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Summér : To what kinds of events can a
McCulloch—Pitts nerve net respond by firing

a certain neuron? More generally, to what
kinds of events can any finite automaton
respond by assumling one of certaln states?
This memorandum is devoted to an elementary
exposition of the problems and of results
obtained on 1t during investigations in
August 1951.

REPRESENTATION OF EVENTS

IN NERVE NETS AND FINITE AUTOMATA

S. C. Kleene

INTRODUCTION:

1. Stimulus and Response: An organism or robot recelves

certain stimull (via its sensory receptor organs) and performs
-certaih actions (via its effector organs). To say that certain
actions are a response to certain stimuli means, in the simplest
case, that the actions are performed when those stimull occur
and not when they do not occur.

Since both the stimulil and the actions may be very com—
plicated, the relationship.between the two 1s very complicated.
In order to simplify our analysis, we may leave out of
account the complexities of the response. To do this, we.reéson
that any kind of stimulation, or briefly, any event which affects
action, in the sense that according as the eﬁeﬁt occurs or does
not, under some set of other ecircumstances held fixed, a differ—

ent action ensues, must have a representation in the stéte of

the organism or machine, after the event has occurred and prior
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to the ensuing action (which action may Eiepend on the occur—
rence of many other events).

We then ask what kinds of events are capable of being
represented in the state of the organism or machine.

We shall see later (Section 5.5) that there 1s no loss of
generality 1n.consider1ng the representation, in the case of
-nerve nets, to have the simple form of the firing (or sometimes
the non—firing instead) at a certain time of a certain neuron.

For explaining response as due to stimulus, it would then
remain to assemble the complicated molar'response out of these
molecular representations of molar stimulil.

In this remaining problem, it could make a great difference
what events are selected for molecular reprgsentation,-as the
abstract from experlence which 1is to form the basis of action.

However, we shall not enter into this here, except as 1t
refleéts on the problem of represeating events; nor shall we
enter into the analogies between the analysis Jjust described
and the psychologicai phenomena 1h which raw sense data lead

through percepts and concepts to overt behavior.

.

2. Nerve Nets and Behavior: McCulloch and Pitts (1943)

in thelr fundamental paper on the loglical analysis of nervous

activity formulated certain assumptions which we shall recapil-

tulate below (Section 3).

These assumptions are an abstraction from the data which

neurophysiology provides. The abstraction gives a model, 1n
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terms of which it becomes an exact mathematical problem to see
what kinds of behavior‘the model can explain. The question 1s
left open how closely the model describes the activity of actual
nerve nets; and‘some modifications in ﬁhe assumptions lead to
simllar models. Neurophysiology does not currently say which
of these models 13 most neifly correct—it is not plausible that
any one of them fits exactly. It 1s noteworthy, however, that
one of McCulloch and Pitts' results is that these several other
models are capable of producing only the same behavior as the
first one. ‘

Until neuro—physiolagy tells us‘more about the actual
procesé, it is inatructive to see what Behavior the model |
admits. Our results are to the effect that "it could be this
way, and quite possibly the real process is significantly simi-
lar to this." Furthermore, such studies have applications in
robotoloéy, when we wish to describe on paper (or build in the
metal, using,elements which behave like McCulloch-Pitts neurons)
a robot to behave 1in a pfe—assigned manner.

This study can be pursued on two levels, a strictly
practical one and a theoretical one. On the former, we are
concerned with construct;ng particular nerve nets to give par—
ticular deseribed behavior; in the lattér, we develop general
methods for constructing nets to give behavior, and investigate
the 1imitations within which this is possible.

This memorandum deals with studies'on.the second level, but

actually the two are not clearly separated. The general methods
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may be practical or suggest methods which are, and the inves—
tigations of the limitations may contribute better understanding
of the problems which are faced on the practical level.

McCulloch and Pitts give such a theoretical investiga—
tion, consisting of a'theory for nerve nets without "eircles”
(Part II of their paper) and a theory for arbitrary nerve nets
(Part III). The present memorandum is partly an exposition of
the McCulloch—Pitts results; but we found the part of.their
paper which treats of arbltrary nets obscure; so we-havehprd—
ceeded 1lndependently here.

Under the McCulloch—Pitts assumption of the all-—or-nothing
character of a neuron's firing (which is close to the biological
reality) and their assumption which quantizes time so that all
neurons have their méments of possible firing in phase, a:nerve
net has the character of a digital automaton. Here we are using
"digital" in contrast to "analog," in the sense familiar in |
connection with computing machines.

It seems quite clear that many physical processes of
control are partly analég in character. For example, the res—

: pifatory cycle of activity can be controlled conseiously(by
nervous means, which are digital); but most of the time it is
regulated by a nervous response in the respiratory centef of

the prain to the carbon—dioxide level in the bloed (an analog

quantity).

Just as in mathematlcs continuous processes can be approxi-—

nated by diserste ones, it is plausible that any analeg @lemsrts
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in bodlly control could be approximated in their effect by
"digital ones. Nevertheless, the analog or partly analog con—
trols may remain the simplest and most efficlent.

One of the results of systematic theoretical investiga—
tions of the potentlialities of digital control might be to
demonstrate that other principles, e.g., analog mechanisms or
the 1ntroduction.of random inputs, may be necessary to produce,
or to producé economlically, certain kindé of behavior.

Another tacit assumption of the present mathematlcal theory
is that there are no errors in the functioning of neurons; i.e.,
a given neuron fires at a glven moment, if and only 1if it should
under the McCulloch—Pitts rules. Of course, this 1s unrealistiec,
elther for living neurons or for the equlvalent units of a
mechanical automaton. It seems nétural, however, to bulld a
theory of what happens assuming no malfunctioning. In this
theory, we represent the occurrence of an event by the firing of
3 single neuron. Biologically, 1t is implausible that impor-
tant information should ever be represented in an organism in
tﬁis way. But by duplications of nets (many processes being
carried out in parallel circuits), one could expect then to
secure the same results with small probability of failure 1in
nets constructed of fallible neurons.

| Returning to the formulation of the problem as given in
Sect. 1, we shall now 1n Part I show that all events of a
certain class can be. represented by the firiqg (or in some cases,

the non—firing) of a certain neuron. The dilscussion of the
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converse is left mainly to Part 11, where we generalize to

representabllity in any finite digital automaton.

PART I — NERVE NETS:

3. McCulloch—Pitts.Nerve'Nets: Under the assumptions of

McCulloch and Pitts (1943), a nerve cell or neuron consists of

a soma, whence nerve fibers (axons) lead to one or more endbulbs.
A nerve net 1s an arrangement of a finite number of neurons,

in which each endbulb of any neuron is adjacent to the soma of

not more than one neuron (the same or another); the separating

Each endbulb is either excitatory or inhibitory

gap 1s a synapse.
(not both).

We call the neurons (zero or more) on which no endbulbs
(MeCulloch

;mpinge input neurons; the qthers, inner neurons.
and Pitts say "peripheral afferent neurons" for the former, but °
it is conveﬁient ﬁo have a shorter phrase. "Efferent neurons"
might be used for the latter, but it is not clear to us that
this is appropriate. (As the present paper is only a working
paper, we welcome suggestions as to improvements in the ftermi-
nology, ) |

At equally separated moments of time (which we take as the

integers on a time scale, the same for all neurons in a given

net), each neuron of the net is capable of firing or not firing

(veing guiet) in an all—or-nothing manner. For an input neuron,

the firing or non—firing at any time t 1s determined by condi-
tions outside the met. One can suppose each is impinged upon

by a sensory receptor organ, which under suitable conditlons 1n
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the environment causes the neuron to fire at time t. For an
inner neuron, the condition for firing at time t is that at least
a certain number h (the threshold of that neuron) of the exci-

tatory endbulbs, and none of the inhibitory endbulbs, synapsing

»

on it belong to neurons which fired at time t-1.
For illustration, consider thé followihg nerve net, with
input neurons J, K, L, M, and N and inner neuron P. Excitatory
endbulbs are shown as dots, and inhibitory as circles. The
threshold of P is .3 .as shown by the figure on the triangle repre—

genting 1ts soma. The formula written below the net expresses .

R

BB =3(1) & k(1) & L(e1) & HETT & MED

Flg. 1

.

in logical symbolism that neuron P fires at time ¢ ‘En thé
symbols, “g(g)f], if and only if (in symbols, "=") all of
J, K, and L and none of M and N fire at time t—1.(" &" means

."and," and " " means 'not!).

The method of nerve net construction illustrated in Fig. 1
applies for any numbef'z 1 of unnegated propositions (3 in '

Fig. 1) and any number > O of negated propositions (2 in Fig. 1)

combined conjunctively.
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Two other nets (Figs. 2 and 3) illustrate additional methads

o

which will be used in nerve net constructions in Sect.

; J7

L N
P(t) = N(&-1)
{e) % L{t=1) Vv M{t-1i)\ 3 _
Ble (-1 v Mig-i/% Nt o) = N(t-2)
Fig. 2 Fig. 3
Here "\/" means (in the non—exclusive sense)

4%, fThe Input to a Nerve Net: Consider a nerve net with k

 input neurons N;,...,NK . The input (or experience) over all
past time up to the present moment inclusive can be represented

by a table or matrix with k columns corresponding to the input

neurons, and with rows corresponding to the moments counting

backward from the present moment t = p. The positions are filled

with O's and 1's, where O is to stand for quiescence, and 1 for
firing, of the neuron in question a4t the time in question.
For example, with -k * 2 the matrix might be as follows:
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t N, N
2' 1 0
p-l 1l 1
p—2 0 1
p=3 1 1
Fig. 4

The 1 in the first row and first column means fhat N3 filred

at time p; the O in the first row and second ‘column that Nz did
~not fire ét time p; the 1 in the second row and first column that
N, fired at time p-1; etc.

If this table 18 extended down infinitely, we have a repre—
gentation of the input, thought of as extending over all past
time. The discussion whether we should think of past time as
infinite will be left to the place where 1t becomes crucial
(Sect. 6.1). For the pufﬁoses of Sect. 5 we need merely assume
that it extends back in each case as far as the number of rows
of the matrix being considered there.

| By an event we mean any property of the input. Thus, any
subclass of the cléss of all the possible tables represents an
event, whieh occurs khen the table describing fhe actual input
belongs to this subclass. In coin tossing or dice throwing,
examples of evenﬁs are "heads" or "eleven" (as sum of the
numbers of spots on the uppermost faces of the two diee). Here

examples are: (1) N; fired at time p. (2) Nz did not fire
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at time p, and N, fired at time p-l. (3) One of N: and N2
fired at time p. (4) N; and Nz both fired at time p. (5) Ne
fired at soﬁe fime. (6) Nz fired atigvery time except p.

Of these, the (present Q;nd) past described by the table 1n
Fig. 4 constitutes an occurrence of events (1), (2), (3), and

(5), but not of (4), while we need to know the rest of the table

to see whether it constitutes an occurrence of (6).

5. Definite Events:

5.1. "Definite events" defined: We shall first restrict

ourselves to events whth refer to a fixed period of time, con-

sisting of the Y (> 1) moments p—2+l,...,p ending with the
presenﬁ. This means that in any table such as that of Fig. &4

we consider only the uppermost Z rows; e.g., with Z = 3:

1.’,_ N, No

p 1 0 ' N, (B)gr _N§(B)
p—-1 1 1 gt Ni(p-1) grﬂz(P_—l)
p2 o 1 % oo & Ne(pa).

Fig. 5

The formula at the right expresses the same as 1s expressed by
the table; 1.e., 1t says that N; fires at time p ("N;(p)") and
U'g") Nz does not fire at time p ("Nz{pJ"), and N, fires at

time p-1 ("N1(p-1)"), ete.

‘We call an event referring to Jjust these Y moments definite

of length (or duration) Y. With k input neurons, there are
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exactly EZ entries in a table describing the input for these
moments. Therefore, there are e:tcatctlyé-IEZ possible such tables.
Therefore, there are exactly 2ak definite events of length Z
since any particular event (of length Y with k input neurons)
is obtained by saying which of the 2EZ tables would. constiltute
(if they represented the actual past) an occurrence of the evert.
We call an event Rositive, if it only ocecurs when at least
one input neuron fires during the period to which the event
refers. There are 22k; o definlte positive events, since now

we exclude as an occurrence of the event that past described

by the tabie of all O's.

5.2 Dsfinlt

(]

positive svents:

Py
H.A -

Thsorem 1. T¢ each of the g™ 4 definite positive

J“ﬁt% of 1eg§ﬁh,”( g k input neurcns’, ther: 43 & nesyrve net

having an inner neuron which fires at time p+2, if and only if

the event occurs during time E—Z}l to p-

This theorem, except for the remark that the "lag" can be

held to 2, 1s given by McCulloch and Pitts (1943).
Proof: To 1llustrate, say the event 1s one which ocecurs
if and only 1if the pattern of flrings over the past is repreaernted

elther by the table of Fig. 5 or by the following table:

N2

E 1 Y Vﬁx(E)gr_Na(g)
p-1 1 0 , g(‘ N, (g—l)g_ﬂz(g—l)
p2 1 0 | g- N1 (p-2) % Nz(p=27.

jer
=z
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That 1s, jJust these two (out of the 22°3 = 64) tables are to
constltute an oceurrence of the event. The event 1s described

by the‘folléwing logical formula:
()% FTET G Na (1) N2 (p1) E ETE2T S Na (p2) |

V B (@) U TR N (1) § BTN N (p2) . N
Fiégre 7

This formula is a "disjunction" having two "members" or "terﬁs,"
each of which 1s a "conjunction" having six "members" or
"factors." The two terms correspond to the tables of Figs. §
and 6, respectively.

A nerve net which represents the event with lag 2 is con-

structed as follows:

Figure 8
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Using the method illustrated in Fig. 3,
Ni(p) = Ni(p2), Na(p) = Na(p-1),
Ni(p) = Na(p-2),  Na(p)= Na(p-R)-

Now using the device of Fig. 1,

M (pr1) = Ni(p) & NoTE7 & Ma(p) & Na(p) &-FTET  Ma(p)
= N,(p) § FoTT & Na(p1) & Na(p-1) & NiTE2T & Na(p-2) s

i.e., M; fires at time p+1 if and only if the past 1s described
by the table of Fig. 5 (or the first conjunction in Fig. 7).
‘ Likewise, the firing of Mgz at p+l correspohds to the table of
Fig. 6 (or the second conjunction in Fig. 7). Finally, by the
method of Fig. 2, |

P{p+2)= M:(p+1) V Ma(p+1).

Combining this with what has already been remarked, P fires at

p+2 if and only 1if. the event oceurs during time p-2 to p.

The method of the 1llustration applles to every definite
positive event which occurs for some aone or more tables. By
the restriction that the event be positive, each table must have

at least one 1 in it, which assures the applicability of the

device of Flg. 1.

There remains the case of the event which never ocecurs.
This is represented, e.g., by the followlng net:

P never fires at time p+2

(or in symbols, e.g.,

p(pt2) = Na(p) & (E))-

Figure
N; N2 2
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5.3 Simpler nerve nets: While this proves the theorem,

it i1s to be observed that often much simpler nets can be con—
structed than that given by the abowe method of proving the
theorem.

. Readers having technical acquaintance with symbolic logic
will recognize thét the construction used in proving the theorem
corresponds to the principal disjunctive normal form of Hilbert—
Ackermann (1928) which describes the event. In the illustration,
the normal form is the formula of Fig; 7. Each of the tables
which describe an occurrence of the event 1is représented by a
conjunction or term in the normal form and 1s taken care of
separately in bullding the nerve net. . This makesAthe proof of
" the theorem simple, but the net complicated.

Consider for example the event wﬁich is described by saying
that the table must be of one of the two following forms, where

either a 0 or a 1 can be supplied independently for each blank

" "
.

£ Ny Nz r N Na
o) — o . -] —_ R
p-1 —_— —_ or p-1 — 1
p—2 — 1 p= — —

[F=TT § Ne(p-2)] V/Nalp-1).

Figure 10
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In terms of complete tables, this event would be expressed
by a cholce between 24+25—23=40 tabies, including that of Fig. 5
~as one of theﬁ. The principal disjunctive normal form would be
a disjunctiﬁn'df 40 conjunctions. The simple formula shown in
Fig. 10 which represents it 1s a disjunctive normal form (not a
principal one). The event is represented in the sense of the

theorem by the following net.

Figure 11

In this net we show only Nz as an input neuron, although

we defined our events in terms of two input neurons N, and Nz
.in our 1lluétrations. The net of Fig. 11 can constitute a part
of a larger net having N; also as input neuron, entering in such
a way that 1t has no endbulbs on any of the neurons shown in
Fig. 11. The example illustrates that if we begln by defining

events relative to a set Nl,..:,Nk« of input neurons, we need

actually use in our net constructions only those of N1,---,Nk
whose firing or non—firing affects whether the event occurs.
There is a. ¢orresponding tfeatment, with the same lag, for

conjunctive normal forms. We begin by considering the following
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iiiustration, ia which vhe normal IUrm 18 & Priniclipas Sas waoh

| P(p+2) = [ﬁl(B)Vﬁa (2)\/1_‘{3(2_)} &[}il (p) VH;(B)VE_S(B_)] ,2‘ [_ﬁx(-R)

VEa(E)VI_‘Js(pﬂ .

Figure 12
To see that this works, observe that we use Fig. 2 in obtaining

M;, s0 that
M (p#1)= Ni(p) V Na(p)\V/Na(p);

but Fig. 1 to obtain Mz and Ms, so that .
Ma(pHl) = Ni(ET 4 Ne(p) & Nalp),  Malprl)= Ni(p) &

N=(p7 4 NsTpJ-

Hence

T (e I7=N: (p)V R (p)v NsTpJ, MaTpFTT=NTEJv Na (p) VNa(p) .

Also, we used Fig. 1 to obtain P, so that

, E(E’LQ)'EEI(R‘*‘l)&_Ma(R—FI) Qh__ﬁs(p_-i-ﬂ.
Substitufing aur formulas for M;{(p+l1), Mz(p+IJ and MT(p+I)

in the latter glves the formula for P(p+2) in the figure.
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This method of treating a principal conjunctive normal form
depends on that disjunction which has no negated propositions!
being one of the factors; but it must always be for a positive
event, slnce otherwise the falsity of all fthe elementary pro—
positions would make every term of the conjunctlon true.

If the principal disjuhcéive normal fofm has n' terms, the
prineipal conjunctive normal form has QEZ‘—glfactors, and vilce
versa (so the longer one form is, the shorter the other). We
see why this is so in our illustration thus (omitting "(pj" after

each "N" for brevity).
[M: VNe v No] § [N v Bav Fs) & [Nu vNa V] -
ng&ﬁzgﬂﬂ _\/[Elgy_zg«ﬂﬂv[ﬂxgﬁz&lﬂ |
=Nd N8 Ns] v [Naf Ne 4 Fs] v [Nk Mo bis ] v (Wi 8 Ne 0Fs)v Wi BN Q1)

Under the bar in the second expression we have the principal dis-—
Junctive normal form of the negation of the first expression, so
the last expression (which is the prineipal disjunctive normal
form of the original expression) 1s obtained by combining dis—
Junctively those 5 of the 8 elementary conjunctions which do not
appear infthé second expression.

When an event can be represented.by a conjunétive normal
form other than the principal one, a corresponding simplifica—
tlon can be made in the net construction just as in the case of
disjunctive normal forms.

By using a normal form of elther kind, we have held the

lag 8 in the rgprésentation to 2.



RM—704
Page 18

Now it may happen that the most compact formula we havé
at hand to represent a given definite positive évent is not a
normal form. Then we can construct a nerve net of exactly
corresponding structure and complexity, if we accept a greater
lag 8. In fact, the lag will be exactly the "depth” (or number
of "layers") in the formula in terms of the operations Q\and V.
We shall see this in Sect. 5.4 (Theorem 2).

For some évents, of course, a lag of 1 suffiées-(or even
a lag éf.o or -1 or -2, etec., if respectively the event speci—
fies nothing about the firings at time p or times p-l, p or
times p-2, ETJ"B’ etec. Reduetlion of_the lég below 2 is not
possible in generél (with the assumed kind of neuron). A
counterexample is the event N, (g)ﬂéw v Na{pJJ. To repre—
sent Ln.s with lag ., Ghe 25 would Lave to cdnglipt of the
repgeseﬁting neuron P with endbulbs belonging dilrectly to N,
N2, and Naj. Qne readily sees that no such net represents the
event in question. .

To hold the lag to 2 1n all caéés by use of a normal form,
we may be obliged to have a very large number of endbﬁlbs
synapsing on a given soma, or of axons emerging from a gi#en
neuron. Biologlcally there are limitations. A relatively small
increase in the lag will cut these numbers down. For example,
a soma with 106 excitatory endbulbs symapsing on 1it.1s replace—
able with an increase of only 2 in the lag by a net made up so
that only 102 endbulbs synapse on each soma (but, of course, now

a large number of neurons are necessary).
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5.4 Definite events in general:

kY
Corollary. To each of the 22_— -1 definite non—positive

events. of duration X With £ input newrdns . chevs s asrve e g
having an inner neuron which does not fire at time p+2, ir and
only if the event occurs in time p—}+1 to p.

fzggf} Denote the event by E, and by ¥ the complémentary
event or neéation of E, which occurs exactly 1f E does not
occur. The set of tables, one of which the past must fit if E
occurs,‘is the complément (in the set of all 2EZ k by Y tables)
of the set, one of which the past must fit if E occurs.

Now E is positive, so by ﬁhe theorem (Sect. 5.2), there
are a net and neuron which represent E by firing that neuron ..
at p+2, and therefore represent E by not firing the neuron at
p+2. |
Theorem 2. Consider any 1oéica1 expression E in térms of
9, V', T and propositions Ny(t) (1 <1<k, é—-l+1 <t<p)
describing a definite event E of length Z with k input neurons.-

Then there 1s a nerve net of corresponding structure which

represents E by firing or by not firing, accdrding as E 1s

positive or non—positive, a certaln neuron at time p+s8, where

8 is the depth of E in terms of Q~and \ only.

Proof: 1t will be convenient to assume there are no double

negations 1in g,'as can be arranged by use of thé'law of double
negation E?EBr (This does not change the depth.)

First we give the treatment for the least depth 1. -For
convenlence we take Y to be 1, writing "N,," "N2," etec., for

"Ni(p)," "N2(p)." But for X > 1 we would merely need to use the
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method of Fig. 3 to introduce neurons whose firing at t = p

represents the flring of the various input neurons at the eariier

times.

By an eleméntary conjunction (elementary disjunction), we

mean a conjunction of one or more factors (terms) each of which

is an elementary proposition N,, §3,>etc., or a negated elemen—

tary proposition N;, Nz, ete. (By allowing one factor or term,

a single proposition or negated proposition can be considered
as either a conJunction or a disjunction here.)

Now we have four basic cases to treat.

Case 1l: An elementary conJjunction contalning at least one
unnegated factor, e.g., N, A N % Ng AN, 2’\&5 The event is
then positive; so we want to represent it by the firing of a
neuron at time p+l. Use Fig. 1 to obtain this neuron.

"Case 2: An elemenftary conJunction contalning only negated
factors, e.g., N; g-ﬁ; &~E§. The event 1s non-—positive. But
now its negation ﬁ?}{"ﬁ:‘g?ﬁ; 1s positive. The\lattgf is equi-
valent to Ny V N2 VNs. Use the method of Fig. 2 to represent -
this by a neuron fifring at p+l; this neuron then represents
the original event by non—firing at p+l, as we wished to have it
represented.‘ ’ . '

Cage 3: An eleménﬁary disjunction containing at least one
negated term, e.g., N; vV N2 V N3 V N4 \/'_I:I_E. The event 1s non—
.positive. But its negation K; A\ Eg \v E"\/ Na \/_Ii5 is positive,

and the latter 1s eguivalent to N1 ‘N g Na Z,ﬁ4 Z\N . Use

Fig. 1 to represent the latter by firing at ptl; then the origi-

nal event is represented by non—firing at prl.
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Case 4: An eleméntary disjunction containing only
unnegated terms, e.g., N1V N2V Ns. The event is positive.
Use the method of Flg. 2 to repreéeﬁt it by firing at p+l.

The cases are mutually execlusive, except that a single
unnegated proposition N can be considered as under either
Case 1 or Case 4, and a single negated proposition N as under
either Case 2 or Case 3. But for one input only (which must
be unnegated for Fig. 1), Figs. 1 and 2 coincide; so the treat—
ment is acéually the same. (Indeed, for N or g it 1s only to
have an inner neuron which represents them fhat any treatment
is necessary; otherwise, we could consiﬁer them as representing
themselves at time p.) | '

The treatment of a formula with depth > 1 requires only
l1teration of the processes used 1n the four basic cases.

It will suffice to illustrate by a complicated example, in

which the depth 18 4:

{ gglvy,a)zy_azgﬂ v 558 (N_svg.,j}&% (Ng vNg).

N
3
2
1 —— P—
(For handy reference we took an example Qith all N's different,
but they could be identified in any combinatlons.) The under—
.lines indicate the parts of vérious depths. Also Ns, §4 and E5
are pérts of depth 1, which we could treat as "degenerate"

elementary disjunctions, but there is no need to conéider them

thus here.
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Finally, consider the entire expression. Replacing the

two factors by their respective equivalents, we obtain

| alp+3) & MeTp+TT,
which we treat by Case 1 to obtain a neuron P which represents
it by firing at p+4.

Incidentally, we have discovered 1n the process that the
event 18 positive—we dld not need to take the trouble of set—
tling which it was at the beginning.

Both Theorem 1 and its cbrollary are corollaries of the
present theorem, and the nerve net constructions IiIn Sects. 5.2
“and 5.3 for disjuncfive and conjunctiwe normal forms are by
the present method; so we might have given Theoreﬁ 2 first.

Other logical operations which might be used in defining
events are definable in terms of‘Qr, Vand —; e.g., (g—)g)sgvg
("—" is read "implies" or "if ..., then ..."), and (FEG)=

((F28) & (G—F)).
' Summarizing, given any description; in words capable of

~

being translated into logiecal symbolism, of a definlite event,
we'have the means for constructing a nerve net to represent it
of exactly corresponding complexity. So the theory of nerve net
construction for definite events 1ls as practlical as one could
ask. The lag canvalways be held to 2 for a glven event, but
sometimes a greater lag will correspond to a simpler description
of the event, aﬁd give us a simpler net.

Thefe may in speclal cases be simpler nets than those gival

by the method of proof of Theorem 2. We see thls by considering
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the condition for firing of any inner neuron of thereshold h
at time ¢, whiéh is that some set of neurons having a number

2 h of endbulbs on it, and none of the neurons having inhibitory

endbulbs on 1it, fire at time t-l. The condition for not firing

is dual to this. ' For example, the nets below represent with
lag only 1 the events described below them using expressions

of greater depth (the upper by firing, the lower by non—firing):

NI N

N; Nz Ns N, N5

Bﬂzega N2) vV Qﬂx'g‘ﬂs) v (N2 Q‘E_aﬂ gE4£E5 (N, Vﬂz)gﬁsgf_&
[NV Ee) & (FuvFa) & (e v Fa)] v Ne vy (N QNe)v Nav Ne
Figure 13 | | mamw

(Compare Fig. 14 with the treatment of (_1_‘{1\/1_\1_2)2 y_sg_il. in the

long example for Theorem 21) We have not undertaken to study
how much net simplification might be'gaihed by attempting to use
this method systematically with the help of appropriate logical

transformations.

5.5 Representation of events in general: We can now prowe

the remark we made in Sect. 1 that there is no loss of generality
in considering the representation of an event to conslist &f the

firing or the non-firing (as appropriate) of a single neuron.
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with the moment g) is fépreéented in a nerve net at a cervain
time p+s (s > 0), we mean that some property of the state of
the net at time p+s is equivalent to the event having occurred
ending at time p; i.e., according as the event did or did not
occur, the net will or will not have that property.

But what happened at times < p can only affect the state
of the net at times p+t8 for 8 > O via the state of the net at
time p.

Séy~besides the k input neurons there are m inner neurons.
The state of the nét at time p consists of the condition
(firing or non—firing) of each of the m+k neurons. Thus, there

Sk , BTE

are exactly 2— — possible states at time p. There are 2
properties 6f the state of the net at time p. - Any event ending
at time p which can be represented at time p+s 1s thus equivalent
to one of these 22m+l£ properties of the state at time p. |

But for each of these, by applying the method of proof of
Theorem 1 or its corollary, or of Theorem 2, to all the m+k
neurons (instead of only the input ones) and to only the moment
p (instead of the interval p—Y+1 to p), we can add additional
neurons to get a neuron P which will fire or not figp {according
as the property of the gﬁg.heurons at time p 1is posiﬁivé,or not)
- at time p+2, 1f and only if the m+k neurons fulfill the property
at time p; and hehce, if and only if the event in question
(feferring.to input neurons and ending at time 2) occprred.

Incidéntally, we have not made any assumption here whether

the event 1n question 1s definite or not. -
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In organizing a complex of stimull Into a complex of
responses (Sect. 1) as economically as possible, 1t 1s to be
expected that the representation of events will not always be

compressed into the form of the firing or non-—firing of a single

neuron.

5.6 Nerve nets without circles: A circle (of length E)

in a nerve net is a set of distinct neurons N;,,....,Nc such that

4 has an endbulb on Nifl (L=+1,...,e~1) and N& has one on N;.

N

Theorem 3: Glven any nerve net withoﬁt circles and any

inner neuron N in ihat net, the firing (non—firing) of that

neuron at time p+l 1s equlvalent to the occurrence of a definite

positive (non-positive) event ending at fime P-

This theorem is stated for positive events by McCulloch
and Pitts (1943).

Proof. Whether N fires at p+l is completely determined by
the firing or non—firing at p of those neurons N;,...,N; having
endbulbs on N. Conslider those of Nl,...,N; which are i;ﬁer
neurons, and repeat the argument. Sincevt;ére are no circles,
anj chaln of neurons each impinged upon by an endbulb of the
preceding must terminate. Let Y+1l= the length of any longest
such chain; a longest must exist since there are finitely many
such chains, and X > 1 since N is inner. Then the process ter—
minates after Z steps. Thus, the firing or non-firing of N at
p+l 1s completely determined by the firing or non-firing of
certain input neurons at times p—X+1 to p; i.e., it is equiva—

lent to a definite event of duration Y. The event must be
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positive, as fifing can only be propagated but not originated
under the law for an inner neuron's firing (Sect. 3).

Then of course N's non—firing at time p+l 1is equivalent to
the complemeﬁtary event, which is non—-positive.

(Any definite event is expressible by‘a logical formula,
e.g., by a principal ‘disjunctive normal form as in Sect. 5.2.
So a priori there is a formula. By utilizing the condition
for firing at each synapse, which we formulated in words in
the last paragraph 6f Sect. 5.4 and could have in symbols, one
can, of course, build up a formula in Z stages, as MeCulloch-—

Pitts indlcate.) : X

Corollary: For a net without circles, any event ending

at time p which can be represented by the firing (non—firing)

of a given inner neuron N at a eertain time p+s (s > 2) is

definite and positive (definite and non—positive).

Proof: For by the theorem, the condition for the firing'
of N at time p+s 1s the occurrence of a definite positive event
ending at time p+s—l. But since by hopothesis, N's firing
represents an event ending at time p, the input over time
p+l,...,p+s—1 cannot affect whether the aforesaid definite posi—_
tive event occurs ending at time p+s—1.. So 1n fact that definite
positive event can be taken to refer only to a time ending at p.

This coredlary constitutes the converse of Theorem 1 and
cefollary (or Theorem 2). Likewise, any event ending at p
represented by a state, or a property of the state, at a time

pts of a net (520) without circles, is definite.
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6. Indefinite Events——Preliminéries:

6.1 Some examples: Consider the following nerve net

(with a cirele 6f length 1 consisting of M).

Figure 15

If at some time t < p the neuron N fires,
of M at time p+l (and at every subsequent time) will follow.

- then the firing

In symbols,
(Et)y ¢ pN(R)— M(p+1)

—'t<

("(Et) < E"“is read "there exists a t < p"). But we do not

have equivalence ("==") instead of merely implication ("—"), f
. past time 1s taken as infinite, since the firing of M at time

ptl can also be explalned by firing of M at every past moment,

without N having ever fired.
Similarly, the net

N

Figure 16

will only fire at time p+l1 if N has fired at all past times;
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in symbols
(£)y ¢ N(p) ¢«— M(p+1)

(read "(E)t < E" as "for all t < p"); but not conversely, for
M may fall to fire at time p+l when (EXE S.Eg(g) is Prue, by
failing to fire over all past time. o
Et N{p) and (t N are simple examples of
(Et)y ¢ N(p) (£)y  pNlp) p mp:
events not referring to a definite period of past time; and we
see that, under the assumption that past time is infinite, the
nets shown 4o not represent them, by firing at time p+l, in the
sense of equivalence (the first is represented in the sense of
"necessity" only, the second "sufficiency" only).

If we attempt to represent the former by non—firing, we

have a net.

N

Figure 17

for whieh (_E_:_E)t < Bﬁ(g)—%_ﬂlg—l—ﬂ, but not conversely.

The difficulties encountered in these three examples are
not escapable by using other nets to represent the events, or
in other examples of indefinite évents, but constitiute the
general rule for indefinite events. We shall show in Appendix 1
(Theorem 7, to be read after Part I1) that, under the assumption
of an iInfinite past, an event can be represénted (in the sense

of equivalence) by the firing or by the non-firing of a certain
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inner neuron at time p+s (for.any fixed 8 ¥ 1), only if the
event is definite. For aﬂy net and inner neuron and 8, and
any indefinite event, 1t must either be possible to have a
past for whleh the event does not occur and the neuron fires,
or one for which the event does occur and the neuron does
not fire, or both.

or courée, any living organism or aqtually constructed
robot has only a finite past. The mentionéd result shows that
now we must take this into aécoun@; otherwiaes, we mlght have

been tempted to use the fictlion of an infinite past to simplify .

the theory.

6.2 Initiation: vAccofdingly, let us assume that the past
for our nerve net; goes back from p (the present) a qertain
finite time only, the first moment of which shall be 1 on our
time secale. (We find it more convenient notationally to call
the first moment t = 1 than t = 0, but if we think of each
positive Iinteger t as referring to the final instant pf.a unit

interval, this does make time start from 0.)

In seeking to represent events, we shall now assume the
right not only to construct the nerve nets as we please, but
also to fix the state (firing or non—firing) of each 1nnef neuron
at time 1. That is, we study representation of events in nerve
nets started with a gilven internal state at the initial moment 1.
The range of the time variables in our logical formulas
shall now be the integers from 1 forward, and this shall be the

only part of the past we talk about except when we make 1t plain

we Iintend otherwise.
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Now the nerve net of Fig. 15, started at £t = 1 with M
quiet, represents by the firing of M at p+l fhe event
(Bt), ¢ (2); and the net of Fig. 16, started with M firing, -

represents likewise (;c__)t < E_Ig(g). That of Fig. 17 started

with M firing répresents (EE)ES EE(E) by the non—firing of M

at p+l. Thus, the two nets of Fig. 15 and 17 are able to
remember 1f N has fired since thelr beginning by changing M from
the state it had initially; while the net of Fig. 16 1s able to
recognize that N has never failed to fire by preserving M in

the state it had originally, as Householder and Landahl (1945)
have commented (p. 109).

To represent (t) N(t) either by the firing or the
—t<p- :

non-firing of a neuron in a net with only N as input neuron,
at least one inner neuron must be fired initially. For wére
all‘inner neurons quiet at time t = 2, then in case'ﬁxij
(i.e., 1f the input neuron N does_not fire at time t = 1), all
neurons woﬁld be quiet at t = 2. So the state of the inner
neurons at t = 2 would then be lndistinguishable from that at
t = 1. Hence, the net at any time p+l > 3 would have the same
state whether the past is
t 1 2 3 4 ...
N(¢)oOo 1 1 1 ...,

which makes (&), . -N(t). false, or

7

t 1.2 3 4 ...
N(t)1 1 1 1...,

which makes (E)t (t) true.

<pr
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The case in which all inner neurons are initially quiet .
is natural neurologically; the other case leaves 1t unexplained
how the firing of certain inner neufons is to be produced at
t = 1. Of course, a natural explanation would be available
by setting the time origin back, if the inlitial state in ques—
tion 1s one which could be brought about.by a sultable pattern
of firings of the 1nput neurons over a finite preceding time
at the beginning of which all the inner neurons are quiet. But
this is not so; e.g., in the case of the simple net for '

() ¢ N(E)  (Pig. 16).

Although (1;_)t < RE(E) cannot be expressed (for N as sole

input neuron) without having an initially fired inner neuron,
(Bw)y ¢ E@g) & (2)g ¢ K& & (&), ¢ g ¢ NSE)] with two input
neurons K and N can be; by thevfollowing net, in which P fires

at p+2 if and only if the event occurs.

P
M L,

N K
Figure 18

The neurons K, L; and Lp act as a starting circuit, which can
only be used once, for the generality c:rcuiﬁ N, M aﬁd P4L
The device with a modification iéfgehéial. Suppose we have

given a net in which an event is represented by the firing of a
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certain inner neuron at time p+s if certain inner neurons are
initially fired. |
‘First, let us add a starting circuit K, L, and Lo from a
new input neuron K, with axons from its neuron Ly leading to all
the same neurons and with the same kinds of respective endbulbs
as the axons from each of the inner neurons which were initially
fired in the given net.
Furthermore, each input neuron N of the original net we
now make an inner,neuron N' wlth a threshold of 2, and we
insert new neuroné N and R, the former taking over the role of
the original N as input neuron, and the latter an inner neuron .

as shown. The heavy line stands for the axons which lead from

the original N.

N N
R
N _ from K
original - nNew :

Figure 19
This accomplishes the double purpose of lagging the input frdm
N by 1 and of blocking it for moments prior to the first moment u

at which K is fired.

Now with all Inner neurons initlally quiet, no neuron

except N can fire until the first moment u at which K fires.
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Then at moment u+l the neuron L; takes over ﬁhe role of the
original initially fired 1nﬁer neurons, while N' earries the
input of N at u. At every subsequent.moment u+v+l (v > 1);
all of the original neurons (eounting N' as the original N
will behéve as they formérly would have at time X}l, if the
present lnput over Uu,...,ut+v had been_the Input over time
' 1,...,v+1. |
- So the output neuron will fire at p#s#l, if and only if
the event now occurs relative to t = u Instead of to t = 1;
1;é., we have a representation of the event redefined to refer
not to the whole -past but to the past beginning with t = u,
and with an increase of 1 in the lag in the representation.

Now if i1t i1s assumed that there are cénditioné in the
environment which would'continually stimulate K to fire, or
that at least such a condition exists at t = 1, then our net
will represent the event relative again to the whole past
(since now u = 1). Thus, we are provided with a "natural" way
of getting a fepresentation of any e?ent, referring to the input
neurons besides K, which could be represented "unnaturally" by
the firing of a neuron in a net started with some 1n1tia11y
fired input neurons. ‘

Here "natural” means only that we do not need to go out—
side the MeCulloch—Pltts laws of neﬁra; behavior to firé some
inner neurons at t = 1; but the starting circﬁit K, Li, L2, and
the blocking circuilt K, R, E' are not thought of as.plausible
mechanlsms biologically.. However, our first alm 1s to see what

is at all possible, and one can then seek other and perhaps more
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natural ways for accomplishing the same.

Phis argument that by assuming an initially stimulated

input neuron K we can avoid having to have any initlally fired
" inner neurons applies only to representation of events by

firing a neuron, if for representation by non—firing at p+s+l

one wishes that the output neuron fire at times 1,...,s+l.

The question involved will be analyzed in Sect. 6.3.

.The same construction but omitting the K and Lz of the
starting circuit and the delaying—blocﬁing neurons R and N',
and firing L; initially, shows that it 1s always possible, if
we are to use initially stimulated inner'neurons, to hold the
number of them to 1, without any increase in the lag. This
again is for the case of representation by firing. For repre-—
éentatian by non—firing, the situation is slightly more compli-
céted, and we shall not go into 1t. '

As stated, we 6rd1narily consider nets only for a speci-—
fied initlal state of the inmer neurons. However, McCulloch
and Pitts consider the problem of "solving" nets with their
initial condition unspecified. To "solve" for a given inner
neuron P, say at time p+l, means then to rind”for what inputs
over time 1,.ﬁ.,2, and what initial étates of the inner neurons,.
P will fire at t = p+l. Now in the following net, the necessary
and sufficient condition that P fire at p+l 1s that N fire at

all times < p and both Mi and Mp fire at time ¢t = 1.

P - P(pt1) =

| - (t) N(f_)Rg,u) Ma(1):
MI% ‘w | =’ t<p= fwe '

Figure 20
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Thié seems to be counterexample to the formula next after

(9) on b. 126 of MeCulloch—Pitts (1943), the proof of which we
did not follow; fbr if we understand the formula correctly, it
implies that the condition for firing should only requiré the
existence of one (suitably chosen) neuron known to fire initially.
In thls example we cannot conclude that P fires at p+l on the
basis of any information which tells us only that one of the
neurons fires at t = 1. (Our 1 seems to be their 0.) This
apparent counterexampie has dlscouraged us from further attempts

to dec;pher Part III of the McCuiloch—Pitts 1943,

6.3 Definite events reconsidered: Now that we have

introduced the assumption that the past for a nerve net is
finite, we must reexamine the treatment of definite events which
was gilven in.Sect..S. | ‘ .

" What happens now wheﬁ P <'Z; i.e., when the period of time
to which the event 1s supposed to refer extends back to before
the moment t « 17

Generally, one may suppose that the durations Y of defi-—
nite events which are significant for an organism will be small
in relation to the age p of the organism at which the event is
significant.

This, however, does not enable us to dismiss the problem.
For to make the theory of nerve net control accurate, we should,
for each definite event considered, either (a) show that an
 "hallueination" that the event has occurred arising during the

first Y~1+s moments of life could not have any serious effect
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on behavibr, or (b) provide against the occurrence of such an
halluecination in the first }-l+s moments.

When we use definite events to builld indefinite ones,
e.g., the event conslsting 6f a certain definite event having
occurred ending at some time q < p (briefly, the memory of the
definite event having éccurred), such an halluecination could
conceivably have a long-term effect, even if it has no immediate
effect on behavior.

The solution by (a) is, of course, outside the present
investigation, ahd belongs rather to the fﬁll problem of orga-—
nizing stimull into responses (Sect. 1).

| For organisms, the picture of the nervous system coming
into activlity in toto at a fixed moment t = 1 1is implausible.
But this means only that organisms (at least those which sur—

vive) do solve the problem forvtheir process of coming into

activity. ,
For machines, it 1is familiar that starting difficultles

may have to be taken into account by the engineer.

To take a fictitious 111ustration,.consider the case of
‘the "rat satellite robots" for the Tuvian Navy. A rat sateilite
robot 1s Intended to go about a ship, and whenever affer three
hours (= Y~1 moments) it has not smelled a rat, and at the next
moment (the Y—th) land is in sight, the robot abandons ship.

The robots were ordered from RAND and were bullt by the
Robotry Section from blueprints prepared by the Logicians Groub
on the basis ¢f the theory in Sect. 5 above, with two input
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neurons, N; which 1s fired by the smell of a raﬁ, and Nz,whlch
s fired by the sight of land. The inner neuron P, which fires
at time p+2 1f the event "no rat smelled for -1 moments, land
seen at the Y~th moment" has occurred during the time p—f+1 to p,
was connected to an effector mechénism for abandoning ship at
time p+3.

Suitable ceremonies were schedﬁled for the occasion of
their installation in the harbor of the Tuvian Naval Base.

When the occasion arrived, they were placed on board the
ships, and thelr batterles were connected up supplyling power
for operating thé nerve nets and effector mechanisms. But thrée
moments later, just as the Tuvian Grand Admiral was congratula—
ting the RAND delegate, all the robots went overboard!

Proceeding to detalls, it is, of course, a matter of
definition how we shall interpret "events of duration ZT when’
p < Z. But whatever definition is adopted, we must keep the
faéts about nerve net behavior straight.

We shall (as best suits our present purpose, which is to
" lay a firm basis for the theory in Sect. 7) say that an event E
of duration X can only have occured ending at p when p > X.

Then, of course, the logical formulas we have used to
represent the events in Sect. 5 are not complete. Iflgl 1s the
formula which described a definite event of length Z there,
the formula B which describes it fully now is E, £p > X. The
negation E of this is E;vp < ¥ , while the formula for the
"eomplementary" event of duration Zis rather §12p_ > Z. Thus,

some care 1s now necessary in connection with the operation of
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negation. The'theory in Sect. 5 1s applicable to the part of
the formula which does not give the time reference; 1l.e., the
relationships studied there apply to the E{f and E,.
Now consider a nerve net as constructed for Theorem 1 in
Sect. 5.2 to represent an event occupylng the time interval

p—J+1 to p of length Y by firing a certain inner neuron (the

"output neuron") at time p+2.

| Using this net under the restriction now that the life of
the net starts with a certain moment t= 1,_and under the sti-
pulation that at that moment all inner neuwrons are quiet, it is
clear that the output neuron will fire at any time p+2 for
R.Z.Z correctly; l.e., 1f and only if the event occurrrd in the
fime'271+l to p. ‘

But the net might also fire at a time < }+2; namely, this
could happen 1f and only if the event is such that our present
initial condition of the inner neurons (all quiet) is one which
could also take place in Sect. 5.2 at some moment E.where p+2
< m £ p+l for some occurrence of the event in p-Y+1 to p.

. So assume (1in the context of Sect. 5.2) that we hawve an
occurrence of the event in tHe course of which all inner neurons
are quiet at t = m.

The state of the inner neurons at time m would then have to
be the same (1.e1, all quiet) if the !tsble describing the |
past 1s altered to show only Ofs for.all input neurons at all
times t < m. For from a past consisting entirely of non—firings

prior to m, no firing of any inner neuron can be produced at

time m.
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Since the state of the inner neurons is unchanged at
time m, and the inputs for t =m,...,p are unchanged, the
output neuron still fires at t = p+2. So by Theorem 1, the
event étill does occur in time Eyg}l'to ps; l.e., we now have an
instance of tpe event occurring in which no input neurons were
fired in p—Y+1 to m-1l; in particular (since m > p—f+2), the
event can occur with input 0 on all its input neurons at 1lts
first moment p—}+1.

Conversely? 1f-this is the case, the ouboul neuron will fire
now at time Z+1, if .in times 1,...,Y~1 the inputs are what they
could be in Sect. 5.2 for the moments p—Y+2 to p of an occurrence

of the event with only O's for p—Z+1.
Call a definite event of length.z prepositive‘if the event

can occur only when some Iinput neuron fires in 1its first moment
k

pZ+1; i.e., the selections from among the 2%~ possible k x X

tables which describe occurrences of the event all have at least

one 1 in their bottom row. The prepositive events are a subclass

of the positive events.

Now we have shown that a necessary and sufflicient condi-—
tion that no "hallucination" be possible (in the sense of the
output neuron's firing at a time t when the.event has not occurred
endihg at time t-2) is that the event be prepositive.

We gave the reasoning for the case in which the event is
to be represented by firing of a neuron at time p+2 (corre;—
ponding to Theorem 1), but it applies equally well to the other
cases in Sect. 5; i.e., to represehtatiop by firigg at p+s for

any given 8 > 1, or to representation by non—firing at pts
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(then hallucinations are always possible, since the event is
ﬁecessarily noq—positive by Theorem 3 or its corollary), or
to representétions by a property of the state at a certaln
time p+s (s > 0). (In giving the sufficlency proof, we write
the inequality on m now sz+2 < m< p+ts, and change the input
for t < max(m-1,p).) '
Most but noﬁ all events we may wish to consider willlbe
prepositive.
The analysis i1s valid for any net which operatgs correctly
when p > %, whéther constructed as in Sect. 5 or not, and

started now with all inner neurons qulet.

If a positive event of length Z is not prepositive, we can
build a net which represents it by firing a neuron P at time
p+2 (or p+s for some s > 1), if this net 1s started at t = 1
with one of its inner neurons fired (but all others quief), as

'follows. We simply take an inner neuron L as in Figure 21,

initially fired (as the "+" indicates).

+

Figure 21

We then treat this as though it were an additional ihput neuron,

required to fire at t = 21§+1, in applying the method of net

construction of Sect.'5. (Of course, then more than one axon

may be required from L to other neurons.)
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This device also makes 1t possible to represent non—
posltive events of length Z by firing of a neuron at-time>2f2
(or p+s for some 8 > 1); in Sect. 5 they would have to be
represented by non—firing.
Another device for fixing a net, constructed as in Sect. 5
to represent a positive but not prepositive event (then Y > 2),-

so that no hallucination can be produced. 1s to let the inhibitory

. . X 3 N . 1 <. g -
ok, oz PR LI ‘ S toemrp o4 aN - SR Iy T s < Y= IS o ¥R Ty Ty
endbulb of 5, ln fhe FOLLOWIng V@l IMDLRge WEOS 00 OuTRUtl nsuson

" of P of the net of Sect. 5. The number of the L's is z}g-e.

o ﬂ
t

(Drawn for J+3 « bH.)

We can 28130 use “nls to fix nets constructed as in Sset. 5
fo represent a non—pésitivé event by-nen—firing at p+s, il wa.”
change the endbulb of L, which 1s to impinge on P to a éet of
excltatory endbulbs equal in number to the threshold of P, and
also fire P itself at time 1. (;f Y+8 = 2, no L's are added.)

The.devices of Figs. 21 and 22 seem artificial, and not
likely to be found in organisms. We point them out to save the
need for making an excgptiop of non—prepositive events in the
theory. If mechanical realiZations of MeCulloch-Pitts neurons

are used 1in controlling robots, such devices might be useful.
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The upshot of the analysls is that only by reference to
artificially produced firing in inner neurons at t = 1 could
an organism recognize complete absence of stimulation of a
given duration, not preceded by stimulation; it would not know
whether the stimulation had been absent, or whether it had itself
meanwhile come into existence.

If instead of the initlally fired inner neuron of Fig. 21
we use an input neuron subject to continual environmental stimu—
lation, then all events can be taken to be prepositive by
referring them to the class of input neurons as enlarged to
include K.

This 1s plausible bilologically, 1f we also grant that
the mathematical model 1s probably too exact in that it gives
too much emphasis to a single neuron at a single moment of
time (.0005 sec.). It is unlikely that any such input at a
single moment would by itself result in any significant overt
action or memory.

Having chosen to Investligate a precise model, 1t is not
to be expected that all aspects of this model will be equally

pertinent to the reality from which the model is abstracted.

6.4 Why consider indefinite events? Since the lifetime

of an organism or machine 1s always finite, having an end as
well as a beginning, why is it not sufficient to consider only
definite events?

The number of moments (identifying a moment with a synaptic

delay of .0005 sec.) in a human lifetime of 100 years is of the
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order of 3 x 10'2,

To construct a nerve net, treating events as definite,
that would account for behavior at 60 years of age influenced
by stimuli at 10 years, we would need chains of neurons of
length 1.5 x 1012. If the event were at all complicated, we
would need large numbers of such chains. Moreover, we would
need further mechanism to provide for this same behavior occur—
ring at 61 years or 59 years due to stimuli at 10 years, or
indeed for each value of d where d ranges from the smallest
elapsed time after 10 years at which the behavior can be
influenced up to the greatest, and is measured in units of
.0005 sec. We do not necessarlily need a whole new set for
each value of 4, since many neurons can be made to serve in
common for various values of 4, e.g., the delay chalns for
various values of 4 greater than a given one d, could have thelr
first d. neurons in common. But at least each intermedlate
value of E would, up te the greatest in question, require some
structural additions, new axons if not new neurons.

All this would have to be duplicated for every sort of

event which occurring at one time could influence behavior at

all later times in life.

The total number of neurons is only of the order of 1018.

To use definite events as a mathematical basis for explain—
ing human behavior in all 1ts flexibllity over a lifetime of
3 x 10'2 moments thus appears altogether unrealistic.
To emphasize what 1s meant, take the case of Solomon

Grundy. On the afternoon of Monday he burns his hand on the
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stove. Then one nerve net tells him not to touch the stove

on Tuesday, a different one (at least in part) on Wednesday,
and so on.

If he outllves the 1llfe expectancy for which his delay
chains are designed, he must thereafter suffer an advancing
amnesia; for each day added beyond his expectancy at the end of
1life he completely forgets one day at the beginning.

Humans and animals do not function in this way, though
simple mechanisms for learning and subsequent forgetting in

robots could be devised on this basis.

Indeed, calculations on the amount of information recorded
in the memory (cf. McCulloch 1949) make it difficult to explain
memory entirely in terms of McCulloch—Pitts neurons on any
basis, a fortlori, certainly not in such an uneconomical way as
by setting up only nets for definite events. So it is neces—
sary (if perhaps in the end it will not be sufficient) to go
beyond the present stage of our analysis.

It thus appears that the appropriate mathematical abstrac—
tion for us now is to treat the problem of explaining behavior
as though organisms and machines were immortal, having an
infinite future though a finite past. We want to provide for
behavior that could bhe used ad infinitum, if merely the nerve
net and effector mechanisms were immortal.

By trying to provide for behavior over an infinity of
time by a finite mechanism, we have a model for the real prob—

lem of providing for complex behavior over a long finite
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lifetime by a relatively small mechanism.
The questions of reducibility of other mechanisms to

McCulloch—Pitts nerve nets (not always without increasing the
size of the mechanisms) is significant on this basis, but
trivial on the basis of explaining behavior over a fixed finite

time only.

7. Regular Events:

7.1 "Regular events" defined: We shall presently des—

cribe a class of events which we will call "regular events."
(We would welcome any suggestions as to a more descriptive term.*)
We assume for the purpose that the events refer to the
inputs up through time p on a set of k input neurons N1,---,Nk
the same for all events considered; but the definition -
applies equally well for any k > 1 or even for k = O,
The events can refer to the value of p. Our objective
is to show that all and only regular events can be represented
by nerve nets or finite automata. We have already seen in
Sect. 6.3 why reference to the time is called for; but it may
be illuminating to consider some examples from the point of
view of Solving given nets.
Consider first the net of Fig. 22 taken by itself (the
inhibitory endbulb from L; 1s superfluous now). The condition
for L;'s firing (under the assumption that it is fired initially),

i.e., the event represented by L;'s firling, 1s given by formula

Ldplo8p < 3

mm—— T — e

*MeCulloch and Pitts use a term "prehensible," introduced
rathse ¥ f72rently; but since we did not understand their

definit r, ws are hesifaznt to adépt vhe term.
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Li(p)=p = 1 mod 3.
Flgure 23

In defining "regular events " we shall build on the notion
of a definite event of length Z, as originally introduced in

Sect. 5.1 and completed by adding 9\2 > Z to the definition in

Sect. 6.3.
But now we extend the class of definite events by providing

that the description of such an event may also contain the
specification that the first moment is 1; 1l.e., that Efz}l =1,

i.e., that p = Z. Events with this specification we call inltial.

k

So now there are 22~ '1 definite events of length ¥ with k

k
input neurons, namely the 22

k
the 22 initial ones.

as before (non—initial) and

Now each event we shall bulld up, starting from (and

k
incéluding) the 22‘Z *1 definite events for each X, will be inter—

pretable in the following way. The statement that the event has

occurred (ending at time E) is equivalent to the statement that
one of a non—empty finite or infinite class of definite events

has occurred (ending at time p). (More precisely, the class may

be infinite if the value of p 1s unknown, but for a fixed value
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of p there are, of course, only finitely many events which could

have occurred.)
Our class of regular events wlll be deflned Inductively,

starging with the definite events, and using three operations
EVF, EF, E*F; 1.e., it shall be the least class containing
the definite events, and closed under these operations.

Glven any events E and F already built up from definite
events by zero or more applications of the operations, by the
event EVF we shall mean the event which occurs 1f E occurs or
F occurs. In other words, the class of definite events which
can constitute an occurrence of E VF is the sum of the respec—
tive classes for E and F.

Clearly the operation 1s associative; 1.e., (EVF)VGE
E V(F VG); so the parentheses can be omitted. The reason for
wrlting equivalence here with four bars will appear in Sect. 7.3.

For example, if E and F are definite events of durations Z
and m, respectively, then EVF is an event which‘occurs exactly
when an event (of length X) belonging to E occurs, or one (of
length g) belonging to F occurs, or both. One might be tempted
to regard this as a definite event of duration max(zgg); but
this would be wrong, since supposing Z > m 1t could occur when
p<Z-= max(¥,m), namely by F occurring. Also, thls would not
give what we want when elther of the next two operations is
applied.

Given any events E and F already built up by the operations,
by EF we shall mean the event which consists in E having just

occurred preceded immediately by F having occurred. Thus, EF
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sowher, yne o5 the

nag cecurrved ending e Tive L =2HBYIL]
class of events which can constitute an occurrence of E (say this
one is of length X) has occurred in time p—Y+1 to p, and one

of those which can constitute an occurrence of F (say this one

1s of length m) has occurred in the period p—Y-m+l to p—X.

(Note: We have chosen our notation EF so that we proceed back

into the past in reading from left to right.) This wvperation

is also assoclative.

For example, 1f E, F, and G are definite events of lengths
X, m, and n, respectively, any occurrence of (EVF)G will be a
definite event of one of the lengths Y+n or mtn. (Say Z > m.
By refraining above from interpreting EV F as of duration Z,
now when (EVF)G oceurs by F occurring ending at time p, the
preceding occurrence of G must end at time p-m, not p—7.)

If E 13 an initial definite event, and F is any event of
our class, then EF 1s an event which never occurs; since for E
to occur, 1ts first moment must be t = 1; 830 under the interpre—
tation in Sect. 6.3, EF, is impossible for any one of the
definite events F;, Fa,T.. whose occurrence can constitute an
occurrence of F. Thus, 1n this case EF 18 represented by the
firing of P 1n the net of Fig. 9.

If E and F are events already constructed, then by E*F

we shall mean the event whlch consists 6f zero or more consecu—

tive occurrences of E preceded by one of F. That 1s, E*F can

occur whenever
n times

occurs for some n > O.
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The reasén we do not define E¥* separately as a unary operation
(expressing that E has occurred consecutively zero or more times)
tnstead:-of E*F as a binary operation, is that then for n = 0O
an occurrence of E* would be of duration 0; but (at least for
convenience) we are requiring the lengths of our definite events
to be always > 1.

To say that E has happened one or more times we can write
E*E.

For example, 1f E, F, and G are definite events of lengths
X, m, and n, respectively, an occurrence of (EVF)*G must be
of a definite event of one of the lengths EZ + bm+ n

(2, B20).

He reilect LOW that we nave UWo aystems of notation for
events: (A) logical notations for definite events as used in
Sect. 5 (with the addition of p > X in Sect. 6.3 and p = X
above) and for some other events in Seects. 6.1 ff.; (B) our
newly introduced notations for regular events starting with
single capltal letters as representing definite events.

There will be ambiguity if we use (A) as the starting
point for (B) instead of capital letters, unless we are careful
to show the durations Z""”zs of each of the definite events

E;,...,Es uséd as the unilts for the construction of the regular

events.

The question of translatability between the systems of

notation (A) and (B) in either direction has not yet been

examined thoroughly.
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However, we have verified that the notations (B) can be
translated into notations (A) with, of course, a sufficient
amount of mathematleal apparatus added to the logiecal notations.
The éétails are technieal and are given in Appendix 2.
But it may be instruective now to glve a few simple examples
of translation in the other direction, i.e., from (A) to (B).
The conventions regarding parentheses are these of algebra
with EVF, EF, and E*P analogous to e+f, ef, and e*f.
Also, the assoclative law (E*F)G = E*(PG) permits omitting
parentheses, as well as the two assoelative laws already mentioned.
The event of duration Y which happens for all inputs over
}i;%%.

for‘z = 1 we write it as I, then 1n general LZ (=21 ... 1 ta.g

the interval p—Y+1 to p we call the identical event of lengt

factors).
Let the result of adding p = 1 to the speeifi@a%im for
a definite event E, to make it initial, be writtem 3§ ,
For any event E of length 1 the negation E is alsﬁ &ﬁ?iai%e
of length 1.
 For the present 1llustrations, let the event of lemit

that N fires at time p {in symbols, K(EQ be. #giﬁfw;VJE;_
that K fires simply K; and that both K and N fire be written L.

Now the events deseribed as follows m- ﬁh@
expressed by the corresponding notations iﬁ%ﬁeﬁgﬁt eolumn.

(Sea next page) |
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I*N
o

N*N

N*K

N*LOV N*LE*E°

I*NI*N

- WPy NenRR©,

call this M
(W*NN*N ) *M
13
1°
(Ia)*IOK

1°v 11°v121°

7.2 An algebraiq transformation: We 1l1ist several equiva-—

lences:

(1) (EVF)VaG EV(FVG).

(2) (EF)G E(FG). Assoclative laws
(3) (E*F)a E*(FG).

(%) (EVF)G EG VFG.

(5) E(Fva) EF VEG. Distributive laws
(6) E*(Fya) E*F \/ E*G.

(1)  EB*F  FVE*(EF).

(8) E*F .. FVE(E*F).
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Under the definition just given, each regular event is

obtained by bullding it up from certain definite events as

the units by zero or more applications of the three operations.

Of course, these constructions are by no means unigue.

Lemma 1. For any 8 > 2: Every regular event can be

expressed as a finite disjunctlion of one or more regular events,

each of which is elther definite of length < 8 or is an event

constructed out of units each of length > s. (Also true tri-—

vially for s = 1l.)

Of course, we can always understand there is at most one
of the latter, sincé any dlsjunction of them is agaln one.

We write out the proof for the case s = 2.

The lemma 1s true when the given event is definite; then
there is just one term in the disjunction, which 1s of the
first or the second kind according as 1ts length is 1 or more.

Likewise, if E and F each have the property described in
the lemma, so does EvVF.

Now say E and F are as described, and consider EF. By
use of the distributive laws (4) and (5), EF 1is equivalent to

a disjunction of terms, each of which has one of the fellowing

forms
_— gladpla)  pladp  piple)

where in each case ' indieates a definite term of length 1, and

K‘Q indicates a term composed out of units each of length > 2.
Now a term E!'F! can be construed as a definite event of

length 2; so it is of the second kind for the theorem upon con—

sidering it as one of the units.
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Also E(Q)F(z) is of the second kind.

Now consider E(a)F‘. Using (2), (3), and (4), the F! can
be moved progressively inward until finally F! occurs only in
parts of the form HF' where H 1s definite and of length > 2.
Then each such part can be taken as a unit, which will be of
length %13.

For the last form E’F(Z), we proceed similarly using (2)
(from right to left), (5) and (8) (in combination with (5) and
(2)). |

Now say E and P are as desceribed in the theorem, and
consider E*F. By use of (6) we can then get E*F equivalent to
a disjunction of terms of the two forms E*F! and E*F(a). For
illustration (noting the remark just following the theorem),
say, e.g., E is Ei\/Eé\/E(z). So we have now two possibilities,

(81 v Ed vE(2))eps, (e1vesvE(a))sple),

Consider the former. This 1s an event of whilch an occurrence
must consist of one occurrence of F'! followed by n > O occurrences
of various of the events E}, Ei and E(a). Let G;,...,G9 be all
produets of two of E}, B3, and E(a); i.e., G, is EiE}, G2 is

EiE4, ete. Then an occurrence of the event 1s the same as an
occurrence of one of F!, E}F!, Eiflor E(z)F‘, followed by zero

or more occurrences of any of G;,...,Gq. Thus, in symbols (and
lﬁsiag (8} next and then 7)) ‘ -
(EFV EE VER)japr

(G, V...VGg)*(F‘\/ EiF! V E3F! Vv E(a)Fl)

il

(Gy ‘\/---‘\/(3':9)"‘1’5“1 vV (G1V. "\/Gg)*(EiF‘ vV BAF! E(Z)I;u)

4|



RM—704
Page 55

ZP V(61 Ve VE)*(G1 Ve VEGIF! V(G1 Ve Vag)*
(EiFty BiFt yvE(2)p1),

Now each of G;,...,G9 can be handled as was one of EF?, E(a)F(a)’
E(Q)EI, E‘F(a) in the case for EF above; then G;V’...\/Gg is
composed out of units of length > 2. Then by the method for
E(E)Fl in the case fior EF above, (G;\/...\/GQ)F1 and E(a)F1 are
likewlise, while E{F! and E3F! are definite of length 2. So the
entire expression obtained last is of the desired form. Like
arguments apply’to (Ei\/Eé\/E(z))*F(a). Finally, any disjunc—

tion of expressions of the desired form 1s of the desired form.

7.3 Identity and equlvalence: 1In dealing with regular

events, specilal care is necessary to distinguish between senses
of "equivalence.” As we introduced them, any regular event

is identifled with a class 6f definite events; and two regular
have thus far been treated as equivalent only if these classes
of definite events for the two are the same.

An event is a partition of all the possible inputs over
the whole past for the nerve net Into two classes, those inputs
for which the event oceurs, and those for which it does not
oceur,

wWhat we have called a "non—initial definite event of
length X" is a partition of all the pasts for the net into two
classes, such that all pasts of length <‘Z, i1.e., for which
p < X, are in the second class (those for which the event does
not occur), while those pasts of length > ¥ are in the first

or the second class aceording as the input over the last Z
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moments has or has not a certain property; i.e., the classi-

fication 1s independent of the input prior to p—Y+l.

But could two non—initial definite events which are dis—
tinct in the value of X or the property over p—f+l1 to p be the
same as events?

They could in one éase, namely when the property over
27!+1 to p is impossible of occurring; this 1is the case which
was treated by Fig. 9 in Seect. 5.2. These definite events of
length Y for various values of ¥ > 1 are all the same as events.
We may call this event, which never occurs, the improper (or

impossible) event.

Outside of thils exception, an event can be a definite
event 1n only one way. For suppose we have an example of an
input over time 1 to p for which the event occurs. Then we
may seek the least X p such that the event also occurs when
the value of p 1s changed to‘z and the input over time 1 to Z
(= p) 1s what it was formerly over time p—X+1 to p. This X must
be the length of the event; and the property of the input over
the last X moments which defined the event is obtained by eon—
sidering what inputs over this time give occurrences of the event.
Similar remarks apply to "initial definite events of
length ¥." Here all pasts for which p # X are in the second
class. The initial definite events of length X which never
ceeur avre all the ssmg ag evantso -
Combining the dases of noa-<initial and iﬁiti&l off~
nite events, an event can be a definite event in only

one wey (l.e., elthér non-dnitial or niftial, but not
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both, with only one length Z, and with only one property of
the input over Bﬁ!*l to R)’ except for the improper event which
can be construed as either non-—initial or initial and with
any Y. So actually there are only 2ak 1_1 distinect definite
events of length ¥ with k input neurons; in Sect. 7.1 we counted
the improper event twice, once as a non—inltial and once as
an initlal event. For k = 0, there are thus Jjust 3 events of
length Y , the possible non—initial one IZ, the possible initial
one IZFJIO, and the impossible one T.

Now consider a regular event of the form EVF, where E
and F are definite of length Y. Quite evidently the E and F
are not uniquely determined from the event. For example, there
might be two k x Z tables exactly for which E ocecurs, a third
for which F occurs. By recombining, taking E; as occurring when
the first table applies, and F,; when the second or the third
applies, we get the event as E;VF;y with different components,
or indeed, the event can be considered as one event of length‘z.

Now, in faet, our transformations of events in Sect. 7.2
were such as to preserve the class of definlte events under—
lying a given regular event, except that sometlimes, e.g.,
EVF! was reconstrued as a definite event of length 2. To make
it exaet what tramsformations shall be allowed, we can reconsider
a regular event as given by saying which of varlous tables of
length Y for various Y, with or without specification that
p = X (rather than merely p > ¥) would describe an occurrence

of it. For if it is given by saylng whieh of various definite
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events would deserlbe an occurrence of it, then we can replace
each of these by the tables (zere or more up to EEZ of them)
which constitute an oececurrence of the respective definite event.
We shall say that two regular events, as given in the notations
of Sect. 7.1 starting with specified definlte events, are
identical if the resulting classes of k x Y tables (for various
Y) are the same. %@ write identity by = . ﬁ

The empty class of k x‘Z tables goes wfth the improper

event; call this event T. We have:

(9) EYT = TVE =E.
(10) EIT=TE = T.
(11) E*T T.

(12) T=*E E.

]

Hi

These permit simplifications of ewents into which T is built; in
fact, all T's can be removed, unless the whole becomes T.

Now, unfortunately, given an event as simply a partition
of the possible inputs over the whole past for the net, the
class of k X.Z tables in terms of which 1t can be constructed
as a regular event 18 not unlque.

Consider the example of NVYNI¥*I and N, where k = 1, and
N signifies the event of length 1 consisting of the firing of
the one input neuron N at time p.

The only k x X table for N is that having a 1 in 1ts one
position. But NV NI*I has this table, also both tables of
length 2 agreeing in the first row, also all four tables of

length 3 agreeing in the first row, etc.
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But N V NI*I and N each oceur, if and only if the input
neuron fires at time p; so as events they are the same. We

call this sameness equivalence, and write NV N*I = N.

The importance of the distinction is that from E=E F we
can infer EG = FG, GE = GF, E*G = F*G, and G*E = G*B; but we
cannet make the first and third inferences in terms of equiva-
lence= . In particular, NVNI*I = N, but not (N \/NI*I)NE NN.
(O0f course, E= F 1implies E = F; but not conversely.) As another
example, I*I = I*I°, but I*INFE I*I°N= T (by (13) below and
(11)).

Summarizing, our theory of regular "events,”" with our
operations EVF, EF and E*F and the relation EZ apply to classes
of k x Z tables (fixed k and varying 1) inh terms of which we can
represent the ewents, rather than to the events in the simple
8ense. More particularly, it is the two operations EF and E*F
for which the class of tables for E, rather than merely the
resulting event E, must be known, because the lengths of the
tables enter into the meaning of the operations.

It would thus be more explicit to say that we are dealing
with a theory of certain expressions for events ("representa—
tions" would be a good word, if we were not using it already in
another sense).

We now extend our notion of "prepositive" to initial events,
by saying that all except the improper one (whiech is at the same
time non-initial and as such prepositive under the definition

- in Seet. 6.3) are not prepositive. Single k x Y tables are

special cases of definite events of iength Z, 80 the definition

applies to them.
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Now we say that a regular event as glven by a class of
k x ¥ tables (fixed k and varying X) is prepositive, if all

the tables of the class are prepositive.

In Sect. 6.3 we saw-that prepositiveness was necessary

]

B obhat s porve ndy with 211 inner neurons Anie

s

and sufficis
tially quiet constructed to represent a non—initial definite
event of length{l when p Z.Z should also represent it correctly
(without "hallucinations") when p < X.

The extension to initial definite events preserves this
as a necessary and sufficient condition for representability
withh all inner neuronsg initlally quiet; the necessity is clear
by reasoning similar to that in Sect. 6.3, and the sufficigénecy
holds because there is no such prepositive event except the
impogsible one.

Furthermore, now a sufficient condition that in represen—
ting an event it be possible to take all inner neurons quiet
initlally 1s that there be a way of expressing the event in
terms of definite events and our three operations for which the
corresponding class of tables (or of definite events) is pre—
positive. This will be inecluded as part of the next theorem.

To get a necessary cdndition, we 1Introduce the idea of
a minimal set of k x Y tables (fixed k and varying Y) for an
event. Start with any set of k x Z tables for the event, and
to each table ceonsider the least segment of 1t ending at time o}
for whiech all backward extensions deseribe occurrences of the
event. Replace the table by this. Carrying out the process

for each table in the given set, we get a minimal set.
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The minimal set so obtained 1s unique for a given event,
as one gets the same minimal set by first extending each given
table to an initial table in all possible ways (which method

gives the complete set of tables, which is unique for the event);

and then minimizimg this (by the above process which leads to
a unique result), we get the same class of tables as in minimizing
directly.

Of course, the method of minimizing is not described
"econstructively," and one question which arises at once is
whether a constructive minimlzation process for a set of tables
corresponding to a regular event as expressed in terms of defi-
nite events and our three operations exists.

Another questlon is whether the minimal set of tables must,
for a regular event, necessarily be one which corresponds to
an expression for the event in terms of definite events and
the operations. (The complete table does, as will follow from
the proof of Theorem 6 in Sect. 9.)

We do not go into these questions, which one would naturally
Investigate if the study 1s to be continued.

However, we can now say that a necessary condition that a
regular event befrepreswﬂab@atw?a net with all inner neurons
initially quiet is that the minimal set of tables for it be pre—
positive.

Some algebraic simplifications are possible when initial
definite events enter into an expression for a regular event.

Say E° is an initial definite event. Then for any regular event F:

(13) e°r = T.

Pt

(14) Eo*r z T.
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Used along with (2) — (4) (and for simplification (9) — (12)),

we come out with the result that no initial event need enter

into an expression for a regular event, other than as an

i RS | S TaT i P E g d o
=zl iast” gvent dn the following ssnss,

(¥

Fox » given sxgrasalon for a eegulsy =ven’ in terms
of definite events, we define reeursively as follows
whieh oceurrences of definlte events in it are
zarliest,
in a regular event given as simply a definite event, that
definite event 1s earllest.

The earliest events in E and the earliest events in F are

the earliest in EVF.

The earliest events in F are the earliest in EF and in E*F.

7.4 Representabllity of regular events:

Theorem 4: To each regular event, a nerve net can be con—

structed which, when started in a prescribed way, represents

the event by firing a certain inmer neuron at time p +2, if and

only if that event has ocecurred ending at time p inclusive. If

the given event 18 prepositive, the representation can be by

a net started with all inner neurons quiet.

Proof is based on Lemma 1, Sect. 7.2, for 8 = 2. The
Theorem is true for T, by Fig. 9, Sect. 5.2; and for other events,
by Seet. 7.3, we can exclude T as a unit.

So first we glve the proof for the case of an event

(not T) constructed out of units (not T) each of length 2 or more.
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This we do by induction on the number n of occurrences
of units in the expression for the event.

In the induction we will arrange at each stage that the
neuron which is to fire at time p+2 will be (as in Sect. 5.2,
since T is excluded) one of threshold 1 impinged upon by only
excitatory endbulbs (i.e., it effectuates a disjunction opera—
tion) with no axons feeding Back into the net.

If n = 1, then the event is a definite one E. We have
three cases. (a) E is prepositive, hence not initial. The net
is as given in Sect. 5.2, the reasoning that this net works

being supplemented as in Seet. 6.3. (b) E is not initial and

not prepositive. We use the treatment given in Sect. 6.2
employing Fig. 21. (c¢) E is initial. Then we use an inner
neuron as follows, treated for the net consbruction of Sect. 5.2

as though it were an additional 1lnput neuron required for the

occurrence of the event to fire at time p—Y+1.

Flgure 24

This, of course, is simply a neuron whose condition for firing

is p = 1.
Now if n > 1, the event under consideration is of one of

the forms EVF, EF, and E*F where E and F are each constructed

from < n units.
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First, suppose the event is EVF. Then by the hypothesis
of the inductlon we can construct nets to representvE and to
represent F, say with representing neurons P and Q, respec—
tively, each with threshold 1 and only execitatory endbulbs
impinging, and with no axons feeding back. To represent EVF
we "identify" P and Q; l.e., we replace them by a single neuron
—call it P—-having all the endbulbs which separately impinged
on P and on Q, and we similarly identify the input neurons
N1,---,Nk for the two nets, i.e., the axons which led from
Ni,ieo, ; in the net for E, and those in the net for F now both
lead fro;lNl,...,Nk. The construection can be diagramed as

follows, using heavy lines to represent a number of axons.

P
Net for E Net for P
except input except input
and output and output
neurons neurons

N N
1 Figure 25 k

The heavy bundle of neurons leading to P from the left are
those which would be required in the net for E separately; like—

wise from the right in the net for F. The bundle from N, toward
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the left, those from N; in the net for E, to the right in the
net for F, etc. The fact that the output neurons for the two
glven nets had no axons leading back in insures that they
still operate independently of each other in this combination.

Next consider an event EF. In the construction out of

units whiech we are using for E, consider those occurrences of

unlts in it which are earliest. The events we are considering

refer to k input neurons N"""Nk' Now consider the event

E' which is obtained from E by moaafying each earliest unit to
make it refer to 6he new neuron Nk+l which 1s required to fire
at the second moment of each such—éarliest unit. There 1is
such a second moment in the period of the unit, by our assump-
tion in connection with the use of Lemma 1 that each unit is
of length > 2. Also, the resulting event Qg i8 vegulayr wWith Lhe
same number of occurrences of units, since;fhis-change in the '
earliest units only gives an event with the same structure in
ferms of its respective components by the operations EVF, EF,
and E¥F. So by the hypothesls of the induction on n, we can
represent this event E' by a net. However, we simplify the
construetion by leaving out the neuron of Fig. 21 in the case
of earliest events in E which come under Case (b) for definite
events. (By remarks in Sect. 7.4, Case (c¢) ean be excluded.)
Now the net for EF is obtained by identifying Nk+l in the
net fér E‘ with the output neuron Q of the net for F: and of

course, identifying Nl,...,Nk as linput neurons for the two nets.

=
The output neuron is that for E . The construction can be
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diagramed thus:
P

|

L
Net for E
except input and

N

:' E}l
Net for F

except input and

output neurons output neurons

N H
Figure 26

The event E' is positive, requiring a flring of Ngfélat its
second moment. But Nk+1 can be fired only at a time later

than 2, since 1n 1its ;ble of output neuron for the net for F
1t fires at time p+2 (p > 1) where p is the last moment of an
}s@aurrenee 5f F. No "hallueination® i gossiﬁie ag!a result of
leaving out the neurons of Fig. 21 for the units ih E  which

were not prepositive, as this necessity that fire at the

Nev1
second moment, which must be > 2, prevents. (Eﬁ fact, the
argumentg of Sect. 6.3 that "hallueinations" can occur when an
event 1s not prepositive do not apply now, since some inner
neurons of the net for F will necessarily be firing at the
first moment of these units of E'.) These remarks (with the
avoidance of the neuron of Fig. 21) are necessary to establish
the last remark of the theorem.

We have lastly the case for E*F. As in the preceding

case we modify E to E'. Then we combine the nets obtalned by
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the hypothesis of the induction (omitting Fig. 21 in treating

)
earliest units in B ) as dlagramed thus:

Net for F
except input and
output neurons

' ,
Net for E Nk+1
except input and
cutput neurons

N, Figure 27 NE

Under the assumption of infinite past time (as in Sect. 6.1),
the firing of P ecould, of course, be explained by E having

occurred repeatedly ad infinitum into the past. But here we

are understanding that the whole net 1s started in a certailn
condition, which is either that all inner neurons are qulet or
that some inner neuron (or neurons, if we prefer) in the net
for F are fired, according as F (and therefore E*F) is preposi-
iive or not. Then as in the reasoning under the treatment of
EF, the net for E can only be a cause of P and N_,,'s firing
if there has originally been a firing derived fro; the net for
F, which serves as an input into that for E' that must be fired
at the second moment for the latter. Of course, thereafter P
will be fired on each repetition of E. (P and Ny q must be
separate, to meet the condltion that the output ;éuron not

feed back into the net.)
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This completes the treatment for regular events construc—

ted from units each of length > 2.
Now by Lemma 1, and using the method already indlcated

for the basis (i.e., fér n = 1) to treat definite events of
length 1, and the method already used under the case of the
induection step (2 > 1) for EVF to combine nets for different

dis junctive members, we get the theorem for regular events in

general.

7.5 Discussion of the proof and further problems: As

we have already remarked in Sect. 6.2, the use of a net with
initially fired inner neureons seems unnatural. But thils is
unavoidable, if we are to represent non-—prepositive events,
since we must (by examples such as are given at the beginning
of Sect. 7.1) make our mathematical theory complete. A way
of avoiding the use of such nets biologically, namely by con-—
sidering only events dated from some environmental stimull,
has been indicated (Sect. 6.2). |

A second respect in which the present proof seems arti-—
fieial and leads to complicated nets is in the use of Lemma 1,
the proof of which involves rather extensive reformulation of
the events.

If we deal only with events which are already expressed
in terms of units each of length > agzor have the form for
Lemma 1, the proof of the theorem is ;traightferward and the
nets eonstructed are simple, i.e., of a degree of complexity
corresponding very well to the complexity of the given deserip-—

tion of the event to be represented.
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The necessity of using Lemma 1, if we do not restrict
the events to be already expressed in the form for that lemma,
arises from the fact that in Sect. 5 we needed a lag of 2 to
represent definite events in general.

Some simple events can be represented with lag of 1; and
for these the units 1nto whieh we feed the outputs from the
nets representing the preceding events would not need to be
of length > 2. Thus, to give a uniform treatment in proving
the theorem, we resorted to a device (the proof of Lemma 1)
or a restriction (that the property of Lemma 1 is already present)
which can be dispensed with in many particular cases. This 1s
why, e.g., in Sect. 6.2., simpler nets are available for repre—
senting certain indefinite events than would be given by the

method of proof of the present theorem.

As was noted in Sect. 5.3, often definite events can be
represented by simpler nets by using a lag greater than 2. Then
the method of net construetion for the proof of Theorem 4 would
require the use of Lemma 1 for 8 = the greatest lag used in
ahy of the units (or possibly not this great, depending on how
the units enter). As the proof of Theorem 4 is given, also the
net would have to be chosen so that the representing neuron
appears as in Fig. 2; i.e., performs a disjunction operation.
This could always be arranged by an increase of 1 in the lag.
But also probably the proof can be adapted to apply directly,

somewhat as the proof of Theorem 1 was generalized to get

Theorem 2 (but we have not examined this in detail).
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The difficulty which ealls for Lemma 1 arises when we
try to represent a repetition of some event which is shorter
than the time necessary for the net to organize a representa-~
tion of 1t by the firing of a single newwsy the solution by
Lemma 1 consists in considering grosser events before attemp—
ting to represent repetitions of them. |

If we consider that one or two synaptic delays are pro—
bably not significant for determining behavior in an organism
(as we remarked at the end of Sect. 6.3), it seems that the
compllcation 1s connected with an over—refinement in our model
of the biologieal reality.

So we can urge that the methods of net construction used
in proving the theorem are simple enough, grantihg that from
the general method we can often start out to find simpler nets
In speelal cases.

The question may occur to the reader, why did we select
the particular three operations E VF, EF, and E*F? When we
say that the net constructions are simple, we mean simple for
events already described from definite events by use of these
operations.

A pressing problem now is to consider what kinds of events,
described originally in other terms, can be described in these
terms; and so eventually what kind of behavior can be explained
on the basis of nerve net control.

This is a problem one would naturally investigate in detail

next. We have not done so thus far, since this report is
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intended only to reduce to writing the author's thinking on
the subject during August 1951, and not to try to carry the
investigation further, except for the minimum amount of filling
in details whiech was unavolidable in the process of writing.

However, it is very plausible that the notation for
regular events in terms of definite events combined by the
three operations will prové handy in describing s%ents. The
simple examples given at the end of Sect. 7;I;“§ﬁa some others
slightly more complicated, encourage this hope.

On the other hand, given a description of an event in tems
of definite events and the three operations, it will in some
cases be difficult to see what the event consists of; we know
of eases in which a very complicated deseription is actually
equivalent to a mueh simpler one. (This, in fact, is usually
the case for descriptions provided by the method of proof of
Theorem 6 in Part II.)

So there are problems of translatability in both directions_
between the notations é@“ perulayr evente and obher netstlons for
events or deseriptiocns ‘of events &n ordinary language. These
problems have so far been touched only superficially, and are
eruclal for determining how far the present results carry us
toward practical general techniques for construction of nets
for given purposes.

These questions are related to questions about transforma—
tions between different expressions for the same event 1n terms
of our operations. Can we obtain any normal forms, l.e.,

simplest forms or convenient standard forms, for descriptions
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of regular events, to which given forms are equivalent in the
sense of Sect. 7.3? Is there any decision procedure for the
equivadtence of two expressions for events (in the technical
sense of modern logic)? These questions are closely related
to questions raised in Sect. 7.3.

Similar questions apply to identity in the sense of
Sect. 7.3; but equivalence 1s the important relation for the-
applications of the theory.

These questions are partly algebralc in character. Some
questions are also raised in Part II and Appendlx 2.

Success in reducing, to terms of definite events and
ES/F, EF, and E*F, events as expressed in ordinary language
or a8 they arise in explalning organie behavior or creating
robots for prescribed purposes would, of course, give a Jjusti-—

fication for our selection of the operations.

Our aetmdl reason for selecting them is that (as was men-—

tioned in Seet. 7.1) a converse of Theorem 4 will be proved

in Part II.
Thus, every event whiech can be represented must be expres-

sible in terms of Ei{F, EF, and E¥F, starting from definlte events.
In particular, we have thus demenstrated that MeCulloch—

Pitts neurons ecan govern any kind of behavier which any other

kind of digital automaton at-all can govern. This, of course,

inecludes a number of special results which they obtained for

alternative kinds of nerve nets, but is more general.
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Having been first led to the three operations in connec—
tion with the converse of Theorem 4 (i.e., Theorem 6 in Part II),
it was natural to see whether the present theorem would hold.
But, of course, the fact that our three operations are
completely general (by Theorem 6) does not settle the question
whether they willl prove to be a convenient and practical way
to deal with events. Possibly some other selection willl prove
to be mowe convenlent. Or, we may add other operations and

express these in turn in terms of our three.

7.6 ConJjunetlon and negation: We did not include the
operations Rﬂ(and) and ~ (not) in our definition of regular

events, because in the converse theorem (Theorem 6) we do not

need to.

In this section we will show that net construections can
be managed 80 that the two operations can be included. However,
we will only treat them when applied to events already repre—
sented by nets, and we will not thereafter use EF and E*F.

From the converse theorem it will follow that any events
we thus express using also 2 and -~ must be expressible without
them. But the definitions obtalined in this way are very com—
plicated, and simple definitions do not appear to be immediately
forthcoming. (But we have not examined the problem thqroughly.)

We are not attempting to use gxand ~ inside EF and E*F
(except in the original construetions of definite events as
the units) since we have not set up a representation of these

operationg in terms of classes of definite events or of k x Z
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tables. It does not seem to be immediate what is the best

way to do this.

Theorem 5: Each event constructible from regular events
by use of the operations 8«, V, and — of the propositional
caleulus is representable with lag 2‘ » 8 nerve net and a
neuron can be found, together with an initisl state of the

net, so that the neuron fires at time pt+2,
event has taken place ending at time p.

Proof: Say the event 1s constructed by the operations of

the propositional calculus from certain expressions for regular
events. Consider any one of the latter. Wherever a part occurs
in it of the form E*F, replace this by FV E(E*F) using (8).
After this, apply (4) and (5) whenever possible. Using also

(2) if necessary, we are thus led to an expression for the
original event by operations of the propositional caleulus in
terms of regular parts of the form E,(...En) where E; 1s defi-—
nite; for thils purpose we take the V's whzéh have been brought
outermost in the expressions for the regular events as part of
the construction in terms of the operations of the propositional

2 F el -ay there are Jn ~uch paria, ¢all thsir fizet iast@rs

(i)( i = 1;3..,m), and the whole expressions El—}(... (ii))

Let Ei(il“ be E1(£)' or El(i) according as E(i) is > lor =1,
where ' has the meaning given it in the proef of Theorem 4. Now
we can take exactly the same combination by operations of the
propositional ealeulus of E;(*)”, cee s E;(ﬁ)” that the glven

E(i) ) ’ ESE)(...Eéﬁ) ). This ean

event 1s of Ez(i)( n(1)
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be treated as a definite event of length equal to the greatest
length of any of its components, and a net can be constructed
for it by Theorem 1, with #dnput neurons N;,...,Nk and for
each 1 for which E(i).> 1l a neuron NE?E required to filre at

time 21Z(1)+2 for the event to oceur. Feeding the outputs

from the nets for Eéi) oo Eé%)) appropriately into this, instead
—(1

of as before into respective nets for Esl)’, we get a net for

the event in question.

PART II — FINITE AUTOMATA:

8. The Concept of a Finite Automaton:

8.1 Cells: Time shall consist (as in Sect. 3 ff.) of a
succession of diserete moments numbered as integers. We shall
mainly be concerned with the case of only positive integers, as
in Sect. 6.2 ff, but will consider the case of all the integers
in Appendix 1.

We shall eonsider'automata constructed of a finite number
of parts, each being capable of a finlte numbeﬁ‘gié of states
at any glven moment. Call these parts cells. |

We shall distinguish two kindas of cells, input cells and

inner cells. Say there are k input cells and m inner cells.

An input cell admits 2 states O and 1 (or "quiet" and
"firing"), whieh we consider to be determined by the énvironment.
This restriction to 2 states for input cells is to make
the notlon of an input to the automaton coineide with the notion

of input to a nerve net as formulated in Sect. 4. But the
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present theory would work equally well with more than 2 states.
Nothing is gained thereby, however, as p cells each admitting 2
states could be used to replace one cell admitting any number g
(2<gq 3_22) states 0, 1, ... , g-l, where if g < 2B we could
consider only inputs in whieh states g, ... , oB_1 do not occur
or identify all of these states with the state g-1 in all the
operations of the automateon.
The number of states of an inner cell is not restrlcted
to 2, and different inner cells may have different numbers of

states.

Say the input cells are Nl""’RE.(E > 0); and the inner

cells are Mi,...,M (m > 1), with respective numbers of states

Bisee-s8y (eaeh > 2).

The state of each inner cell at any time t is determined
by the states of all the cells at time t-~l1. Of course, it
may happen that we do not need to know the states of all the
cells at time t—1 to infer the state of a given inner cell at
time t. Our formulation merely leaves it unspecified what
kind of a law of determination we use, except to say that
nothing else than the states of the cells at t-1 can matter.

If time 1s given as beginning with t = 1, the state of the
inner cells at that time 1s to be specifiled.

A particular example of a finite autematon 1s a McCulloch-
Pitts nerve net. Here all the cells have Jjust 2 states, and

the prineiples stated in Sect. 3, together with the arrangement

of axons and the kind of endbulbs on each case, give the law
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determining the state of each inner neuron at time t from the
states of all the neurons (or, in fact, from only those having
endbulbs synapsing on the given one) at time 1.

Another example is obtained by considering neurons with
"alterable synapses" or "alterable endbulbs® of the following
kind. Eaeh neuron may have besldes the usual endbulbs also
exeitatory ones which are not effective unless at some previous
time the neuron having the endbulb and the ﬁéuron to whieh the
en@bulb is adjacent were simultaneously fired. 1I1If a neuron
pf+l

has r such alterable endbulbs, 1t 1s capable of states,

according as it i1s quiet or firing and according to which of
the r alterable endbulbs have thus far been made effective.

Many other possibilitles suggest themselves.

8.2 State: With input cells Ni,...,N  and inner cells

M;,...,Mm with respective numbers of states S1s000,8,, there

are possible at a given moment exactly QE' B1%..8, states of
the entire automaton. We can consider each as a combination
of an external state, of which there are 25 posslble, and an

internal state of whieh there are 51'...°§m possible.

The law by whieh the states of the inner cells at time t
are determined by the states of all the cells at time t-1 can
be given by speeifying to each of the c@ﬁplete 8tates at time
t-1 which one of the inner states at time t shall succeed 1it.

Now, indeed, there is no reasen for our general theéry

why we cannot consider the entire aggregate of intermal cells
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as replaced by a single one admitting B1°..."8, states. This
normalization of our concept of a finite automgfon is always
possible, though we did not start out with it, because we
were Iinterested in making clear the application to suech automata
as a MeCulloch-Pitts nerve net, where the cells are given cer—
tain simple properties and are connected in a certain way.

We could also restrict ourselves to one input cell, by
scheduling the inputs on the k original input cells to come in
successively 1in some order on the new one, which would alter
the time scale so that k moments of the new time scale correspond
to 1 of the original. Events referring to the new time scale
could then be interpreted in terms of the original. However,
we do not find any advantage in this reduction to one lilnput
neuron; so we do not use it.

We will now assume that time starts with t =1. 3ay we

call the states Bajyeee,y, where r = 25' 8, '...'Em and the

internal states bt,~--,b3 where g = 81 Tees'Be We specify that

the internal state at time t = 1 be b;.

Under this assumption, the state at time t = p 1s a function
of the input over time 1,...,p (ineluding the value of P, Or only
this when k = 0). (Had we not specified the initial state as b,
the state at time p would be a function of the initial state algo . )

S0 each of the states Bgseessdy corresponds to (or repre—
sents) an event, which occurs ending at time p, if and only if

the input over the time 1,...,p is one whieh results in that

one of Bipecesdy, being the state at time p. Thus, the automaton

—
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can know about the past (inelusive of the present) only that
it falls into one of r mutually exclusive classes (possibly
some of them empty).

Similar remarks apply to representations of the past by
an internal state assumed at time ptl, or by a property of the
state at time p, or of the internal state at time p+l. For
to say the internal state at time pt+l is bi means that the com—
plete state at time p was one of certain o;és, l.e., those
which are succeeded by bi under the law determining internal
state. So then the past_falls into a class of possible pasts
constituting the set sum of the classes represented by those
complete states at time p, or in logical terms the disqunction;
Bimilarly, for prégariieg of the state 'simllarly &153#

e.g., a property’of the internal state at time p+s for s > 1,
whenever this property does not depend on the input over time
ptl,...,p+s=1).

What sorts of events can be represented? The question is
answered by the following theorem, referring, of course, to
automata started in state b,;. Had we not specified the initial
state, we would merely add (or disjoin) the classes corresponding
thus to the g internal states, each in turn as initial state.

Had we not specified past time to be finite, the state at
a given time p would not necessarily be determined by the input.
The facts in this case (already mentioned in Sect. 6.1 for
MeCulloeh-Pitts nerve nets) are dealt with in Appendix 1.

As the coneept of input is the same ag in Part I, we can

use the notion 6f "regular event" which was introduced in Sect. 7.
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9. Regularity of Representable Events:

Theorem 6: For any £inite automaton (in particular, for

a McCulloch—Pitts nerve net) started at a given time t=1

with Internal state b; at that time, the event represented

by a given state existing at time p 1s regular; i.e., the

automaton assumes that sbtate at time p, 1f and only if a cer-

tain regular event occurs ending at time p.

‘gggggz Since the initial internal state 1s specified,
there are 21-E initial states (the results of combining the
given initial internal state with each of the QK possible
external states at time t = 1) from which the automaton could
start at time t = 1 to reach the stabte in question at time
t = p.

So if we can show that the automaton can start from a given
state at time 1 and reach a given state at time p, 1f and only
if a certain regular évent occurs ending at time p, then the
theorem will follow by taking the disjunction of EE-respective
regular events, which (by Sect. 7.1) is itself a regular event.

Given any state a at time t—1 (t-1 > 1), exactly 2% states
are possible at time t, since the internal part of the state at
time t is determined by a, and the external part can happen 1in
25 ways.

So we have a one-many relationship between states. Now
invert this relation and consider for any state a at time ¢t
what states at time t-1 are compatible with it (there may be

none, one, or more than one); say a is in relation R to each

of these.
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The next part of our analysils will apply to any binary
relation R defined on a glven set o6f r objects B1yeee58, (called

"states"), whether or not it arises in the manner just des-—
cribed.

Consider any two a and a of the states, not necessarily
distinet. We wlll seek a characterization of the strings of

states dgﬁg%i"°d1 for which dZ is a, 4, is a, and for each

i(1=1,...,71) d;,, is in the relation R to dl; call these

strings which connect a to a.

Let A be a class of such strings. We call A regular, 1f
A can be described by an expression bullt out of the following
operations (chosen in analogy to the definition of regular
events in Sect. 7.1.)

The empty set and the unit set consisting of just ay for
any 1 are regular. If A and B are regular, so is their ;ﬁm
which we write AVB. If A and B are regular, so is the set,
written AB, of strings obtained by writing a string belonging
to A just left of a string belongilhg to B. Jf A and B are
regular, so is A*B which abbreviatég &35%?E£§§ (r > 0),

i.e., the sum of these classes fer.ail %.Z.ﬁ“
Now we prove the lemma by induction on r that thé strings

dI"‘dl conmecting & tc & form & regular class.

Basis: r = 1. Théﬁ,rof ébﬁrgé, T is a. If a Ra (i.e.,
if not a R a), the class of the connecting strings is simply
the unit set consisting of a (as string of length 1), which is
regular. If a R a, then the class is {a, aa, aaa, ...} , Which

18 regular, since it can be written A*A where A =gja},.
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Induction step: 1r > 1.

Case 1: a = a. In thls case any string leading from

a to a is of the form

a > a P ee. A a,
no a's no a's no a's
Figure 28

where each arrow is elther empty (this being possible only 1if

a R a), or stands for a string without a in 1it.

Let SEREEL be the states e such that a R e, but e # a,

and fi,...,f, the states f such that f R a but f # a. Now any

string of the kind represented by the arrow (when the arrow
does not represent the absence’ of a string) must start with

one 6f el,...,eg and end with one of fl,...,fh. For each palr

=>4 —

eifj’ by the hypothesis of the induction, the class of the

strings leading from e; to f (without a in it) 1s regular.

Say B;,...,th are these regular classes; let A be { }. Now

—

if a R a and the B's are not all empty (Subcase 1), the class
of possible strings a—>for Fig. 28 is A\IA(B4‘J...\/th); if

a R a but all B's are empty (Subcase ii), it is A; if a2 R a and

the B's are not all empty (Subcase 11i), it is A(B*\/"'\/Bgﬁ);

and if a R a and the B's are all empty (Subease iv), it is
empty. In the first three subeases, let C denote the class men—
tioned, whiech is non—empty and regular. Now in these subcases,
the class of strings leadkng from a to a (as in Fig. 28) is

C*A, while in the fourth subcase it is simply A.
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Case 2: a # a. Now we have instead of Fig. 28 the

following:
a > a ) ... @ y a — )
no a's no a's no a's no a's or a's
a S ee. @ —> a
no a's or a's no a's or a's
Flgure 29

The treatment is similar. For example, in the case the classes

of strings represented by "a——3", by "a —~> " in
no a's no a's or a's
the middle, and by "& > " at the right, are none

no a's or a's
of them empty, call them C, D, and E, respectively, the class
of strings for Fig. 29 1s C*ADE*A, where R = <{a ;.

So the lemma is proved. Now we return to the point where
we were in the proof of the theorem. We wish to show that for
given state a at time p and each of 2E-possible states a at
time 1, that a holds at t = p and a at t = 1, 1f and only if
a certaln proper event (different in general for each of the

2-5'8) occuples the time 1 to p.

Now by the lemma, the strings of states which can lead
from a to 2 form a regular class. If that class 1s empty,
then the event 1s the improper one, which is regular. If that
class is not empty, consider the expression for the e¢lass as

a regular class of strings. We bulld a corresponding expression

for the event as a regular event by translating each unit

class A, = {ai},(for each state ai) into the definite event E,
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of length 1 whieh occurs at time p exactly if the lnput at
time p 1s the external part of the state a,. (If k =0, E,

is thé event 1 of length 1 which always occurs, having no other

features. However, 1t may be 1nitial 1, that is, Eg- The only

other event of length 1 in this case 1s the improper one T.)
Having done thils, then the operations EVF, EF, and E*F for
building regular events parallel those AY B, AB, and A*B for
building regular classes of strings. The earllest units
(Sect. 7.3) in the expressions obtalned should be marked as
being initial.

This proves the theorem. No attempt has been made to
consider, in thls proof, how simply the event represented by
the state at time p can be constructed as a regular event. We
have worked out some simple illustrations in which very compli-
cated expressions stand for regular events capable of simple
ones. The expressions obtalned have entirely initlal events
as earliest unlts, and are bullt of units of length 1. It 1s
¢lear that in most examples great simplifications c¢an be obtained
by use of equivalences (Sect. 7.3); but no study has yet been
made of the possibilities for proceeding systematically with
such simplifications, or of rearranging the proof of Theorem 6
to come out directly with simpler expressions when possible.

The study of the structure of a set of objects B1yeeesdy,
under a relation 3, which 1s at the heart of the above proof?'
might profitably draw on some algebraic theory, since it is
possible (though whether profitable or not we do not know) to

see the situation as a generalization of permutation groups.
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Corollary: The event ending at time p represented by

each of the following 1s likewlse regular: (a) a certain

internal state at time p+l. (b) a property of the state at

time p. (e¢) a property of the internal state at time p+l.

(a) a cértain internal state at time p+s for a given s > 1,

when this does not depend on the input over p+l to p+s-l.

(e) a property of the internal state at time p+s for a given

8 > 1, when this does not depend on the input over p+l to

Proof: As remarked at the end of Sect. 8, each of these
is equivalent to one of certain states existing at time p; so
the event represented 1s a disjunction of the regular events
glven by the theorem for the latter, and hence is regular.

This eorollary brings our result now lnto correspondence
(as converse) of the result in Sect. 7. There Qe represented
an event by firing a certaln neuron at time p+2. Thils 1is a
property of the internal state at time p+2, since 1t means the
internal state then 1s one of 2971 different ones (according
to the states of the other m—l inner neurons).

Incidentally, the representations 1in Sect. 7 by firing a
certaln neuron at time p+2 are equivalent to representations
by a property of the state at time p, namely by the property
which those states at time p share which will lead to the firing
of this neuron at time p+2.

The event whleh is represented by a state a is the solu-

tion in the sense in which MeCulloch-Pitts speak of "solution"

for the case of nerve nets, except that we glve the solution
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for a given Internal inltial state. A solutlon without pre—
gupposing an initial internal state would then be obtained as
a disjunction of the solutlons for us for each of the 5:°...%s
(for nerve nets, 2=) internal states. -

Appendix 3 contalns an example of an event which cannot
be represented in a flnite automaten.

It is, of course, essential for our arguments here that
the numbef of eells or parts (under our first definition of
a finite automaton) and the number of states for each, be
finite, so that the number of complete states 1ls flxed in
advance. A machine of Turing (1937) which is supplied wilth an
unlimited amount of tape, 1s not a finite automaton in our
present sense, since, although 1ln 1ts operation only a finite
number of squares of tape are printed upon at any time, there
1s no preassigned bound to thils number.

The Turing machine could be thought of as a finite auto-—
maton, whilch is also able to store information in the environ-—
ment and reach for 1t later, so that in certaln cases the inputs
are ldentified wlth 1lnputs at earlier times or with states of
certaln inner cells at earller times, and thus the present Ilnput
is not entirely independent of the past. Whether this comparili-
son may lead to any useful insights into Turing machines, or

reciproeally into finlte automata, remains undetermlned.
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APPENDIX 1: DEFINITENESS OF EVENTS REPRESENTABLE IN A FINITE
AUTOMATON WITH AN INFINITE PAST:

Theorem 7: Every event E ending at time p representable

by a certaln state exlsting at time p (or by one of the other

methods listed in Corollary Theorem 6) in a finite automaton

with an infinite past is definite.

The result was cited in Sect. 6.1. The notion of auto—
maton to which we refer 1s given in Sect. 8.

Proof: With k input cells, the complete past is generated
by chooesing between a finite number of 25 possible inputs at

time t = p, then between a finite number 2E at time t = p-1,

ete., ad infinitum.

By & theorem given by Brouwsr (1524) and also by Romi;
(1927), if for each infinite past (i.e., for any sﬁch choice
sequence) it is determined at some finite gtage whether the

event occurs (ending at time p) or not, then there must be a
number N > O such that, whether the event occurs or not is known
for all pasts {i.e., all choice sequences) from only that part

of the past occupying the time p-N to p. In this case the event
would be definite of length N+l. (Brouwer's proof of the theorem
is Intended for readers acquainted with the intuitionistic set
theory, and the main effort in his proof is to demonstrate the
theorem intuitionistiecally.)

Now we show that lndefinite events are not representable.
Contrapesing the mentioned theorem, we econclude that for an
indefinite event, there 1s some particular infinite past suech
éthat for every u it is not known from the part from p—u to p

f {has past whelhar Lhe evan’ coowd o 1ot
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Case 1l: The event E does not occur for this particular

past. Then for every u there is a past colneiding with the

glven one over the time p-u to p and diverging from 1t prior

to o=, for which Lhe eveanl oocurs.

&

Now 3upposs §Ghe represesntation o7 the event 1g by —

P
(=3

Es}

the state at time P; say the notation 1s arranged so

that the states which have this property are al,...,ar1 and

the states whlch do not are a£1+1,...,ar.

Now consider the set S of all the sequences of states

d0d1d2 .+. compatible with the present state being one of

..,az, and each'd1 has

ar1+l""’ar’ i.e., dO is one of ar1+1,.

as its internal part that which is determined by di+1 There

are r-r, cholces for do, at most r for d; , at most r for da, etc;

" But for any u there is a past coinciding with the given
one over the time p-u to p, and diverging from it before that,

along which the event does not ocecur. Along this past, any

sequence d.d.d, ... must belong to S ard must in its first
07172 =

u+l choices d,d;...d, be compatible with the given past (as

selected above); i.e., the external parts of dO’ dl’ ...,du

must be the inputs over the last u+l moments of that past.
Now by Bpouwer's theorem (contraposed) there must be an

infinite sequence dodldz"‘ in the set S which is compatible

with the entire given past (along which E oeceurs, but from

every finite segment of whiech a past diverges along which E

Vb

P i - TR
does not ceour),




RM-704
Page 89

But do is one of the states a£,+1""’ar , econtrary to

our assumption that E is represented by the state at t = p being

one of al,...,a? . Thus, E cannot be so represented.
Ty
=1

Iif we had assumed simply that whenever B oceurs, the

present state must be one of al,...,arl, the above considera-—

tions show that there must also be examples in which the present.

ptate wlll be one of al,...,arl without E having ocecurred.

Case 2: The event E does not occur for this particular
ﬁast. The reasoning already applied gives the absurdity of E
being represented, hence of E itgelf being represented, by a

property of the state 2% L = po



RM~704
Page 90

APPENDIX 2: PRIMITIVE RECURSIVENESS OF REGULAR EVENTS:

Theorem 8: Every regular event is primitive recursive.

The terminelogy in the theorem is from the theory of
recursive funetions and predicates as developed in the last 25
years. A book by Péter summarizes the theory, also a boeok by
the author which 1t is hoped will soon be in print.

The formulas gilven below "place" the regular events in
relation to number—theoretic predicates studied 1n the theory
of recursive functlons. Although we have not pursued the mat—
ter further than to get one way of expressing regular events
reeursively, possibly useful characterizations may be obtain—
able in this direction.

We already know from Sects. 5, 6.3, and 7.1 that number—
theoretic formulas can be constructed to stand for definite
events. The symbollism required can be seen by inspection of
the examples given. Terms p-1, p—2, ... are used only when
they are greater than O, as i1s insured by adding g > X
(Sect. 6.3) or now sometimes p = ¥ (Sect. 7.1) to the expres—
gions as given in Sect. 5.

The range of the variables in the theory of recursive
functions is customarily O, 1, 2, ... rather than 1, 2, 3, ... .
To avold having to reconstruct the notations in that theory
for the present application, let us in this appendix suppose
the time scale for events starts with t = O instead of t = 1.
Slight changes are then regquired in the formulas for definite
events. Incidentally, now p-1, P2, ... are used in the sense

of p«l, p+2 in the theory o recursive functions.
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We shall simultaneously build expressions for regular
events and for the lengths of the definite events of the class
of definite events which we use in characterizing the regular

events. More preeisely, we describe to each regular event E

expressions A(p), A(p,n), & (p), and 4(n) such that

{g has oeeurred ending at time _;3} = (_E_r_}_)n<€(2)5(g,g)§ A(p),

where for each ~r;;’c.;né(_p_), A(p,n) describes a definite event of
length /1(9_). Here € (p) is the number (> 1) of definite events,
in the oceurrence of one of whieh the regular event consists.
(Our & (p) is not necessarily the least number of such definite
events, but is the number we use in our construction. Also,
the € (p) regular events need not all be different.)

For a definite event used as a unit in the construction of
a regular event, €(p) = 1 (8o n has only one value 0); ——
and é(g) is the expression already mentioned for the event;
A(p,n) can be simply A{p), or A(p) 2\ n =0 if we wish n to appear
explicitly in this case; while/"(g) = X where ¥ 1s the length
of the definite event under consideration.

For a regular event of the form FVG, say that B(p,n),
z (p) and )/(_1:1_) are the "_A_(,g,gz}'_", “€(p)" and "/"‘(_1:1_)" for F,
and C(p,n), ‘rl(_g) and ¥ (n) are those for G. ‘

Now take
A(R) = (Bn) g (p) Alesn)

Sl [[b< 5@ 2 2ea) v (2§ £ s f @)

(the scope of the prefix (-E-:ﬁ)n<€(p) in the last being A(p,n)),



RM—704
Page 92

where

V(n) if‘n(Z(P);
o) = , M(n) -
€ (p) Z(E) + N (p), M) = £(n = % (p) ifg?_;(g)-

Let g/ﬁj = the quotient, andljo(g,g) = the remainder,
when an integer a is divided by a positive integer b. Note
that as a ranges from O to kb-1 (b # 0), the pair of quanti-—
ties [é/bj , /O(g,g) range over all pairs of numbers X,y with

x <k y<b

Now for FG, given expressions for F and for G as before

by the hypothesis of the induetion, we have

A(p) = (§§)§< e(p) A(p,n)
= @)y e (2@ /@)D e /@] ),

S (n, 7’((2)))} ,
where €(p) = f(g) N (p)
A = Y /@]) + § P e,

For the remaining case we use the funetion (_2_1_)i defined

thus. First let Py = {Ehe i-th prime counting 2 as the G—t%}.
(So Pp =2, p1 =3, Py = 13, ete.) Now
the highest power of p; which divides a, if 2 # 0,

(3)1‘—':
0 1f a = 0.

Note that (a), is also O if a # O, but p, does not divide a.

For example, 28 = 22:7; so (28)O=2’ (28), = 0, (28)z = 0O,



RM—-704
Page 93 .

(28)a = 1, and (28)1 = 0 for any 1 > 3.
As a ranges over all non-negative integers, (E)O""’(E)m—l

range over all m—tuples of natural numbers; and, in fact, as a

b
Eﬁg et p—ﬁil or beyond the funetions

ranges over O to
max ((g)e,gé),...,max((g)m_l,b 1) range over all m—tuples
xO,...,xErl for x4 < 20""’5_ 1 £ EE?J. (The function (E)l

could have been used in place of [é/@] and £ (a,b) in treating

the preceding case.)

Now say E 1s F¥*G, where expressions as before are assumed

already constructed for F and for G. An occurrence of E is

u factors
an oceurrence of ¥ . - . FG for some u > 0. But for a

gliven p, we must have u < p, since F and G are each of length

> 1l. So now we have for E*F the following:

A(p) = (E_g_)n<e(p)_&(g,p_)

= (Eadue ¢(p) [(-i-)ls_i_< max ((n),, p)B(max((n)y, f(R)+1),

i
p =2 Vmax ((n)g, §(2) ~)))

max ((n)y,p)

fo ¢ (max ((Myay ((n),,p)ea’N® = 1) 2 =2
/(max ((n)g, § (&) = 1)))]

where

- % {p)+ N(p)
6(2)=2§lz.9.+772

since each n which would be wanted is of the form
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22 . P ‘...

where
u<p
Viseees¥y < 4 (p) ,
w < 7z(_13) s

and

((2)g:2)
) =2 OB max (), () £ 1))

§ (max (()nax((n)g,p)ar» M) = 2)-

It will ve seen by readers familiar with recursive function

theory that {? occurs ending at time g} is thus primitive
recursive in the predicates g,(g),...,gk(g) giving the inputs

over time t = O0,...,p, though, of course, the recursive

expressions are complicated. Also, we can express the result

by saying {% oceurs ending at time é} is primitive recursive in

p and a number giving in code form the combined input from

t =0 tot =p.
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APPENDIX 3: AN EXAMPLE OF AN EVENT WHICH 1S NOT REPRESENTABLE
(AND. THEREFORE NOT REGULAR), THOUGH IT IS PRIMITIVE

RECURSIVE:

Consider the event E referring to one input cell N, des-—

cribed as follows:

N fires at time t = v2 for every v such that v® < p, and

only then.

(This is primitive recursive, since 1t can be expressed

thus:
Wy | [0y =) § 8] v [y bvh BT

No nerve net or finite automaton of any other kind can

represent this event. For consider an automaton wlith states

. » a .
a,, 1%

Assume given a representation of the event by a property
of the automaton at time p; 1l.e., we assume that there are
states, say &s,...,a, (r» < m), such that at time p the state
is or is not one of ;ﬁese, aceording as the event has oceurred
ov:naeti.

We shall show that this assumption leads to absurdity.
- Gensider any number S suéh that 28 > r;.
Say that N ip fired at times t =1, %, 9,...,8% and

i3

pevsr thHeresfrser. -~ . —

it

Then E ogeurs for p =1, 2,0.}$§§f1i# ==1 and for
no greater p.
Consider the states of the automaton at times s®+1, s?%+2,

«es + These must all be from the list B1gesesde
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However, beginning with time §?+1, N is never fired; so
the external state 1s constant. Thus, each state for all tlme
thereafter will be determined by the immediately preceding
state. Hence, since there I8 only a finite number of possible
states a&,...,ar , the sequence of the states d,;,dz2,ds3,...
beginning with ;hat at time §?+l is ultimately periodie. For
after r states at most, a state must be taken for the second
time, and thereafter the states since the first oceurrence of
that one must repeat themselves c¢yclically.

However, during the time s®+1,...,8%+2s, the state must

be one of a;,...,arl, since the event occurs for these values

of p; and hence, since 28 > r,, the period must already have
become established (i.e., the first repetition in 4,;,dz,ds3,...
must already have occurred) by the time §?+2§. Hence the
state at time s2+2s+1 (= (3+1)2) 1s one of 81,...,8, , contrary
to the faect that the event has not occurred ending ;f time
p = (s+1)2.

It is not suggested that the event in question would be
of any biologiecal significance. But the example 1is given to
show the mathematiecal limltations to what events can be repre-—
sented. Of course, by Appendix 2 we already knew that events
not primitive recursive are not representable; but the present
example is much simpler.

Without elther appendix, one would not expect events

whose verifieation involves the completion of an infinite pro-

eess (these belng non—recursive) to be representable. The
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present example does not involve the eompletion of an infinite
process; but 1t does involve the completion of a finlite process,
which as p varies 1s unbounded, and this likewise transcends

the capablilities of a fixed finite automaton.

bje
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