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Technical Abstract: 
The structure – thermal transport properties relationship for nanofibrous materials based on 
carbon nanotubes (CNTs) are investigated by performing a multiscale computational study 
combining atomistic molecular dynamics simulations of heat transfer in small groups of CNTs 
with mesoscopic modeling of thermal conductivity in CNT-based materials, such as CNT 
bundles, “buckypaper,” and vertically-aligned CNT “forests.”  Some of the key results of this 
study are as follows. (1) General scaling laws governing the heat transfer in nanofibrous network 
materials with different structures are derived analytically and verified in mesoscopic 
simulations; (2) Contrary to the common assumption of the dominant effect of the contact CNT-
CNT conductance, the contribution of intrinsic conductivity of CNTs is found to control the 
value of the effective conductivity of CNT networks at densities and CNT lengths typical for real 
materials; (3) Several distinct regimes of the acoustic energy dissipation are established in 
atomistic simulations of individual CNTs; (4) The dominant role of bending buckling in 
stabilization of CNT networks is revealed and the contribution of the thermal resistance of 
buckling kinks to the thermal conductivity of CNT materials is established. 
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Summary of research findings and deliverables: 

 
(1) In films, mats, buckypaper, and other materials composed of carbon nanotubes (CNTs), 
individual CNTs are bound together by van der Waals forces and form entangled networks of 
bundles. Mesoscopic dynamic simulations reproduce the spontaneous self-assembly of CNTs 
into continuous networks of bundles and reveal that bending buckling plays the dominant role in 
the generation and stabilization of the network structures. Bending buckling of CNTs reduces the 
bending energy of interconnections between bundles and stabilizes the interconnections by 
creating effective barriers for CNT sliding. In collaboration with a research group of Prof. 
Shiomi, University of Tokyo, Japan, the effect of bending buckling of carbon nanotubes on 
thermal conductivity of nanotube-based materials is investigated. Buckling kinks hamper phonon 
transport along the buckled nanotubes and serve as “thermal resistors” for the heat transfer along 
CNTs. Atomistic simulations reveal the dependence of the thermal conductance of a buckling 
kink on the buckling angle, whereas the mesoscopic simulations of thermal transport in 
“buckypaper” help to translate this information to the effective thermal conductivity of these 
complex network materials.  The predictions of the simulations quantify an important factor that 
is responsible for the relatively low values of thermal conductivity of carbon nanotube materials 
reported in experimental studies. 
 

(a) (b)  
 
Figure 1.  The dependence of the thermal conductance of the bending buckling kink on the 
buckling angle predicted for (10,10) CNTs in atomistic simulations (a) and the ratio of thermal 
conductivity k calculated for different values of constant conductance of buckling kinks to the 
thermal conductivity k0 calculated with zero thermal resistance of buckling kinks.  The results 
are shown for samples composed of CNTs with length of 200 nm (red squares & solid curve) and 
1000 nm (green circle & dashed curve). 

The results are reported in [A. N. Volkov, T. Shiga, D. Nicholson, J. Shiomi, and L. V. Zhigilei, 
J. Appl. Phys. 111, 053501, 2012] 
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(2) Computational study of thermal conductivity of interconnected networks of bundles in carbon 
nanotube (CNT) films reveals a strong effect of the finite thermal conductivity kT of individual 
nanotubes on the conductivity k of CNT materials. This effect is explained in a theoretical 
analysis that yields an analytical equation describing the effect of finite kT on the value of k for 
different CNT materials: 
 

where k0 is the conductivity at kT = ∞,  BiT = σc〈 NJ 〉LT / (kT AT) is the Biot number defined by the 
total contact conductance σT = σc〈 NJ 〉 of a nanotube at all contacts it has with other CNTs, σc is 
CNT-CNT contact conductance, 〈 NJ 〉 is the averaged number of thermal contacts per CNT. 
Contrary to the common assumption of the dominant effect of the contact conductance, the 
contribution of the finite kT is found to control the value of k at material densities and CNT 
lengths typical for real materials.  The results are published in [A. N. Volkov and L. V. Zhigilei, 
Appl. Phys. Lett. 101, 043113, 2012] 

 
 
 
(3) The exchange of energy between low-frequency mechanical oscillations and high-frequency 
vibrational modes in CNTs is investigated in a series of atomistic simulations. Several distinct 
regimes of energy dissipation, dependent on the initial stretching or bending deformations, are 
established. The onset of axial or bending buckling are found to induce the transition from a 
regime of slow thermalization to a regime in which the energy associated with longitudinal and 
bending oscillations is rapidly damped. The results of the atomistic simulations are used in the 
design and parameterization of a “heat bath” description of thermal energy in a mesoscopic 
model, which is capable of simulating systems consisting of thousands of interacting CNTs. 
The results are published in [Jacobs et al., Phys. Rev. B 86, 165414 (2012)] 
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Figure 3. The evolution of energy of different groups of vibrational modes in MD simulation of 
CNTs with different levels of initial stretching deformation. 
 
 
(4) Non-equilibrium MD simulations of heat transfer between adjacent CNTs and the intrinsic 
conductivity of CNTs in a bundle are performed for nanotubes of different length.  The results of 
MD simulations suggest that, contrary to the widespread notion of strongly reduced conductivity 
of CNTs in bundles, van der Waals interactions between defect-free well-aligned CNTs in a 
bundle have negligible effect on the intrinsic conductivity of the CNTs.  The simulations of inter-
tube heat conduction performed for partially overlapping parallel CNTs indicate that the 
conductance through the overlap region is proportional to the length of the overlap. 

 
Figure 4. Schematic representation of the computational setup used in MD simulations of inter-
tube heat conductance between two parallel partially overlapping (10,10) CNTs (a) and the 
dependence of inter-tube conductance per unit length on the overlap length predicted in the 
simulations of 100 nm (blue squares) and 200 nm (red circles) nanotubes.  The results are 
reported in [A. N. Volkov, R. N. Salaway, and L. V. Zhigilei, J. Appl. Phys. 114, 104301, 2013]. 
 
 
(5) The mechanisms and scaling laws governing the heat transfer within the primary building 
blocks of the network CNT structures – close-packed bundles of CNTs - are studied theoretically 
and in mesoscopic simulations.  Based on the predictions of the MD simulations, a mesoscopic-
level model is developed and applied for investigation of heat transfer in bundles consisting of 
CNTs with infinitely large and finite intrinsic thermal conductivity.  The general scaling laws 
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predicting the quadratic dependence of the bundle conductivity on the length of individual CNTs 
in the case when the thermal transport is controlled by the inter-tube conductance and the 
independence of the CNT length in another limiting case when the intrinsic conductivity of 
CNTs plays the dominant role are derived.  An application of the scaling laws to bundles of 
single-walled (10,10) CNTs reveals that the transition from inter-tube-conductance-dominated to 
intrinsic-conductivity-dominated thermal transport in CNT bundles occurs in a practically 
important range of CNT length from ~20 nm to ~40 μm. 
 

(a) (b)  
Figure 5. Thermal conductivity of bundles of (10,10) CNTs calculated with analytical equations 
predicting the dependence of the bundle conductivity on the length of individual nanotubes, LT, 
(a). The results are shown for two values of thermal conductivities of individual CNTs: kT = 250 
Wm-1K-1 (red curves) and 1000 Wm-1K-1 (blue curves).  The results are reported in [A. N. 
Volkov, R. N. Salaway, and L. V. Zhigilei, J. Appl. Phys. 114, 104301, 2013].  A figure from 
this paper is used for cover art for the journal issue (b). 
 
 
(6) The mechanisms of material ejection in Matrix-Assisted Pulsed Laser Evaporation (MAPLE), 
an important technique used for deposition of thin polymer films and nanocomposite coatings, 
are investigated for targets composed of networks of nanotubes embedded into volatile solvent. 
The simulations demonstrate the ability of MAPLE technique to eject and transfer large 
structural elements that may be required for deposition of nanostructured films and coatings. The 
results are reported in [L. V. Zhigilei, A. N. Volkov, E. Leveugle, M. Tabetah, Appl. Phys. A 
105, 529, 2011] and illustrated in Fig. 6. 
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Figure 6. Snapshots of molecular configurations obtained in a large-scale simulation of the 
ejection of CNTs from a MAPLE target loaded with 17 wt.% of 150 nm long CNTs arranged 
into a network of bundles. The nanotubes are shown as red cylinders and the matrix molecules 
are shown as small gray dots. 
 

(7)  The mesoscopic model has been adopted for simulation of gas flow through CNT films. The 
results of the simulations suggest a moderate structural sensitivity of the gas diffusivity, with 
about 3–4.5 times lower values of self-diffusivity predicted for films with dispersed CNTs as 
compared to continuous network of CNT bundles (9% volume fraction of CNTs). [A. N. Volkov 
and L. V. Zhigilei, in Computational Fluid Dynamics 2010, A. Kuzmin (ed.), (Springer-Verlag, 
Berlin, Heidelberg, 2011), pp. 823-831]. 

 
Figure 7.  Snapshot from a simulation of the gas permeability in a film composed of CNTs (a), 
structure of the film used in the simulations (b), and the values of effective diffusivity vs. time in 
the gas permeation simulations (c). 
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(8)  [current work - unpublished results]  Computational methodology is developed for 
mesoscopic modeling of realistic structures of vertically aligned CNT (VACNT) structures.  The 
structural properties of simulated VACNT “forests,” e.g., Fig. 8, accurately reproduce those 
found in various experimentally grown VACNT materials.  Structural dependence of thermal and 
mechanical properties of VACNT materials is currently investigated. 

A series of simulations of nanoparticle impact on VACNT forests and CNT films are performed 
for a range of initial velocities and diameters of the projectiles.  The mechanisms of the impact 
energy dissipation and the main channels of the energy propagation from the impact site are 
investigated in the simulations. 

 
 

 
Figure 9.  Snapshots from a mesoscopic simulation of the high-velocity impact of a spherical 
projectile with a diameter of 100 nm, a density of 2.8 g/cm3 and an initial velocity of 1000 m/s 
on a free-standing 20-nm-thick CNT film. The film has a density of 0.2 g/cm3, and the CNTs in 
the film are arranged in a continuous network of bundles. The nanotubes are colored by their 
local kinetic energy, and the projectile is not shown in the snapshots. 

 
Figure 8. Structure of a CNT “forest” 
(vertically-aligned CNT array) with density 
0.02 g/cm3.  The model material is 
composed of 2 μm long (10,10) CNTs.  
The color shows the local thickness of 
bundles in the material. 
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