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The RAND Corporation, Santa Mon:lea, California

ABSTRACT

The strong-shoek, pointe-souree. sclution snd spherieal iscthermal distri-
butions were used as initisl conditions for a numerieal integration of the
differential equatiocns of gas motion 1n Lngungel.n rm m 'smn Heuunn
Riehtnyar artificial viscoaity was emyloyud to a.void shock dinontinuitias.
The solutions were earried from two thousand atmospheres to less than one-tenth
ntmésphnms peak overpressure. Results include overpressurs, density, partiele
veloeity, and position as funstions of tﬁn and gpease. The dynamiec pressure,
the positive and negative impulses of both dynamic pressure and statie mrQ
pressure, positive snd negative durations of pressure and veloegity, and sheoek
values of all quantities are alsc degeribed for various times and radial distances.

Analytieal approximations to the numerical resulis sre provided.

I. INTRODUCTION
The problem of a spherieal blsst in air has been solved analytieally for
strong shogke in an ideal gas by J. von Houmannl, and in the weak shoek approyie

mation by H. A. Bgthelf. For intermediate regions it has beern found necessary to

resort to numerical methods. The availability of high speed computing machines !
has made possible ths solution of this problem in the intermediate range with
ecnsiderable aceuracy.

Two other groups are currently engaged in performing this work by indepermdent
methods. Under J, ¥on Neumasn and H. Goldstine at Prineeton a shock fitting '
mothod has been employed, The differsncing method of Peter Lax> is being used

at New York University by 8. Lowell.
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 The method used in this peper is due to von Neumenn and Richtmyer> and
employs an nrtifie‘hl vigeosity as a mechanism for avoiding shock-front dis-
eontinuities. Previocusly T. 8. Walton reported some rcsults,‘ using this method
and an initial isobarie sphere of about 13 atmospheres.
The integrating process consists of the step-wise solution of difference
equations whieh approximste the differential equations of motion of the gas.
In opder for such a procedﬁn to be workable, however, a mmber of practieal
econditions must be satisfied. The difreuﬁcing schems must be stable, must
ori‘er ressonsbly detailod results, must ¢onserve numsrieal significance, and when
put in the form of eoded instruations for a high-speed ecmputer, must be fast
encugh to reach desired solutions with a reascnsble expenditure of maghine time.
In additicn, sealing problems arise from the wide range of numriéal values
that must be asscommodated. Furthermore, the eontinual inerease of shoek radius
requires some reeurring adjustments in gone number and sizes to preserve a
maximum amount of information in & limited mmber of zones. In the end, several
compromises must be worked between sush conflicting requirements as the need for
frequent printed or card-punthed records of the pregress of the problen and a
desire to minimize the maghine time involved in printing or punching. Similarly,
the desire for smell zones, sharp shoek fronts and_ smocth results is inconsistent
with _;bhe need for large time steps and limited space poiats For simplicity,
these fi:nt probiem were done with an homéemous ideal gus (eonstant speeifie
heat ratic, 7 = 1.4), and for the simple initial eonditions of either the strong

shoek point souree -solut:lonl or an igothermal sphere. .
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EQUATIONS CF MOTICN

The Lagrangean emtm of motion are reduced to dimensionless paraneters
vherein pressure (P), density (p), and veloeity (u) are messured in units of
ambient pressure (r,g), density (pa), and sound veloeity (%)' vespectively. In
the following diseussion, the pressure will fregquently be expressed in atmospheres
vhere one stmosphere is defined as equal to the pre-shoek amblent pressure (P ).
Where the expression cverpressure (AF) is used the referenge 1s to the pressure
in atwospheres iz exsess of the ambient pressure (P ), i.e., AP » P-1. Ve shall
gontinue to speak of a velnéity (), howvever, vhen more properly we might rafer
to & pash muber (u)., The redial distance r(ra,t) ; 19 expressed in energy-
reduged dimensionless units (r_ being Lagrangesn distance, and t the time), sugh
that

Muwr/eamdh wr je, (1)

where € is a length expressing the energy and smbilent pressure baa.lins:
, . ‘

E } 2 3
esa-ggt—-gj"pwut-rg-)radr—%&y- (2)
3] [+] .

[
E, ot is the total blast energy and Bt is the speaifiz internal energy. The
subtracted term represents the pre-shosk internsl energy of the gas engulfed by
the shoek, and R is the shoek radius. Time (t) is defined in dimensionless units
(¥) sueh that |

r-‘tao/c.

The artifieisl visgosity (q), vhieh agsts like & pressure, is in units of the

pre-shoek ambient pressure (Po).
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In these units the Lagrangean eguations of motion are written as follows:

%.ﬁ.ﬁwg. -0 PE  (mmes) (3)
gg_...:*;g(mq) (momentum) , | (%)
%’#-%—?[w+(7~1)ﬂ (ensrgy) , | o (5)
e, | (6

In these eguations the Lagrangean variable is taken to be x = 1/3 (ro/e)3.
In 9. 5 (energy eonservation) the internal eneygy for an ideal gas has

heen used.
P Po
Ew m ?; (1)

An appropriste viseosity for the gase of an owtward moving spheriesl shoek
wave is the following: '

-2 (e () @- ) o
vhere Ax is the grid size and M is the number of grid zones in the shosk fromt,
The form of q chosen here is basically similar to that of von Heumann and Rightmyer,
and satisries nmm sonditions for the epherissl case. However, there is no
eonvenient steady-state solution by whish to demonstrate the gommsetion of Mblas
agross the shoek, and the form chosen hnr_u is only asymptotically the same as a
verified form for s plane problem. ‘
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The faet that the plane form approximation 1s good for shoek thicknesses
vhieh are small relative to the shoek redius 1s borne out by the ¢close agree-
ment with a similarity solution (with q) investigated by R. Latter’ in vhieh
he solves numerieally the resulting cardinary differentisl aquations for cases
of interest to this problem.

The Mieuln' form chosen for the viseosity has the advantage that it
eontributes nothing in regions of expansion, and is non-gearo only in the ecompres-
sion phase of a sﬁmi. In wim coordinates this has the advantage of
elininating ] spurious gontribution near the origin where the positive veloeity
gradient 1is large.

The artifieial viseosity, being essentially & diffusive mechanism, ney
Toree one to use sxeessively small time ingrements in order to sshieve smooth
results on a fine gpace grid.

INITIAL CONDITIONS

~ Two genaral types of initlal eonditions were taken, (1) a point-source,
and (2) ‘an 1sothermal sphere. A point-sourge emse was run in the grestest length
using the von Neumann strong-shoek solution begimning at 1600 atmos shoek over-
~ pressure, and running down to less than 0.06 atmos. The pos.ntcl-aaqrn‘ solution,
starting at 199 stmos peak overpresswre, was used to start the.f ons. problem earried
out on the ORDVAC msehine at the Ballisties Researeh Laboratories, Absrdesn,
Maryland. The latter problem was run to nesrly 0.1 atmos shogk overpressure.
The point-sourece solution was also used Hr startsat 473 and 818 atmes shoek
overpressure, and these problems were run down t© less than 100 atmos peak
overpressure. ‘

Thres iscthermal-sphere type problems have been run so far. Two of these
begin with a hot isothermal sphere for which the density is the same inside and

out. One began at 2002 atmos, the other at 121 atmos, overpressure.



One cold isothermal éphere was also used, beginning with 121 atmos over-
pressure and a temperature inside equal to the outside temperature.

These three prdblems were carried down to shock overpressures less than
unity,

Numerous shoriter problems were also run, principally for the sake of empirical
checks on camputational methods, or in amplifieation of specisl features of the
previously mentioned problems,

Short plane-geometry problems were found useful in checking the validity of
various‘computational tricks, and in studying the efféct of certain changes in
the difference equatlions, The effect of the size of the viscosity constent was
also more easily studied in the plane case. Time increments smaller than that

1
prescribed by the Courant Condition (At = (pp) 2ATr) by a factor of 2 to 4 were

found. necessary for smooth results, In an attempt to reduce the required computing
time the steble differencing scheme of Du Fort and Frankel6 for diffusion-type
equations was employed in place of explicitly carrying a viscosity quantity (q).
thfortunately such a scheme has some practical disadvanteges. It requires carry-
ing throughout a machine calculétion sets of data for all space polnte for two
different times, Furthermore, computing, changing time increments, and combining
space points all become more tedious., Besides these disadvantages, additional
terms must be introduced to correct for the excess energy lntroduced by the
differencing scheme. On the other hand, the very general neture of the viscosity
method, the ease of its applicability, and the precision with which it reproduces
the ﬁugoniot conditions across a shoeck would seem to offset the more stringent
time requirement. Use of this method for non-ideal gases 1s not considered in
this paper, however.

Itris frequently convenient to use unequal zene sizes. For‘instance, the
use of small zones through the sheck front provides a sharp shock at very little
cost in computing time. The use of such unequel zones was empirieally validated

in this problem by repeating calculations with quite different zone choices,
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The size of the tims inerements were automatieally doubled vhenever the
stability eonditions would allow it. Two conditions exist, one being the usual
Courant Condition and the cther a diffusion-~type condition imposed by the artifieis)
visscsity

A AL (na)e
ot < axfA” (o)

msl (M)Q[ﬁ |§|]m

The total energy in the blast wave must be conserved, but a cheek on the

(9)

total ensrgy is not a very sensitive test of the ecorre¢tness of the results.
Beveral machine errors were detested (snd eliminated) whieh d1d not substantially
effect the total energy. The most reliable eheck seems to be to re-run a problem
with minor alterstions. Such s re-run not only catehes meashine errcrs but serves
40 messure the loss of signifieance. Unfortunately this procedure ig eostly of
ma¢hine time, and a gsongpromise might be erranged wheveby the machine is Ingtrueted
to double eompute and cheek itself every syele. Double eonputing eannot elimimate
errors in storing or transferring, however, and on the partisular probiem repcrted
here the system employed was to baek off and re-run vherever suspicious aberrations
ogeurred and to re-run and gompare the entire problem vith s different zone spacing,
different visecosity, different time inerements, as well as some differenses in

the difference eguations.

DIFFERE UATTIONS
The differential equations are approximsted by the following difference

equationss

gt il ey nyigdad],
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e I .
W =AY (12)
mr m-’i Fre ) B ’
x‘ L+L +"ll )‘l +L‘.L‘1¢L‘_1
pf:i - n}‘_i (%;—::-%) ’ (13)
3 2
4, i 9 ZLE"MI (M ) n+l [uf:i - u;“él ’
for ’;:% > u;“é, | (14)
{15)

The. strong-shoek point-souree solution provides that the shoek overpressure
(AP‘) should depend on the inverse sube of the shoek redius (A s“)' The problems
that were begun with strong-shoek, point-source values Ieonﬂ.nued to obay the
inverse oube law down to 10 atmos at whigh point the overpressure hed become 3
perecent higher then the strong shoek predietion. The addition of 1 atwos to an
inverse eube term gives a relation valid over a greater range of overpressures,
deviating from the u.lcuhted eurve by less than 5 persent at 5 atmos.
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o y = 0:1567 A"3 4 1 atmos (16)

The shoek rqﬁas 0.5) 48 in the dimensionless units (energy/pressure -redugsd)
dessribed in Sesticm II. | |
At st11l lower pressures the following empirieal fit applies.

AP,;Q%ﬂ+&§i+9§-‘ﬁ—o‘olsam., (a7)
Al A -]

8 -]
for 0.1 < AP, < 10, or 6.26 < A, <2.8 .,

For all the ealoulations begun with & strong-shoek the sclid eurve in
Fig. 1 presents the puk overpressure as a fusetion of shogk radius,

The dsshed eurves represent the peak overprassures resulting from the hot
isothermal spheres with nwﬁi density inside (beginning st 2002 and 122 atmos
overpressure). Netige that the overpressure besomes indistinguishable from
that of the strong shock at a radius vhere the mass of oir engulfed by the shoek
ie 10 times the initial mass. In the #trung ;houk region this ecrresponds to a
drop in overpressurs t0 about 17 pergent of the initial value, and in any case
t0 & redius A little more than twige the initial radius.

The dotted ewrve represents the mrpreum from an initially cold iso-
thermal aphero (norms) tempermture, high pressure). Because of the slower
rarefaction speed the shoek pressure dén not rise to the point-sourese va.hu
until quite late, i.e., until the rarefastion whieh moves imvard from the
initial pressure front has resshed the genter.

In esch easesof an initial iscthermal sphere thers are some slight oseil-
lations:sbout the point source overprasmure eurve whieh are caused both by
rarefastions and small shooks whieh form behind the fromt shook, move imvard
and refiset off the crigin and then move out to overtake the shosk fromt.

(8ee a later dlscussion of these special features of the sphere problems.)
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The partiele velceity and the pesk pressure at the shogk frent follow
pre¢isely the Hugonlot relation,

SAPG ‘ . ,

u, = -, (18)

AN ko + MAP’

The partiele veloeity follows {ts strong-shoek dependence on shoek radius down
to a3 lov an overpressure as 1/10 atmos (Fig. 2); in faet an adeguate fit over
the entirs range is given by the following:

-3/2 | | .
“’ = 0,30 A’ . (19)

This simple form is reflected in the peak dynnmie pressure '(Qs = 1/2 Pq uﬁ)
vhigh falls somevhat faster than an inverse cube law dm to equslly low shosk
pressurea (Fig. 3). Tha slov deerease in shook density (from 6 for strong shoeks
to one for weak shooks) is responsible for the decay being stésper than the inverse
eube of the shoek radius.

PRESSURE (P) VERSUS 'umm DISTANCE (ao)_

The pressure behind the shotk wave, shown in Fig. 4 as a funetion of the
Lagrangssn (or initial position) varisble, retains the strong-shosk form ustil
quite lov pressures. Note, for exsuple, thet the ratic of gentral pressure to
shoek p&um verains 37 persent down to ao atmos snd deervases -iwa.y belovw
that to 33 pergent by 3 atmos. Beyond 3 atm e nagative phn davelops with
the pressure falling to as lov as 0.8 stwos near the eanter.

In Fig. 4 the qumu position is ;am: in sybitrary units (n ),
related to the dimensionless unit ("a) by a constant multiplier,
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r, = tko - ‘155775 . {20)

It may help in visualizing dimensions to assume R, to be in eentimters; then
the corresponding blast energy will be sbout that of 200 lbs. of TNT (4.2 x 1015.;-30).

PARTICLE VELOCITY (w) A%D DENSITY (p) VERSUS LAGRANGEAN DISTANCE (no)

Figs. 5 and 6 indieate the progression of partisle velosity and demsity
as funetions of the Lagrangean position, mu the strong-shogk form is dominant
until as low as 3 atmos of shosk worprus&a. | |

The partiele veloeity transforme gradually from its very linesr form to cne
mach 1like the overpressure at large distances as the shoek wave goes from strong
to weak. |

The density, whiogh in the strong shoek is zeroc at the origin, ifwplying an
 infinite temperature, remains zerc there sines no meehanism is ineluded (no
condugtion or redistion) for Mssipating this high temperature.

‘The density profiles in Fig.‘ 6 represent strong shogk initial econditions
at 200 atmos shock pressure. The 4ip in the eurves that sit at the samwe mass
point (R = 150) is due to the sudden inelusion of @ finite atmosphere ahesd
of the shogk, .1.e. , due to tha ab@ndpnmﬁt of the strong-shogk (infinite pressure
ratio) assumption at that point. The Hugoniot relations give the shosk density
in terms of the shoek pressure as

b oS B2 for 7 w2k . (21)

Fer s strong shoek (P o o) the density ratic ia six (p = 6), but at two
hundred etmos (P = 200) the ratio is cmly 5.83.
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The strong shosk solution ie derived on the sssumption that the atmosphere
ahead of the shoek wave has negligible effect. The effeet, vhen non-negligible,
is to raise the temperature through the shosk to a higher valus than that given
by the strong shogk solution, 1.e¢., & finite shoek is hotter than would be
predicted by the "strong-shock” theory. |

| GAS VARIABLES AS A FUNCTION OF RULERTAN POSITION ()

The pressure, density, ecmpression, and particle veloeity are shown relative

to their pesk or shotk values as funetions of the Eulerian pesitien (A) in Fig. 7.
The strong shosk form dominates the first two sets, vhile the iator ones show

the characteristie positive phase followed by a longer, weaker negative phase

and eﬂntunll& by a return to near pre-shock valuss at the origin.

~ The vdmtim of the peositive phases for pressure and particle velogity are
shovn in Fig. 8. Although these durstions should approach the sere value at
large Msums; they still 41ffer by 7 percent at a distantw of A » 3.0 (AP," 0.09).
The figwre indieates cnly the values for the polnt sourse solution.
The duration of the negutive pressure phase (n;), unlike that of the positive
phsse, is xupur‘ly independent of distance, and has an average value of 1.22. Tha
ragative durations suffer somevhat from loss of numerieal signifiganece at late

times in the calewlation.

In Fig. 9, the eurves of pressure versus time at various distanses sre
given in units of the peak overpressure and the positive dwration in order to
11lustrate the ¢hange in the rate of decay behind the shoek. At inereasing
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distances the drop in pressure is both relatively and absolutely slower slnee
the positive phase dwration iz als¢ ineressing. Again, these ¢urves are for
the point-scuree solution,

An exponsntial form approximates the time depsndense of the pressure pulsge:

g--a - 2)e"% (22)
8

Here Z 1s the time after shoek arrival in units of positive duration,APs is
the shoek overpressure, and  is independent of Z. This form 18 satisfastory
for overpressures less then one stmosphere (A > 0.Th), with the qoeffisient (a)
speeified by '

| Gw1/2+ AP, AP <1 (23)

Eor shoek overpressures greater than one atmosphere the decay is not e
simie .memmm, singe the early portion rqquinu a larger o than the later
part. Allowing the cceffielent G to be a funetion of the time (Z), it may be
approximated by

a=1/2+ &P [1.1 e (13 + .2 APS')i] (2h)

for AP_' lesns 'f.hnn. 3 atmos, and for overpressures from 3 up go 50 atmos by the
form | , |
a=a+ -l-'j’m- _ (25)
vhere |
&= {- 0.231 + 0.388 AP~ 0.0332 Alf For< AP, £ 10
0 :fa‘r.:-AEg > 10.
b = {A&(o.as + 0.072 A7) ,_rézw::AEé < 10
AP(1.67 - 0,011 AP) .for-AR; 3 10
e = 8,71 + 0.1843 AP, - 104/(AP, + 10)
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The time dependense of the }rosa‘m in the negative phase may be approximated
by the form |

b,

AP w 14 AP o) - @)e” - for 0.1 < AP < 200 (26)

vhere AP_ 15 the peak negative overpressure (see Fig. 10), and vhere © is the
time memsured from the end of the positive phase in units of the negative phase
duration (n;). A more aceurate fit would allow the exponent to decrease to zero

as the shoek strength goes to gero.

 DYNAMIC PRESSURE VEI TIME
| Of interest also is the form of the dynesde pressure (Q = 1/2 puZ). Tive
plots of this funetion eppear in Fig. 11. These eurves are also normaliged,
but with the positive duration of the partiele veloeity (n;) (Pig. 8), and the
peak valus of the dynamie pressure (’Q') (Fig. 3). '

A ginmilar exponential form ﬁpprcﬂmtus the dynanmie pressure,

-2, e

B8
vhere B is independent of the time (%) for shogks of less than one stmoa pesk
overpressure (AP’ < 1). The goefficient P ehanges with the shoek strength,
hovever:

B =075 + 3.2 &P, &P <1 . (28)

Where the shosk is stronger, a modifieation simflar to that given in
Eq. (25) for the overpressure is apprepriate:

B ada-ﬁfa- - (29)
for .
50 > AP_> 1,
8
dw/-1.33 48P, for AP <3
- 5.6 + 0.63 &, 2 3< aF, £ 10
0 .for A‘i’B > 10 )
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and . f =60 APS

These approximate forms agree with the numerical values of Q and AP in
the positive phase to within 10 percent (and over most of the range to less

than 2 percent) for values of AP_ less than ten atmos.

POSITIVE IMPULSE

The integrated positive overpressure (I;) and the total positive drag

pressurer(I;) decrease with distance from the blast source in the manner shown

in Fig. 1&. ot
. P
Ip = AP(t) dt , {30)
o.
D-O'
u
+ 1 <
Iu =z 5 pu~ dt .
o

’ +
(Because of the units employed in this paper, I dges not become the usual

Poe
dynamic impulse until it i multiplied by & = I-,-‘-’-- )
: (o]

Both of these impulses may be fitted by simple powers of the radial

distance for shock overpressures less than two atmospheress

1; - 0,013 X, ap_ < £ (31)

1+ = 0.004 A&7
u

NEGATIVE IMPULSE
The negative overpressure impulse in the range below 20 atmos of peak

overpressure can be expressed to within 5 percent by

1 .
I = : -
p z ArP'-I’p . (32)
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Since the duration of the negative pressure is constant at D; = 1.22, 16

Ip = 0.61 AP_ . | (33)

For distances greater that » = 0.5 the negstive peak overpressure

approaches zero Inversely as the distance

AP = - 0,086 A1 , A >0.5, (34)

and the negative pressure impulse goes approximately like

I = 0.052 »L o, a >0.5 . (35)

SPECIAL FEATURES OF THE ISOTHERMAL SPHERE PROBLEMS

In the gas dynamies resulting from the release of an initially static
high-pressure sphere, an inward moving shoek forms behind the rarefaction
wave that first runs in from the surface of the sphere. This inward-
directed shoek was predicted by Weekenj and discussed by HcFaddens, Shardin9
and othersh. It does not acquire a net inward velocity until the rarefac-
tion has resched the center, but after that it moves in and refleets at the
origin, and then races outward to eventually overtake the main shoek.

Thig second shoek grows from zero strength to presumaﬁly an infinite
pressure ratio at the origin. On reflection, this shock moves outward,
decaying in strength about as the inverse firat power of its distance from
the origin. The géneral expanslion and outward motion of the ges behind
the meln shoek 1s responsible for this apparently modest decay rgte.

When this second shock encounters the outer surface of the gés that
wae inltiaslly inside the sphere, a transmitted shoek continues out and a re-
flected shoek is sent inward. The transmitted shock overtakes the main

shock and increases it by as much as 20%. Progressively wesker shocks
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follow from the reflections at the imberface and again at the origin. This o
repeated shoeking of the gas near the origin changes -the temperéture profile
at later times from 1ts initial isothermal nature to ﬁearer the point-gource
distribution which iz charaeterized by a high central temperature falling
off rapidly with radius.

Some detall is lost in the viecinity of the origin sinece the shocks are
always spread over a number of mesh points. In one ease the problem was re-
run with megh gizes about ome fourth the original size, and the inward-moving
shock showed some appreciable discrepancy near the origin. However, this
discrepancy may be attributed mainly to the difficulty in ldentifying the
shock when the rounding ls comparsable to the shoek radius. After reflectien
the difference vanishes again in spite of the quite different histories near

the center.

IV. CONCLUSIONS

POINT SOURCE SOLUTION

At‘increasing distanees from a finite but sudden source of énergy, ‘the
resulting blest wave will appear more and more like that from a point source.
The blast resulting from an initial isothermal sphere of gas at rest will
'assume the general shape and values of the point source solution (to within
10 percent) after the shoek wave has engulfed a mass of alr 10 times the
initial mass of the sphere. Prior to this, the shock strength is less than
that of the point source shock, and the inﬁard-traveling rarefaction has not

reached the center.
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A point gouree should leave a higher temperature and ecnsequently a larger
perdentage of emergy mear the origin., This energy, no longer svaileble to the
shoek wave, should effeet a redustion in the shoek radius (for a given over«
pressure). However, no sppreeiable difference in the loweend of the shoek
overpressure~radius relation appears on eomparing the point source and iscthermal
sphere solutions. In fapt, perhaps due to multiple shoeking of the inner ngions
in the isothermal sphere problems, the distribution of residual energies (per
unit volume) and pressures are nsarly identicsl arocund the origin at a time
wvhen the shosk has progressed to 6 or 7 times the initial radius. Although
tomperatures will remein different, sinee the point souree has an infinite
tenperature at the origin (and zero density), the average temperature (or density)
of that gas initially ins{de the 1sothofrmlbsphnre spprosghes (within 10 pereent)
the average tempersture for a ecrresponding mass arcund the point scurge.

For a souree of ecnsidersble initial mase, the pesk pressure way begome
quite small before the shoek has engulfed a mass of g;s 10 times larger, and
the blast vave may, therefcre, remain quite different from the point souree
golution throughout regions of interest. Sueh is the sase to some extent with
high explosives where initiil ¢harge shapes will influance the blast wave at
all signifieant pressures. It is true to an even grester extent in the spherieal
eguivalent of a shock+tube type 61‘ blast, vhere a gu‘at high pressure but at
normal tempeyature is suddenly relemsed, as in the normal temperature lsobarie

_sphere prodlem (dotted eurve Fig. 1) deseribed in Seetion I. |

APPLICATION TO BLAST IN AIR

The 1den) gas assumption is reasonably valid in air for shoek pressures
less than 10 atmos. Above that the gamma in the expression for the internal
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energy (Eq. 7) ranges down to as low as 1.133 and up to the mono-atomie value
of 1.667. | | |
But since the mess of gas vhich has experienged shoeks stronger than 10
atmos 18 a small part (5 pereent) of the engulfed mess by the time the shoek
overpressure is down to 1 itnos, the blast wave for eonstant gamms should be
reasonadbly aorrict for air at most interesting shock pressures.
In the ease of shosk wave problems involving only one gpage variable,
the -artifieisl viseosity teechnigue for oumerionl mém'tm appears to be very
satisfastory over large ranges of pressure md entropy change. Unfortunately, .
1t cannot be expected to yield detsils of a shock wave lspinging on s singular
point sush as the origin in spherieal or cylindricel geometry, sinee the nature
of this method iz sueh as to spread the shoek front over a mumber of grid points.

The persons partisipating in and alding the work reported on here are
too numercue to list; however, at the risk of 'sls.ghti'ng man); I mention a few:
R. Latter gave some eritieal attention to the formulstion of the problem,
Ruth Anne Engvall, I, Greenwald and other mathematicians performed mcﬁ_ of
the goding and numerisal work. ﬁisa Biigvall a.llb supsrvised mugh of the
analysis of results and the preparation of eurves. In addition, the a.uﬁhw
enjoysd fregquent helpful discussions with other RAND perscnnel and eonsultanta.
This work wae ageomplished with the aid of both Air Feree and Atomie Energy
Commission fundas.
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FIGURE CAPTIONS

Radial dependente of ths peak or shoek overpressures. The solid
surve represents the point source solution. The dmshed eurves
represent the results from two different initial isothermal spheres,
ohe &t 2000 etmos and the other at 121 atmos, both spheres were hot
with equal density inside and out. m emﬂod eurve ropi'asants

the resulting shock overpressure from an initially eold iscbaric
‘sphere with tempersture equal inside and out. The pressures are

in atmos and ths distances in units of (Et&ﬁo)ll 3,

Particle veloeity or Magh number at the shoek as a funetion of
shoek radfus for the point scuree solution. Velegity is in units
of the pre-shoek ,acm_ie velonity and the radius is ﬁ-uni'baz} of

(2, /P )3

Pesk or shoek dynamie pressure (Q = 1/2 puz) versus shoek radius for

the point souree solution. The dynamic pressuve is in etmos and the
‘ , y1/3

radius in units of (Et ot/Po) .

?reasm in atmos as & funetion of the Lagrange or masg position
for the point.souree solution at times indieated. The position 1is
in arbitrary units of (Et&ﬁo)l/ 3/1627.2, and the time {s in units
of (Etot/Po)l/ 3/c° vhen C_ 1s the preshosk sonie veloeity.

Particle veloeity 1n units of preahoek_; sonie veloeity as a funstion

of Lagrange or nass position for the point-souree solution at the

times indieated. The positien is in units of (Etot/Po),l/ 31627.2,

ot/ 90)1/3/ Cor
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Density in wts of preshoek dsnsity as a funstion of Inm or

mass position for the pointesourse solution at the times indicated.

in untt 1/3
The position u in units of (Et et/Po) /en.

Hydrodynamie gquantities in units of their pesk values ss a funetion
of Eulerian or spate position at the times indieated. The radius is
in unite of (Ewb/l? 0)1/ 3, | The ;el_id gurves represent overpressure )
(4P/AP,), the long dash qurves represent partiele velocity (u/u ),
the dot-dash m; represent density (p/p'), and the short dash
curves represent eewiesihn'f(p-l)/(p ’-1)] . 'Tha ghoek values of
the overpresswre (AP,) for these times sve 121.5, 20.10, 2.03, 1.01,
0.338, 0.0701 ordered on inereasing time. For tha partisls veloeity
the :peak values are 8.49, 3.37, 0.873, 0.524, 0.216, 0.0525, and for
the density the jmk values sre 5.66, 4.68, 2.135, 1.625, 1.228,
1.0508.

Duration of positive phase for pressure (D"') and particle veloaity
(D ) versus distance (Eulerian) where time {s in units of (E ot/P )1/ 3/6
end distanse is $n units of (8, ,,/P,)"/3.

Pressure as a funetion of time vhere the pressure is in units of
the peak pressurs (o7,)(Fig. 1) and the time (%) 1s in wits of
the pesitive duration (n ) (Fig. 8). The numbers indieate the
aorrupondhs peak overpressures (AP ).

Peak negative overpressure in atmos as s funetien of radial distance

in units of (B, /P, )2/3,
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Fia; 1 - Dynemie pressure (Q -‘rl/é pna) as & funetion of time where thi
pressure 1s in units of the peak dynamie presewre (Q_) (Fig. 3),
and the time is in wnits of the pouitln durntion bf the velm:l.ty
(n "y (n; 6) “Whe thbers- mdzg-m the nornmmmg peak over-
pr-sms (AP ) i rap:ld q«m m csrcct!.w Pulse duration
with m:muins puk mmuum hu tha‘ cffact ©of making the

h:lghnrdymic Wﬂses magh, t}n sharpest. .‘"«

R H.g 12 ~ The M:al dmmme pf the m:ltivc p:unum imlu (IB) the
' negative mm hmlae (Ip), and tbu positive dammie impulse

IQ in units’of wmwluus (vhers time is in the dimnsi@nlna
units (gtm/P )t/ 3/e*: ) *bhe Yadial distanse is in units of (Et c,,6/1’ )1/ 3,
- S T3 5 <_ Tf i . "2 X P
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