12-0201

- 1. Kidney, left, cortex: Basophilic tubules, focal, minimal with mononuclear infiltrates.
- 2. Kidney, left, pelvis: Dilatation, diffuse, moderate with medullary tubular atrophy/loss.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 4. Liver: Microvacuolation, diffuse, moderate.
- 5. Spleen: EMH, multifocal, moderate.
- 6. Spleen: Hemosiderosis, multifocal, moderate.
- 7. Kidney, right; thymus; uterus; ovary: No significant findings.

Gross necropsy findings: 5mmx2mm mass in fat near ovary. Bedding in stomach. Yellow fluid in intestines.

12-0221

- 1. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 2. Liver: Microvacuolation, portal and midzonal, multifocal, mild.

- 3. Spleen: EMH, multifocal, mild.
- 4. Spleen: Hemosiderosis, multifocal, mild.
- 5. Spleen: Congestion, diffuse, moderate.

6. Thymus: Increased medullary lymphocytes, decreased cortical lymphocytes, no discernible corticomedullary junction.

7. Ovary: Hemorrhagic cyst, focal.

8. Kidney, right and left; uterus; stomach: No significant findings.

Gross necropsy findings: Yellow fluid in stomach and intestines.

12-0240

- 1. Spleen: EMH, multifocal, moderate.
- 2. Spleen: Hemosiderosis, multifocal, minimal.
- 3. Liver: Infiltrates, multifocal and random, minimal.
- 4. Kidney, right and left; thymus; ovary; uterus: No significant findings.

Gross necropsy findings: Dark liver. Pale small intestine with small amount of bright yellow fluid.

12-0299*-not pregnant

- 1. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 2. Spleen: Hemosiderosis, multifocal, moderate.
- 3. Spleen: EMH, multifocal, minimal.
- 4. Kidney, right and left; thymus; ovary; uterus: No significant findings.

Gross necropsy findings: Dark liver. Pale small intestine with small amount of bright yellow fluid.

<u>12-0300</u>

- 1. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 2. Liver: EMH, focal, minimal.
- 3. Spleen: EMH, multifocal, mild.
- 4. Spleen: Hemosiderosis, multifocal, mild.
- 5. Spleen: Congestion, diffuse, moderate.

Kidney, right and left; thymus; uterus ovary: No significant findings.

Gross necropsy findings: Bright yellow fluid in intestines.

12-0346

- 1. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 2. Spleen: EMH, multifocal, moderate.
- 3. Spleen: Hemosiderosis, multifocal, mild.
- 4. Salivary gland: Acinar dilatation and degeneration, focally extensive, severe.
- 5. Ovary, corpus luteum: Cyst, hemorrhagic, focal.
- 5. Kidney, right and left; small intestine; thymus; ovary; uterus: No significant findings.

Gross necropsy findings: Mildly enlarged submandibular lymph nodes. Pale small intestines. Bedding in stomach and intestines.

<u>12-0367</u>

- 1. Kidney, right, medulla: Cyst, focal.
- 2. Liver: Infiltrates, mononuclear, multifocal, minimal.
- 3. Thymus: Decreased medullary lymphocytes, indiscernible cortico-medullary junction.
- 4. Spleen: EMH, multifocal, minimal.

- 5. Spleen: Hemosiderosis, multifocal, mild.
- 6. Spleen: Congestion, diffuse, moderate.
- 7. Kidney, left; ovary; uterus: No significant findings.

Gross necropsy findings: Pales small intestine with bright yellow fluid. Bedding in stomach and intestines.

12-0369

- 1. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 2. Spleen: EMH, multifocal, mild.
- 3. Spleen: Hemosiderosis, multifocal, moderate.
- 4. Thymus: Increased medullary lymphocytes.
- 5. Kidney, right and left; thymus; uterus; ovary: No significant findings.
- Gross necropsy findings: No gross lesions noted.

125mg/kg

12-0169

- 1. Kidney, right and left, cortical epithelial cells: Macro and microvacuoles, multifocal, mild.
- 2. Spleen: EMH, diffuse, severe.
- 3. Spleen: Hemosiderosis, multifocal, minimal.
- 4. Liver: EMH, multifocal, mild.
- 5. Liver: Infiltrates, mononuclear, focal, minimal.
- 6. Thymus : Increased meduallry lymphocytes, decreased cortical lymphocytes, no discernible corticomedullary junction.

Gross necropsy findings: Small amount of bedding in stomach; yellow fluid in small intestines. Small thymus.

12-0210

- 1. Spleen: EMH, diffuse, severe.
- 2. Spleen: Hemosiderosis, multifocal, mild.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 4. Liver: EMH, multifocal, minimal.
- 5. Lung: Extravascated red blood cells, multifocal, mild with congestion.
- 6. Kidney, right and left; thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Mildly dark liver. Mildly red mottled lungs. Bright yellow fluid in intestines.

<u>12-0212</u>

- 1. Spleen: EMH, multifocal, moderate.
- 2. Spleen: Hemosiderosis, multifocal, minimal.
- 3. Spleen: Decreased lymphocytes, marginal zone, diffuse, mild.
- 4. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 5. Liver: EMH, multifocal, minimal.
- 6. Kidney, right and left; thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Bright yellow fluid in intestine. Bedding in stomach

12-0227

- 1. Kidney, left: Infiltrates, mononuclear, focal, interstitial, mild with basophilic tubules.
- 2. Liver: Macrovacuoles, multifocal, random, minimal.

- 3. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 4. Spleen: EMH, multifocal, minimal.
- 5. Spleen: Hemosiderosis, multifocal, minimal.
- 6. Thymus: Epithelial hyperplasia, cystic, focally extensive.
- 7. Thymus: Decreased cortical lymphocytes, increased medullary lymphocytes.

8. Kidney, right; uterus; ovary: No significant findings.

Gross necropsy findings: Pale intestines. Bedding in stomach and intestines.

12-0257

- 1. Spleen: EMH, multifocal, mild.
- 2. Spleen: Hemosiderosis, multifocal, minimal.
- 3. Spleen: Congestion, diffuse, mild.
- 4. Liver: Infiltrates, mononuclear, multifocal and random, mild.

5. Kidney, right and left; thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Yellow fluid and bedding in intestines. Bedding in stomach.

12-0259

1. Kidney, right and left, cortex: Micro- and macrovacuolation, diffuse, marked with moderate basophilic tubules and few intratubular necrotic debris.

- 2. Liver: Glycogen accumulation, portal and midzonal, diffuse, moderate.
- 3. Liver: Apoptosis, hepatocellular, centrilobular, multifocal, minimal.
- 4. Thymus: Atrophy, diffuse, severe.
- 5. Spleen: EMH, multifocal, moderate.
- 6. Spleen: Hemosiderosis, multifocal, minimal.
- 7. Spleen: Hyperplasia, lymphoid, marginal zone, multifocal, mild.
- 8. Ovary; uterus; lung: No significant findings.

Gross necropsy findings: Yellow tinged subcutaneous brown fat. Pale brown liver. Mottled red lungs. Mildly dark kidneys. Overall body condition thin. Minimal visceral fat.

12-0261

- 1. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 2. Spleen: EMH, multifocal, mild.
- 3. Spleen: Hemosiderosis, multifocal, mild.
- 4. Kidney, right and left; thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Mildly distended stomach with bedding. Mild amount of bedding in small intestines. Pale small intestines.

12-0278

- 1. Liver: Microvacuolation, multifocal, moderate.
- 2. Spleen: EMH, multifocal, moderate.
- 3. Spleen: Hemosiderosis, multifocal, moderate.
- 4. Salivary gland: Acinar dilatation and degeneration, focally extensive, severe.
- 5. Thymus: Increased meduallary lymphocytes.
- 5. Kidney, right and left; ovary; uterus: No significant findings.

Gross necropsy findings: Mildly enlarged submandibular lymph nodes. Mildly dark liver. Pale intestines. Small amount of bedding in stomach.

12-0291

- 1. Kidney, left: Infiltrates, mononuclear, focal, minimal.
- 2. Kidney, left, cortical cells: Microvacuolation, multifocal, mild.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 4. Thymus: Decreased cortical lymphocytes and increased medullary lymphocytes.
- 5. Spleen: EMH, multifocal, minimal.
- 6. Spleen: Hemosiderosis, multifocal, minimal.
- 7. Spleen: Congestion, diffuse, moderate.
- 8. Kidney, right; ovary; uterus: No significant findings.

Gross necropsy findings: Pale small intestine. Moderate amount of bedding in gastrointestinal system.

12-0327

- 1. Kidney, right: Pelvic dilatation, diffuse, severe with severe cortical and medullary atrophy/loss.
- 2. Kidney, left: Pelvic dilatation, diffuse, moderate with moderate medullary atrophy/loss.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 4. Liver: Congestion, multifocal, moderate.
- 5. Liver: EMH, focal, minimal.
- 6. Spleen: EMH, multifocal, moderate.
- 7. Spleen: Hemosiderosis, multifocal, mild.
- 8. Thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Dark liver. Right kidney enlarged and cystic. Left kidney cystic.

500mg/kg

12-0166

- 1. Spleen: EMH, multifocal, mild.
- 2. Spleen: Hemosiderosis, multifocal, minimal.

3. Kidney, right and left; liver; uterus; ovary; thymus: No significant findings.

Gross necropsy findings: Mildly dark liver and spleen.

12-0167

- 1. Kidney, left: Infiltrates, mononuclear, focal, minimal.
- 2. Liver: Infiltrates, mononuclear, multifocal and random, minimal.
- 3. Spleen: EMH, multifocal, moderate.
- 4. Spleen: Hemosiderosis, multifocal, mild.
- 5. Kidney, right; small intestine; thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Pale intestines, yellow fluid in stomach.

12-0171*- not pregnant

- 1. Liver: Infiltrates, mononuclear, multifocal and random, mild.
- 2. Spleen: Hemosiderosis, multifocal, mild.
- 3. Kidney, right and left; small intestine; uterus; ovary: No significant findings.
- 4. Thymus: Not examined.

Gross necropsy findings: Not pregnant; yellow fluid in intestines.

12-0198

1. Spleen: EMH, multifocal, mild.

2. Spleen: Hemosiderosis, multifocal, mild.

3. Liver: Infiltrates, mononuclear, multifocal and random, minimal.

4. Kidney, right and left; thymus; ovary; uterus: No significant findings.

Gross necropsy findings: Bedding and yellow fluid in intestines.

12-0229*-not pregnant

1. Spleen: EMH, multifocal, minimal.

2. Spleen: Hemosiderosis, multifocal, minimal.

3. Uterus, lumen: Dilatation, diffuse, severe.

4. Kidney, right and left; thymus; liver; ovary: No significant findings.

Note: Uterus is in proestrus.

Gross necropsy findings: Fluid filled uterus, mild.

<u>12-0258</u>

1. Spleen: EMH, multifocal, mild.

2. Spleen: Hemosiderosis, multifocal, minimal.

- 3. Liver: Macrovacuolation, portal and midzonal, multifocal, moderate.
- 4. Liver: EMH, multifocal, minimal.
- 5. Uterus: Dilatation, diffuse, severe.
- 6. Kidney, right and left; ovary: No significant findings.

7. Thymus: Not examined.

Note: Uterus is in proestrus.

Gross necropsy findings: Dilated uterus. Mildly dark kidneys. Bright yellow fluid in small intestines.

12-0279

1. Liver: Infiltrates, mononuclear, focal, minimal.

2. Thymus: Increased medullary lymphocytes, decreased cortical lymphocytes, increased apoptotic

- bodies and tingible body macrophages, no discernible corticomedullary junction.
- 3. Spleen: EMH, multifocal, minimal.
- 4. Spleen: Hemosiderosis, multifocal, mild.
- 5. Kidney, right and left; cecum; uterus; ovary: No significant findings.

Gross necropsy findings: Pale yellow staining fur on abdomen and vulva. Mildly gas distended cecum.

12-0308

- 1. Spleen: EMH, multifocal, minimal.
- 2. Spleen: Hemosiderosis, multifocal, mild.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, minimal.

4. Kidney, right and left; thymus; ovary; uterus: No significant findings.

Gross necropsy findings: Bedding and yellow fluid in intestines.

12-0336

- 1. Spleen: EMH, multifocal, mild.
- 2. Spleen: Hemosiderosis, multifocal, minimal.
- 3. Spleen: Decreased lymphocytes, mantle zone.
- 4. Kidney, right and left; liver; thymus; uterus; ovary: No significant findings.
- 5. Thymus: Decreased medullary lymphocytes.

Gross necropsy findings: Small amount of fluid in small intestine.

12-0348

- 1. Spleen: EMH, multifocal, mild.
- 2. Spleen: Hemosiderosis, multifocal, minimal.
- 3. Liver: Infiltrates, mononuclear, multifocal and random, mild.

4. Thymus; uterus; ovary: No significant findings.

Gross necropsy findings: Mildly distended stomach with bedding. Mild amount of bedding in small intestines. Pale small intestines.

8. GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

The portion of the study described in this contributing scientist report, including the tissue processing piece conducted at the United States Army Medical Research Institute of Chemical Defense's Comparative Pathology Branch, was conducted in compliance with Title 40, Code of Federal Regulations (CFR) Part 792, Good Laboratory Practice Standards.

WALLACE SHANNON MARIE 1068279042

11 JULY 2013 Date

Shannon M. Wallace, DVM, DACVP LTC, VC Pathologist, Toxicology Army Institute of Public Health

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix P

Statistical Analysis Report

Statistical Analysis on USAPHC Toxicology Protocol Number: 0FP4-93-12-03-03

Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat

TABLE OF CONTENTS

I. STUDY BACKGROUND	3
II. SUMMARY OF RESULTS	4
III. STATISTICAL ANALYSIS METHODS	5
IV. MATED MALES	6 7 8 9 10
F. Sperm Count G. Prothrombin Time	. 12 . 12
V. SATELLITE/RECOVERY MALES. A. Blood Chemistry B. Hematology. C. Body Weight D. Food Consumption E. Organ Weight F. Sperm Count. G. Prothrombin Time.	. 13 . 13 . 14 . 15 . 16 . 16 . 18 . 18
VI. FEMALES A. Blood Chemistry B. Hematology C. Body Weight D. Food Consumption E. Organ Weight F. Prothrombin Time	. 18 . 19 . 20 . 21 . 23 . 24 . 26
VII. REPRODUCTIVE DATA	. 27
VIII. LITTER MEASURES	27

I. Study Background

The primary objective of this study was to determine the initial reproductive and developmental toxicity of 3-nitro-1,2,4-triazol-5-one (NTO) through the use of a screening test. The secondary objective was to confirm the effects of repeated-dose exposure to NTO using different exposure durations and dose levels than previously evaluated.

Adult male and female rates were singly housed and exposed to NTO for 2 weeks, then pair-housed for mating and dosed for another 2 weeks. Males were euthanized after pair-housing while females continued dosing until 3-4 days post-partum and were then euthanized.

A separate group of males was used as a satellite/recovery group for the control and highest dose of NTO. These animals were dosed concurrently with the males in the reproductive study but not euthanized until 14-28 days after dosing was completed.

Body weight, food consumption, relevant organ weights and blood analysis of the adults dosed with NTO were compared with each other and with non-NTO controls to determine effects. In addition, analyses of reproductive outcomes and litter characteristics were also performed.

Each dose group began with 10 animals. One male died in the study so the base sample size for the 31.25 mg/kg dose group was reduced to 9 animals. For the females, five did not get pregnant and therefore the baseline sample size for pregnancy, post-partum, and necropsy measures was reduced. Differences from these bases, due to sporadic missing data, are noted in specific tables throughout the report.

Table 1. Number of Animals per Treatment Group										
Treatment	# Mated	# Satellite/	# Female Rats							
	Male Rats	Recovery Male Rats	For Pre- Pregnancy measures	For Gestation, Post- Partum, and Necropsy measures						
Control	10	10	10	8						
NTO 31.25 mg/kg	9		10	9						
NTO 125 mg/kg	10		10	10						
NTO 500 mg/kg	10	10	10	8						

II. Summary of Results

There were several statistically significant results in the study; however, given the large number of statistical tests performed, most the 'significance' was probably random. Only the effect of NTO on the testes, epididymides, and sperm count was consistent for the males. For the females, some consistent reduction in spleen and uterus weights was shown.

Table 2. Summary of	Statistically Significant	Results	
Category	Males	Satellite/Recovery Males	Females
Clinical Chemistry (17 measures)	TBIL 500>125	-	PHOS 500>125
Hematology (20 measures)	MCV 500>31.25 MCH 500>31.25 PLT 500<125		%BASO 500>125
Body Weight* - Absolute weight - Weekly gain			Weekly gain - Pre-Pregnancy 500<31.25
Food Consumption*			Pre-Pregnancy 500<31.25
Organ Weight (9 organs, 3 measures each**) - Absolute weight - Organ to body wt - Organ to brain wt	Testes (all measures) • 500 <control • 500<125 • 500<31.25 Epididymides (all measures) • 500<control • 500<31.25 • 500<125</control </control 	Testes (all measures) • 500 <control Epididymides (all measures) • 500<control< td=""><td>Brain Absolute 31.25<control Spleen Absolute 31.25<control 500<control Organ to body ratio 31.25<control 500<control Uterus without Outlier Absolute 500<125 Organ to brain ratio 500<125</control </control </control </control </control </td></control<></control 	Brain Absolute 31.25 <control Spleen Absolute 31.25<control 500<control Organ to body ratio 31.25<control 500<control Uterus without Outlier Absolute 500<125 Organ to brain ratio 500<125</control </control </control </control </control
Sperm Count	500 <control 500<31.25 500<125</control 	500 <control< td=""><td>NA</td></control<>	NA
Prothrombin Time			
Reproductive Data (4 measures)	NA	NA	Sample sizes too small to tell
Litter Measures (12 measures)			

* Female body weight and food consumption broken into pre-pregnancy, gestation, and post-partum.

** There could be no organ to brain weight ratio for the brain itself.

III. Statistical Analysis Methods

Analyses were conducted for males and females separately. SPSS 16.0 was used to perform all analyses and statistical significance was defined as p<.05.

A. One Time Measurement Variables for Adults

For hematology, clinical chemistry, organ to brain weight ratios, organ to body-weight ratios, sperm count data, and litter/pup parameters, the dose groups were compared using a one-factor analysis of variance (ANOVA). If the dose group effect was significant, a Tukey post hoc test was used to compare pairs of dose groups.

- The Levene's test was used to determine the variance of the groups. The Tukey post hoc test was used because group variances were equal.
- Data was checked for normality by plotting residuals. If data was not normal it was natural log transformed. If transformation still did not satisfy ANOVA assumptions, a non-parametric Kruskal-Wallis (K-W) test was used to analyze dose group differences.

For absolute organ weights, comparison of the dose groups was made using an analysis of covariance (ANCOVA), with body weight at the end of the study as the covariate. Even though the dose groups were assigned at Day 0 to keep the average starting weight for each dose group similar, the weights could have changed during the study dependent on the dose group. The ANCOVA adjusted for any differences in terminal body weights among the dose groups, because heavier animals would tend to have heavier organs. If the dose group effect was significant, a Sidak post hoc test was used to compare pairs of dose groups and dose groups to the control group.

B. Repeated Measure Variables for Adults

Weekly changes in body weight and food consumption were compared using repeated measures ANOVA. If the dose effect in the ANOVA was significant, a Tukey post hoc test was used to compare pairs of dose groups. If the interaction effect of week and dose group was statistically significant, weekly means were compared but overall dose group means were not because results would have been inconclusive. Just like the one-way ANOVAs, verification of normally distributed data (residual plots) and equal variances among dose groups (Levene's test) assumptions was performed.

C. Reproductive Data

The distributions of reproductive characteristics were compared descriptively. The sample sizes for each group were too small to test statistically. To test for differences in the count distribution, a chi-square test would have been appropriate. However, given the sample size and the high proportion of females achieving the various reproductive endpoints, the expected value of many of the cells would have been less than 5 and violated the assumptions of a chi-square test.

IV. Results – Mated Males

A. Blood Chemistry

Statistically significant differences between dose groups were not present for any of the clinical chemistry metrics except for total bilirubin (TBIL) and inorganic phosphorus (PHOS). For TBIL, the 500 mg/kg dose group had a significantly higher value compared to the 125 mg/kg dose group. For PHOS, even though the p-value was less than .05, the post-hoc test found no significant differences between dose groups after adjusting for multiple comparisons.

		ALB		AL	ALKP		T	AST	
Dose Group	N*	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Control	10	3.42	0.21	209.10	55.25	55.20	6.68	88.30	13.14
31.25 mg/kg	8	3.33	0.13	230.63	54.88	53.50	8.26	80.63	14.97
125 mg/kg	8	3.43	0.15	231.88	46.05	51.88	4.22	82.88	18.14
500 mg/kg	10	3.46	0.23	199.90	52.37	58.00	8.06	104.5	52.01
P-Value		p = .!	507	p = .	491	p = .	309	p =	.340
Dose Group	N*	C/		СН	01	CR	FΔ	GI	OB
Control	10	11.48	0.42	62.50	14.03	0.52	0.08	3.41	0.24
31.25 mg/kg	8	11.49	0.31	71.75	15.31	0.51	0.11	3.24	0.21
125 mg/kg	8	11.49	0.53	70.13	11.26	0.56	0.09	3.36	0.87
500 mg/kg	10	11.59	0.41	64.80	13.41	0.46	0.07	3.44	0.16
P-Value		p = .9	928	p = .	443	p = .124		p =	.795
Dose Group	N*	GL	U	РН	os	TB	SIL	ТР	
Control	10	205.10	58.98	11.44	0.84	0.74	0.28	6.82	0.37
31.25 mg/kg	8	210.63	53.68	11.44	1.08	0.65	0.20	6.59	0.22
125 mg/kg	8	209.50	61.34	12.34	1.12	0.54	0.17	6.78	0.84
500 mg/kg	10	216.30	41.46	12.56	0.88	0.90	0.37	6.90	0.26
P-Value		p = .974		p = . no post-hoo	p = .030 no post-hoc difference		Lognormal p = .037 500 mg/kg > 125 mg/kg (p=.023)		.030
Dose Group	N*	Cl		N	а	ŀ	(
Control	8	104.25	1.28	151.88	1.81	10.01	0.92		
31.25 mg/kg	8	102.63	1.06	150.63	1.6	9.69	1.35		
125 mg/kg	6	103.67	1.51	151.83	1.33	9.68	0.45		
500 mg/kg	5	104.00	1.22	152.6	1.52	9.58	0.86		
P-Value p = .088		p = .182		p = .858					

Dose Group	N*	LD	H	BUN		
Control	9	604.33	342.39	14.11	3.52	
31.25 mg/kg	8	576.00	203.23	12.88	2.03	
125 mg/kg	8	517.75	109.40	12.88	2.10	
500 mg/kg 10		755.60 419.99		13.50 1.9		
P-Value		p = .	399	p = .693		

* Missing all clinical chemistry data for one 31.25 mg/kg animal and two 125 mg/kg animals. In addition, missing Cl, Na and K data from two control animals, two 125 mg/kg animals, and five 500 mg/kg animals. Also, missing LDH and BUN from one of the two control animals.

B. Hematology

Statistically significant differences between dose groups were not present for any of the hematology metrics except mean cell volume (MCV), mean cell hemoglobin (MCH), and platelets (PLT). For MCV and MCH, the 500 mg/kg dose group had a significantly higher average compared to the 31.25 mg/kg group. For PLT, the 500 mg/kg dose group had a significantly lower average compared to the 125 mg/kg group.

		NEU	(K/uL)	NEU	(%N)	LYM	(K/uL)	LYM	(%L)
Dose Group	N	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Control	10	2.00	1.05	13.34	6.24	10.68	2.13	72.04	10.91
31.25 mg/kg	9	1.43	0.35	10.8	3.43	10.96	3.74	76.86	5.33
125 mg/kg	10	2.12	0.76	14.03	4.04	11.55	4.87	73.3	6.65
500 mg/kg	10	1.62	0.62	12.19	3.93	10.6	4.40	73.28	7.35
P-Value		K-W p	= .095	Lognorm	al p = .304	p =	.948	K-W p	= .774
Dose Group	N	MONO) (K/uL)	MONO (%M)		EOS (K/uL)	EOS (%E)	
Control	10	0.95	0.60	6.46	4.13	0.11	0.03	0.76	0.22
31.25 mg/kg	9	0.72	0.33	5.12	1.73	0.11	0.04	0.79	0.23
125 mg/kg	10	0.87	0.40	5.67	2.09	0.13	0.06	0.83	0.35
500 mg/kg	10	0.9	0.45	6.21	2.23	0.15	0.09	0.99	0.48
P-Value		Lognorm	al p = .817	Lognormal p = .738		p = .370		p = .421	
								1	
Dose Group	N	BASO	(K/uL)	BASC	D (%B)	RBC (M/uL)	HGB	(g/dL)
Control	10	1.09	0.65	7.43	4.49	8.43	0.32	17.23	1.01
31.25 mg/kg	9	0.92	0.42	6.44	2.04	8.44	0.41	16.64	0.65
125 mg/kg	10	0.95	0.43	6.17	2.68	8.53	0.36	17.32	0.96
500 mg/kg	10	1.05	0.57	7.33	2.92	8.35	0.48	17.59	0.97
P-Value	P-Value Lognormal p = .950		Lognormal p = .797		p = .785		p = .171		

Dose Group	N	HC	Т (%)	мс	V (fL)	MCI	H (pg)	мсно	(g/dL)	
Control	10	47.44	1.60	56.29	1.48	20.45	0.95	36.33	1.78	
31.25 mg/kg	9	46.03	2.00	54.57	1.01	19.72	0.74	36.18	1.02	
125 mg/kg	10	47.16	2.00	55.3	1.64	20.33	0.92	36.73	1.21	
500 mg/kg	10	47.14	1.71	56.56	1.92	21.10	0.94	37.32	1.47	
P-Value		p = .032 p = .375 p = .032 500 mg/kg > 31.25 mg/kg (p=.041)		p = .019 500 mg/kg > 31.25 mg/kg (p=.010)		p = .298				
Dose Group	N	RD	N (%)	PLT	PLT (K/uL)		MPV (fL)		(K/uL)	
Control	10	14.91	1.27	680.9	262.17	5.62	0.69	14.82	1.76	
31.25 mg/kg	9	15.27	0.92	704.22	226.55	5.47	0.50	14.15	4.21	
125 mg/kg	10	15.54	0.59	878.6	248.88	5.38	0.31	15.63	5.76	
500 mg/kg	10	15.38	0.76	567.6	216.40	5.68	0.46	14.32	5.40	
P-Value		p =	p = .479		p = .050 500 mg/kg < 125 mg/kg (p=.031)		p = .547		p = .893	

C. Body Weight

There were no significant differences among dose groups for their body weights during the twenty-eight day study. Although the control group typically had the heaviest body weight, especially towards the end of the study, this difference was not enough to be statistically significant.

Table 5. Mated	Table 5. Mated Male Total Body Weight												
		Da	ay O	Da	iy 7	Da	y 14						
Dose Group	N	Mean	SD	Mean	SD	Mean	SD						
Control	10	339.60	22.98	397.70	25.55	450.70	29.99						
31.25 mg/kg	9	332.67	19.63	387.11	28.02	434.22	33.38						
125 mg/kg	10	338.20	19.44	388.90	21.66	430.90	22.17						
500 mg/kg	10	344.90	24.69	394.30	29.60	435.00	35.39						
			an sannar she sannar sasa										
Dose Group	N	Da	y 21	Day 27		Day 28							
Control	10	483.90	31.26	519.80	31.02	502.30	33.01						
31.25 mg/kg	9	462.11	37.24	494.78	46.45	477.67	43.54						
125 mg/kg	10	459.70	24.98	491.90	28.88	473.90	28.04						
500 mg/kg	10	462.40	46.47	498.50	53.13	478.60	52.37						
P-value		Rep	peated me	asures Dose	e Effect p =	.551							

Body weight change followed the same pattern as absolute body weight; all groups increased each week, with the control group typically having a slightly higher average weekly increase compared to all other dose groups. Again, it was not enough to be statistically significant.

Dose Group		Day 7 - Day 0		Day 14	Day 14 - Day 7		- Day 14	Day 27	Day 27 - Day 21	
	N	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Control	10	58.10	4.91	53.00	5.72	33.20	6.84	35.90	4.36	
31.25 mg/kg	9	54.44	10.04	47.11	6.88	27.89	9.66	32.67	10.26	
125 mg/kg	10	50.70	6.00	42.00	7.10	28.80	7.08	32.20	8.20	
500 mg/kg	10	49.40	12.99	40.70	14.94	27.40	14.66	36.10	8.14	
P-value Repeated measures Do						s Dose Effe	ect p = .100			

D. Food Consumption

Food consumption averages from week to week were similar across all four dose groups. P-values, well above .05, additionally indicated that there were no significant differences between dose groups from day 0 to day 14 and from day 21 to day 27.

Dose Group	N	Day 7 - Day 0		Day 14 - Day 7		Day 21 - Day 14*	Day 27 - Day 21**		
		Mean	SD	Mean	SD		N	Mean	SD
Control	9***	212.03	18.30	213.13	19.08	1	8	169.79	18.81
31.25 mg/kg	10	209.85	22.74	205.71	21.85		7	170.39	15.92
125 mg/kg	10	205.91	14.05	196.39	16.54	1	10	163.37	14.46
500 mg/kg	10	212.15	25.31	202.26	26.96		8	164.51	23.25
P-value	value Repeated measur		d measure	s Dose Effe	ct p = .775			p = .8	10

* Day 21 - Day 14 data was not collected because all animals were pair-housed during that time.

** Food consumption values were excluded from repeated measures due to missing data that was not missing at random. Results should be taken with precaution.

*** ID 12-0207 was excluded from results because rat was crumbling food on cage floor.

E. Organ Weight

Organ weights, organ to body weight ratios, and organ to brain weight ratios were very similar among dose groups except for the two male reproductive organs. P-values for all three organ measures in both testes and epididymides were statistically significant. The 500 mg/kg dose group had significantly lower averages compared to the control group, the 31.25 mg/kg dose group, and 125 mg/kg dose group. The initial ANOVA on the heart to brain weight ratio indicated significance, but the post-hoc test found no differences between dose groups after adjusting for multiple comparisons.

Table 8. Mate	d Male	Organ Wei	ght Results					
Dose Group	N	Adrenals We	Unadjusted eight	Adrenal Weigh	s to Body It Ratio	Adrenal Weig	s to Brain ht Ratio	
		Mean	SD	Mean	SD	Mean	SD	
Control	10	0.086	0.015	0.00017	0.00003	0.041	0.009	
31.25 mg/kg	9	0.083	0.016	0.00018	0.00004	0.039	0.007	
125 mg/kg	10	0.085	0.012	0.00018	0.00003	0.038	0.005	
500 mg/kg	10	0.091	0.018	0.00019	0.00004	0.043	0.008	
P-Value		p =	.706	p =	.586	p =	.483	
Dose Group	N	Brain Ui We	nadjusted eight	Brain to Body Weight Ratio		Brain to B Ra	rain Weight atio	
Control	10	2.13	0.11	0.00425	0.00037			
31.25 mg/kg	9	2.16	0.08	0.00454	0.00039	1		
125 mg/kg	10	2.20	0.05	0.00466	0.00030	Not ap	plicable	
500 mg/kg	10	2.12	0.05	0.00447	0.00050	1		
P-Value		p =	.083	p =	.153]		
Dose Group	N	Epidid Unadjust	lymides ed Weight	Epididymia Weigh	des to Body It Ratio	Epididy Brain We	mides to eight Ratio	
Control	10	1.28	0.19	0.00254	0.00035	0.601	0.082	
31.25 mg/kg	9	1.23	0.09	0.00258	0.00017	0.570	0.045	
125 mg/kg	10	1.32	0.08	0.00279	0.00025	0.598	0.040	
500 mg/kg	10	0.83	0.14	0.00175	0.00034	0.392	0.067	
P-Value		p = 500 mg/kg 500 mg/kg 500 mg/kg (p=.00	.000 sg < Control < 31.25 mg/kg < 125 mg/kg 0 for all)	p = 500 mg/kg 500 mg/kg 500 mg/kg (p=.00	.000 g < Control 31.25 mg/kg < 125 mg/kg D for all)	p = .000 500 mg/kg < Control 500 mg/kg < 31.25 mg/kg 500 mg/kg < 125 mg/kg (p=.000 for all)		

Dose Group	N	Heart U We	nadjusted eight	Heart to B Ra	ody Weight Itio	Heart Weig	to Brain ht Ratio	
Control	10	1.89	0.16	0.00377	0.00023	0.894	0.106	
31.25 mg/kg	9	1.72	0.19	0.00361	0.00025	0.799	0.083	
125 mg/kg	10	1.77	0.12	0.00375	0.00021	0.806	0.066	
500 mg/kg	10	1.73	0.14	0.00363	0.00032	0.816	0.062	
P-Value		p =	.160	p = .415		Lognorm no post-ho	al p = .048 oc difference	
Dose Group	N	Kidneys U We	Jnadjusted eight	Kidneys Weigh	neys to Body Kidner eight Ratio Weig		s to Brain ht Ratio	
Control	10	3.37	0.23	0.00672	0.00033	1.59	0.16	
31.25 mg/kg	9	3.36	0.39	0.00703	0.00054	1.56	0.18	
125 mg/kg	10	3.16	0.20	0.00668	0.00033	1.44	0.09	
500 mg/kg	10	3.28	0.45	0.00686	0.00065	1.55	0.21	
P-Value		p =	.438	p =	.390	p =	.182	
Dose Group	N	Liver Ur We	nadjusted eight	Liver to Bo Ra	ody Weight Itio	Liver to Brain Weig Ratio		
Control	10	17.71	1.41	0.03529	0.00219	8.36	0.85	
31.25 mg/kg	9	17.24	2.66	0.03599	0.00387	8.00	1.24	
125 mg/kg	10	16.47	1.31	0.03473	0.00165	7.48	0.66	
500 mg/kg	10	16.60	2.46	0.03464	0.00194	7.85	1.15	
P-Value		p =	p = .616		p = .649		.277	
Dose Group	N	Spleen U We	Spleen Unadjusted Weight		Spleen to Body Weight Ratio		to Brain ht Ratio	
Control	10	0.934	0.173	0.00186	0.00033	0.443	0.103	
31.25 mg/kg	9	0.853	0.101	0.00179	0.00019	0.395	0.039	
125 mg/kg	10	0.863	0.062	0.00183	0.00015	0.393	0.036	
500 mg/kg	10	0.925	0.168	0.00193	0.00022	0.436	0.075	
P-Value		K-W p	o = .581	K-W p	= .493	K-W	p = .407	
Dose Group	N	Testes U We	Inadjusted eight	Testes to B Ra	ody Weight atio	Testes Weig	to Brain ht Ratio	
Control	10	3.55	0.39	0.00709	0.00080	1.678	0.227	
31.25 mg/kg	9	3.63	0.22	0.00764	0.00066	1.686	0.112	
125 mg/kg	10	3.76	0.21	0.00798	0.00083	1.710	0.119	
500 mg/kg	10	1.48	0.18	0.00310	0.00040	0.696	0.073	
P-Value		p = 500 mg/kg 500 mg/kg 500 mg/kg (p=.00	 .000 kg < Control < 31.25 mg/kg < 125 mg/kg < 0 for all) 	p = 500 mg/kg 500 mg/kg 500 mg/kg (p=.00	.000 g < Control : 31.25 mg/kg < 125 mg/kg 0 for all)	p = .000 500 mg/kg < Control 500 mg/kg < 31.25 mg/kg 500 mg/kg < 125 mg/kg		

Dose Group	N	Thymus L We	Jnadjusted eight	Thymus Weigh	to Body t Ratio	Thymu: Weigl	s to Brain ht Ratio
Control	10	0.646	0.080	0.00129	0.00016	0.304	0.041
31.25 mg/kg	9	0.649	0.110	0.00135	0.00013	0.301	0.051
125 mg/kg	10	0.594	0.073	0.00125	0.00014	0.270	0.037
500 mg/kg	10	0.631	0.159	0.00131	0.00025	0.298	0.073
P-Value		p =	.804	p =	.679	p =	.457

F. Sperm Count

The 500 mg/kg dose group was severely impacted by NTO as indicated by a significantly lower sperm count per sample compared to the other three dose groups. The control, 31.25 mg/kg, and 125 mg/kg dose groups had very similar results to each other.

Dose Group	N	Mean	SD
Control	10	168.0	22.3
31.25 mg/kg	9	153.5	32.8
125 mg/kg	10	146.5	47.6
500 mg/kg	10	11.5	10.2
P-value		500 mg/k 500 mg/kg < 500 mg/kg	p = .000 g < Control (p=.000) : 31.25 mg/kg (p=.000) < 125 mg/kg (p=.000)

G. Prothrombin Time

Prothrombin times among the dose groups were similar with the p-value well above .05. The largest difference was between the control and the 125 mg/kg dose groups with a difference of .38 seconds.

Table 10. Mated	Male Pro	thrombin 1	lime (seconds)
Dose Group	N	Mean	SD
Control	10	9.83	0.69
31.25 mg/kg	9	9.70	0.66
125 mg/kg	10	9.45	0.60
500 mg/kg	10	9.68	0.55
P-value		p	= .594

IV. Results – Satellite/Recovery Males

A. Clinical Chemistry

There were no significant differences found between the control group and 500 mg/kg dose group averages for any of the seventeen clinical chemistry measures.

	A	LB	ALI	KP	A	LT	A	ST	C	
Dose Group	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Control	3.53	0.13	121.90	28.76	41.00	7.62	71.80	14.73	104.40	1.58
500 mg/kg	3.46	0.18	116.90	22.82	41.20	10.33	64.90	17.33	104.00	1.63
P-Value	p = .	.322	p = .	672	p =	.961	p =	.350	p = .5	584
Dose Group	BL	JN	C	4	СН	IOL	CR	EA		
Control	17.00	2.45	12.04	0.54	96.10	21.54	0.61	0.11	1	
500 mg/kg	18.00	6.36	11.74	0.37	92.20	16.75	0.56	0.10	1	
P-Value	p = .	648	p = .	166	p =	.657	p =	.295]	
Dose Group	GL	ОВ	GL	U	LC	он	PH	OS	-	
Control	3.24	0.21	253.10	43.04	405.50	98.38	11.08	0.78		
500 mg/kg	3.32	0.23	222.80	40.47	373.40	184.34	10.90	0.95	1	
P-Value	p = .	424	p = .	122	p =	.633	p =	.647		
Dose Group	TB	IL	Т	P	N	la	1	K		
Control	0.47	0.17	6.78	0.23	151.30	1.25	9.18	1.39		
500 mg/kg	0.39	0.18	6.75	0.31	150.90	2.02	9.26	0.84	1	
P-Value	p = .	320	p = .	807	p =	.602	p =	.878	1	

N= 10 for Control and 500 mg/kg dose groups within each clinical chemistry measure.

B. Hematology

There were no significant differences found between the control group and 500 mg/kg dose group averages for any of the twenty hematology measures.

Table 12. Sate	ellite/Reco	very Male	Hematology	Results		197			
	NEU	(K/uL)	NEU	(%N)	LYM	(K/uL)	LYM	(%L)	
Dose Group	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Control	1.33	0.44	9.37	2.68	11.19	3.56	76.93	5.48	
500 mg/kg	1.40	0.37	10.43	3.36	11.13	3.69	77.78	5.48	
P-Value	p =	.698	p =	.446	p =	.971	p =	.733	
Doso Group	MONG	N (K (m))	MON	D (9/ BA)	FOR	w/	FOR	/0/ E)	
Dose Group	WONC) (N/UL)	WONG	J (701VI)	203	(K/UL)	203	(%)	
Control	1.04	0.32	7.41	1.75	0.19	0.08	1.35	0.40	
500 mg/kg	0.88	0.36	6.38	2.16	0.18	0.08	1.30	0.50	
P-Value	p =	.308	p =	.258	p =	.763	p = .793		
Dose Group	BASO	(K/uL)	BASC	D (%B)	RBC (M/uL)		HGB (g/dL)		
Control	0.69	0.20	4.94	1.36	8.38	0.60	15.77	0.91	
500 mg/kg	0.58	0.21	4.10	1.23	8.28	0.55	15.69	0.61	
P-Value	p =	.257	p =	.166	p = .685		p = .820		
			1		r				
Dose Group	нст	Г (%)	MC	V (fL)	МСН	l (pg)	мсно	(g/dL)	
Control	43.72	2.50	52.21	1.44	18.84	0.53	36.09	0.40	
500 mg/kg	43.62	1.87	52.79	2.24	19.01	0.82	36.00	0.33	
P-Value	p =	.920	p =	.500	p =	.589	p =	.589	
Dose Group	RDV	V (%)	PLT (K/uL)		MP	V (fL)	WBC	(K/uL)	
Control	16.29	0.93	985.70	205.10	5.27	0.43	14.45	4.21	
500 mg/kg	16.33	0.89	1011.50	109.67	5.10	0.27	14.18	4.22	
P-Value	p =	.923	p =	.730	p =	p = .307		p = .888	

N= 10 for Control and 500 mg/kg dose groups within each hematology measure.

C. Body Weight

Body weights for the control group were slightly higher by the end of the initial study period and this pattern continued through the recovery period. However, this difference was not enough to be statistically significant.

Table 13. Sate	ellite/Reco	very Male	Total Bod	ly Weight				
Dava Crawn	D	ay O	D	ay 7	Da	ay 14		
Dose Group	Mean	SD	Mean	SD	Mean	SD		
Control	337.6	28.9	394.4	32.4	445.1	35.0		
500 mg/kg	338.0	30.4	390.7	34.9	437.5	40.3		
Dose Group	Da	ay 21	Da	ay 28	Recove	ry Day 35		
Control	487.6	40.9	531.0	47.5	555.0	50.3		
500 mg/kg	476.9	43.7	514.6	45.6	538.4	49.3		
Dose Group	Recove	ry Day 42	Recove	ery Day 49	Recove	ry Day 55	Recover	y Day 56
Control	577.3	48.7	601.3	52.1	616.3	52.5	597.1	52.3
500 mg/kg	562.5	50.3	585.6	52.9	601.9	54.0	582.0	52.2
	Re	peated Me	asures Do	se Group E	ffect p-va	lue = .565		

N = 10 for the control and 500 mg/kg dose groups at all 8 food consumption data points.

Week to week body weight gain was slightly higher in the control group for the initial 28-day study, however, in the recovery period, weight gain was very similar between the two dose groups. Again, this difference was not enough to be statistically significant.

Table 14. Sa	atellite/Rec	overy Mal	e Body Weig	ht Gain				
Dose	Day 7 -	Day 0	Day 14 -	Day 7	Day 21 - [Day 14	Day 28 - I	Day 21
Group	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Control	56.80	8.46	50.70	6.85	42.50	9.89	43.40	10.21
500 mg/kg	52.70	9.10	46.80	6.89	39.40	6.11	37.70	5.17
Dose Group	Recovery Day	Day 35 - 28	Recovery I Recovery	Day 42 - Day 35	Recovery [Recovery	Day 49 - Day 35	Recovery I Recovery)ay 55 - Day 49
Control	24.00	7.38	22.30	7.26	24.00	7.18	15.00	4.62
500 mg/kg	23.80	9.35	24.10	9.83	23.10	7.34	16.30	7.38
		Repeate	d Measures [ose Grou	Fffect n-valu	e = 304		

N = 10 for the control and 500 mg/kg dose groups at all 8 food consumption data points.

D. Food Consumption

Total food consumption for the 500mg/kg group was lower than the control group; however that difference was not statistically significant highlighted by the p-value well above .05.

Table 15. Satellite/Rec 0 to Recovery Day 55	able 15. Satellite/Recovery Male Food Consumption from Day to Recovery Day 55			
Dose Group	Mean	SD		
Control	1724.97	103.27		
500 mg/kg	1661.84	109.68		
P-value	p =	= .202		

N = 10 for the control and 500 mg/kg dose groups

E. Organ Weight

Besides the two male reproductive organs (testes and epididymides), differences between organ weights, organ to body weight ratios, and organ to brain weight ratios were non-significant, all having p-values well above .05. However, for the epididymides and testes, the 500 mg/kg dose group had averages that were significantly lower than the control group on all three organ weight measures.

Dose Group	Adro Unadjusto	enals ed Weight	Adrenal Weigh	s to Body It Ratio	Adrenals to Brain Weight Ratio			
bose croup	Mean	SD	Mean	SD	Mean	Mean SD		
Control	0.07	0.01	0.00011	0.00002	0.030	0.004		
500 mg/kg	0.07	0.01	0.00012	0.00002	0.030	0.005		
P-Value	p =	.790	p =	.598	p =	.866		
Dose Group	Brain Un We	adjusted ight	Brain to Body Weight Ratio		Brain t Weigh	to Brain It Ratio		
bose droup	We	ight	Weight Ratio		Weight Ratio			
Control	2.24	0.08	0.00378	0.00032				
500 mg/kg	2.24	0.12	0.00386	0.00022	Not ap	plicable		
P-Value	p =	.940	p =	.510				
Dose Group	Epidid Unadjusto	ymides ed Weight	Epididy Body We	mides to ight Ratio	Epididy Brain We	mides to eight Ratic		
Control	1.26	0.17	0.00211	0.00027	0.56	0.06		
500 mg/kg	0.70	0.17	0.00121	0.00031	0.31	0.08		
P-Value	p =	.000	n =	.000	n =	.000		

Dose Group	Heart Ui We	nadjusted light	Heart Weigh	to Body It Ratio	Heart Weigh	to Brain nt Ratio	
Control	2.00	0.17	0.00337	0.00031	0.89	0.06	
500 mg/kg	1.95	0.13	0.00336	0.00022	0.87	0.05	
P-Value	p =	.444	p =	.961	p =	.382	
Dose Group	Kidneys Unadjusted Weight		oup Kidneys Unadjusted Kidneys to Body Weight Weight Ratio		to Body It Ratio	Kidneys Weigh	to Brain It Ratio
Control	3.81	0.26	0.00641	0.00044	1.70	0.08	
500 mg/kg	3.76	0.23	0.00649	0.00052	1.68	0.09	
P-Value	p =	.629	p =	.709	p =	.639	
Dose Group	Liver Unadjusted Weight		Liver to Body Weight Ratio		Liver t Weigh	o Brain nt Ratio	
Control	21.14	2.70	0.03535	0.00247	9.41	1.03	
500 mg/kg	19.76	2.50	0.03388	0.00201	8.80	0.80	
P-Value	p =	.251	p =	.162	p =	.157	
Dose Group	Spleen U We	nadjusted ight	Spleen to Body Weight Ratio		Spleen to Brain Weight Ratio		
Control	1.08	0.21	0.00181	0.00026	0.48	0.08	
500 mg/kg	1.14	0.21	0.00195	0.00029	0.51	0.08	
P-Value	p =	.568	p = .255		p = .516		
Dose Group	Testes U We	nadjusted Sight	Testes Weigh	to Body It Ratio	Testes Weigł	to Brain nt Ratio	
Control	3.59	0.27	0.00605	0.00053	1.60	0.12	
500 mg/kg	2.15	0.33	0.00372	0.00063	0.96	0.15	
P-Value	p =	.000	p =	.000	p =	.000	
Dose Group	Thymus Unadjusted Weight		Thymus Weigh	s to Body nt Ratio	Thymus Weigh	s to Brain nt Ratio	
Control	0.48	0.09	0.00080	0.00013	0.21	0.04	
500 mg/kg	0.47	0.08	0.00081	0.00014	0.21	0.03	
P-Value	p =	.745	p =	.928	p =	.781	

N = 10 for the control and 500 mg/kg dose groups for all measures

F. Sperm Count

There were statistically significant sperm count differences between the control group and 500 mg/kg dose group (p-value = .000.) The 500 mg/kg dose group had a much lower sperm count per sample.

Dose Group	Sperm Co (millic	unt/ Sample on/gram)
	Mean	SD
Control	108.78	52.62
500 mg/kg	31.13	16.34
P-value	p =	= .000

N = 10 for the control and 500 mg/kg dose groups

G. Prothrombin Time

Prothrombin times were very similar between the two dose groups as evidenced by a t-test p-value well above the significance level of .05.

Table 18. Satellite/Recovery Male Prothrombin Time (seconds)					
Dose Group	Mean	SD			
Control	9.58	0.41			
500 mg/kg	9.55	0.57			
P-value	p = 0	0.876			

N = 10 for the control and 500 mg/kg dose groups

IV. Results – Females

A. Clinical Chemistry

The only significant difference in female clinical chemistry results was in inorganic phosphorus (PHOS) where the 500 mg/kg dose had a higher mean PHOS level than the 125 mg/kg dose.

And States	1.1.2.20	Δ	LB	AI	КР	Δ	LT	Δ	ST
Dose Group	N	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Control	8	3.18	0.25	155.50	79.93	88.75	15.51	105.00	23.46
31.25 mg/kg	9	3.17	0.37	152.22	62.20	106.00	49.40	99.78	27.37
125 mg/kg	10	3.23	0.43	135.00	32.62	88.00	24.29	106.90	36.29
500 mg/kg	8	3.39	0.14	128.38	64.17	89.25	23.15	91.88	20.21
P-Value		K-W p	= .441	Lognormal p = .834 Lognorm		Lognorm	al p = .718	Lognorma	al p = .687
Dose Group	N	B	UN	C	CA CHOL		CI	REA	
Control	8	13.50	6.23	11.88	0.65	74.13	15.79	0.50	0.17
31.25 mg/kg	9	16.78	4.58	11.98	0.58	78.44	21.61	0.50	0.11
125 mg/kg	10	14.30	5.48	11.77	0.51	63.80	13.81	0.56	0.12
500 mg/kg	8	14.5	4.41	12.18	0.25	70.00	9.47	0.54	0.11
P-Value		p =	.598	p = .	.430	p =	.247	p =	.688
Doco Group	N	CI	OP	CI			211	п	105
Control	0	2.04	0.20	152 12	C1 10	217.25	010.00	11.00	105
21.25 mg/kg	0	3.04	0.20	162.00	61.18	/1/.25	818.23	11.05	1.83
125 mg/kg	10	2.79	0.29	102.00	27.02	431.78	188.40	12.00	1.83
125 mg/kg	10	2.84	0.16	137.50	37.03	693.50	819.43	11.25	0.92
SUU mg/kg	8	2.89	0.19	144.00 24.27		418.75	121.92	13.38 1.10	
P-Value		p =	.124	p = .688		K-W p	= .898	p = 500 mg/kg (p=	.031 > 125 mg/kg .022)
Dose Group	N	Т	BIL		ГР	1			
Control	8	0.46	0.52	6.21	0.45	1			
31.25 mg/kg	9	0.40	0.28	5.94	0.55	1			
125 mg/kg	10	0.26	0.21	6.08	0.49	-			
500 mg/kg	8	0.26	0.15	6.26	0.27				
P-Value		Lognorm	al p = .486	p =	.485				
								-	
Dose Group	N		CI	N	la		ĸ	_	
Control	8	105.38	1.85	149.75	1.83	8.99	1.46	_	
31.25 mg/kg	9	104.56	1.81	148.56	0.88	9.59	1.15	4	
125 mg/kg	10	104.6	2.88	150.7	2.31	9.44	0.99	4	
500 mg/kg	7*	106.29	2.06	149.29	2.69	10.40	2.24	_	
P-Value		p =	.389	p =	.154	p=	.329	1	

* One rat did not have Cl, Na, or K measures.

B. Hematology

The only significant difference in female hematology was in the percent basophils (BASO %) where the mean percent at the 500 mg/kg dose was significantly greater than the mean percent at the 125 mg/kg dose.

Table 20. Fen	nale H	ematology	Results					a contraction of the		
		NEU	(K/uL)	NEU	(%N)	LYM	(K/uL)	LYM	(%L)	
Dose Group	N*	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Control	8	3.88	1.99	29.50	9.72	7.42	3.57	57.80	12.65	
31.25 mg/kg	8	2.82	0.98	27.70	10.27	6.78	3.48	60.74	14.84	
125 mg/kg	10	2.99	2.79	26.91	11.26	5.78	1.96	62.59	12.81	
500 mg/kg	7	3.67	1.66	35.54	12.59	4.77	1.64	46.66	9.49	
P-Value		Lognorma	al p = .466	p =	.423	p =	.287	p =	p = .087	
	1				- /					
Dose Group	N*	MONO	(K/uL)	MON	O (%M)	EOS	K/uL)	EOS	(%E)	
Control	8	0.91	0.43	8.21	6.97	0.06	0.04	0.42	0.20	
31.25 mg/kg	8	0.70	0.30	7.22	3.53	0.04	0.01	0.84	1.17	
125 mg/kg	10	0.74	0.40	7.47	2.62	0.04	0.02	0.41	0.23	
500 mg/kg	7	1.21	0.82	11.29	4.77	0.11	0.14	0.56	0.29	
P-Value		Lognorma	al p = .351	Lognorm	al p = .246	Lognorm	al p = .195	Lognorm	al p = .454	
Dose Group	N*	BASO	(K/ul)	BAS	ר (%B)	BBC (M/ul)		HCB	(g/dl)	
Control	8	0.52	0.35	4.08	2 35	6.82	0.42	13.00	0.85	
31 25 mg/kg	8	0.32	0.33	3.92	2.55	7.07	0.42	14.15	1.42	
125 mg/kg	10	0.30	0.24	2.62	1 21	7.00	0.05	14.15	1.42	
500 mg/kg	7	0.23	0.20	5.02	2 20	6.04	0.30	14.23	0.71	
P-Value	+ ^	0.57	0.14	5.55	020	0.94	0.45	14.47	0.71	
		p =	.124	p = 500 mg/kg (p=	.028 > 125 mg/kg .015)	p = .813		p = .813 p = .84		
			10/1							
Dose Group	N ⁺	HCI	(%)	MC	V (fL)	MCH	(pg)	MCHC	(g/dL)	
Control	8	37.98	3.16	55.61	2.40	20.50	0.74	36.88	1.13	
31.25 mg/kg	8	38.64	3.40	54.65	1.17	20.00	0.35	36.56	0.99	
125 mg/kg	10	39.66	4.05	56.59	2.46	20.42	0.58	36.10	1.30	
500 mg/kg	7	38.83	2.41	55.97	1.30	20.90	1.58	37.33	2.58	
P-Value		p =	.770	p =	.247	p =	.293	p =	.446	
Dose Group	N*	RDV	V (%)	PLT (K/ul)		MP	/ (fL)	WBC	(K/uL)	
Control	8	15.98	0.90	983.63	276.46	5.24	0.23	12.80	4.97	
31.25 mg/kg	8	15.90	1.04	999.00	242.48	5.24	0.44	10.70	3.52	
125 mg/kg	10	17.07	1.57	1155.40	234.58	5.08	0.37	9,84	4 88	
500 mg/kg	7	16.66	0.90	973.00	309.18	5.31	0.57	10.27	2.78	
P-Value		p =	.135	p =	.418	= a	.667	n =	.502	

* There was no hematology data for one animal in the 31.25 mg/kg dose group and for one animal in the 500 mg/kg dose group.

C. Body Weight

Female body weights were recorded several times during the study. There were no significant differences in the body weights for any dose group during the pre-pregnancy period, the gestational period, or post-partum.

Dose Group	N	Pre-pregnancy Day 0		Pre-pre Day	gnancy y 7	Pre-pregnancy Day 14			
		Mean	SD	Mean	SD	Mean	SD		
Control	10	214.10	15.34	227.20	15.59	244.70	15.30		
31.25 mg/kg	10	216.70	12.03	235.70	13.00	254.90	14.33		
125 mg/kg	10	216.80	10.01	230.80	13.94	243.90	15.36		
500 mg/kg	10	214.40	14.98	224.60	16.68	237.50	19.91		
P-value	Repeated measures p = .437								

Dose Group	N	Gestational Day 0		Gestational Day 7		Gestational Day 14		Gestational Day 20		
		Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Control	8	248.75	15.04	293.50	14.73	337.88	17.10	412.00	17.20	
31.25 mg/kg	8*	258.25	20.02	300.88	27.50	342.38	31.89	415.75	39.71	
125 mg/kg	10	255.30	12.37	303.90	16.13	348.20	19.06	420.10	28.55	
500 mg/kg	7*	243.29	27.12	288.00	26.76	326.00	25.85	397.00	30.77	
P-value	Repeated measures p = .376									

* Two animals had no sperm plug but were pregnant; no gestational weight was collected.

Dose Group	N	Post-p Da	Post-partum Day 0		Post-partum Day 4		
		Mean	SD		Mean	SD	
Control	8	300.25	36.98	7*	312.00	34.33	
31.25 mg/kg	9	306.22	22.40	7*	318.43	23.27	
125 mg/kg	10	311.80	39.17	10	320.60	36.05	
500 mg/kg	8	302.00	31.46	7*	324.71	27.51	
P-value		p = .884		p = .893			

* No post-partum weight data was collected on 4 animals.

During the 14 day pre-pregnancy period, the 500 mg/kg dose group gained less weight per week than the 31.25mg/kg dose group.

Dose Group	N	Pre-pre Day 7	egnancy - Day 0	Pre-pregnancy Day 14 - Day 7		
		Mean	SD	Mean	SD	
Control	10	13.10	8.02	17.50	4.88	
31.25 mg/kg	10	19.00	7.35	19.20	6.27	
125 mg/kg	10	14.00	8.34	13.10	6.42	
500 mg/kg	10	10.20	9.99	12.90	7.81	
P-value		Repeate 500 mg/kg	d measure < 31.25 m	es p = .008 g/kg (p=.00	6)	

Table 25. Fem	nale B	ody Weig	ht Gain -	Gestation						
Dose Group N	N	Gestational Day 0 to Day 7		Gestational Day 7 to Day 14		Gestational Day 14 to Day 20		Gestational Day 20 to Delivery (Post-Partum Day 0)		
		Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Control	8	44.75	6.45	44.38	5.13	74.13	5.67	-111.75	31.24	
31.25 mg/kg	8*	42.63	9.23	41.50	7.19	73.38	13.95	-112.25	26.22	
125 mg/kg	10	48.60	7.63	44.30	6.09	71.90	12.99	-108.30	31.21	
500 mg/kg	7*	44.71	6.75	38.00	20.03	71.00	19.14	-99.86	17.55	
P-value		Repeated measures p = .834								

* Two animals had no sperm plug but were pregnant; no gestational weight was collected.

Dose Group	N	Post-partum Day 0 to Day4			
		Mean	SD		
Control	7*	8.14	14.04		
31.25 mg/kg	7*	16.57	16.34		
125 mg/kg	10	8.80	23.35		
500 mg/kg	7*	16.00	12.73		
P-value	p = .697				

* No post-partum weight gain data was collected on 4 animals.

D. Food Consumption

During the pre-pregnancy period, the total food consumption of the 500 mg/kg dose group was lower than the 31.25 mg/kg dose group, but otherwise, there were no differences among the other prepregnancy dose groups, during gestation, or during the first four post-partum days.

Table 27. Fem	ale Food	consumption – Pre	e-Pregnancy		
Dose Group	Ν	Mean	SD		
Control	10	254.94	17.78		
31.25 mg/kg	10	263.50	17.64		
125 mg/kg	10	248.24	19.43		
500 mg/kg	10	234.37	18.17		
P-value		p = .009 500 mg/kg < 31.25 mg/kg (p=006)			

Dose Group	N	Gestational Day 0 to Day 7		Gestational Day 7 to Day 14		Gestational Day 14 to Day 20		Gestational Day 20 to Delivery (Post-Partum Day 0)			
		Mean	SD	Mean	SD	Mean	SD	Mean	SD		
Control	8	155.24	12.95	178.04	14.68	156.01	11.42	25.44	22.02		
31.25 mg/kg	8*	158.04	16.43	173.40	19.68	153.25	16.51	21.55	11.11		
125 mg/kg	9**	165.17	18.23	183.53	19.36	164.91	16.59	32.37	25.03		
500 mg/kg	7*	153.57	15.96	168.70	27.30	142.96	23.32	31.34	15.46		
P-value		Repeated measures p = .207									

* Two animals had no sperm plug but were pregnant; no gestational weight was collected.

** Animal was missing one data point and was not included in the repeated measures analysis.

Table 29. Female	Food Consu	mption – Post-Par	tum		
Dose Group	N	Mean	SD		
Control	7*	94.60	35.95		
31.25 mg/kg	7*	107.09	18.83		
125 mg/kg	10	96.91	44.87		
500 mg/kg	7*	102.94	28.57		
P-value		p = .899			

* No post-partum food consumption data was collected on 4 animals.

E Organ Weight

1. Non-Uterus

There were significant differences in female organ weight metrics for brain and spleen. Specifically, the mean brain weight, accounting for terminal body weight, of the 31.25 mg/kg dose group was significantly less than the control group. For spleen weight, accounting for terminal body weight and for spleen to body-weight ratio, both the 31.25 mg/kg dose group and the 500 mg/kg dose group had significantly lower means than did the control group.

Dose Group	N	Adrenals Organ	Unadjusted Weight	Adrenals to R	Body Weight atio	Adrenals to R	Brain Weight atio	
		Mean	SD	Mean	SD	Mean	SD	
Control	8	0.087	0.015	0.00030	0.00007	0.0437	0.0077	
31.25 mg/kg	9	0.081	0.019	0.00027	0.00006	0.0422	0.0096	
125 mg/kg	10	0.098	0.026	0.00033	0.00010	0.0493	0.0136	
500 mg/kg	7*	0.080	0.014	0.00026	0.00005	0.0398	0.0072	
P-Value		Lognorm	nal p = .216	p =	.225	Lognorn	nal p = .258	
Dose Group	N	Brain U Organ	nadjusted Weight	Brain to B R	ody Weight atio	Brain to Brai	n Weight Ratic	
Control	8	2.01	0.072	0.00684	0.00065			
31.25 mg/kg	9	1.92	0.055	0.00636	0.00042			
125 mg/kg	10	1.99	0.084	0.00666	0.00069	Not applicable		
500 mg/kg	8	1.99	0.088	0.00663	0.00042			
P-Value		p = 31.25 mg/kg <	: .020 : Control (p=.024)	Lognorm	nal p = .371			
Dose Group	N	Heart U Organ	nadjusted Weight	Heart to E	Body Weight atio	Heart to Bra	in Weight Ratio	
Control	8	1.18	0.162	0.00397	0.00021	0.5865	0.0724	
31.25 mg/kg	9	1.16	0.137	0.00381	0.00028	0.6020	0.0644	
125 mg/kg	10	1.21	0.190	0.00399	0.00033	0.6047	0.0825	
500 mg/kg	8	1.16	0.161	0.00386	0.00041	0.5838	0.0670	
P-Value		p =	.514	p =	:.563	p =	= .903	
Dose Group	N	Kidneys I Organ	Jnadjusted Weight	Kidneys to R	Body Weight atio	Kidneys to Brain Weig Ratio		
Control	8	2.06	0.134	0.00704	0.00089	1.0274	0.0566	
31.25 mg/kg	9	2.03	0.254	0.00667	0.00056	1.0538	0.1159	
125 mg/kg	10	2.14	0.234	0.00715	0.00100	1.0761	0.1320	
500 mg/kg	8	2.04	0.216	0.00680	0.00065	1.0259	0.0692	
P-Value		n = 617		n =	576	n = 685		
Dose Group	N	Liver U Organ	nadjusted n Weight	Liver to B R	ody Weight atio	Liver to Brai	in Weight Ratio	
-------------	----	-------------------------------------	--	-------------------------------------	--	-----------------	-----------------------	
Control	7*	12.32	1.818	0.0406	0.00372	6.085	0.7944	
31.25 mg/kg	9	12.10	1.905	0.0398	0.00413	6.289	0.8773	
125 mg/kg	10	11.71	1.356	0.0388	0.00250	5.879	0.6732	
500 mg/kg	8	11.19	1.082	0.0372	0.00153	5.637	0.4927	
P-Value		p =	: .217	p =	181	p =	= .307	
Dose Group	N	Ovaries Orgar	Unadjusted n Weight	Ovaries to R	Body Weight atio	Ovaries to F	Brain Weight Ratio	
Control	8	0.154	0.033	0.00054	0.00017	0.0774	0.0184	
31.25 mg/kg	9	0.144	0.024	0.00048	0.00008	0.0752	0.0127	
125 mg/kg	10	0.153	0.021	0.00052	0.00011	0.0768	0.0108	
500 mg/kg	8	0.142	0.035	0.00047	0.00011	0.0716	0.0170	
P-Value		p =	788	p =	= .676	p :	= .856	
Dose Group	N	Spleen U Orgar	Jnadjusted n Weight	Spleen to R	Body Weight atio	Spleen to F	Brain Weight Ratio	
Control	7*	0.739	0.150	0.00243	0.00036	0.3653	0.0712	
31.25 mg/kg	9	0.618	0.082	0.00204	0.00022	0.3215	0.0402	
125 mg/kg	10	0.629	0.088	0.00209	0.00025	0.3166	0.0476	
500 mg/kg	8	0.582	0.103	0.00193	0.00024	0.2932	0.0484	
P-Value		p = 31.25 mg/kg < 500 mg/kg <	= .008 < Control (p=.035) Control (p=.008)	p = 31.25 mg/kg < 500 mg/kg <	= .007 < Control (p=.031) Control (p=.005)	p :	= .079	
Dose Group	N	Thymus Orgar	Unadjusted n Weight	Thymus to R	Body Weight atio	Thymus to F	Brain Weight Ratio	
Control	8	0.318	0.112	0.00106	0.00030	0.1579	0.0530	
31.25 mg/kg	9	0.259	0.095	0.00087	0.00036	0.1354	0.0514	
125 mg/kg	10	0.255	0.100	0.00083	0.00028	0.1271	0.0483	
500 mg/kg	8	0.261	0.068	0.00087	0.00024	0.1315	0.0344	
P-Value		p =	.370	= a	408	a	= .560	

* One animal in the 500 mg/kg dose group was missing adrenal information and one animal in the control group was missing liver and spleen information.

2. Uterus

There was an outlier in the uterus data that affected the ability to analyze the data. One uterus weight in the 500 mg/kg dose group was nearly two times that of the others in that dose group.

This affected normality such that ANOVA could not be performed for the uterus to body weight and uterus to brain weight analyses and a Kruskal-Wallis non-parametric test was used. For the raw data, a natural log transformation brought the uterus weights nearer to normality; however when the body

weight was accounted for, the residuals were not normal (p = .001). Results are shown using the transformed data, keeping the outlier in the data set, but *should be interpreted with extreme caution*.

Results are also shown excluding the outlier. With the removal of the outlier, all the uterus data passed normality assumptions and ANOVAs/ANCOVA were performed. Results showed that the for both the organ weight, accounting for terminal body weight, and for the uterus to brain weight ratio, the 500mg/kg means were significantly less than the 125 mg/kg means. Including the outlier masked these differences.

Table 31. Fem	ale U	terus Weigh	t Results		S			
Dose Group	N	Uterus L Orgar	Jnadjusted Weight	Uterus to F	Body Weight Ratio	Uterus to F	Brain Weight latio	
Control	8	0.669	0.100	0.00230	0.00051	0.3337	0.0468	
31.25 mg/kg	9	0.659	0.124	0.00217	0.00037	0.3425	0.0599	
125 mg/kg	10	0.752	0.106	0.00253	0.00052	0.3783	0.0577	
500 mg/kg	8	0.686	0.296	0.00229	0.00104	0.3467	0.1544	
P-Value		Lognorm	Lognormal p = .436		K-W p = .196		K-W p = .096	
Dose Group	N	Uterus Organ We O	Unadjusted eight without utlier	Uterus to Ratio wit	Body Weight thout Outlier	Uterus to Ratio wit	Brain Weight hout Outlier	
Control	8	0.669	0.100	0.00230	0.00051	0.3337	0.0468	
31.25 mg/kg	9	0.659	0.124	0.00217	0.00037	0.3425	0.0599	
125 mg/kg	10	0.752	0.106	0.00253	0.00052	0.3783	0.0577	
500 mg/kg	7	0.586	0.095	0.00190	0.00023	0.2941	0.0440	
P-Value		p : 500 mg/kg < 1	= .035 25 mg/kg (p=.027)) p	= .060	p : 500 mg/kg < 1	= .028 25 mg/kg (p.=016)	

F Prothrombin Time

An outlier in the control group prevented the data from meeting the assumptions of normality. One Prothrombin time was approximately 65% greater than the other data points in the group. Transformation did not bring the data into normality, therefore a Kruskal-Wallis test was used for analysis. There was no significant difference among the dose groups. If the outlier was removed, data met assumptions for ANOVA and results also showed no significant differences.

Dose Group	N	With Outlier		N	Outlier Removed	
		Mean	SD		Mean	SD
Control	8	9.56	2.07	7	8.84	.41
31.25 mg/kg	9	9.18	.38	9	9.18	.38
125 mg/kg	10	9.08	.37	10	9.08	.37
500 mg/kg	8	9.43	.59	8	9.43	.59
P-Value		K-W p) = .399		p =	.103

VI. Reproductive Data

There were no discernible differences among the dose group on any of the reproductive endpoints. Sample sizes (n=10) were too small and proportions (often 8 to 10 out of 10) were too similar to allow for statistical comparison of the count distributions.

Table 33. Reproductive Summary Measures						
Poproductive Measures	Dose Group					
Reproductive Measures	Control	31.25 mg/kg	125 mg/kg	500 mg/kg		
Females showing evidence of copulation (N)	9	9	10	9		
Females achieving pregnancy (N)	8	9	10	8		
Dams with live young born (N)	8	9	10	8		
Dams with live young at day 4 pp (N)	6	9	9	7		

N-total = 10 for each dose group within each reproductive measure

VII. Litter Measures

Minimal and inconsistent differences were found among the four dose groups for the twelve litter measures. These minimal differences within all litter information measures were illustrated by p-values well above a statistically significant level.

Table 34. Litter Information Measures				
Litter Information Measure	P-value			
Pregnancy Length	0.796*			
Days for Conception	0.52*			
Live Pups at Birth	0.974*			
Live Pups at Day 4	0.724*			
Sex Ratio at Birth	0.458*			
Sex Ratio at Day 4	0.381*			
Avg. Pup Weight per Litter at Birth	0.525			
Avg. Pup Weight per Litter at Day 4	0.898			
Pup Abnormalities at Birth	0.573*			
Pre-Implant Loss	0.575*			
Pre-Natal Loss	0.744*			
Post-Natal Loss	0.431*			

* Analyzed using Non-parametric K-W test

⁺ Data was natural Log transformed to fit ANOVA assumptions.

Toxicology Study No. 85-XC-0FP4-12, April–July 2012

Appendix Q

Study Protocol with Modifications

ANIMAL USE PROTOCOL TOXICOLOGY PORTFOLIO ARMY INSTITUTE OF PUBLIC HEALTH U.S. ARMY PUBLIC HEALTH COMMAND ABERDEEN PROVING GROUND, MD 21010-5403

PROTOCOL TITLE: Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat.

PROTOCOL NUMBER: ØFP4-93-12-Ø3-Ø3

PRINCIPAL INVESTIGATOR/STUDY DIRECTOR:

Lee C.B. Crouse Biologist Toxicity Evaluation Program (410) 436-5088

CO-INVESTIGATOR:

Emily May Lent, Ph.D. (Primary) Toxicologist Toxicity Evaluation Program (410) 436-7749

Michael Quinn, Ph.D. Biologist Health Effects Research Program (410) 436-1064

SPONSOR: Kimberly Watts, Logistics & Environmental Deputy Program Director US Army Research Development and Engineering Command (RDECOM) Environmental Acquisition and Logistics Sustainment Program (EASLP) Aberdeen Proving Ground, MD 21005

SPONSORS REPRESENTATIVE:

Mark Johnson Army Institute of Public Health Toxicology Portfolio 5158 Blackhawk Road Aberdeen Proving Ground, MD 21010

I. NON-TECHNICAL SYNOPSIS

The repeated-dose toxicity as well as the reproductive/developmental toxicity of 3-nitro-1,2,4-triazol-5-one (NTO) will be evaluated in the rat according to guidelines set forth by the Organisation for Economic Co-operation and Development (OECD). NTO is an insensitive, energetic material used in a variety of explosive formulations currently in various stages of development and production. Recent toxicity testing has revealed that repeated exposures to higher concentrations of NTO may induce testicular toxicity and affect sperm production in male rats. Due to these recent findings and the increasing popularity of NTO as an effective insensitive munition, the US Environmental Protection Agency (EPA) has requested further studies to address these concerns. Briefly, groups of 20 adult rats will be exposed to NTO orally every day for a minimum of 28 days both prior to and during a period of time where males and females will be co-housed with the intent to reproduce. Male adult rats will be euthanized and necropsied at the end of the co-housing period while female adult rats will continue to be dosed through post-partum day 3 or 4. Reproduction will be assessed by the number of pregnant females at the end of the co-housing period while development will be assessed by a careful examination of the litters on post-partum day 4. The repeated-dose toxicity of NTO on adult rats will be determined through changes in body weights, food consumption patterns (when applicable), and daily observations during dosing as well as a review of organ weights and histopathological evaluations of harvested tissues. In addition, a separate group of 20 adult male rats will be added as a satellite recovery group to determine the possible reversibility of NTO's effects on the reproductive system in male rats. These animals will be dosed concurrently with the main study animals for a period of 4 weeks. These recovery animals will then be held for a period not to exceed 4 weeks, euthanized, and necropsied.

II. BACKGROUND

II.1. Background: 3-Nitro-1,2,4-triazol-5-one (NTO) is being investigated as a less sensitive direct replacement for traditional explosives such as TNT and RDX. NTO is a crystalline powder that is one of the components used in the formulation of an insensitive explosive referred to as IMX101. NTO was first reported in 1905, but was not used as an explosive until the early 1980's when it was discovered that the French were developing a "new insensitive explosive", which was later reported to be NTO. Renewed interest in the energetic properties of NTO has been fueled by the need to develop munitions that are less prone to inadvertent initiation during transport and routine handling. The reduced sensitivity to environmental stimuli and nearly equal performance during testing make NTO-based formulations desirable replacements for currently fielded munitions (references 1 and 2). As a potential new component of munitions formulations, NTO must not only meet certain performance criteria, but must also be acceptable from the perspective of human health and the environment. To ensure its safe use by military personnel and production employees handling the material on a daily basis, the toxicity of NTO must be investigated. Toxicological testing will be conducted by the U.S. Army Institute of Public Health (USAIPH), Portfolio of Toxicology (TOX).

Both 14- and 90-day repeated dose oral toxicity studies were previously performed by this Institute. In the 14-day repeated-dose study, testes weights and weight ratios were significantly reduced compared to controls in male rats administered 500 mg/kg-day NTO and above. No significance was observed for epididymis weights or weight ratios compared to controls and histopathology was not performed on any tissues from the 14-day study. The subchronic study on NTO revealed significant changes in both testes

and epididymide weights and weight ratios at dosages of 315 mg/kg-day and above. Significant reductions in sperm counts were also noted at dosages of 315 mg/kg-day and above. Histopathology performed on the 90-day tissues revealed significant incidences of testicular hypoplasia at dosages of 315 mg/kg-day and above as well as insignificant, less severe, testicular hypoplasia at dosages of 100 mg/kg-day and below (reference 3). The proposed study will not only allow investigators to directly evaluate NTO's possible effects on reproduction, but will also allow for a more complete histopathological evaluation of the male reproductive organs in an attempt to determine a cause for the toxicity observed in the previous studies.

II.2. Literature Search for Duplication

II.2.1. Literature Source(s) Searched: BRD (Biomedical Research Database), DOAC (DTIC Online Access Controlled)* Technical Reports, DOAC Research in Progress, FEDRIP, PubMed, Web of Science

II.2.2. Date of Search: 12 August 2011(updated 10 January 2012)

II.2.3. Period of Search: 1898-2012

II.2.4. Key Words of Search: (3-nitro-1,2,4-triazol-5-one or 3 nitro 1,2,4 triazol 5 one or triazole* or nitro compound*) and toxic* and (reproduc* or develop* or growth* or embryo* or fetus or fetal) and (repeat* dos* or time factor*) and (((cardiac near blood near collect*) or (heart near blood near collection*)) and (method* or technic* or techniq*)) and (rat or rats)

II.2.5. Results of Search: A total of 127 references resulted from the literature search that was performed for NTO. However, no reproductive/developmental toxicity studies for NTO were found that would suggest that this study would be a duplicate effort. As such, the present study is not a duplication of the information available in the literature.

III. OBJECTIVE/HYPOTHESIS

The primary objective of this study is to determine the initial reproductive and developmental toxicity of NTO through the use of a screening test. This test does not provide complete information on all aspects of reproduction and development and only offers limited means of detecting postnatal manifestations of prenatal exposure or effects induced during postnatal exposure. The secondary objective of this study will be to confirm the effects of repeated-dose exposure to NTO using different exposure durations and dose levels than previously evaluated.

IV. MILITARY RELEVANCE

As a result of an initiative by the Department of Defense (DOD) to improve munitions safety, the US Army is developing insensitive munitions (IM) for incorporation into its inventory of conventional military munitions systems. The Army's IM Program is dedicated to developing munitions that reliably perform as they are intended but are

less prone to inadvertent initiation from external stimuli such as bullet/fragment impact, heat from fire, and shock from neighboring explosions (reference 4). The production of insensitive munitions requires the use of intrinsically less sensitive explosives that contribute to lower order responses to inadvertent external stimuli. Despite the slightly lower performance of NTO compared to TNT, there has been a renewed interest in NTO use in explosive formulations based on its lower sensitivity as a melt-cast medium observed during testing and the less stringent shipping requirements. This has led to the development of a range of melt-castable explosives at Picatinny Arsenal, collectively known as "PAX" explosives (reference 5). To support possible fielding of these PAX explosives, additional reproductive/developmental toxicity data in a mammalian system needs to be generated to assess the occupational health hazards associated with the use and production of this material.

V. MATERIALS AND METHODS

V.1. Experimental Design and General Procedures: This study consists of a repeated-dose oral toxicity study as well as a reproductive/developmental screening test. Groups of 10 male and 10 female rats will be dosed daily with NTO via oral gavage for 2 weeks prior to co-housing and for an additional 2 weeks during co-housing. Rats will be monitored throughout these 4 weeks for body weight, food consumption (except during co-housing), and clinical signs. At the conclusion of the 4 weeks, adult male rats will be anesthetized for blood collection, euthanized, and necropsied. Selected tissues from the male rats will be submitted for histopathological evaluation. Adult female rats will continue to be dosed with NTO through day 3 or 4 post-partum and monitored for body weight, food consumption, and clinical signs. They will be anesthetized for blood collection. Pups from each litter will be counted, sex determined, and weighed within 24 hours of parturition and will be observed for any abnormal behavior. Dead pups and pups euthanized on day 4 post-partum will be carefully examined externally for gross abnormalities.

V.1.1. Repeated-Dose Toxicity and Reproductive/Developmental Screening Test

This study will be conducted in a manner consistent with the methods outlined in OECD Test Guideline 422 (reference 6). The route of administration will be by oral gavage with pure NTO suspended/dissolved in an appropriate vehicle (e.g. corn oil). Forty adult Sprague Dawley rats of each sex (N=80) will be randomly distributed into 3 dose groups and a vehicle control group (10 rats of each sex per dose group). It is expected that this number of animals will produce enough pregnancies and offspring to ensure a meaningful evaluation of the potential of NTO to affect fertility, pregnancy, maternal and suckling behavior, and initial growth and development of the F₁ offspring from conception to day 4 post-partum. Rats will be exposed daily to control, 31.25, 125, or 500 mg/kg-day NTO 7 days/week for a maximum of 56 days. The highest treatment level is based primarily on the reproductive effects observed in male rats following a subchronic oral study performed by this Institute (reference 3). Based on this Institute's experience with previous animal shipments involving underweight/young rats, 2 additional rats of each sex will be ordered to ensure the study is initiated using the required number of rats in each dose group. Rats used for weight matching purposes but not placed on study will either be transferred to another protocol or humanely euthanized.

In addition to the main study, 20 male rats will be added to serve as satellite recovery groups for the highest dose group and the control group. From this group of 20 rats, 10 will serve as diluent controls and 10 will be dosed with the highest concentration of NTO given to rats in the main study. These animals will be dosed concurrently with the main study animals for the appropriate time period and held for a period of at least 14 days (not to exceed one month) following cessation of dosing. Animals used as satellite/recovery animals will not be co-housed but will be dosed with NTO for the same time period as the main study animals, held for a 14-28-day recovery period, and then anesthetized, bled, and necropsied with selected tissues sent for histopathological evaluation. The purpose of the satellite group is to evaluate the reversibility, persistence, or delayed occurrence of the toxic effects associated with repeated exposure to NTO observed during the previous studies performed by this Institute.

Dosing of both sexes will begin 2 weeks prior to co-housing following an acclimatization period of no less than 5 days. Dosing is continued in both sexes during the 2 week cohousing period. Male rats will continue to be dosed with NTO until the minimum dosing period of 28 days has been completed regardless of how guickly a successful mating is verified. Following the 28-day dosing period, male rats will be anesthetized, bled, and necropsied with selected tissues collected, weighed, and submitted for histopathological evaluation. Anesthesia, cardiac blood sampling, and necropsy procedures are described in Sections V.4.1.2.1, V.1.8, and V.4.6, respectively. Female rats showing no evidence of copulation (presence of sperm plug) following the 2-week co-housing period will continue to be dosed and euthanized 24-26 days after the last day of the co-housing period. These animals will also be anesthetized, bled, and necropsied with selected tissues collected, weighed, and submitted for histopathological evaluation. Daily dosing of the successfully-bred females will continue throughout pregnancy and at least up to, and including, day 3 post-partum or the day before euthanasia. In order to allow for overnight fasting of dams prior to blood collection, the pups may be euthanized on postpartum day 4 with euthanasia of the dams occurring the next day. Gross external examinations of all pups will occur following euthanasia. Parental females will also be anesthetized, bled, and necropsied with selected tissues collected, weighed, and submitted for histopathological evaluation.

Group	No. of Male Rats	No. of Female Rats
Control	10	10
31.25 mg/kg NTO	10	10
125 mg/kg NTO	10	10
500 mg/kg NTO	10	10
Weight Matching	2	2
Satellite/Recovery	20	0
Pups	200	200
	TOTAL = 262	TOTAI = 242

Repeated-Dose Toxicity and Reproductive/Developmental Screening Test

(*) The estimation of numbers of pups was made with the assumptions that each pair would produce an average of 10 pups and the sex ratio of the offspring would be 1:1.

V.1.2. Test Substance: This study will be conducted with 3-nitro-1,2,4-triazol-5-one (NTO). A sample of this test substance was supplied by BAE SYSTEMS, Ordnance Systems, Kingsport, TN for use in a previously conducted subchronic oral toxicity study in rats. The test sample was received at the test facility in November 2008 and is identified as Batch# 10NTO7-3 and Lot# BAE07B305-001. If it is determined that enough of this batch of test material is adequate to complete this study, then it will be used. If additional sample(s) of the test substance may be required from BAE SYSTEMS, appropriate identification documentation will be made in the study records. To facilitate the oral gavage procedure, NTO will be mixed with an appropriate diluent. Once an appropriate diluent has been determined, the pH of each NTO suspension/solution will be verified to ensure that the test material is not corrosive. Samples of each batch of the resulting solutions/suspensions will be submitted to the USAIPH Laboratory Sciences(LS) portfolio for concentration verification. In addition, appropriate samples will be submitted to verify the stability and homogeneity of NTO in the diluent IAW LS SOP DLS 801 (reference 7).

Name	3-nitro-1,2,4-triazol-5-one
Synonym	NTO
CAS#	932-64-9
Physical State	White to pale yellow crystalline powder
Molecular Formula	$C_2H_2N_4O_3$
Molecular Weight	130
Density	1.93 g/cm ³
Solubility	Soluble in water (16 g/L)
Purity (by HPLC)	99.6%

Test Substance Chemical/Physical Properties

V.1.3. Administration of Test Substance by Oral Gavage Dose: Oral dosing/gavage will be performed using a stainless steel 16 ga x 2 inch gavage needle. As per OECD Test Guidelines, the volume given will not exceed 10 ml/kilogram of body weight (reference 6). Animals in the control group will receive the vehicle in the highest volume used for the test groups.

V.1.4. Dose Selection for Oral Gavage: Dose selection for the rats is based on the findings from 14- and 90-day oral studies that were performed previously by this Institute (reference 3). The doses for this study were selected based primarily on the results of the 14-day study with the expectation of producing reproductive effects at the highest dose of 500 mg/kg-day. The lower doses were then calculated using the OECD guideline-recommended four-fold interval.

V.1.5. Co-Housing Procedure: A 1:1 (one male to one female) co-housing procedure will be used in this study with the exception of the unlikely incidence of pre-term deaths of male rats. Female rats will be housed with the same male rat continuously until the presence of a vaginal plug is noted or until 2 weeks have elapsed—whichever comes first. Female rats will be examined for the presence of a vaginal plug prior to dosing each morning during the co-housing period. Day 0 of pregnancy is defined as the day the vaginal plug is observed.

V.1.6. Observations: A thorough physical examination of each rat will be performed by study personnel at a similar time at least once per day. The examination process will consist of each rat being removed from its home cage, individually handled, and carefully observed. Observations will include, but not be limited to, evaluation of skin and fur, eyes and mucous membranes, respiratory and circulatory effects, autonomic effects such as salivation, central nervous system effects, including tremors and convulsions, changes in the level of activity, gait and posture, reactivity to handling or sensory stimuli, altered strength, and stereotypes or abnormal behavior (e.g., self mutilation, walking backwards). All data related to the observation of rats will be detailed and thoroughly documented in the study records by study personnel.

The duration of gestation will be recorded and is calculated from day 0 of pregnancy as indicated by the presence of a vaginal plug. Each litter will be examined as soon as possible after delivery to establish the number and sex of pups, stillbirths, live births, runts, and the presence of gross abnormalities. Live pups will be counted and their sex and weight determined within 24 hours of parturition (day 0 or 1 post-partum) and on day 4 post-partum. In addition to the observation of parental animals, any abnormal behavior of the offspring will also be recorded.

V.1.7. Body Weight and Food Consumption: Male and female rats will be weighed on the first day of dosing, weekly thereafter, and at termination (pre-fasted and fasted). During pregnancy, female rats will be weighed on days 0, 7, 14, 20, within 24 hours of parturition, and day 4 post-partum. Food consumption will be monitored weekly during pre-mating, pregnancy, and lactation. Food consumption will not be monitored during the 2-week co-housing period. Food consumption will be monitored weekly for all recovery animals.

V.1.8. Hematology and Clinical Chemistry: Blood samples will be taken from all parental male and female rats just prior to necropsy. Anesthesia procedures are described in V.4.1.2.1. Once the anesthetic has taken effect (ensured by toe pinch), the

rat will be placed in dorsal recumbency. The rat can then be immobilized by either holding the base of the tail or by holding the forelimbs apart and upward with the thumb and index finger. There should be no response by the rat to entry of the needle into its skin. If there is any response, the rat is not at a deep enough level of anesthesia for this method of blood collection and the procedure will stop until the rat is anesthetized to a deeper plane of anesthesia. Following collection of the blood sample, the needle should be slowly withdrawn from the rat. To minimize blood hemolysis, the needle should be removed from the syringe, the microtube top removed, and the blood sample discharged directly into the microtube tube directly from the syringe. The microtube will then be recapped. EDTA tubes need to be inverted gently several times immediately after introducing blood into the tube. Male rats will be bled at the conclusion of the 2week co-housing period and female rats will be bled on day 4 or 5 post-partum. Blood will be collected from the satellite/recovery animals at the conclusion of the recovery period (14 days - 1 month). For hematology samples, approximately 1.2 ml of blood will be transferred to an EDTA microtube and evaluated for total red blood cell and white blood cell counts, packed cell volume, hemoglobin, and five-part differential. For clinical chemistry samples, approximately 1.2 ml of blood will be transferred to a serum-gel microtube and evaluated for the following chemistries: BUN, CREA, GLU, TP, ALB, ALT, ALK P, AST, GLOB, CHOL, LDH, TBIL, CA, PHOS, and electrolytes. A portion of the blood from each animal (approx. 1.2 ml) will also be transferred to a sodium citrate microtube for analysis of prothrombin time. Details concerning clinical chemistry and hematology parameters are outlined in TOX SOP 034 and TOX SOP 001, respectively (references 8 and 9). At the discretion of management and/or the study director, the remainder of each blood sample may be transferred to an appropriate microtube for met-hemoglobin and sex hormone analysis. All animals will be fasted overnight prior to blood sampling.

V.1.9. Gross Necropsy: Euthanasia procedures are described in section V.4.6. All adult animals in the study will be subjected to a full, detailed gross necropsy which includes careful examination of the external surface of the body, all orifices, and the cranial, thoracic and abdominal cavities and their contents. Special attention will be paid to the organs of the reproductive system. All gross pathology changes will be recorded on CHPPM Form 333 or 23. If a necropsy cannot be performed immediately after a deceased animal is discovered, appropriate measures will be taken to ensure the animal is dead, and the animal will be refrigerated at temperatures low enough to minimize autolysis. The following organs and tissues, or representative samples, will be preserved in a suitable medium for possible future histopathological examination: all gross lesions; brain (including sections of medulla/pons, cerebellar cortex and cerebral cortex); pituitary; thyroid parathyroid; thymus; lungs and trachea; pharynx; larynx; nose; heart; bone marrow (either femur, sternum or rib at the costochondral junction); salivary glands; liver; spleen; kidney; adrenals; pancreas; testes; uterus; aorta; esophagus; stomach; duodenum; jejunum; ileum; caecum; colon; rectum; urinary bladder; representative lymph node; peripheral nerve; trachea; sternum with bone marrow; mammary gland; thigh musculature; eyes; femur (including articular surface); spinal cord at three levels (cervical, midthoracic, and lumbar) and exorbital lachrymal glands. In addition, the following organs will be weighed: liver, kidneys, adrenals, gonads,

spleen, brain, epididymides, uterus, thymus and heart. This tissue list may be altered at the discretion of the study staff based on observed toxicity and gross pathology findings. Prior to being weighed, organs will be carefully dissected and trimmed to remove fat and other tissue in a uniform manner. Animals in the satellite groups, if used, will undergo a full necropsy using the procedures described above approximately 14 days to one month after the completion of dosing. Formalin fixation is not recommended for routine examination of testes and epididymides. An alternative acceptable method such as Bouin's or Modified Davidson's fixative will be used for these tissues. Dead pups and pups euthanized at day 4 post-partum, or shortly thereafter, will, at least, be carefully examined externally for gross abnormalities.

V.1.10. Histopathology: Full histopathology will be carried out on the testes, epididymides, ovaries, and any gross lesions recognized of the animals in all dose groups with special emphasis on the stages of spermatogenesis in the male gonads and interstitial testicular cell structure.

V.1.11. Study Conduct: This study will be conducted in a manner consistent with the principles of 40 CFR (Code of Federal Regulations) Part 792 "Toxic Substance Control Act" (TSCA) Good Laboratory Practice (GLP) Regulation (reference 10). All study records will be made available to oversight organizations such as the Environmental Protection Agency as needed. The investigators and technicians will adhere to The Guide for Care and Use of Laboratory Animals, 2011 (reference 11).

Records will be kept in standard USAPHC laboratory notebooks and/or three ring binders. Daily records will be kept on survival and clinical signs collected on the animals during the exposure and recovery periods. Procedures for preparation of any euthanasia solution, drug administration, animal blood collection, observation logs, morbidity/mortality logs, etc., will be stored with the study records. These records will be made available to oversight organizations such as the US EPA, Quality Systems Office, and the IACUC. The protocol, protocol amendments, raw data, statistical analysis, tabular calculations, and graphic analysis of the data will be saved with the study records. Additionally, memoranda to the study file, study logs, signature logs, final reports, and final report amendments will be archived at USAIPH. Some ancillary records such as maintenance and calibration logs, environmental monitoring logs, animal room log books, all veterinarian staff duties logbooks, training files, etc. may be stored in the archives but not stored with the study files.

V.1.12. Study Time Frame: Estimated initiation date for the study is May 2012. Estimated completion date for the study is July 2012.

V.2. Data Analysis: For variables that are measured only at the end of the study, the dose groups will be compared using a one-factor analysis of variance (ANOVA). Organ to brain and organ to body weight ratios will be calculated and analyzed similarly to the other parameters measured at the end of the study. If the dose group effect is significant, post hoc tests will be used to compare pairs of dose groups and dose groups to the control group; a Tukey's multiple, comparison test if the variance of the

groups is similar and a Dunnett's T3 test if the variances are unequal. Variance equality will be determined by a Levene's test.

For absolute organ weights, comparison of the dose groups will be made using an analysis of covariance (ANCOVA), with body weight at the end of the study being the covariate used. Even though the dose groups will be assigned at Day 0 to keep the average weight for each dose group similar, the weights can change during the study dependent on the dose group. The ANCOVA will adjust for any differences in body weights among the dose groups at the end of the study, because heavier animals would tend to have heavier organs. If the dose group effect is significant, an appropriate post hoc test will be used to compare pairs of dose groups and dose groups to the control group.

Dose groups will also be compared with respect to absolute body weights, as well as weekly changes in body weight and net weight changes using a one-factor ANOVA. Dose groups will also be compared with respect to net food consumption for the study using a one-factor ANOVA. If the ANOVA is significant, the post hoc tests will be used to compare pairs of dose groups; a Tukey's multiple, comparison test if the variance of the groups are similar and a Dunnett's T3 test if the variances are unequal. Variance equality will be determined by a Levene's test.

Statistical analysis of the litter/pup parameters will be done by using an ANOVA test to see if the means of the four dose groups are significantly different. The data will first be checked to fit the normality and homogeneity of variance assumptions. If the ANOVA produces significant results (p-value less than or equal to .05) and the two assumptions are met, then a Tukey or Dunnett test will be used to compare the individual dose groups against each other. If the homogeneity of variance assumption is violated, a Dunnett's T3 post hoc test will be used. If the normality assumption is not met, a nonparametric Kruskal-Wallis test will be used in place of the ANOVA test.

SPSS 16.0 will be used to perform all analyses and statistical significance will be defined as $p\leq .05$ for all tests.

V.3. Laboratory Animals Required and Justification

V.3.1. Non-animal Alternatives Considered: The objectives of this study are to determine the initial reproductive and developmental toxicity of NTO through the use of a screening test and to confirm the effects of repeated-dose exposure to NTO using different exposure durations and dose levels than previously evaluated. The data from this study will aid in the assessment and evaluation of the toxic characteristics of the test substance. There are no appropriate animal substitutes (e.g., computer models, tissue/cell cultures) for the data that will be produced in this study. No non-animal alternative would provide the necessary toxicological information provided by this study. Therefore, it is necessary to perform this study in an animal model.

V.3.2. Animal Model and Species Justification: The test guidelines for the Organisation for Economic Co-Operation and Development (OECD) state that the rat is the preferred species (reference 6). Sprague-Dawley rats are the strain of rat that have been historically used for oral toxicity studies by USAPHC TOX and are the recommended species due to an historical and extensive database.

V.3.3. Laboratory animals

V.3.3.1. Genus and Species: Rattus norvegicus

V.3.3.2. Strain/Stock: Sprague-Dawley

V.3.3.3. Source vendor: Charles River Laboratories, Wilmington, MA (USDA 14-R-0144) or from animals born in-house and transferred to this protocol. If the animals born in-house are used, they will not have been previously exposed to any test material as a result of the previous protocol. A sufficient number of male and female rats will have to be available to fulfill the 100 animals required for this study, otherwise all animals will be ordered from Charles River Laboratories.

V.3.3.4. Age (at exposure): Approximately 8 weeks

V.3.3.5. Weight (at exposure): Age appropriate

V.3.3.6. Sex: Male and female (nulliparous and nonpregnant).

V.3.3.7. Special Considerations: None

V.3.4. Number of Animals Required (By Species):

Group	No. of Male Rats	No. of Female Rats
Control	10	10
31.25 mg/kg NTO	10	10
125 mg/kg NTO	10	10
500 mg/kg NTO	10	10
Weight Matching	2	2
Satellite/Recovery	20	0
Pups	200	200
	TOTAL = 262	TOTAL = 242

(*) The estimation of numbers of pups was made with the assumptions that each pair would produce an average of 10 pups and the sex ratio of the offspring would be 1:1.

OECD Test Guidelines (reference 6) recommend initiating the study with 10 rats/sex/dose group with the expectation of providing at least 8 pregnant females per dose group. This is normally the minimum acceptable number of pregnant females per group to assure a meaningful evaluation of the potential of a test substance to induce

reproductive/developmental effects. "Additional" rats need to be ordered for weight matching purposes because these same guidelines require that the body weight variation for each exposure group of rats prior to exposure be within \pm 20% of the mean weight of each sex.

V.3.5. Refinement, Reduction, Replacement

V.3.5.1. Refinement: Standard rat enrichment will be implemented in accordance with TOX SOP 122 (reference 12). During the co-housing period rats will be pair-housed (1 male to 1 female) for a period not to exceed 2 weeks. All animals on this study will be handled on a frequent basis and provided a form of environmental enrichment (e.g., nylabones) throughout the study period.

V.3.5.2. Reduction: This test guideline combines two individual tests (reproductive/developmental screen and repeated-dose toxicity) into one in order to reduce the number of animals needed to determine toxicity. As indicated above, an effort is made to use the fewest number of adults as possible that will produce a quantity of offspring that will enable any significant differences to be detected statistically. Tissue sharing may be allowed, however, only if doing so will not affect the validity of the study.

V.3.5.3. Replacement: No non-animal alternatives are known to exist that will provide the toxicity data required. At this time, there are no non-animal alternatives that can fully replicate the complex processes that occur within an intact mammalian organism.

V.4. Technical Methods

V.4.1. Pain/Distress Assessment:

V.4.1.1. APHIS Form 7023 Information

V.4.1.1.1. Number of Animals

NOTE: Estimates listed in Columns B-E below are modeled after a maximum number of animals including those that may be used as recovery animals.

V.4.1.1.1.1 Column B: 4 rats (2 "additional" rats of each sex ordered for weight matching purposes)

V.4.1.1.1.2. Column C: 400 pups (based on estimated average of 10 pups per parental pair and 1:1 sex ratio)

V.4.1.1.1.3. Column D: 100 rats (all adult rats on study will have cardiac blood collected while under anesthesia)

V.4.1.1.1.4. Column E: None

V.4.1.2. Pain Relief/Prevention

V.4.1.2.1. Anesthesia/Analgesia/Tranquilization: Anesthesia will be administered prior to cardiac blood collection and euthanasia. Anesthesia will consist of CO_2 gas. For CO_2 anesthesia, study staff will ensure that the CO_2 tank is sufficiently full and connected to the CO_2 chamber. The rat will be placed in the CO_2 chamber, the lid put on the chamber, and the CO_2 valve turned on at a low flow (approx, $\frac{1}{4}$ turn on the tank valve). When the rat is sufficiently anesthetized (shallow breathing pattern) it will be removed from the chamber and immediately placed on a necropsy board, where prior to performing blood sampling, a proper plane of anesthesia will be ensured by the rat's lack of responsiveness to a toe-pinch.

V.4.1.2.2. Pre- and Post-procedural Provisions: A thorough physical examination of each rat will be performed by study personnel at least once per day during the premating, mating, pregnancy, and lactation phases. Animals found dead will be promptly necropsied or refrigerated. Observations will be detailed and carefully recorded in the study records. Details related to observations and/or physical examination of rats and collection of rat body weights is described in Section V.1.6.

V.4.1.2.3. Paralytics: None

V.4.1.3. Literature Search for Alternatives to Painful or Distressful Procedures

V.4.1.3.1. Source(s) Searched: BRD (Biomedical Research Database), DOAC (DTIC Online Access Controlled)* Technical Reports, DOAC Research in Progress, FEDRIP, PubMed, Web of Science

V.4.1.3.2. Date of Search: 12 August 2011(updated 10 January 2012)

V.4.1.3.3. Period of Search: 1898-2011

V.4.1.3.4. Key Words of Search: (3-nitro-1,2,4-triazol-5-one or 3 nitro 1,2,4 triazol 5 one or triazole* or nitro compound*) and toxic* and (reproduc* or develop* or growth* or embryo* or fetus or fetal) and (repeat* dos* or time factor*) and (((cardiac near blood near collect*) or (heart near blood near collection*)) and (method* or technic* or techniq*)) and (alternative* or welfare or method* or model* or vitro or pain* or distress* or simulat* or video or comput* or software or cadav* or amphibian* or plastinat* or replac* or refin* or reduc*)

V.4.1.3.5. Results of Search: The literature search identified 233 references pertaining to alternatives to painful procedures, with 153 of those references pertaining to rat cardiac blood collection alone. However, no alternatives to the painful or distressful procedures (e.g., illness resulting from administration of the test substance, cardiac bleed) in this protocol or methods to relieve pain or distress without altering the outcome of the study were found. In addition, although other methods exist for blood collection from the laboratory rat, none of these alternative methods would allow the investigators to collect a large enough volume of blood to perform clinical chemistry and hematology

analysis. The use of CO_2 anesthesia is primarily based on the experience of the investigators performing the blood sampling procedure as well as the hematology and clinical chemistry analysis.

V.4.1.4. Unalleviated Painful/Distressful Procedure Justification: Not applicable.

V.4.2. Prolonged Restraint: N/A

V.4.3. Surgery: None

V.4.3.1. Pre-Surgical Provisions: N/A

V.4.3.2. Procedure: N/A

V.4.3.3. Post-Surgical Provisions: N/A

V.4.3.4. Location: N/A

V.4.3.5. Surgeon: N/A

V.4.3.6. Multiple Major Survival Operative Procedures: None

V.4.3.6.1. Procedures: N/A

V.4.3.6.2. Scientific Justification: N/A

V.4.4. Animal Manipulations

V.4.4.1. Injections: None

V.4.4.2. Biosamples: All animals placed on study will undergo blood collection (approximately 3-6 ml of blood) just prior to euthanasia. All blood sampling will occur under CO₂ gas anesthesia via cardiac puncture. An appropriate size needle (18-21 gauge, 1-1.5 inch needle, depending on the size of the rat) will be fitted onto a 3-10 ml syringe and inserted anteriorly under the xiphoid region of the rat at an approximate 45° angle and advanced firmly through the diaphragm and into the heart. Slight negative pressure should be placed on the syringe plunger and the required amount of blood withdrawn from the rat. Following collection of the blood sample, the needle should be slowly withdrawn from the rat. To minimize blood hemolysis, the needle should be removed from the syringe, the microtube top removed, and the blood sample discharged directly into the microtube tube directly from the syringe. The microtube will then be recapped. EDTA tubes need to be inverted gently several times immediately after introducing blood into the tube. Blood collection will be promptly followed by euthanasia as described in Section V.4.6.

V.4.4.3. Adjuvants: N/A

V.4.4.4. Monoclonal Antibody (MAbs) Production: N/A

V.4.4.5. Animal Identification: Animals will be identified by cage cards according to TOX SOP 003 (reference 13). An identification number (e.g., the last 3 digits of the animal number) will also be marked on the tail of each rat with a water-insoluble marker in order to ensure proper identification of rats when removed from their cages or pair-housed during mating.

V.4.4.6. Behavioral Studies: N/A

V.4.4.7. Other Procedures: N/A

V.4.4.8. Tissue Sharing: Tissue sharing may be allowed upon request provided there is no effect on the validity of the study or change any euthanasia methods as stated in the protocol.

V.4.5. Study Endpoint: The study endpoint is euthanasia at scheduled time periods. The scheduled euthanasia for male rats will follow blood collection at the conclusion of the 28-day (prior to and during co-housing) dosing period and for female rats following blood sampling on postnatal day 4 or 5. The scheduled euthanasia for all satellite/recovery animals (if used) will be following blood collection at the conclusion of the recovery period (14 days to one month). Though no illness or distress is expected from the administration of NTO nor from any of the procedures, any animal considered moribund will be humanely euthanized as described in Section V.4.6. One or more of the clinical signs will be considered to be indicative of a moribund animal: impaired ambulation (e.g., impairment prevents animals from reaching food/water for greater than 18 hours); excessive weight loss or emaciation (e.g., ≥ 20% body weight loss as compared to the start of the study); prolonged labored breathing (e.g., lasting longer than 8 hours and accompanied by extreme lethargy); continuous seizure activity (e.g., lasting longer than 1 hour); inability to urinate or defecate (e.g., inability lasts greater than 24 hours); decreased body temperature (e.g., body temperature remains below 98°F for more than 2 hours); prolonged inability to move into the upright position (e.g., inability to upright lasts for more than 2 hours).

V.4.6. Euthanasia: Adult rats: after blood has been collected, the rats will be returned to the CO2 chamber and gas will continue for a few minutes beyond the time the rats appear dead (no respirations or movements for greater than 2 minutes, eyes fixed, and mucus membranes and skin are cyanotic). Death of all adult rats will be ensured with a thoracotomy as part of the necropsy procedure.

Pups will be placed in the CO2 chamber allowing adequate floor space for each pup. The gas will be turned on at a slow flow until the pups appear anesthetized (no movements except breathing) then the CO2 may be administered at a faster flow rate until the pups appear dead (no respirations or movements for greater than 2 minutes). Decapitation with sharp scissors will be used to ensure that all pups are dead. Study staff will euthanize the animals.

V.5. Veterinary Care

V.5.1. Husbandry Considerations: The animals will be housed in plastic, solid-bottom shoebox cages (size appropriate to the body weight of the rat) and given water and certified rodent feed *ad libitum* during the study (with exception of overnight fasting prior to necropsy). During the 2-week co-housing period, rats will be pair-housed (1 male to 1 female) in shoebox cages with an elevated wire rack (no bedding) which will allow investigators to check for the presence of a sperm plug in the bottom of the cage. Rats will be single-housed for the study period, including acclimation, except during the 2-week co-housing period. Animal rooms will be maintained according to the conditions specified in TOX SOP 004 (reference 14). All rats will undergo a 5-day acclimatization period. Body weight and observation data may also be collected for rats by study personnel during the acclimation period in an attempt to more accurately monitor the health status of the rats in preparation for their use on study. However, animals will not be weighed or handled by study personnel within the first 24 hours after their arrival to the facility.

V.5.1.1. Study Room: Studies will be conducted at the USAIPH Toxicology Portfolio animal facility, Bldg E-2100 or Bldg E-2101, study room as assigned. The animal facilities are fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

V.5.1.2. Special Husbandry Provisions: General husbandry procedures performed by the animal care staff (e.g. cage changes) will need to be performed following morning dosing/observations during the co-housing, pregnancy, and lactation phases. Additional nesting enrichment may be provided to pregnant females at the discretion of the Attending Veterinarian.

V.5.1.3. Exceptions: Not Applicable.

V.5.2. Veterinary Medical Care

V.5.2.1. Routine Veterinary Medical Care: All animals will be observed at least once daily by assigned Veterinary Medicine personnel for husbandry conditions, humane care, and general health. If dead animals are found they will immediately be necropsied or refrigerated.

V.5.2.2. Emergency Veterinary Medical Care: Veterinary care is available 24 hours a day, 7 days a week In the case of an emergency health problem, if the PI or co-PI is unavailable or if the investigator staff and veterinary staff cannot reach consensus on treatment, the veterinarian has the authority to treat the animal, remove it from the experiment, institute appropriate measures to relieve severe pain or distress, or perform euthanasia if necessary. If the veterinarian orders treatment or euthanasia after phone consultation and the PI does not concur, a veterinarian will conduct a physical examination. To facilitate communication, the vet med staff will maintain an emergency contact roster in the vet tech office. In an emergency, the veterinary staff will phone the

numbers (office, home, and mobile) listed for the PI and co-PI. If the PI or co-PI cannot be reached by phone within 15 minutes, then they are considered unavailable.

V.5.3. Environmental Enrichment

V.5.3.1 Enrichment Strategy: All enrichment will be provided in accordance with TOX SOP 122 (reference 12). Animals will be handled on a frequent basis and provided a form of environmental enrichment (e.g., nylabones) throughout the study. Additional nesting enrichment may be provided to pregnant females at the discretion of the Attending Veterinarian.

V.5.3.2. Enrichment Restriction: All rats will need to be singly housed except during the 2-week co-housing period. Cylindrical retreats will not be placed in the cages during the co-housing, pregnancy, and lactation phases.

Staff	Procedure	Training	Experience	Qualifications
Lee Crouse	Oral gavage, observations, handling, blood collection, CO ₂ euthanasia, anesthesia, necropsy	Humane Care & Use of Lab Animals (May 2000); Rodent Handling Techniques, WRAIR (includes oral gavage in rats; Nov 1996); Rat handling, gavage, injections, blood collection (July 2007); Rat cardiac bleeding under isoflurane (Dec 2008, May 2009); necropsy (Oct/Dec 2007)	16+ Yrs Animal Research	M.S., Environmental Science
Emily Lent	Oral gavage, observations, handling, blood collection, CO ₂ euthanasia, necropsy	Rat handling, gavage, injections, blood collection (July 2007); Rat bleeding techniques & tissue collection (Apr 2008); necropsy (Jul/Oct 2007, Apr 2008); Rat oral gavage (March 2008); Oral gavage in rats (May 2009)	11+ Yrs Animal Research	M.S., Wildlife Biology; Ph.D., Natural Resources and Environmental Studies
Mike Quinn	Oral gavage, observations, handling, blood collection, CO ₂ euthanasia, necropsy	Necropsy (May 2005, Oct 2007, Dec 2009); Oral gavage (March 2008); Rodent Handling Workshop (June 2005)	13+ Yrs Animal Research	Ph.D., Animal Science
Mark Way	Observations, handling, CO ₂ euthanasia, Necropsy	Rodent & Small Animal Handling workshops (2003, 2007); necropsy (May 2007)	17+ Yrs Animal Research	B.S., Biology; LAT
Art	Observations,	Inhalation testing	30+ Yrs	B.S., Biology;

VI. STUDY PERSONNEL QUALIFICATIONS AND TRAINING:

O'Neill	handling, CO ₂ euthanasia, necropsy	experience (memo from DuPont dated Oct 2008); necropsy (Dec 2007)	Animal Research	LATG
Terry Hanna	Observations, handling, CO ₂ euthanasia, necropsy,	Rodent Handling & Techniques (1992); Rodent & Small Animal Handling Workshop (2004, 2005, 2006); Rat handling and gavage (2007), rat euthanasia via CO ₂ with thoracotomy (3/2009); rat isoflurane anesthesia, cardiac blood draw, & CO ₂ euthanasia (2009); necropsy (2009, 2010); Functional observation battery (FOB) training (5/2007, 8/2008, 1/2009); Acoustic Startle Response (handheld clicker & startle chamber operations) (1/2009)	15+ Yrs Animal Research	ALAT
Will McCain	Observations, handling, necropsy	Animal Care & Use Training (Mar 1995); Humane Care & Use of Lab Animals (May 2000); necropsy (Dec 2007, Feb/Dec 2008, Feb 2009)	30+ Yrs Animal Research	Ph.D., Toxicology
Alicia Shiflett	Observations, handling, necropsy	Rodent handling & techniques training; observations, handling/restraint, weighing, basic bleeding (Nov 2008); rat CO ₂ euthanasia with thoracotomy (Mar 2009); rat necropsy & tissue collection (Mar 2008, Jan 2010)	2+ Yrs Animal Research	Associates Degree, Histology/Science

VII. BIOHAZARD/SAFETY:

In accordance with PHC Reg. 385-1, CHPPM Reg. 385-5, and TOX SOP 083, standard laboratory protection (e.g., safety glasses, gloves or eye protection, lab coat) shall be used when handling the neat test substance. The test substance shall be stored in a sealed container at room temperature when not in use. The test substance will be handled in a laboratory fume hood when necessary. Although the precise toxicity of the test substance may not be known, information regarding its chemical family will be provided so that a reasonable assessment of its safety can be made (references 15, 16, and 17). While in animal rooms or while handling animals in a laboratory, personnel will wear appropriate PPE (e.g., lab coat, gloves, face mask).

VIII. ENCLOSURES:

A. References

IX. ASSURANCES:

IX.1. As the Study Director/ Principal Investigator on this protocol, I acknowledge my responsibilities and provide assurances for the following:

A. <u>Animal Use</u>: The animals authorized for use in this protocol will be used only in the activities and in the manner described herein, unless a modification is specifically approved by the IACUC prior to its implementation.

B. <u>Duplication of Effort</u>: I have made every effort to ensure that this protocol is not an unnecessary duplication of previous experiments.

C. <u>Statistical Assurance</u>: I assure that I have consulted with a qualified individual who evaluated the experimental design with respect to the statistical analysis, and that the minimum number of animals needed for scientific validity will be used.

D. <u>Biohazard/Safety</u>: I have taken into consideration, and I have made the proper coordinations regarding all applicable rules and regulations regarding radiation protection, biosafety, recombinant issues, and so forth, in the preparation of this protocol.

E. <u>Training</u>: I verify that the personnel performing the animal procedures/manipulations/ observations described in this protocol are technically competent and have been properly trained to ensure that no unnecessary pain or distress will be caused to the animals as a result of the procedures/manipulations.

F. <u>Responsibility</u>: I acknowledge the inherent moral, ethical, and administrative obligations associated with the performance of this animal use protocol, and I assure that all individuals associated with this project will demonstrate a concern for the health, comfort, welfare, and well-being of the research animals. Additionally, I pledge to conduct this study in the spirit of the fourth "R", namely "Responsibility," which the DOD has embraced for implementing animal use alternatives where feasible and conducting humane and lawful research.

G. <u>Scientific Review</u>: This proposed animal use protocol has received appropriate peer scientific review and is consistent with good scientific research practice.

H. <u>Painful Procedures</u>: I am conducting biomedical experiments which may potentially cause more than momentary or slight pain or distress to animals. This potential pain and/or distress WILL and WILL NOT be relieved with the use of anesthetics, analgesics and/or tranquilizers. I have considered alternatives to such procedures; however, I have determined that alternative procedures are not available to accomplish the objectives of this proposed experiment.

Lee Crouse - Study Director (PI)

Date (YYYYMMDD)

Page 19 of 21

IX.2. As the Primary Co-Investigator on this protocol, I acknowledge my responsibilities and provide assurances for the following:

A. Animal Use: The animals authorized for use in this protocol will be used only in the activities and in the manner described herein, unless a modification is specifically approved by the IACUC prior to its implementation.

B. Authority: I understand that, as the Primary Co-Investigator, I am authorized and responsible for performing all procedures and manipulations as assigned to the SD/PI in the SD/PI's absence. This includes euthanasia of distressed animals.

C. Training: I verify that I am technically competent and have been properly trained to ensure that no unnecessary pain or distress will be caused to the animals as a result of the procedures/manipulations.

D. Responsibility: I acknowledge the inherent moral, ethical, and administrative obligations associated with the performance of this animal use protocol, and I assure that I will demonstrate a concern for the health, comfort, welfare, and well-being of the research animals. Additionally, I pledge to conduct this study in the spirit of the fourth "R", namely "Responsibility," which the DOD has embraced for implementing animal use alternatives where feasible and conducting humane and lawful research.

E. <u>Painful Procedures</u>: I am conducting biomedical experiments which may potentially cause more than momentary or slight pain or distress to animals. This potential pain and/or distress WILL and WILL NOT be relieved with the use of anesthetics, analgesics and/or tranguilizers. I have considered alternatives to such procedures; however, I have determined that alternative procedures are not available to accomplish the objectives of this proposed experiment.

Emily May Lent Primary Co-Investigator

20120328 Date (YYYYMMDD) **IX.3 ASSURANCES:** As a Co-Investigator on this protocol, I provide the following assurances:

A. Animal Use: The animals authorized for use in this protocol will be used only in the activities and in the manner described herein, unless a modification is specifically approved by the IACUC prior to its implementation.

B. Authority: I understand that, as a Co-Investigator, I am authorized, responsible for, and willing to perform all procedures and manipulations as assigned to me by the SD/PI.

C. Training: I verify that I am technically competent and have been or will be properly trained to ensure that no unnecessary pain or distress will be caused to the animals as a result of the assigned procedures/manipulations performed by me.

D. Responsibility: I acknowledge the inherent moral and administrative obligations associated with the performance of this animal use protocol, and I assure that I will demonstrate a concern for the health, comfort, welfare, and well-being of the research animals. Additionally, I pledge to participate in this study in the spirit of the fourth "R", namely "Responsibility," which the DOD has embraced for implementing animal use alternatives where feasible, and conducting humane and lawful research.

E. Painful Procedures: I am participating in biomedical experiments, which may potentially cause more than momentary or slight pain or distress to animals. I will follow the direction of the SD/PI relative to potential pain and/or distress and relief by the use of anesthetics, analgesics and/or tranquilizers.

(PRINT) (Date)

(PRINT) (Signature) (First name, MI, Last name of Co-Investigator

(PRINT) (Signature) (Date) First name, MI, Last name of Co-Investigator

(PRINT) (Signature) (Date) First name, MI, Last name of Co-Investigator

(PRINT) (Signature) (Date) First name, MI, Last name of Co-Investigator

APPENDIX A

REFERENCES

- 1. Spear, R.J., Louey, C.N., and Wolfson, M.G. A Preliminary Assessment of NTO as an Insensitive High Explosive. DSTO Materials Research Laboratory, Maribyrnong, Victoria 3032, Australia, MRL-TR-89-18, 1989.
- Smith, Matthew W. and Cliff, Matthew D. NTO-Based Explosive Formulations: A Technology Review. Weapons Systems Division, DSTO Aeronautical and Maritime Research Laboratory, Salisbury South Australia 5108 Australia, DSTO-TR-0796, 1999.
- Technical Report, U.S. Army Public Health Command (Provisional) [USAPHC (Prov)] [formerly U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM)], L.C.B. Crouse, et al., 2009, Subchronic Oral Toxicity of NTO in Rats.
- 4. Duncan, Kendal. 2002. Insensitive Munitions and the Army: Improving Safety and Survivability. Army Logistician PB700-02-1, Volume 34, Issue 1: 16-17.
- Davies, P.J. and Provatas, A. Characterisation of 2,4-Dinitroanisole: An Ingredient for Use in Low Sensitivity Melt Cast Formulations. Defence Science and Technology Organisation, PO Box 1500, Edinburgh, South Australia 5111 Australia, DSTO-TR-1904, 2006.
- Organisation for Economic Co-Operation and Development (OECD) Section 4 (Part 422): Combined Repeated Dose Toxicity Study with the Reproductive/Developmental Toxicity Screening Test. Guideline for the Testing of Chemicals (22 March 1996).
- USAPHC AIPH SOP No. DLS 801, Chromatographic\Spectrophotometric Analysis of Toxicology Directorate Samples, 2012.
- 8. USAPHC, AIPH, Toxicology Portfolio SOP No. CP034-003, Clinical Chemistry Analysis of Blood Specimens, 2011.
- 9. USAPHC, AIPH, Toxicology Portfolio SOP No. CP001-002, Cell-Dyn 3700 Hematology Analyzer, 2011.
- 10. Title 40, Code of Federal Regulations (CFR), Part 792, Good Laboratory Practice Standards.
- 11. Guide for the Care and Use of Laboratory Animals, National Academies Press, National Research Council, 2011.

- 12. USAPHC, AIPH, Toxicology Portfolio SOP No. AP122.003, Animal Environmental Enrichment, 2012.
- 13. USAPHC, AIPH, Toxicology Portfolio SOP No. AP003.002, Individual Animal Identification, 2011.
- 14. USAPHC, AIPH, Toxicology Portfolio SOP No. AP004-P-001, Animal Health Technician Duties within the Animal Facility, 2009.
- 15. USAPHC Regulation 385-1, Safety and Occupational Health Program, 15 January 2010.
- 16. USACHPPM Regulation 385-5, Occupational Health and Safety of Animal Users, 1 June 2007.
- 17. USAPHC, AIPH, Toxicology Portfolio SOP No. GL083-P-002, Health and Safety of Laboratory Personnel, 2010.

PROTOCOL REVIEW, SUPPORT, APPROVAL SHEET						
PROTOCOL NUMBER: 0FP4 - 93 - 12-03-03 SUB-JONO TEST TYPE IACUC NUMBER	TITLE: Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat					
1. SCIENTIFIC MERIT (PEER REVIEW)						
1a. Printed Name (First, MI, Last)	1b. Title	1c. Signature	1d. Date (yyyy/mm/dd)			
Dr. Desmond I. Bannon	Toxicologist	BANNON.DESMOND.I.1255711428	20111230			
2. DIRECTOR						
2a. Printed Name (First, MI, Last)	2b. Title	2c. Signature	2d. Date (yyyy/mm/dd)			
COL Chris E. Hanson	Director, Toxicology Portfolio	HANSON, CHRIS, E. 1149169069	20111220			
3. PROGRAM MANAGER						
3a. Printed Name (First, MI, Last)	3b. Title	3c. Signature	3d. Date (yyyy/mm/dd)			
Dr. Glenn J. Leach	Toxicology Portfolio Manager	slerf feat @	20111221			
4. ATTENDING VETERINARIAN						
4a. Printed Name (First, MI, Last)	4b. Title	4c. Signature	4d. Date (yyyy/mm/dd)			
MAJ Dawn C. Fitzhugh	Attending Veterinarian, USAPHC	FITZHUGH, DAWN, CATHERINE, 10369261	20120103			
5. ANALYTICAL CHEMISTRY (If Applicable)						
5a. Printed Name (First, MI, Last)	5b. Title	5c. Signature	5d. Date (yyyy/mm/dd)			
David F. Morrow	Laboratory Services Consultant	Sand to Come	20120103			
6. SAFETY MANAGER						
6a. Printed Name (First, MI, Last)	6b. Title	6c. Signature	6d. Date (yyyy/mm/dd)			
Roy A. Valiant	Safety Manager, USAPHC	VALIANT.ROY.A.108178059	20120118			
7. STATISTICIAN (If Applicable)						
7a. Printed Name (First, MI, Last)	7b. Title	7c. Signature	7d. Date (yyyy/mm/dd)			
Karen D. Deaver	Statistician	DEAVER.KAREN.DEVILBISS.14005196	20111229			

PROTOCOL NUMBER:	TITLE: Repeated-Dose and Reproductive/Developmental Toxicity of NTO in the Rat					
0FP4 - 93 - 12-03-03						
SUB-JONO TEST TYPE IACUC NUMBER						
8. SIO-QAT (GLP COMPLIANCE AND QA SUPPORT)						
8a. Printed Name (First, MI, Last)	8b. Title	8c. Signature	8d. Date (yyyy/mm/dd)			
Michael P. Kefauver	Quality Systems Office	KEFAUVER, MICHAEL, P. 1229209678	20120124			
9. CHAIRMAN, IACUC						
9a. Printed Name (First, MI, Last)	9b. Title	9c. Signature	9d. Date (yyyy/mm/dd)			
Kristin T. Newkirk	Animal Care & Use Specialist, IACUC Chairperson	NEWKIRK.KRISTIN.TORELL.101478689	20120330			
10. INSTITUTIONAL OFFICIAL						
10a. Printed Name (First, MI, Last)	10b. Title	10c. Signature	10d. Date (yyyy/mm/dd)			
John J. Resta	Director USAIPH	RESTA.JOHN.J.1229129303	20120330			
11. STUDY DIRECTOR/PRINCIPAL INVESTIGATOR						
11a. Printed Name (First, MI, Last)	11b. Title	11c. Signature	11d. Date (yyyy/mm/dd)			
Lee C. Crouse	Study Director	CROUSE.LEE.1239523269	20120402			
12. OTHER ORGANIZATION(S) PROVIDING S	UPPORT (AS NEEDED):	الله				
12a. Printed Name (First, MI, Last)	12b. Title	12c. Signature	12d. Date (yyyy/mm/dd)			
13. STUDY SPONSOR:		1				
13a. Printed Name (First, MI, Last)	13b. Title	13c. Signature	13d. Date (yyyy/mm/dd)			

J:		USACHPPM PRO For use of this fo	TOCOL MOD	IFICA SOP 085	TION			v		
1. DATE: (YYYY/M	(YYYY/MM/DD) 20120402 2. PROTOCOL NUMBER: 0FP4-93-12-03-03					3. MODIFICATION#: 1				
4. PROTOCOL TI	TLE: Repeated-Dose and Reprod	active/Developmental Toxicity	of NTO in the R	at				1		
5. STUDY DIRECTOR/PRINCIPAL INVESTIGATOR: Lee Crouse					6. WORK PHONE:			7. OFFICE SYMBOL: MCHB-IP-TEP		
1	SECTION I. PREVI	OUSLY APPROVED AND C	URRENTLY IN	USE PR	OTOCOL MOI	DIFICATIONS:				
1. MODIFICATION	2. SHORT DESCRIPTIO	N OF PRIOR APPROVED MODIFICATION(S			3. NO. & SP REC	ECIES OF AN	IMAL	1AL 4. APPROVED DATE (XX XXX XXXX		
	27 22							-		
			<u>a</u>							
				ŝ				5		
	SECTION II. CHANG	E IN TOTAL # OF ANIMALS	USED AND/OF	CHANG	SE IN USDA P	AIN CATEGO	RA I			
2 ORIGINAL PRO	TOCOL TOTAL 504 (including	estimated pupe)	2 880700		AL AFTER MO	DIFICATION	£19 (in a)	1b. N/A		
2a. USDA pain ca	t: B: 4 C: 400		3. USDA pain		AL AFTER MO		518 (incl	using estimated pups)		
4. Yes No		U. 100 E.		Cat. B	. 18	. 400	D: 100	0 =:		
	Modification requires specific o	hanges of additions to the s								
	modification requires specific c	nanges of additions to the e	xperimental des	gn of the	protocol. (Se	ction V.I. of th	e template	9.)		
	Modification requires changes to the technical methods, i.e., procedures, routes of administration, biosample collection, etc. (Section V.4. of the protocol template.) Indicate training of personnel for new methods, procedures being used.									
	Modification requires additions or changes in personnel performing procedures. (Section VI of the protocol template.) Include training and qualification information and tasks that each individual will be performing. If changing the Study Director/PI, a signed Assurance Statement needs to be submitted with the modifications.									
PROTOCOL Page, paragraph, section	SECTION III. MODIFICATION/JUSTIFICATION Explain the modification indicated above in the area below. Indicate any changes to the 3R's (Refinement, Reduction, Replacement) resulting from changes in number of animals									
Page 11, V.3.3.3, V.3.4.	1. MODIFICATION:									
	As stated in this protocol, attemp protocol number 0FP3-95-12-02-0 Sprague-Dawley rats; however 66 postnatal day 21 (approximately 3 being raised to an age that they ca age. All remaining animals will th	ts are being made to use anima 1 (SD Emily Lent) to this proto- male pups and 52 female pups April). Taking all the available n be utilized. Sixty-two male is then be transferred to the training	Ils born in-house i col is now availab are available for e extra pups will in and 42 female rats g protocol or hum	for this st le. This p ransfer fr itially res will be so anely eut	udy. A total co rotocol requires com protocol nu ult in an increase elected for use w hanized at the d	unt of all pups t the use of 62 ac nber 0FP3-95-1 e of 14 animals t when the rats rea iscretion of the	hat can be lult male ar 2-02-01 wh for this provion ch approxion Attending b	transferred from ad 42 adult female hen they reach tocol while they are mately 8 weeks of Veterinarian.		
	1a. JUSTIFICATION/REASON	:								
	The pups transferred from protoco utilized for this study. Breeding 1 the animals available for transfer to similar weight range are not avail and a separate order placed with effort and helps to ensure that the	ol number 0FP3-95-12-02-01 w for this reproductive/developm o this protocol maximizes the a able when the pups reach 8 we Charles River Laboratories. K e study is initiated on time.	vill be held for ap ental screening tes bility to ensure ou eeks of age, the er teeping all of the p	proximate of requires tbreeding office group pups at th	ely the next 5 we pairing unrelat In addition, if o of transferred is time increase	eeks until they re ed animals (outh 62 adult male ar animals would s the chance for	each an age preeding) as ad 42 adult need to be success w	e that they can be nd keeping all of female rats of humanely euthanized rith this reduction		
CHPPM FORM	28-R-F. NOV 2006 (MC	HB-TS-T) REPLACE	S CHODN EO	DM 20 1	MAY 1000			CHPPM PE v2.00		

<u>_</u>

PAGE 1

PROTOCOL Page, paragraph, section	Explain the modification indicated above in the area below. Indicate any changes to the 3R's (Refinement, Reduc resulting from changes in number of animals used.	tion, Replacement)						
Page 12, V.4.1.1.1.1.	2. MODIFICATION:	ीका की जनस्थी का						
	Column B animals increases from 4 rats (2 male, 2 female) to 18 rats (6 male, 12 female).							
	2a. JUSTIFICATION/REASON:							
	The animals being used for this study are extra pups that were born to timed-pregnant females for another study and were not enough extra pups born to supply all the animals needed for this study at one time, plus there are 14 extra. We would like to as category B animals to ensure there will be sufficient animals of similar weight range to run the study.	needed. There were hold these extra 14 rats						
Page 15, V.5.1.	3. MODIFICATION:							
	All pups transferred to this protocol will be group-housed (same sex) in appropriately-sized shoebox cages for the 5-week per prior to study initiation. They will be separated and single-housed just prior to study initiation when they reach approximatel	iod that they are held y 8 weeks of age.						
	3a. JUSTIFICATION/REASON:							
	The pups will only be 3 weeks of age when transferred to the protocol and group-housing will allow the pups to acclimate to solid food and the automatic watering system more efficiently.							
	4. MODIFICATION:							
		đi						
	4a. JUSTIFICATION/REASON:							
5 Q	SECTION IV. SIGNATURES AND DATES	<u></u>						
1. STUDY DIRECT	OR: (Printed Name) Signature	DATE: (vvvv/mm/dd)						
Lee C	rouse Quí que	20120409						
2. PROGRAM MA	NAGER:: (Printed Name) Signature	DATE: (yyyy/mm/dd)						
3 ATTENDING VE	TERINARIAN: (Printed Name)	2012 0409						
	IDM. Fitzlaurala	DATE: (yyyy/mm/dd)						
4. CHPPM SAFET	Y OFFICER/OCC HEALTH REP: (IF APPLICABLE)	DATE: (yyyy/mm/dd)						
5. CHAIR, IACUC	DR QA (If no animal related changes): (Printed Name) (APPROVED) REVIEWED YES NO Signature							
KRIST	N T. NEWKIRK Huster Route	2012/04/09						
CHPPM FORM	28-R-E, NOV 2006 (MCHB-TS-T) REPLACES CHPPM FORM 28-E, MAY 1996	CHPPM PE v2.00						

CHPPM FORM 28-R-E, NOV 2006 (MCHB-TS-T) REPLACES CHPPM FORM 28-E, MAY 1996

USACHPPM PROTOCOL MODIFICATION For use of this form, see DTOX SOP 085													
1. DATE: (YYYY/MM/DD) 2012/05/09 2. PROTOCOL NU			OCOL NUMBE	ER: 0FP4-93-12-03-03				3. MODIFICATION#		AD	P-1		
4. PROTOCOL TIT	LE: Repeated-D	ose and Repro	luctive/Develo	pmental Toxicity	of NTO in the R	at '						maria	Jane In
5. STUDY DIRECT	OR/PRINCIPAL	INVESTIGAT	OR:	979 - 1207 (1700) (2309) (1 70		6.	WORK	(PHONE	:	3 - 6 5 k i Jawa 7 1	7. OF	ICE SYMB	OL:
Lee Crouse	Man Income States	Service Barris				410	-436-50	88	5.000		мснв-	IP-TEP	RUNNI A
	SEC	TION I. PRE	10USLY API	ROVED AND	CURRENTLY IN	USE	PROT	OCOL M	IODIFI	CATION	IS:		
1. MODIFICATION NUMBER	2. SHORT DESCRIPTION C			OF PRIOR APPROVED MODIFICATION(S)			3. NO. & SPECIES OF ANIMAL REQUESTED					DATE (XX XXX XXXX	
1	Retention of until study in	14 additional an itiation.	umals transferr	ed from protocol	0FP3-95-12-02-0	1	14 ad	ditional S	prague	-Dawley	Kals	9 Ap	r 2012
													Î
	SECTION	ON II. CHAN	GE IN TOTAL	# OF ANIMAL	S USED AND/O	R CH	IANGE	IN USDA	A PAIN	CATEO	GORY		
2 ORIGINAL PRO	TOCOL TOTAL	518 (includia	ANIMALS BY	: ns)	3 28010	COL .	ΤΟΤΑΙ	AFTER	MODIE		N- 518 (inc	1b. N/A	(ted pups)
2a. USDA pain cal	: B: 18	C: 400	D: 100	E.	3a. USDA pai	n cat:	B:	18	C:	400	D: 10	0 E:	100 p 100)
4. Yes No	Innunnunn	nnnnnnnnnn.			Minimuminumi	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ninni.	mmmm			
	Modification req	uires specific	changes or a	dditions to the	experimental de	sign d	of the p	rotocol.	(Secti	on V.I. o	f the templat	e.)	er ("ALBORIT BERDER
	Modification req the protocol tem	uires change: plate.) Indica	to the techni te training of p	cal methods, i. personnel for ne	e., procedures, i w methods, pro	route: cedur	s of adr res beir	ministration ng used.	on, bic	sample	collection, et	c. (Section	V.4. of
	Modification req qualification info needs to be sub	uires addition prmation and to mitted with th	s or changes i asks that eac e modificatior	n personnel per h individual will 1s.	forming procedu be performing.	ires. If ch	(Sectio anging	n VI of th the Stud	te prot y Dire	ccol tem ctor/PI, a	plate.) Inclu a signed Ass	de training a urance Stat	and ement
PROTOCOL Page, paragraph,			Explain the 3R's (Refine	SECTION modification In ment, Reduction	III. MODIFICA dicated above in in, Replacement	TION the i	IJUSTI Brea be ulting fr	FICATIO	N icate a ges în	iny chan number	ges to the of animals		
Pres 14 MAA2		ION:						12	CHE C	Ingel	and loss	語言	a the first
Page 14, V.4.4.2	Sperm analysis w of the wale rats v	vill be performe vill be transfer	d on male anin ed to a membe	nals from all dose r of the study sta	: groups, includin (f immediately af	g the : ter ob	satellite taining	recovery the weight	group. t and u	One of t sed to per	the epididymi rform sperm a	des taken fro nalysis.	m cach
	1a. JUSTIFICA Based on the his	TION/REASO)N: induce reprodu	active effects in a	nale rats at mode	rate d	oses, sp	erm analy	sis will	l add to a	meaningful in	terpretation	of the
	data obtained fro	om this reprod	ictive/developi	nental screening	test.								
CHPPM FORM	28-R-E, NO	V 2006 (M	снв-тѕ-т) REPLAC	ES CHPPM FO	ORM	28-E,	MAY 19	996			CHF	PPM PE v2.00
1 GLP	only r	roclific	otion	s need	to be	10	abe	led	GL	P-1	, GLP.	a, etc	PAGE 1 2 70
diffe	renfiate	fron	n IAC	uc mo	dyrcat	107	N						

PROTOCOL Page, paragraph, section	Explain the modification indicated above in the are resulting	ea below. Indicate any changes to the 3R's (Refinement, Reduc from changes in number of animals used.	tion, Replacement)						
Page 8, V.1.9	 MODIFICATION: In addition to the observations and tissues listed in the gross necropsy section of the approved protocol, the prosector will also be counting the number of implantation sites and corpora lutea. 								
	2a. JUSTIFICATION/REASON: OECD Guideline 422 recommends counting the number of implantation sites and corpora lutea but only states the recommendation in the reporting results section. Although this does not involve any additional tissue removal or weighing, it should be added to the gross necropsy section to account for the additional data that will be added to the gross necropsy sheet.								
	3. MODIFICATION:								
	3a. JUSTIFICATION/REASON:								
	4. MODIFICATION:								
	4a. JUSTIFICATION/REASON:								
	Continued on nex	t page YES NO 🔀							
	SECTION IV. S	SIGNATURES AND DATES							
1. STUDY DIRECT	OR: (Printed Name)	Signature	DATE: (yyyy/mm/dd)						
2. PROGRAM MA	NAGER:: (Printed Name)	Signature	DATE: (yyyy/mm/dd)						
LTC Shannon Wallac	e, DVM, DACVP	n have	2012 0515						
3. ATTENDING VE	TERINARIAN: (Printed Name)	Signature	DATE: (yyyy/mm/dd)						
4. CHPPM SAFET N/A	Y OFFICER/OCC HEALTH REP: (IF APPLICABLE)	Signature	DATE: (yyyy/mm/dd)						
5. CHAIR, IACUC QA, Michael P. Kefi	OR QA (If no animal related changes): (Printed Name)	APPROVED REVIEWED YES X NO Signature	DATE: (yyyy/mm/dd)						
		11/venult. afar	2012 0516						

CHPPM FORM 28-R-E, NOV 2006 (MCHB-TS-T) REPLACES CHPPM FORM 28-E, MAY 1996