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1 SUMMARY 

In this document, we report the research performed and results achieved under the DARPA 
Active Authentication award “Investigating Cognitive Rhythms as a New Modality for 
Continuous Authentication.” Our research under this project focused on five main tasks: (1) 
defining and extracting cognitive rhythms (atomic, pausality, linguistic, and revision features) 
from users’ text production data; (2) determining the availability and discriminability of 
cognitive rhythm features for continuous authentication; (3) determining continuous 
authentication accuracies of cognitive rhythm features over a large population of users; (4) 
investigating the impact of non-zero effort forgery attacks against continuous authentication; and 
(5) prediction of a users’ cognitive load levels and demographic information. Our key 
achievements, findings, and results are listed below. 
 

(1) We designed and developed more than 45 types of atomic, pausality, linguistic, and 
revision feature modules that have enabled us to extract over 9000 individual features; 
 

(2) We performed availability and discriminability analysis of features. The features with 
highest availability were atomic level features (especially, key hold and digraph 
latencies). Authentication results confirm that these features, especially combination of 
hold and digraph latencies, provide high discriminability; 
 

(3) Among the tested features and matching algorithms, we achieved the highest verification 
(1-to-1 match) and identification (1-to-N match) accuracies with score-level fusion, 
which included fusing scaled Euclidean, scaled Manhattan, and Relative “R” distance 
verifiers operating on key hold and digraph latencies; 
 

(4) Our experiments with non-zero effort “snoop-forge-replay” attacks show that continuous 
verification systems relying on atomic features are susceptible to algorithmic forgeries 
created from snooped (or stolen) keystrokes.  
 

(5) Our experiments with “frog-boiling” attacks on keystroke based continuous verification 
system reveal that, while frog-boiling attacks are effective on fixed keystroke (password 
based) verification systems, they are not as effective on continuous keystroke based 
verification systems.  
 

(6) Our results show that cognitive rhythm features can be used to predict a user’s cognitive 
load level with varying degrees of accuracy, depending upon the granularity at which 
cognitive load level is predicted. Our experiments also demonstrate that cognitive rhythm 
features are good predictors of three demographic indicators: “sex”, “handedness”, and 
“Is user a native English speaker?” 

 
All project deliverables, including software codes; feature catalogs; monthly reports; and copies 
of published and unpublished publications have been submitted through the DARPA T-FIMS 
system. 
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2 INTRODUCTION 

2.1 Background and Motivation  

The activities performed under this grant combine work on keystroke dynamics for user 
authentication with stylometric analysis that has been successfully applied to authorship studies.   
One of the major accomplishments of this effort is the development and subsequent validation of 
software codes and methods that are capable of extracting keystroke dynamics, stylometric 
features, and novel production features from typing data, to capture the cognitive and non-
cognitive aspects of a user’s text production behavior.  Previous approaches to stylometry only 
operated on static text, and did not combine the linguistic information with language production 
(pausing, and revision). On the other hand, previous proposals in keystroke based authentication 
used a limited set of features. In comparison, we built users’ profiles to capture a broad spectrum 
of new atomic, pausality, linguistic, and revision traits exhibited when a user produces text. 
 
Another important difference between our effort and previous work in keystroke authentication 
is as follows: most studies in continuous authentication based on keystroke dynamics used data 
collected from users who typed text copied from a transcript. In a real authentication setting 
however, users typically compose free text (e.g., the case of an email) than copy from an existing 
document.  The former activity is likely to have a cognitive load different from that of the latter 
(due to the thought processes associated with text composition, production, and revision), and 
should, intuitively result in considerably different pause and revision behaviors for any given 
user. To ensure that our results depicted a realistic active authentication system, we opted against 
the “copy-typing” approach that has been adopted in the past studies. 
 

Under this project, we conducted a suite of authentication experiments on data collected from 
486 users who typed responses to a series of questions. Because users’ typing behavior may 
depend on the “amount” of cognition required to produce a linguistic unit, we used questions 
having a wide range of cognitive loads. For example, we included questions involving: 1) 
retrieval of knowledge from long-term memory; 2) explaining, summarizing and interpreting of 
facts; 3) applying, executing, and implementing; 4) organizing and breaking material into 
constituent parts; 5) critiquing and making judgment based on criteria, and, 6) generating, 
planning and putting elements together to make a whole.  
 
The methods and procedures for (1) data cleaning and processing; (2) availability and 
discriminability analysis, (3) authentication experiments, (4) non-zero effort attack experiments, 
and (5) experiments on prediction of cognitive load and demographic information, are detailed in 
Section 3 and the corresponding results and findings are detailed in Section 4. Next, we begin by 
providing details on performer sites and the project team. 

2.2 Performer Sites and Team   

2.2.1 Performer Sites 

1. New York Institute of Technology (NYIT), Old Westbury, New York (Lead) 
2. Louisiana Tech University, Ruston (LTU), Louisiana  
3. Queens College, The City University of New York (CUNY), Queens, New York 
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2.2.2 Team 

Investigators 

1. Kiran Balagani (PI), NYIT 
2. Vir Phoha (Co-PI), LTU 
3. Andrew Rosenberg (Co-PI), CUNY 

Student Researchers 

1. Patrick Koch, NYIT 
2. Sathya Govindarajan, NYIT 
3. Raviteja Pokala, NYIT 
4. Ming Xu, NYIT 
5. Zibo Wang, LTU 
6. Abdul Serwadda, LTU 
7. Shafaeat Hossain, LTU 
8. David Brizan, CUNY 
9. Adam Goodkind, CUNY 

2.2.3 Deliverables 

2.2.3.1 Software Codes and Monthly Reports 

As per the Schedule and Timeline in our Technical and Management Proposal (Volume 1), we 
uploaded software codes for feature extraction, authentication, and evaluation to the TFIMS 
system. We also uploaded all monthly reports to the TFIMS system. 

2.2.3.2 Publications 

Under this project, we published 1 archival journal paper, 1 magazine paper, and .1 peer-
reviewed workshop paper. Citations of published papers are: 
 

1. Khandaker A. Rahman, Kiran S. Balagani, Vir V. Phoha, “Snoop-Forge-Replay Attacks 
on Continuous Verification With Keystrokes,” IEEE Transactions on Information 
Forensics and Security, Vol.8, No.3, pp.528-541, March 2013. 
 

2. Abdul Serwadda, Zibo Wang, Patrick Koch, Sathya Govindarajan, Raviteja Pokala, 
Adam Goodkind, David Guy Brizan, Andrew Rosenberg, Vir Phoha, Kiran Balagani, 
“Scan-based Evaluation of Continuous Keystroke Authentication Systems,” IEEE IT 
Professional, Vol. 15, No. 20, pp. 20-23, July/August 2013. 
 

3. Md. S. Hossain, Kiran S. Balagani, Vir V. Phoha, “On Controlling Genuine Reject Rate 
in Multi-stage Biometric Verification.,” In Proceedings of the IEEE Computer Society 
CVPR Workshop on Biometrics, Portland, Oregon, June  2013.  
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Data Used in Active Authentication Experiments  

For evaluation, we used data collected from 1013 subjects at Louisiana Tech University during 
April 2012 through June 2012. For each user, data was collected in two separate sessions and no 
two sessions happen on the same day. A total of 589 subjects participated in both Session 1 and 
Session 2. A total of 416 subjects participated in Session 1 only. A total of 8 subjects participated 
in Session 2 only. The data collection effort was NOT financed by the DARPA Active 
Authentication award. The data collection effort was financed by Co-PI Dr. Vir Phoha’s various 
grants. 

3.1.1 Subject Population Characteristics 

 Gender: Male (569), female (427), information not available (17). 

 Ethnicity: White (473), African (119), African American (174), Asian (200), Hispanic 
(20), White/African (1), Creole (1), Multi (2), Cuban (1), Aryan (1), Native American 
(1), Native (1), Indian (1), French (1), Guyanese (1), Other (40) 

 Age: Minimum (17), Maximum (56), Average (21.608) 

Majority of the subjects were college students, but also faculty and staff participated in the data 
collection activity. The counts are indicated in parenthesis.  

3.1.2 Data Collection Procedure 

Each participant composed and typed answers to 10 to 13 questions per session (see Appendix 
for a list of questions). Two different sets of questions were used for Session 1 and Session 2. 
Each question was chosen such that it belonged to one of the six cognitive load levels defined in 
[1]. Table 1 gives example questions and their corresponding cognitive load levels. For each 
question, the participant was asked to type an answer containing at least 300 characters. So, each 
participant produced a total of at least 3000 characters of text. A participant’s typing session 
ended after he/she typed answers to all questions. The participants took approximately between 
45 minutes and 2 hours to answers all questions. While typing the answers, participants were 
allowed to revise text by using Delete/Backspace keys. A keystroke sensor recorded the key code 
and timestamp of each key pressed and released. In addition, we collected the following data 
about a participant: a) typing experience, b) age, c) gender, d) right- or left-handed, e) native 
language, f) business language, and g) average number of hours a participant typed in a day.  
 
Data collection apparatus consisted of a Dell desktop equipped with Windows XP OS, a 
QWERTY keyboard, and a mouse. We used GUI based software written in C# to collect data. 
The software provided text boxes for typing answers and transition buttons to switch between 
questions. A keylogger with 15.625 milliseconds clock resolution was used to record text and 
keystroke event timestamps. 
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Table 1. Cognitive Load Levels of Questions 

Cognitive 
Load Level 

Description Example Questions 

1 
Involves retrieving knowledge 
from long-term memory 

What is your favorite vacation spot? (1–Recall)    
Why do you like to visit there? (2—Explain) 

2 
Involves explaining, 
summarizing, and (or) 
interpreting 

3 
Involves applying, executing, 
and (or) implementing 

Discuss step-by-step instructions for 
accomplishing a task (e.g., mechanical tasks 
such as cooking a specific dish, building or 
repairing something, etc.). 

4 
Involves organizing and (or) 
breaking material into 
constituent parts 

Give step-by-step driving directions to your 
favorite place in/around Ruston, from Louisiana 
Tech campus. 

5 
Involves critiquing and (or) 
making judgments based on 
criteria 

What email do you use (e.g., Yahoo, Hotmail, 
Gmail, Webmail, etc.)? What improvements 
would you like to see in them? 

6 
Involves generating, planning, 
and (or) putting elements to 
together to make a whole 

If you were to draw a picture of any type of 
landscape you wanted, what objects would you 
include in it? How would you go about drawing 
the landscape? 

3.1.3 Data Cleaning 

 

Figure 1. Subject Population Sizes Before and After Data Cleaning 

Figure 1 shows the number of subjects finalized for our experiments after thoroughly inspecting 
the subjects’ data for errors. We programmatically and manually inspected each subject’s data 
for errors. Observed data errors primarily fell into five categories: (1) a subject with missing final 
text (software error), (2) a subject retyping questions instead of answers, (2) a subject typing 
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gibberish or irrelevant text in one or more answers, (3) a subject repeating answers of previous 
questions, and (5) a subject for whom one or more answers were missing. 
 
 

 

Figure 2. Number of Session 1 Subjects with Data Errors 

Figure 2 gives the number (in y-axis) of subjects who participated in Session 1 and their 
corresponding errors (in x-axis). These subjects were not used in our experiments.  

  

 

Figure 3. Number of Subjects who Participated in Sessions 1 and 2 with Data Errors 

Figure 3 gives the number (in y-axis) of subjects who participated in Session 1 and Session 2 and 
their corresponding errors (in x-axis). These subjects were not used in our experiments.  
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3.2 Cognitive Rhythm Features 

One of the most important outcomes of this effort was the development of software codes to 
extract atomic, pausality, and linguistic features from the typing data. The feature engineering 
effort resulted in a set of over 45 types of linguistically and cognitively motivated features, 
which resulted in more than 9000 individual features. The features describe a wide range of 
qualities related to the production of language capturing both physical and cognitive qualities.  
This effort represents a novel way to analyze information in keystroke data. The features were 
developed in a common codebase framework used by the performer sites. This common 
codebase enabled close collaboration between the sites. The extracted features are primarily 
divided into four types: (1) atomic, (2) pausality, (3) linguistic, and (4) revision. Below we 
briefly describe the four types of features.   
 

Table 2. Atomic Features Extracted from the Typing Data 

Feature Description 

Key hold latencies Latency between press and release of a key 

Key interval latencies Latency between release of a key and the press of next key  

Digraph latencies 
Duration between press of the key and press of the second key in a digraph 
(“press-release-press-release”) sequence 

Slur digraph latencies 
Duration between press of the first key and press of the final key in the 
trigraph (anything other than press-release-press-release-press-release) 
sequence 

Slur keys intervals 
Latency between release of a key and the press of next key (here, press occurs 
before release)  

Trigraph durations 
Duration between press of the key and press of the final key in a trigraph 
(press-release-press-release-press-release) sequence 

Slur trigraphs 
Duration between press of the first key and press of the final key in the 
trigraph (anything other than press-release-press-release-press-release) 
sequence 

Group keystrokes by 
"touch typing zone" 

Touch typing designates a specific digit for each keyboard key. When looking 
at holds and intervals, replace the specific keystroke with the "zone" it is in.  
This will increase coverage.   

 

Table 3. Pausality Features Extracted from the Typing Data 

Feature Description 

Pause after long words Calculates the pause length after words with more than 6 letters 

Duration between 
pauses 

Calculates the duration in milliseconds between successive pauses (> 250ms) 

Keystrokes between Calculates the duration in keystrokes between successive pauses (>250ms) 
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pauses 
Pause before period Counts the number of pauses before a period 
Pause after period Counts the number of pauses after a period 
Pause before comma Counts the number of pauses before a comma 
Pause after comma Counts the number of pauses after a comma 

Words between pauses 
Counts the number of words begun between each pause; returns an array of 
counts 

Characters between 
sentence beginning 
and first pause 

Measures the number of characters between the beginning of the sentence and 
the first pause 

Words between 
sentence beginning 
and first pause 

Measures the number of words between the beginning of the sentence and the 
first pause 

Pauses before modals Counts the number of pauses before a modal 

Pauses before nouns Counts the number of pauses before a noun 

Pauses before verbs Counts the number of pauses before a verb 

Pauses before 
modifiers 

Counts the number of pauses before a modifier 

PP bursts 
Measure words, characters, time, major/minor delimiters, whitespace, word 
length etc. within pauses. Note: This is a refinement of what is done in 
“Duration Between Pauses”. 

 

We list the atomic and pausality features extracted under this project in Table 2 and Table 3. 
Most of the feature descriptions are self-explanatory. However, below we briefly describe the 
features for completeness.  
 
Atomic features (Table 2) constitute key hold, key interval, digraph, and trigraph latencies and 
their “slur” counterparts in which the “key press–key release” sequences are reversed. We also 
extract timing between keys based on their keyboard position. Keys are grouped by row and 
canonical finger that would be used in “proper” touch-typing. These hold and intervals are 
normalized per user to measure, for example, if a typist is faster with keys on the right or left 
side of the keyboard.   
 
To measure users’ behavior as it relates to pauses, we developed a number of features to 
measure what a user does between two pauses, so called “pause bursts” (Table 3). We measure 
the number of words and characters between pauses. We also measure the number of words and 
characters used between the beginning of a sentence and the sentence’s first pause. Further, we 
also measure the number of correctly spelled or misspelled words in each sentence and the 
pauses before or after each occurrence. 
 
We measure typing speed in two ways: we look at the speed over the whole document and, 
following [2], the intra-word typing speed. We also look at timing ratios: for example, does a 
user take twice as long to produce a 2-letter word as she does to produce a 1-letter word? 
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To capture typing timing, we extract the traditional keystroke dynamic features of key hold and 
key interval. However, we extend these such that they are more reflective of the linguistic 
properties of the words, or characters that are being typed.  These features can be viewed as an 
expansion of character-type identification. This measures user transition times between 
categories, e.g. a vowel to a consonant, or a vowel to another vowel.   
 
We also extract the pausing behavior around punctuation, to measure how long a typist pauses 
before or after phrase-marking punctuation (e.g., periods, commas, colons).   
 

Table 4. Linguistic Features Extracted from the Typing Data 

Feature Description 

Number of sentences per 
answer 

Breaks answer into complete sentences; method can discriminate 
between, e.g. "Mr.", and sentence-ending punctuation 

Number of characters per 
answer 

Calculates number of printable characters 

Number of words per answer Calculates number of words 

Average word lengths (in 
chars) 

Calculates average word length, in alphanumeric characters, per 
sentence 

Sentence length, in words, 
per answer 

Calculate average sentence length in words 

Sentence length, in 
characters, per answer 

Calculate average sentence length in characters 

Type-token ratio 
Calculates number of unique words divided by total number of 
words 

Moving-average type-token 
ratio (MATTR) 

Calculates type-token ratio for moving window of text; helps to 
control for length of text 

Small-to-large window 
MATTR ratio 

Calculates a ratio between a small window and large window 
MATTR; high ratios are indicative of internal repetition 

Lexical Density 
Ratio of lexical words (nouns, adverbs, adjectives, etc.) to total 
words 

Nouns Per Sentence Counts the number of nouns per answer 

Verbs Per Sentence Counts the  number of verbs per answer 

Modifiers Per Sentence 
Counts the number of modifiers, e.g. adverbs and adjectives, per 
answer 

Modals Per Verb 
For each verb occurrence, counts how often it is qualified by a 
modal, e.g could, should, etc. 

Named Entity Rate 
Measures the average number of Named Entities (recognizable 
people, places and things) per sentence 

Semantic Graph Edge Count Counts the edges in a semantic graph 
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N-letter word containing K 
backspaces 

Counts the no. of backspaces in N-letter words.(N = 1 - 21) 

Average TF*IDF 
Calculates tf*idf (term frequency * inverse document frequency), 
and then averages all scores across an answer 

 

We developed code modules to count linguistic qualities present in an answer (Table 4). We 
count words, sentences, characters, keystrokes, syntactic phrases and semantic units. The module 
to count sentences takes advantage of the open source platform OpenNLP, who’s Sentence 
Terminator Detection API can differentiate between sentence-ending punctuation, and 
punctuation such as the period in “Mr. Smith.” We also built modules to count the number of 
printable characters, as well as the number of words. We then built a number of features which 
measure average word length and average sentence length (in both words and characters). 

We then designed a number of features to measure lexical diversity, and the number of different 
words used in an answer. We designed a feature to measure the type-token ratio, or the number 
of unique words divided by the total number of words. A similar feature was designed to 
measure the different number of part-of-speech tags divided by total words, a feature commonly 
known as “lexical density”.  

Because type-token ratio, though, is sensitive to the size of a document, i.e. it tends to get lower 
as a document gets longer [3], we also implemented a feature to measure Moving-Average Type-
Token Ratio (MATTR). This metric is not sensitive to length, at all [3]. When measuring 
MATTR, it is important to pick an accurate window size for the moving average. Also, 
comparing two window sizes, a small one and a large one, provides information about internal 
repetition within a text [3]. We implemented a feature to measure these window ratios on user’s 
answers.  

We also measured the Inverse Document Frequency (IDF) of each word in an answer. IDF 
measures the uniqueness of each word, as it is expected that users’ typing will be different for 
highly unique words, versus common words.  

To measure lexical complexity, we also examine the ratio of 1-letter, 2-letter, 3-letter, etc. words 
to the overall number of words.  Extending this idea down to the character level, we extract 
character-type ratios. We check if a character is of a specific type, e.g., alphabetical, uppercase, 
etc. Once the totals of each character-type are compiled, a ratio is output. 

Because a user’s typing will also depend on the parts-of-speech used, we developed features 
which can measure the number of nouns, verbs, modifiers, and modal verbs per sentence. 
Further, users often uniquely change typing patterns when typing highly recognizable names and 
places, called Named Entities, e.g. George Washington or Mississippi. As such, we developed a 
module which can pick out, and measure, common NEs, using Stanford’s Named Entity 
Recognizer. 

We also developed features to measure the basic size and shape of a semantic graph. We 
measure both the number of edges in the graph as well as the number of edges per word. We 
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measured the average depth of a semantic graph. Further semantic graph features will be 
developed to take advantage of the rich data available in a sentence’s semantic graph. 

We expect users to behave differently when typing different types of punctuation. As such, we 
developed features to measure the average pause length both before and after common types of 
punctuation, such as periods and commas. Further, we also measure the average length of a 
pause both before and after each part-of-speech. 

Table 5. Revision Features Extracted from the Typing Data 

Features Description 

On leading edge features Measures the time the user is writing new words 

Away from leading edge features Measure the time the user has spent revising. 

 

Our revision features (Table 5) measure how a subject behaves when they are “in a revision,” or 
not at the leading edge of their typing session. We currently count the time spent in revision, and 
the number of characters produced in a revision. These are reported as both absolute figures, as 
well ratios of overall figures. 
 
We also identify pause and revision behavior before and after misspelled words. Recognizing 
misspelling in static text is trivial.  Words like “teh” and “becuase” and “tjerefpre” do not exist in 
a dictionary of English words and can be considered misspelled.  However, misspellings are 
often corrected by a user before the answer is completed. Identifying misspelling in keystroke 
data requires us to recognize that the sequence “H, O, W, V, *BKSP*, E, V, E, R” includes a 
misspelling. The approach we take is to recognize that “HOWV” is not a valid prefix to any 
English word.  Regardless of what the typist does after typing ‘V’ in this sequence, we know that 
this is a misspelled word. To accomplish this we use a ‘trie’ data structure. This is a prefix tree 
which allows for rapid “O(1)” querying of whether a keystroke indicates a misspelling or not. 
Using this information we calculate the revision rate, typing speed, and pause behavior relative 
to misspelled versus correctly spelled words. We also measure how frequently words are 
misspelled. 
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3.3 Availability and Discriminability Analysis  

Having discovered over 9000 features, it is important to select important features out of this huge 
set that represent most of the data and that are highly reliable for achieving good discrimination.  

Note: In Table 2, Table 3, Table 4, and Table 5 we only specify different types of features 
extracted under this effort. However, the actual number of individual features is over 9000. For 
example, we extracted 97 different key hold latencies, over 8000 different key interval and 
digraph latencies, and so on. 

We measure availability using Hit Ratio (HR) and discriminability using Symmetric Uncertainty 
(SU) measure [4]. Hit Ratio is defined as follows: 

݅ݐܴܽ	ݐ݅ܪ  ൌ
# ݂ ݏ݊ܽܿݏ ݄ݐ݅ݓ ݁ݎݑݐ݂ܽ݁ ܨ

݈ܽݐܶ # ݂ ݏ݊ܽܿݏ
 (1)

For a specified scan length (or detection time), hit ratio of a feature F is the measure of number 
of recorded values of that feature among the total number of recordings or scans.  

Symmetric Uncertainty is defined as follows: 

ݕݐ݅݊݅ܽݐݎܷ݁ܿ݊	ܿ݅ݎݐ݁݉݉ݕܵ  ൌ
2 ൈ ;ݎ݁ݏሺܷܫ ሻ݁ݎݑݐܽ݁ܨ
ሻݎ݁ݏሺܷܪ  ሻ݁ݎݑݐܽ݁ܨሺܪ

 (2)

Symmetric Uncertainty is a measure of goodness of features for classification.  
 
We performed discriminability and availability analysis on the data from 349 users who 
participated in the Session 1 only. Additionally, for the purpose of discriminability and 
availability analysis, we set the scan duration of each authentication attempt to 1, 5, and 10 
minutes. 
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3.4 Authentication Methods and Experiment Design 

Here, we discuss: (1) the authentication methods used in our project; (2) how we designed the 
verification (1-to-1 matching) and identification (1-to-N matching) experiments; and (3) the 
definitions of error metrics used to report our results. 

3.4.1 Authentication Methods 

3.4.1.1 Scaled Manhattan Distance Authenticator 

In this authenticator, the distance between template and a testing attempt is calculated as: 

 Scaled	Manhattan Distance ൌ
1
ܯ


ݔ| െ |ݕ

௫ߪ

ெ

ୀଵ

൩, (3)

where ܯ is number of matched features, ݔ is the ݅௧ feature in the template and  ݕ is the 
corresponding feature in the testing attempt. ߪ௫ is the standard deviation of ݔ. 

3.4.1.2 Scaled Euclidean Distance Authenticator 

In this authenticator, the distance between template and a testing attempt is calculated as: 

 Scaled	Euclidean Distance ൌ
1
ܯ
ඩ

ሺݔ െ ሻଶݕ

௫ߪ

ெ

ୀଵ

, (4)

where ܯ is number of matched features, ݔ is the ݅௧ feature in the template and ݕ is the 
corresponding feature in the testing attempt. ߪ௫ is the standard deviation of ݔ. 

3.4.1.3 Relative Distance Measure Authenticator 

“Relative” measure or “R” measure was proposed by [5]. It measures the degree of disorder 
between two arrays of same length. It is similar to Manhattan distance, except that the distance is 
calculated based on the relative positions of same elements or features in the two arrays with 
respect to the maximum disorder of the arrays. The maximum disorder occurs when two arrays 
have elements in reverse order. The maximum disorder of an array ܣ is computed as: 

ሻܦܯሺ	ݎ݁݀ݎݏ݅ܦ	݉ݑ݉݅ݔܽܯ  ൌ

ە
۔

ۓ
ଶ|ܣ|

2
݂݅ |ܣ| ݏ݅ ݊݁ݒ݁

ଶ|ܣ| െ 1
2

݂݅ |ܣ| ݏ݅ ݀݀
 (5)

where |ܣ| represents the length of the array. Finally we compute R-Measure as follows: 
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 R	Distance ൌ
1
ܦܯ

หܲݏ௫ሺ ݂ሻ െ ௬ሺݏܲ ݂ሻห,

ெ

ୀଵ

 (6)

where ܲݏ௫ሺ ݂ሻ and ܲݏ௬ሺ ݂ሻ are positions of feature ݂ in sorted feature instance arrays of 
template ݔ and test ܦܯ .ݕ is the maximum disorder between ݔ and ݕ. 

3.4.1.4 Score-level Fusion with Weighted Sum Rule 

We implemented score-level fusion with weighted-sum rule. Let ሼܣଵ, ⋯,ଶܣ ,  ሽ denote iܣ
individual authentication algorithms. Let ൛ܨ ଵܵ, ⋯,ଶܵܨ , ܨ ܵൟ denote j different feature sets from 
the template. For example, ܨ ଵܵ can be a set of pause features, ܵܨଶ a set of revision features, ܵܨଷ 
a set of key press latencies, and so on. Let ൛ሺܣଵ, ܨ ଵܵሻ, ሺܣଶ, ⋯,ଶሻܵܨ , ൫ܣ, ܨ ܵ൯ൟ denote a set of 
authenticator feature-set pairs. For example, ൫ܣ	,ܨ ܵ൯ represents an authenticator ܣ using 
features in ܨ ܵ to generate authentication scores. Let ଵܵଵ, ଵܵଶ, …	, ܵ	represent the output scores 
generated by ሺܣଵ, ܨ ଵܵሻ, ሺܣଶ, ,ଶሻܵܨ …	൫ܣ, ܨ ܵ൯	respectively. In weighted sum fusion, the fused 
score ܵ is computed as, ߱ଵଵ ଵܵଵ  ߱ଵଶ ଵܵଶ  ⋯ ߱ ܵ, where ൛߱ଵଵ, ߱ଵଶ,⋯ , ߱ൟ are weights 
subject to the constraint ߱ଵଵ  ߱ଵଶ  ⋯ ߱ ൌ 1. Though the rule is simple, it has been shown 
to be surprisingly effective in biometric authentication problems and is widely considered (see 
[6]-[9]) as a benchmark for evaluating fusion algorithms. 

3.4.2 Verification Experiment Design 

For verification experiments, we used 486 subjects who participated in Session 1 and Session 2 
during the data collection. Session 1 typing data was used for training (to create user templates) 
and Session 2 data used was used to create testing attempts. We experimented with testing 
attempts of different scan lengths, ranging between 2 and 10 minutes. (In this document, scan 
length and detection time have the same meaning.)  
 
To create genuine scores, a template of the ith user was matched with test attempts of the same ith 
user. To create zero-effort impostor scores, a template of the ith user was matched with test 
attempts of the remaining 485 users other than the ith user.  

3.4.3 Identification Experiments 

For identification experiments, we used 300 subjects who participated in Session 1 to create a 
gallery of registered subjects. To create the “registered-member” probe set, we used Session 2 
data from 186 users (-because these users are present in the gallery, they are “registered-
members”). To create the “non-registered member” probe set, we used Session 2 data from 186 
non-member users (-because these users are not in the gallery, they are “non-registered 
members”). We experimented with testing attempts of different scan lengths, ranging between 5 
minutes and 10 minutes.  

3.4.4 Authentication Metrics 

Here, we define the authentication metrics used to quantify the results of our experiments. 
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3.4.4.1 Verification Metrics 

EER (Equal Error Rate): The crossover point where the false accept rate (FAR) (also called 
impostor pass rate) curve meets with the false reject rate (FRR) curve. We calculated FAR, FRR, 
and EER for the entire population (i.e., scores from all subjects), NOT for individual subjects. 

3.4.4.2 Identification Metrics 

 

FNIR (False Negative Identification Rate): 

ܴܫܰܨ  ൌ
݀݁ݎ݁ݐݏ݅݃݁ݎ	݂	ݎܾ݁݉ݑܰ ݎ݁ݏݑ ݏݐ݉݁ݐݐܽ ݀݁ݐ݆ܿ݁݁ݎ ݕܾ ݉݁ݐݏݕݏ	݄݁ݐ

݀݁ݎ݁ݐݏ݅݃݁ݎ	݂	ݎܾ݁݉ݑ݊	݈ܽݐܶ ݎ݁ݏݑ ݏݐ݉݁ݐݐܽ ݉݁ݐݏݕݏ	݄݁ݐ	ݐ	݀݁ݐ݊݁ݏ݁ݎ
 (7)

Explanation: “Registered-user attempts rejected by the system” means the proportion of probes 
from the registered-member set that was erroneously rejected by the identification system. A 
probe is rejected if the correct user has not appeared among the “top 5” best scores. This is also 
called as “Rank 5” identification.   
 

FPIR (False Positive Identification Rate): 

ܴܫܲܨ  ൌ
݀݁ݎ݁ݐݏ݅݃݁ݎ݊ݑ	݂	ݎܾ݁݉ݑܰ ݎ݁ݏݑ ݏݐ݉݁ݐݐܽ ݀݁ݐ݁ܿܿܽ ݉݁ݐݏݕݏ	݄݁ݐ	ݕܾ

݀݁ݎ݁ݐݏ݅݃݁ݎ݊ݑ	݂	ݎܾ݁݉ݑ݊	݈ܽݐܶ ݎ݁ݏݑ ݏݐ݉݁ݐݐܽ ݉݁ݐݏݕݏ	݄݁ݐ	ݐ	݀݁ݐ݊݁ݏ݁ݎ
(8)

Explanation: “Unregistered-user attempts accepted by the system” means the number of probes 
from the nonregistered-member set that was erroneously accepted by the identification system. If 
any probe from the nonregistered-member set returns a non-zero number of candidate users, then 
we count it as an error. 

3.4.4.3 Detection Time (Scan Time or Scan Length) 

The verification and identification errors were reported for detection times between 2 and 10 
minutes. We used detection time, which is the time period the system waits to collect the 
biometric test (authentication) signal for subsequent authentication. In this document, detection 
time, scan length, or scan time, all have the same meaning. 
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3.5 Snoop-Forge-Replay Attack Procedure  

A detailed description of the snoop-forge-replay attack, attack parameters and configurations, 
methods, and results can be found in our published journal paper [10]. Here, we briefly discuss 
the snoop-forge-replay attacks for completeness. 
 
We developed a new attack called the snoop-forge-replay attack on keystroke based continuous 
verification systems. The attack is not specific to any particular keystroke based continuous 
verification method or system. It can be launched with easily available keyloggers and APIs for 
keystroke synthesis. Our results from 2640 experiments show that: (1) the snoop-forge-replay 
attacks achieve alarmingly high error rates compared to zero-effort impostor attacks, which have 
been the de facto standard for evaluating keystroke based continuous verification systems; (2) 
four state-of-the-art verification methods, three types of keystroke latencies, and eleven 
matching-pair settings (-a key parameter in continuous verification with keystrokes) that we 
examined were susceptible to the attack; (3) the attack is effective even when as low as 20 to 100 
keystrokes were snooped to create forgeries. In light of our results, we question the security 
offered by current keystroke based continuous verification systems.  

3.5.1 Snoop-Forge-Replay Attack Flowchart and Description 

Here, we briefly discuss the procedure for launching a snoop forge replay attack. 
 

 
Figure 4. Snoop-Forge-Replay Attack Flowchart. Step 1 snoops keystroke timings. Steps 
(2)-(8) create and replay a forged verification attempt. 
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Figure 4 shows the flowchart of the attack. The attack is executed in three steps: 1) snoop (steal) 
a victim user's keystroke timing information using a keylogger, 2) forge a typing sample using 
the keystroke timing information stolen from the victim user, and 3) replay the forged typing 
sample in such a way that the continuous verification system thinks that it is the victim user who 
is typing. The goal of the attack is to submit forged typing samples to the verifier so that an 
attacker can access the computer without being detected. Below, we explain the steps in detail. 
 
Snoop: In this step, the attacker steals a victim's keystroke timing information. For example, if 
the victim typed the text “this is snooped text”, the attacker records a series of timestamps 
corresponding to the presses and releases of the keys in the text. An attacker can snoop a victim's 
keystroke timing information using a hardware keylogger or a software keylogger. Software 
keyloggers have become the most popular forms of keyloggers because they can be easily 
developed, are easily available, and can be deployed from remote locations onto a victim's 
machine (e.g., using trojans and spyware). 
 
Forge: In this step, we create a keystroke forgery of a victim user Ui at sample-level. A forgery 
has two parts: 1) “dummy” text and 2) a series of latencies between the press and release of 
letters in the dummy text. For example, a forgery of Ui can have the dummy text “this is dummy 
text”. The key hold and interval values for replay this text come from the snooped keystroke 
latencies of Ui. 
 
Preparing “dummy text” file: The “dummy text” file supplies text to create a forgery. 
Technically, the file can contain any text, ranging from multiple repetitions of a single letter 
(e.g., aaa …) to a large text corpus representative of English language usage (e.g., Corpus of 
Contemporary American English (COCA) [www.americancorpus.org]). For our experiments, we 
created a dummy text file from with 497,184 words from COCA [10]. In addition, we added text 
from 20 Wikipedia documents.  
 
Replay Using Keystroke Emulator: We developed a keystroke emulator that injects synthetic 
key press and release events. We programmed the emulator in Visual C++ and used SendInput 
API. The goal of the emulator is to use the snooped latencies to inject key press and release 
events for the dummy text in a way that the verifier thinks that it is the victim Ui who is typing 
the dummy text. An emulation algorithm gives the steps to forge and replay a victim user Ui's 
typing pattern. The input to the algorithm is a dummy text file and a series of key hold and 
interval latencies computed from Ui's snooped keystrokes.  

3.5.2 A Brief Description of Experiments 

We conducted 2640 attack experiments with 24 attack configurations, 10 individual and fusion 
verifier configurations, 11 matching-pair settings (24 x 10 x 11 = 2640). We analyzed the effect 
of four attack parameters: (1) number of snooped keystrokes (we experimented with 20, 50, 100, 
200, 600, and 1200 snooped keystrokes; (2) filtering outliers in the snooped keystrokes (we 
experimented with and without filtering outliers; (3) Gaussian perturbation of snooped latencies 
(we experimented with and without perturbing latencies), and (4) frequency of occurrence of 
digraphs in snooped text (we experimented with 1, 2, and 3 occurrences of digraphs). 
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To generate sufficient number of snoop-forge-replay attacks for evaluation, we emulated the 
typing activity of a victim user for 24 hours (i.e., we executed a keystroke emulation program for 
24 hours to generate sufficient number of forgeries for each victim). Because we experimented 
with 150 victim users and 24 attack configurations, we would have to run the emulator for 150 
(victims) x 24 (attack configurations) x 24 hours = 3600 days (or approximately 10 years). To 
perform emulation at this scale, we set up a virtualization environment with 150 virtual 
machines. We dedicated one virtual machine for emulating a victim. For each attack 
configuration, we ran 150 emulators parallely on 150 virtual machines and reduced the emulation 
time to just 24 days. By parallely running 150 virtual machines, in 24 hours, we forged 
thousands of attacks against 150 users. 
 

3.6 Frog-boiling Attack Procedure 

Where keystroke dynamics is used as a second layer of defense to a short password string, it was 
recently shown that a systematic template morphing attack (i.e., frog-boiling attack [12]) can 
significantly degrade the performance of a keystroke authentication system. We evaluated the 
impact of a similar attack on continuous keystroke authentication.  

3.6.1 Assumptions and Mechanisms 

We simulated the frog-boiling attack based on the following assumptions: 

1. An attacker is able to snoop on a user’s typing session with the aid of a key logger. 

2. The keystroke updating system uses the sliding window approach [13] to update user 
templates after each successful authentication attempt. In this particular updating 
approach, the oldest typing sample is replaced by the latest typing sample whenever 
authentication is carried out successfully. 

3. While the frog-boiling attack is drifts a user template, the genuine user is still attempting 
to use the system. Hence as the attack drifts the user’s template away from its true form, 
the user’s successful authentication attempts drift it back towards its true form. The 
overall drift depends on the rate at which the user/attacker logs onto the system.    

The mechanism of the frog-boiling attack in continuous keystroke authentication is similar to the 
design in fixed text authentication (see [12]). A frog-boiling attacker intends to drift a user 
template S towards a destination template D, where D represents the behavior from a population 
(i.e. population template). This drift is carried out in several short steps (N steps in total), each of 
which is governed by the equation:  

ᇱܨ  ൌ ൜
ݔ ∙ ሺܨ  ሺ݅ െ 1ሻ ∙ Δሻ, 1  ݅  ܰ
ݔ ∙ ሺܨ  ܰ ∙ ∆ሻ, ݅  ܰ

 (9)

The above equation generalizes the feature vector F', used to create the ith frog-boiling 
authentication attempt. F represents the feature vector formulated from the victim’s snooped 
typing samples. ∆	ൌ ሺܦ െ  ሻ/ܰ is the drift size of each step of frog-boiling attack. The noiseܨ
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term x is modeled as a Gaussian random variable given by a mean 1 and standard deviation σ/μ, 
where μ and σ are the mean and standard deviation of the specified feature in snooped data. 

3.6.2 Experiment Design 

We used the first session of the data for building user templates. Session 2 was to make the 
baseline test. Phase 2 data (-collected during October-November 2012 in exactly the same 
manner as the dataset used in authentication experiments-) was used to create genuine attempts. 
User templates were created using 107 most frequent key hold and interval features as observed 
in the training set. We chose 100 users whose typing sessions in the training set lasted at least 20 
minutes. The user template size was fixed to 20 minutes for each user. Authentication attempts 
were made based on 1-minute segments of the full 20-minute block. If an attempt passes the 
authentication, it replaces the oldest 1-minute scan in the template. 
 
The attacker snoops 5 minutes of keystroke typing from a genuine user (see Assumption 1). This 
5-minute sample is then used as a basis to morph the victim’s template in several short steps 
(Recall the vector F in the above equation). The noise term x is modeled as a Gaussian random 
variable having a mean and standard deviation of the specified feature in snooped data. 
 
In one set of experiments, we assume that both the attack and genuine samples arrive into the 
system according to a Poisson process with rates ߣ and ீߣ respectively. In the other set, we 
assume that both the attack and genuine attempts arrive into the system at times following a 
uniform distribution. For either distribution, the ratio of the number of genuine (legitimate) to 
attack attempts is 1:1, 1:2, and 2:1 in our experiments. 

3.7 Prediction of Cognitive Loads and Demographic Information 

Our goal in this task was to (1) predict cognitive load (Level 1 through Level 6) of each typing 
instance, given the atomic, pausality, linguistic, and revision features and (2) to predict 
demographic information (handedness, gender, native English speaker or not). To predict 
cognitive loads and demographic information, we use the classifiers available in WEKA machine 
learning toolkit. Users were divided into train and test groups. No user was present in both the 
train and test set.  Moreover, there are two sets of prompts at each cognitive load level. No 
prompt used in the training data was used in the test data. This guarantees that all of the 
experiments described in this section are user-independent and prompt-independent.   
 
We predicted cognitive loads at a variety of different levels. The prompts were labeled from 1 
through 6, where 1 asks a user to “Retrieve knowledge from long-term memory” and 6 asks a 
user to “Generate, plan and/or put elements together”. The specific prompts (questions) are in 
Appendix.  We perform a 6-way classification; we also group 1&2, 3&4, and 5&6 leading to a 
courser, 3-way classification.  Finally, we explore 3 groupings of binary “high” vs. “low” 
classifications, 1 vs. 6, 1&2 vs. 5&6 and 1&2&3 vs. 4&5&6.  
 
The classification approaches for handedness (Right vs. Left), gender (Male vs. Female) and 
native language (English vs. Non-English) were all binary classifications based on self-reports 
by the users. In these experiments, the number of users occasionally varies. Some users did not 
respond to one or more of these questions. In these cases their answer was omitted from analysis. 
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In each experiment, we explored Naïve Bayes, AdaBoost, J48, and SVM classifiers.  All 
experimental results were reported only on the test data. 
 
While the cognitive load data is approximately balanced by virtue of the data collection, the 
demographic indicators have a significant amount of skew.  For example, ~90% of subjects are 
right handed. To encourage prediction of minority classes (i.e. left-handed, non-native and 
female) we used undersampling to generate a class balanced training data set.  This involves 
discarding enough majority class data points such that the majority and minority classes are 
equally represented.   
 
Note: We do not modify this distribution in the test data. We believe that this demographic skew 
is approximately representative of the world in which a deployed system would exist.  We do not 
artificially modify the test data to make the classification easier, but rather do our best to modify 
the training data to get the most robust classifier possible. 

3.8 Other Research Off-shoots of the Project 

As a part of this project, we also investigated theoretical properties of biometric verification with 
reject option and validated them with NIST BSSR1 multimodal fusion dataset. We also 
investigated privacy-preserving protocols for keystroke based continuous authentication. 
Because these topics are off-shoots of the research performed under this project and are not the 
primary focus, we do not include further details.   
4 RESULTS AND DISCUSSIONS 

4.1 Results of Availability and Discriminability Analysis 

In this section, we report the availability and discriminability of over 9000 key hold, interval 
(also same as digraph), trigraph features and there slur counterparts using hit ratio and symmetric 
uncertainty measures. 
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Figure 5. Hit Ratio (Blue Bars) and Symmetric Uncertainty (Red Bars) of Features in 1-
minute Scans. There are 28 Key Hold and Interval Features out of Over 9000 Features 
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Figure 6. Comparison of Hit ratios of Key Hold Features for 1-, 5- and 10-minute Scans. 28 Key Hold and Interval Features in 
1-minute Scans were Available 5 or More Times per User. Similarly, in 5-minute scans, the Number was 4 Times or More per 
User. In 10-minute scans, 28 Key hold and Interval Features were Available 2 or More Times per User 
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Figure 7. Hit Ratio and Symmetric Uncertainty of Key Hold, Key Interval, and Trigraph Features in 5-minute Scans
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Figure 8. Hit Ratio and Symmetric Uncertainty for Slur Features in 5-minute Scan. Overall, 15 Slur Features were Observed 
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Figure 9. Hit Ratios of Features in 32 Key Hold, 160 Key Interval, and 6 Trigraph Features in 10-minute Scans 
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Figure 10. Hit Ratios of 23 Key Interval and 10 Trigraph Slur Features in 10-minute Scans
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Discussion: 

Figure 5 shows that for 1-minute scans, 28 key hold and key interval features were available. 
Overall, the key hold features had higher hit ratios and symmetric uncertainty than key interval 
features. However, not all key hold latencies with high hit ratio had high symmetric uncertainty, 
indicating that a high feature with high availability may not offer much discriminability. 
 
In Figure 6, we compare the availability of features in 1-, 5-, and 10-minute scans. The figure 
shows that key hold and key interval features, overall, have higher availability than trigraph and 
“slur” features. For 1-, 5-, and 10-minute scans, the top 10 most available features were key hold 
features predominantly. 
 
In Figure 7, we show the key hold, key interval, and trigaph features for 5-minute scans. Again, 
key hold features had higher overall hit ratios and symmetric uncertainty than key interval 
features. Trigraph latencies had the lowest hit ratios and symmetric uncertainty.  
 
Figure 8 shows that the hit ratios and symmetric uncertainty for “slur” key interval and “slur” 
trigraph features were very low in 5-minute scans. 
 
In Figure 9, we show the hit ratios of key hold, key interval, and trigraph features for 10-minute 
scans. Again, key hold features had the highest hit ratios followed by key interval and trigraph 
latencies. We did not calculate the symmetric uncertainty for features in 10-minute scans because 
the available sample size of each feature per user was not sufficient to determine the mutual 
information between a feature and the user. 
 
In Figure 10, we show the hit ratios of 23 key interval and 10 trigraph slur features. Compared to 
key hold latencies and key interval latencies, the availability of slur features was low even for 
10-minute scans. 
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4.2 Authentication Results 

Here, we report the verification (1:1) and identification (1: N) results. 

4.2.1 Verification Results 

Here, we report verification results with scaled Euclidean (SE), scaled Manhattan (SM), and 
relative distance (R) measure, with key hold (KH) and digraph (D) features. 

Table 6. Detection Time versus Equal Error Rates for Individual Verifiers and Fusion 

Detection 
Time 

Equal Error Rate 
Fused SE [KH] 

+ SM [D] +  
R [KH] 

SE [KH] SM [D] R [KH] 

2 – Min 0.0408 0.0918 0.1139 0.1422

3 – Min 0.0310 0.074 0.0870 0.1171 
4 – Min 0.0283 0.0656 0.0726 0.1007
5 – Min 0.0310 0.0605 0.0679 0.0942
6 – Min 0.0337 0.0547 0.0626 0.0849
7 – Min 0.0322 0.0545 0.0572 0.0787
8 – Min 0.0352 0.0556 0.0585 0.0732
9 – Min 0.0413 0.0554 0.0605 0.0722

10 – Min 0.0477 0.0524 0.0677 0.0717

Figure 11. Detection Time versus Equal Error Rates for Individual Verifiers and Fusion 
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Table 7. Detection Time and Equal Error Rates of Fusion of Two Verifiers 

Detection 
Time 

Fused 
SE-KH 

+ 
SM-KH 

Fused 
SE-KH 

+ 
SM-D 

Fused 
SE-D 

+ 
SM-KH

Fused 
SE-D 

+ 
SM-D 

Fused 
R-KH 

+ 
R-D 

Fused 
R-D 

+ 
SM-KH 

Fused 
R-KH 

+ 
SM-D 

Fused 
SM-KH 

+ 
SM-D 

2-Min 0.0834 0.0463 0.1232 0.1623 0.0916 0.0561 0.0743 0.0493 

3-Min 0.0688 0.0361 0.0984 0.1339 0.0650 0.0483 0.0496 0.0396 

4-Min 0.0615 0.0321 0.0867 0.1115 0.0520 0.0407 0.0419 0.0355 

5-Min 0.0595 0.0344 0.0874 0.1087 0.0454 0.0411 0.0403 0.0388 

6-Min 0.0559 0.0349 0.0873 0.1022 0.0389 0.0380 0.0414 0.0393 

7-Min 0.0549 0.0351 0.0889 0.1003 0.0341 0.0356 0.0401 0.0378 

8-Min 0.0560 0.0385 0.0938 0.1024 0.0291 0.0349 0.0435 0.0427 

9-Min 0.0543 0.0423 0.0923 0.1038 0.0296 0.0367 0.0480 0.0461 

10-Min 0.0519 0.0488 0.0955 0.1043 0.0298 0.0319 0.0521 0.0544 

 

 

Figure 12. Detection Time versus Equal Error Rates of Fusion of Two Verifiers 
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Figure 13. Comparisons of EERs with Fusion of Two and Three Verifiers 

Discussion: 

In Table 6 and Figure 11, we show the equal error rates of individual scaled Euclidean verifier 
with key hold features, scaled Manhattan verifier with digraph features and relative “R” distance 
verifier with key hold features and compare their performance with fusion verifier, which fuses 
all the three verifier-feature configurations. For fusion, we used weighted sum rule with equal 
weights assigned to the scores from each verifier-feature configuration. From the equal error 
rates in Table 6 and Figure 11, we observe that: (1) the verification errors considerably decrease 
as the detection time (or scan length) increases from 2 to 10 minutes; and (2) overall, the fusion 
verifier outperforms individual verifiers by considerable margin for all the tested scan lengths. 
 
In Table 7 and Figure 12, we show the equal error rates of verification, obtained by fusing 
combinations of two and three verifiers, operating with key hold and digraph features. From 
Table 7 and Figure 12, we observe that: (1) any fusion combination, which involved both key 
hold and digraph latencies performed better than fusion combinations which used only one type 
of feature (e.g., see the plot of scaled Euclidean and scaled Manhattan with digraph features in 
Figure 12); and (2) a combination of same type of verifiers (e.g., scaled Euclidean and scaled 
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Manhattan verifier) did equally well compared to diverse verifier combinations (e.g., scaled 
Manhattan and R distance verifier). 
 
In Figure 13, we compared the equal error rates of three-verifier fusion with various two-verifier 
fusion configurations. Overall, we observed that for lower scan lengths, between 2 and 5 
minutes, three-verifier fusion outperforms two-verifier fusion configurations. However, for 
higher scan lengths, between 6 and 10 minutes, the two-verifier fusion configurations performed 
on par with the three-verifier fusion. 

4.2.1.1 Scan-based Evaluation of Verification  

Recall that each of the 486 users participated in two typing sessions. A session spans 
approximately between 45 minutes and 2 hours of typing activity. We used these two sets to 
create 40-hour authentication segments. During training, each user’s template built from Set I 
data was subjected to impostor attacks from samples provided by the other users. From these 
attacks, we set a threshold for which the impostor pass rate was β =20%, and used it as the 
classification threshold during the genuine testing process. For genuine testing, we used each 
user’s data from Set II to attack the template built using data from Set I. 
 
Each user’s typing session was divided into scans that each have a size α, with a rejection 
registered if, m=5 consecutive scans are rejected. The values of m and β were set in accordance 
with the DARPA performance specifications for the Active Authentication program. We 
experimented with values of α between 1 and 10. However, we only report results corresponding 
to α values between 5 and 10, since they produced the best performance.  

 

Table 8. False Rejects in Scan Based Evaluation Across Different Atomic Features 

Scan Length (minutes) 5 6 7 8 9 10 

Number of Scans 480 400 343 300 267 240 

Number of Users 115 118 120 125 127 131 

Key Hold (K) 15 9 13 11 8 5 

Key Interval (I) 16 17 7 5 10 8 

Slur KI (S) 16 15 12 12 5 9 

Digraph (D) 17 13 8 7 5 9 

Trigraph (T) 21 14 11 5 15 10 

Fourgraph (F) 21 18 13 5 15 9 

Pause After Word (PAW) 22 17 8 7 7 5 

Pause Before Word (PBW) 22 20 8 6 7 6 

Fusion (F) 17 10 13 6 11 9 
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Table 8 shows the number of false rejects for different scan lengths in minutes. A false reject is 
registered when 5 consecutive genuine rejections occur. For example, with a scan length of 5 
minutes (Column #2), there was a total of 480 scans from a set of 115 users. The features —K, I, 
S, D, T, F, PAW, PBW, F, CPS, WPS and KPS— respectively registered 15, 16, 16, 17, 21, 21, 
22, 22, 17, 26, 10,21, 17, 18, 26 false rejects. Results for the last three features are based on two 
data collection experiments, labeled Phase VI and Phase VII. Observe that fusion did not depict 
any clear performance advantage over many of the individual features.  

Table 9 captures the same results, except that the number of false rejects have been scaled by the 
number of scans. For example, the value 0.03125 in the fourth row of the table is obtained by 
dividing the number of false rejects in Table 8 (i.e., 15) by the number of scans (i.e., 480). This 
value gives a measure of the rate at which false rejections occur, while the corresponding value 
in Table 9 represents the false rejections in absolute terms. 

Table 9. False Rejects per Scan in Scan-based Evaluation 

Scan Length (minutes) 5 6 7 8 9 10 

Number of Scans 480 400 343 300 267 240 

Number of Users 115 118 120 125 127 131 

Key Hold (K) 0.03125 0.0225 0.037901 0.036667 0.029963 0.020833

Key Interval (I) 0.033333 0.0425 0.020408 0.016667 0.037453 0.033333

Slur KI (S) 0.033333 0.0375 0.034985 0.04 0.018727 0.0375 

Digraph (D) 0.035417 0.0325 0.023324 0.023333 0.018727 0.0375 

Trigraph (T) 0.04375 0.035 0.03207 0.016667 0.05618 0.041667

Fourgraph (F) 0.04375 0.045 0.037901 0.016667 0.05618 0.0375 

Pause After Word (PAW) 0.045833 0.0425 0.023324 0.023333 0.026217 0.020833

Pause Before Word (PBW) 0.045833 0.05 0.023324 0.02 0.026217 0.025 

 

Discussion:  From Table 8 and Table 9, we make the following observations: 
 

 For the majority of features, the short scan lengths (e.g., α =5, 6) had higher numbers of 
false rejections than the longer scan lengths. This could be because the shorter scans 
encompass a very small number of features per authentication attempt, resulting into a 
reduced ability to uniquely identify users. In general, a longer scan should contain a 
higher number of characters (and hence features), which in turn provides a greater 
amount of evidence about the user during each authentication attempt. 
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 The longest scan lengths did not necessarily result into the best performance (e.g., a scan 
length of 10 does not necessarily result in better performance than a scan length of 8 
across all features/verifiers). Although long scan lengths guarantee a high number of 
characters (and hence features) for user identification, they also result into a small 
number of authentication attempts for any given size of typing sample. With a reduced 
number of authentication attempts, it is difficult to get a stable representation of the 
user’s behavior.  
 

 In the majority of cases, fusion of the best verifier-feature combinations (see the row 
labeled Fusion (F) in both tables) resulted into improved performance relative to the 
individual verifiers.  

 

 

 

Figure 14. Scan-based Evaluation Results for 5 - 10 minutes scans. 

 
Figure 14 gives a graphical view of the scan-based evaluation results. The full population of 
users is divided into 3 authentication segments based on the number of users required to realize 
40 hours of scans.  Each point plotted on the graph represents the minimum number of false 
rejects in a segment across all verifiers and features.  The figure helps give a clearer view of the 
behavior highlighted in Tables 2 and 3. Observe that for the longer scans the false rejects were 
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generally fewer in number. Also, the scan length of 10 minutes did not result into the lowest 
number of false rejects — The 9 minute scan length performed at least as well as any of the other 
scan lengths.  
 
Further details on scan-based evaluation and results can be found in our paper published in IEEE 
IT Pro magazine. 

4.2.1.2 Subsets Bootstrap Evaluation of Verification Results with Individual Verifiers 
 

To estimate the 95% confidence intervals of the FRR and FAR, we used the subsets bootstrap 
procedure. This method, described in detail in [14], accounts for the dependencies between 
authentication attempts, and hence gives more accurate error estimates than the traditional 
parametric and bootstrap methods used for the same purpose.  
 
Figure 15, Figure 16, and Figure 17 show the variation of the False Reject  Rate (FRR) and False 
Acceptance Rate (FAR) with the classification threshold for various scan lengths and verifier-
feature combinations. Reported results are the best across all verifier-feature combinations. The 
dashed lines on the either side of the full line represent the 95% confidence interval calculated 
using the subsets bootstrap procedure. From these results, we see that the best EERs registered 
with individual were between 0.2 and 0.4. These EERs are much higher than those reported in 
some past works (e.g., [5]). We hypothesize that our much larger population size could be a 
major reason for this difference in performance.   

 

Figure 15. Variation of the False Reject  Rate (FRR) and False Acceptance Rate (FAR) 
When Scan Length is 6 minutes; the Feature and Verifier are Respectively the Key Hold 
Time and Relative Verifier.  The Dashed Llines Represent the 95% Confidence Interval 
Calculated Using the Subsets Bootstrap Procedure 
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Figure 16. Variation of the False Reject Rate (FRR) and False Acceptance Rate (FAR) 
When Scan length is 7 Minutes; the Features and Verifiers are Respectively the Key Hold 
Time and Scaled Manhattan Verifier. The Dashed Lines Represent the 95% Confidence 
Interval Calculated Using the Subsets Bootstrap Procedure. 

 

Figure 17. Variation of the False Reject  Rate (FRR) and False Acceptance Rate (FAR) 
When Scan Length is 8 minutes; the Feature and Verifier are Respectively the Key Interval 
Time and Relative Verifier.  The Dashed Lines Represent the 95% Confidence Interval 
Calculated Using the Subsets Bootstrap Procedure 
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4.2.2 Identification Results 

In the following Figure 18, Figure 19, Figure 20, Figure 21, and Figure 22, we report the results 
of identification using key hold and digraph latencies with R distance and Scaled Manhattan 
distance identification systems. We also report the results of fusion of “R Distance with Digraph 
Features” and “Scaled Manhattan Distance with Key Hold Features.” In the figures, the cross 
over points between false negative identification rate and false positive identification rate are 
highlighted with “red” circles. The crossover points show the threshold at which an identification 
system erroneously rejects “x” percentage of probe transactions from registered users while 
accepting “x” percentage of probe transactions from non-registered users.  
 

 

Figure 18. False Positive Identification Rate (solid lines) and Rank 5 False Negative 
Identification Rate (dotted lines) of Fusion based Identification System for Scan Lengths 5 
minutes through 10 minutes. The Fusion was Between “R Distance with Digraph Features” 
and “Scaled Manhattan Distance with Key Hold Features”. The Cross-over Points between 
False Positive Identification Rates and False Negative Identification Rate Occurred 
between 22.5 Percent and 25.0 Percent   
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Figure 19. False Positive Identification Rate (solid lines) and Rank 5 False Negative 
Identification Rate (dotted lines) of “R Distance” Identification System with “Digraph 
Features” for Scan Lengths 5 Minutes through 10 Minutes. The Cross-over Points between 
False Positive Identification Rates and False Negative Identification Rate Occurred 
between 40.0 Percent and 45.0 Percent. The “Red” Horizontal Line Shows the Crossover 
Points Achieved with Fusion 
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Figure 20. False Positive Identification Rate (solid lines) and Rank 5 False Negative 
Identification Rate (dotted lines) of “Scaled Manhattan Distance” Identification System 
with “Key Hold Features” for Scan Lengths 5 Minutes through 10 Minutes. The Crossover 
Points between False Positive Identification Rates and False Negative Identification Rate 
Occurred between 40.0 Percent and 45.0 Percent. The “Red” Horizontal Line Shows the 
Crossover Points Achieved with Fusion 
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Figure 21. False Positive Identification Rate (solid lines) and Rank 5 False Negative 
Identification Rate (dotted lines) of “R Distance” Identification System with “Key Hold 
Features” for Scan Lengths 5 minutes through 10 minutes. The Crossover Points between 
False Positive Identification Rates and False Negative Identification Rate Occurred 
between 40.0 Percent and 50.0 Percent. The “Red” Horizontal Line Shows the Crossover 
Points Achieved with Fusion 
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Figure 22. False Positive Identification Rate (solid lines) and Rank 5 False Negative 
Identification Rate (dotted lines) of “Scaled Manhattan Distance” Identification System 
with “Digraph Features”, for Scan Lengths 5 minutes through 10 minutes. The Crossover 
Points between False Positive Identification Rates and False Negative Identification Rate 
Occurred between 60.0 Percent and 70.0 Percent. The “Red” Horizontal Line Shows the 
Crossover Points Achieved with Fusion 

Discussion:  

From Figure 18, Figure 19, Figure 20, Figure 21, and Figure 22, we observe that the fusion based 
identification system significantly outperforms individual identifications systems. While 
crossover points between 22.5 percent and 25.0 were achieved with fusion based identification 
system, we achieved between 40.0 percent and 67.5 percent cross over points individual metric 
based identification systems. 
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4.3 Snoop-forge-replay Attack Results 

Here we highlight the error rates of snoop-forge-replay attack and contrast them with baseline 
(zero-effort) error rates. Detailed results can be found in our published journal paper.  

Figure 23. Comparison of Error Rates Achieved with Snoop-forge-replay Attacks Against 
“R” Distance Verifier, “S” Verifier, and “A” Verifier, Compared to the Baseline Error 
Rates with Zero-Effort Attacks 

Figure 23 shows the detection error tradeoff (DET) curves obtained with Relative (R) distance 
verifier, Absolute (A) distance verifier, and S (Similarity) verifier with key hold (KH), key 
interval (KI), and key press (KP) latencies. The baseline (zero-effort) impostor pass rate curves 
are depicted in “black” color. The impostor pass rate curves of snoop-forge-replay attacks are 
depicted in “brown” color. From Figure 23, it is clear that the impostors pass rates with snoop-
forge-replay attacks are significantly higher than baseline impostor pass rates.  
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Figure 24. Equal Error Rates Achieved with Snoop-Forge-Replay Attacks Against R 
Distance Verifier with Key Interval, Key Press, and Key Hold Latencies as Features. The 
Baseline Equal Error Rates with Zero-Effort Attacks are Also Given for Comparison. The 
X-axis Represents the Number Of Matching Pairs Used in each Verification Attempt and 
the Y-Axis Represents the Equal Error Rate. 

Figure 24 shows the differences in baseline EERs obtained with zero-effort impostor attacks and 
EERS obtained with snoop forge replay attacks on R verifier with key hold, key interval, and key 
press latencies as features. The plots in clearly show that, for every matching pair configuration, 
the equal error rates of snoop-forge-replay attacks are considerably higher than the baseline 
equal error rates (the black and green lines at the bottom of each plot in Figure 24).   
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Figure 25. Equal Error Rates Achieved with Snoop-Forge-Replay Attacks Against Fusion 
(F) Distance Verifier. The Baseline Equal Error Rates with Zero-Effort Attacks are Also 
Given For Comparison. The X-Axis Represents the Number Of Matching Pairs Used in 
Each Verification Attempt and the Y-Axis Represents the Equal Error Rate. 

 

Figure 25 shows the differences in baseline EERs obtained with zero-effort impostor attacks and 
EERs obtained with snoop-forge-replay attacks on fusion verifier. The plots in clearly show that, 
for every matching pair configuration, the equal error rates of snoop-forge-replay attacks are 
considerably higher than the baseline equal error rates (the black and green lines at the bottom of 
each plot in Figure 25).   
 

Discussion: 
 
With snoop-forge-replay attacks, we achieved as high as 125.5 to 2915.62 percentage increase in 
error rates compared to the error rates with baseline zero-effort impostor attacks. Our results 
reveal that there is a wide disparity in the error rates achieved with the zero-effort impostor 
attacks and the error rates achieved with snoop-forge-replay attacks. The high error rates with 
snoop-forge-replay attacks raise two fundamental questions: 1) is it secure to use keystrokes to 
continuously authenticate computer users? and 2) how can we redesign keystroke based 
continuous authentication systems that are resilient to forgery attacks? 
 
We also observed that snooping more keystrokes from a victim user does not necessarily result 
in better attacks. In fact, our results with two verifiers (S and A) showed that snooping more 
keystrokes decreased the pass rates of the attacks. In our journal paper, we analyzed why 
snooping more keystrokes may have adversely affected the attack performance. Our results also 
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showed that filtering outliers in the snooped keystrokes and considering digraphs that have 
occurred at least twice improved the pass rates of the attack. Gaussian perturbation made the 
attack weak against S and A verifiers and had least effect on R and F verifiers. 
 
Our work demonstrates that the attacker, by exploiting virtualization, can reduce the time to 
forge the number of attacks by using more virtual machines. By increasing the number of virtual 
machines, the attacker can also generate a huge number of forgeries (e.g., in the order of 
millions) or scale the attack to victimize thousands of users. 
 

4.4 Frog-boiling Attack Results 

To evaluate the performance of the attack, we used the scaled Manhattan verifier (SM) and the 
Relative (R) distance verifier.  We also studied fusion configuration of these two verifiers. Table 
10 shows the mean and standard deviation of the EERs of the three verifiers before the attack 
was launched (i.e., at baseline). Both the R and fusion verifiers have EERs of over 40%. The SM 
verifier performs the best with an EER of 19.07.  

Table 10. The Mean and Standard Deviation of The EERs ff the Three Verifiers at 
Baseline. All EERs are Expressed on a Scale Of 0-100 (i.e., as Percentages) 

SM R Fusion 
Mean 19.07 46.97 42.61 
SD 11.88 14.54 13.75 

 
Table 11 shows the EER increments after the frog-boiling attack (due to its good performance, 
only SM verifier is tested against the frog-boiling attack in this case). When the genuine to 
imposter sample arrival rate is in the ratio 2:1, and arrivals follow a Uniform distribution, the 
frog-boiling attack performs the best (i.e., resulting in an ERR of 23.02%). When arrivals were 
Poisson, the mean EER under the attack was not much different. Compared to the results 
reported with fixed text however (see [12]), the attack has small effect on  the performance of 
free text authentication. (i.e., it only increased the mean ERR from 19.07 to 22.51 at most, while 
the attack on the fixed-text system [12] saw EER increments that exceeded 50% of the baseline 
EER).  
 
Table 11. The Mean EER after the Frog-Boiling Attack for the SM Verifier. "G" 
Represents the Number of Genuine Attempts; "I" Represents the Number of Imposter 
Attempts. For Each G:I Ratio, this Table Reports Results when: 1) Both Genuine and 
Imposter Arrivals Follow Poisson Distribution, and 2) Both Genuine and Imposter Arrivals 
Follow Uniform Distribution 

Poisson Uniform
G:I = 1:2 22.51 20.64 
G:I = 1:1 21.93 20.95 
G:I = 2:1 22.07 23.02
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Figure 26 shows the change of the genuine and impostor scores over time during the course of 
the frog-boiling attack. For the attack to have significant impact, the genuine scores should 
increase while the impostor scores increase over time. Compared to the scores evolution seen 
with fixed-text keystroke authentication (see [12]), these results confirm that the attack has a 
much reduced impact on free text authentication, since the genuine and impostor score 
distributions remain distinct from each other throughout the attack. We conjecture that the large 
number of features in each continuous authentication attempt (relative to a few features in a short 
password string) helps reduce the impact of the forgery. Another observation from Figure 26 is 
that the number of users who succumb to all 200 time units of attack is highest when the 
genuine:imposter arrival rate is 1:2 (22 and 20), and lowest when genuine/imposter arrival rate is 
2:1 (12 and 8). This indicates that an attacker who accesses the system more frequently than the 
legitimate user can still have some negative effect on system performance. 

 

        

f=22 
f=20 

f=15  f=12 
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                                        (a)                                                                  (b) 

Figure 26. Change Of Mean Genuine (Blue) and Mean Impostor (Green) Scores Over Time 
When Sample Arrival Time Is (a) Poisson and (b) Uniform Distributed. The First, Second, 
And Third Rows Respectively, Show The Result When the Number of Genuine To 
Impostor Sample Ratio is 1:1, 1:2, And 2:1. Scores Plotted are Only for Users Who 
Succumb to 200-Time Units Of Attacks. The Number Of Such Users Is Represented by f. 

4.5 Prediction of Cognitive Loads and Demographic Information  

By linking the traditional stylometric qualities with production (timing, pausing, and revision) 
behavior, a richer understanding of a typist’s cognitive load and demographic indicators is 
available. Table 12 includes results of prediction of cognitive load levels from cognitive rhythm 
features extracted from the typing data.  Baseline performance and the classifier which achieved 
the best performance are reported.  Because the classes are approximately balanced, we report 
performance in terms of accuracy. 
 

Table 12. Cognitive Load Prediction Performance of Top Performing Classifier 

Top Performing Classifier Classification Task N Accuracy Baseline 

AdaBoost 1 vs. 6 2 75.00 50.00 

SVM Linear Kernel (C=0.1) 1&2 vs. 5&6 2 68.89 55.55 

L2-regularized 
Logistic Regression 

1,2,3 vs. 4,5,6 2 60.17 58.33 

SVM Linear Kernel (C=0.1) 1,2 vs. 3,4 vs. 5,6 3 51.42 41.67 

SVM Linear Kernel (C=0.1) 1 vs. 2 vs. 3 vs. 4 vs. 5 vs. 6 6 36.25 25.00 

 

Discussion: The results in Table 12 indicate that we can distinguish high vs. low cognitive load  
with quite high accuracy. However, this performance suffers when we include levels 3 and 4 in 
the classification.  The two way classification which includes these is only 1.84% higher than the 
baseline, compared to the 1vs.6 classification which is 25% higher. Performance remains high 

f=12 
f=8 
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(68.89%) when we include levels 2 and 5 in the 1&2 vs. 5&6 classification.  Unsurprisingly as 
we move to finer grained distinctions performance suffers significantly. While the prediction 
remains higher than the baseline, the 6-way classification performance is only 36.25% accurate.   

 

Table 13. Demographic Prediction Performance of Top Performing Classifier 

Classifier Task N F-Measure Baseline (F) Accuracy Baseline (Accuracy) 

AdaBoost Gender 2 .596 .333 61.00 66.66 

AdaBoost Handedness 2 .288 .070 88.00 93.00 

AdaBoost 
Native 

Language 
2 .692 .170 78.00 83.00 

 
Table 13 includes results of Demographic Classification Experiments.  Baseline performance and 
the classifier which achieved the best performance are also included.  Because the classes are 
skewed, we report performance in terms of accuracy and F-measure, with corresponding 
baselines for each.  F-measure is the harmonic mean of the precision and recall of the minority 
class.  This measure is typically used in detection tasks and effectively assesses the ability of a 
classifier to identify tokens of the rare class.   

 

Discussion: On every demographic prediction task we were able to exceed the F-measure 
baseline. Note that this is the measure that we are optimizing.  This is most notable for 
“nativeness” classification. Future work in this will involve recognizing specific native 
languages rather than English vs. Non-English. Other experiments can yield better accuracy, but 
correctly identifying the majority class is less useful than effectively detecting outliers.  We are 
continuing to investigate ways to improve the recognition of handedness. It is possible that the 
collected material contains too few left-handed users to effectively generalize their behavior. 
 
5 CONCLUSIONS 

We reported the results of five key research tasks: (1) designing and extracting more than 45 
types of cognitive rhythms (atomic, pausality, linguistic, and revision features) that have enabled 
us to extract over 9000 individual features from text production data; (2) determining the 
availability and discriminability of cognitive rhythm features; (3) determining continuous 
verification and identification error rates of cognitive rhythm features over a population 486 
users; (4) investigating the impact of snoop-forge-replay and frog boiling attacks against 
continuous verification; and (5) prediction of users’ cognitive load levels and demographic 
information from typing data. Our key results are enumerated below. 
 

(1) We performed availability and discriminability analysis of features. Atomic level features 
(especially, key hold features) had the highest hit ratio for the investigated scan lengths of 
1-, 5-, and 10-minutes. Our main findings from availability and discriminability analysis 
include: (a) key hold and interval features outperformed trigraphs and “slur” features in 
terms of hit ratios and symmetric uncertainty; and (b) from a feature space comprising of 
9000 features, only 32 key hold features, 160 key interval features, 6 trigraph features, 23 
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“slur” key interval features, and 10 “slur” trigraph features were recovered in 10-minute 
scans, indicating the highly “sparse” availability of atomic features for scan based 
authentication. 
 

(2) Among the tested features and matching algorithms, we achieved the lowest verification 
(1-to-1 match) and identification (1-to-N match) errors with score-level fusion. We 
achieved the lowest verification equal error rates, between 2.83 and 4.77 percent, by 
fusing scaled Euclidean-Key hold, scaled Manhattan-Digraph, and R-Key hold verifiers. 
We achieved the lowest identification accuracies, between 22.5 and 25.0 percent (in 
terms of FPIR and FNIR crossover), when R-Digraph identifier was fused with scaled 
Manhattan-Key hold identifier.  
 

(3) Our experiments with non-zero effort “snoop-forge-replay” attacks show that continuous 
verification systems relying on atomic features are susceptible to algorithmic forgeries 
created from snooped keystrokes. We achieved between 125.5 to 2915.62 percentage 
increases in equal error rates compared to the equal error rates with baseline “zero-effort” 
impostor attacks.  
 

(4) In our experiments with “frog-boiling” attacks on keystroke based continuous verification 
systems, we were able to raise the equal error rate to 22.51 percent with frog-boiling 
attacks on scaled Manhattan verifier, compared to its baseline equal error rate of 19.07 
percent. Our experiments reveal that, frog-boiling attacks are not as effective on 
continuous keystroke based verification systems compared to fixed keystroke (password 
based) verification systems.  
 

(5) Depending on the granularity at which cognitive loads were predicted, we achieved 
classification accuracies between 75.0 and 36.25 percent for predicting cognitive load 
levels from cognitive rhythms. In addition, we achieved: an F-measure of 0.96 (compared 
to a baseline of 0.33) for predicting “gender”, an F-measure of 0.288 (compared to 0.070) 
for predicting “handedness”, and an F-measure of 0.692 (compared to baseline 0.170) for 
predicting “Is the native language of the typist English?” Our results show that cognitive 
rhythm features are good predictors of demographic indicators and cognitive load levels 
at courser levels of granularity. 
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APPENDIX A –DATA COLLECTION QUESTIONS 

Session 1 

 List the recent movies you've seen or books you've read. When did you see or read them? 
What were they about? Please use complete sentences. (Cognitive Load: 1) 

 Which sport(s) do you like to watch/play? If there are none that interest you, then what 
activities do you enjoy watching/playing? (Cognitive Load: 1) 

 What made you decide to join Louisiana Tech University? (Cognitive Load: 1) 

 Where is a place that you particularly enjoy visiting? Describe what makes you happy 
about being at this place. (Cognitive Load: 2) 

 Describe a time when someone (at work, school, or home) really upset you. Explain how 
you handled this? (Cognitive Load: 2) 

 What is your favorite place to go out for a meal? What do you like about this place? 
(Cognitive Load: 2) 

 What would you do if you and a friend are on vacation alone and your friend's leg gets 
cut? Describe what the procedure you would use for first aid or for finding help. 
(Cognitive Load: 3) 

 What would you do if you were home alone and a fire started? (Cognitive Load: 3) 

 Explain what you think the difference is between "communicating with" someone and 
"talking to" someone. How are these two terms often confused? (Cognitive Load: 4) 

 Compare and contrast two genres of music. (Cognitive Load: 4) 

 What are the main differences with standardized tests such as the ACT, SAT, GRE, and 
TOEFL? Please describe some of the pros and cons of these tests. (Cognitive Load: 4) 

 Mary lives alone in Manhattan where she owns the apartment she lives in as well as 5 
floors of real-state. She works as an investment banker, and owns an estate in Aspen, 
Colorado. Robert lives in Dallas where he owns a home and a 12-story commercial 
building. He has three children and works in the family business. Who do you think is 
wealthier? Make your own assumptions to evaluate their wealth. (Cognitive Load: 5) 

 What email provider do you think is the best (e.g., Yahoo, Hotmail, Gmail, Webmail, 
etc.)? Why and what improvements would you like to see in them? (Note: Do not 
disclose your email ID). (Cognitive Load: 5) 

 What social networking web-sites do you use? Overall, would you say that social 
networks are a good or bad thing? Have they helped people and society or hurt it? 
Explain your opinion. (Cognitive Load: 5) 

 Do you think it's a good idea to raise tuition for students in order to have money to make 
improvements to the University? Why or why not? (Cognitive Load: 5) 

 Pretend a Hollywood executive offered to pay you to write and act in a movie. Create a 
movie plot with a character in it for yourself and remember that you will only be paid for 
creating an original plot to a movie. (Cognitive Load: 6) 
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 If you were to create a picture of any type of landscape you wanted what objects would 
you include in it? How would you go about creating the landscape, and what method 
would you use to make your landscape? (Cognitive Load: 6) 

 How would you design your class if you were the teacher? What subject would you 
teach? How would you structure your tests, and grading? (Cognitive Load: 6) 

Session 2 

 What are some things that you like about Ruston? (Cognitive Load: 1) 

 What are your favorite things about winter? (Cognitive Load: 1) 

 What is the best thing you ever ate at a restaurant? Describe it. (Cognitive Load: 1) 

 What would you say has been the best college class you have taken and what did you 
enjoy about that class? (Cognitive Load: 2) 

 What is something that you dread talking to your family about? Why do you not like to 
talk to them about this? (Cognitive Load: 2) 

 Can you describe the process of applying to college? If you didn't go to college, can you 
describe the process of applying for jobs? (Cognitive Load: 2) 

 Suppose you were in NYC and had a very important presentation to give at 8AM the next 
morning at Louisiana Tech. You get to the airport in New York to discover that your 
flight has been delayed and will likely cause you to miss your layover in Atlanta. What 
steps would you take to insure that you are at Louisiana Tech in time for your 
presentation? (Cognitive Load: 3) 

 What would you do if you woke up and realized your car would not start, but you had a 
very important meeting to attend at 9AM? (Cognitive Load: 3) 

 Compare and contrast two sources you use for news and current events. This may include 
particular channels, newspapers, websites, or TV shows. (Cognitive Load: 4) 

 Give step-by-step driving directions to your favorite place in or around Ruston, from 
Louisiana Tech University campus. Examples of favorite places could include 
restaurants, movie theaters, and other public places. (Note: Do not disclose private 
information such as home address.). (Cognitive Load: 4) 

 Explain what the saying "Not all that glitters is gold" means. (Cognitive Load: 4) 

 You own a company and need to promote someone to be the manager. Jim has a college 
degree, has been with your company for three years and has proven to be a strong team-
player. He works well with others, and knows the company very well. Frank just started 
with your company, but has 20 years of experience with another company. He does not 
have a degree and struggles to get along with the other employees. (Cognitive Load: 5) 

 Do you think that capital punishment should be legal? Why or why not? (Cognitive Load: 
5) 
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 Many universities require that freshmen live in an on-campus apartment or dorm their 
first year of college. In your opinion, is this a good or bad thing? Explain your point of 
view on this topic. (Cognitive Load: 5) 

 Do you think people should be required to have car insurance? Defend your decision. 
(Cognitive Load: 5) 

 Discuss step-by-step instructions for a task (e.g., mechanical tasks such as cooking a 
specific dish, building or repairing something, etc.) that you are very familiar with. Write 
them so a person who has never done this before can follow your instructions. (Cognitive 
Load: 6) 

 Decide on a party or event that you want to have and write details as to how you would 
plan this event. Write only about the planning you would do before the day of the event 
(budget, guest list, music, etc). (Cognitive Load: 6) 

 Suppose you are the manager for a place on campus that sells school supplies, coffee, and 
food. The store is open 24 hours a day, 7 days a week. You have been put in charge of 
writing the new code of conduct for the hourly employees as well as developing a reward 
system to insure that they are coming to work on time and following procedure while 
they are there. Write out in detail what rules of conduct. (Cognitive Load: 6) 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

API – Application programming interface 

COCA – Corpus of Contemporart American English 

CUNY – The City University of New York 

DARPA – Defense Advanced Research Projects Agency 

DET – Detection error tradeoff 

EER – Equal error rate 

FAR – False acceptance rate 

FNIR – False negative identification rate 

FPIR – False positive identification rate 

FRR – False rejection rate 

GUI – Graphical user interface 

HR – Hit ratio 

IDF – Inverse document frequency 

LTU – Louisiana Tech University 

MATTR – Moving-average type-token ratio 

NYIT – New York Institute of Technolgy 

OS – Operating system 

PI – Principal investigator 

SU – Symmetric uncertainty 

TF – Term frequency 




