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Abstract— Today’s soldier carries on average over 100lbs of gear, 
which takes its toll on the soldier and on the mission. To help 
mitigate this problem, the US Department of Defense is 
researching the use of “robotic mules” to move along with squads 
and help offload some of the excess weight carried by soldiers. 
The operator control units (OCUs) for these are typically 
portable computers with tele-operation or point-and-click 
interfaces. Instead, the DoD wants heads-up, hands-free methods 
of interaction that can fit seamlessly into the normal squad 
interaction patterns. This paper describes our research and 
prototyping in multi-modal interaction with robotic mules, 
focused on speech and gesture. We present an analysis of squad 
interactions to help determine the kind of technology useful for 
user input recognition. We describe an algorithm for gesture 
recognition using a 9-axis IMU, results of a formative evaluation, 
and a prototype multi-modal interface that can be used to 
command a robotic platform. 

Keywords-multi-modal interaction, human-robot interface, 
gesture, speech 

I.  INTRODUCTION 
Today’s infantry soldier carries in excess of 100lbs of gear 

on average, including weaponry, ammunition, food, water and, 
increasingly, batteries to power new technology. All of this 
weight takes a toll on the soldier’s body and on the mission. To 
help mitigate some of these problems, the US Department of 
Defense has begun investing in the development of different 
“robotic mules” to carry the excess weight of the infantry 
squad. Some example platforms in this class of vehicles 
includes Boston Dynamic’s Legged Squad Support System 
(LS3), Virginia Tech’s (GUSS), and Lockheed Martin’s Squad 
Mobility Support System (SMSS). These robotic vehicles are 
meant to move along with the infantry squad, freeing the 
soldier of excess weight like water and food  

While the robotic platforms themselves have received a 
great deal of research attention, the Operator Control Units 
(OCUs), have lagged behind. Typical OCUs for these systems 
include some kind of gamepad for tele-operation with a 
joystick or, in some cases, menu-driven search-and-click 
interfaces. These OCUs are often ruggedized laptops or tablets 
carried by the operator, not only adding weight to the operator 
(a physical burden), but also demand the user’s attention to 
keep the robot performing the correct task (a cognitive burden).  

To help mitigate both the physical and cognitive burdens, 
the DoD is interested in heads-up, hands-free interfaces that 
minimize both the amount weight a soldier carries and the 
amount of time the soldier has to spend attending to it, allowing 
the user to focus on the more pertinent job of soldiering.  

The research and development of such a heads-up, hands-
free interface is the focus of this paper, in particular on natural 
modes of interaction. Based on how soldiers interact with each 
other today, speech and gesture are the two most common 
modalities in a squad, and so are used here as a starting point 
for human-to-robot interaction. We first review the relevant 
literature. We then present an analysis of a pre-established 
military gesture language, identifying a practical set of 
recognition-oriented dimensions for categorizing the types of 
gestures found in that language. This analysis, as well an 
analysis of the expected use cases of a robotic mule, suggests 
an approach for automatic recognition of gestures. We present 
a novel approach for gesture recognition with a 9-axis inertial 
measurement unit (IMU) and some preliminary recognition 
results on a small set of gestures. While the bulk of the paper 
focuses on our gesture research, we also present preliminary 
results of a speech recognition system that largely mirrors the 
gesture language. Finally, we briefly describe the integration of 
these components with a representative ground vehicle. 

II. RELATED WORK 
Often, gesture and speech are seen as “natural” modes of 

interaction that would (presumably) make computing systems 
easier to use. Spoken interfaces have become commodities, 
with the likes of Apple’s Siri, but recognition in noisy 
environments (such as in the presence of large robots) is still a 
challenge. Gesture recognition has only begun to be seen in 
commercial products in the last few years. 

Gesture recognition is a rich research field, covering 
different technology approaches and use cases. Gestures 
themselves span a wide range of motions and poses, including 
body pose, head and eye gaze, hand and arm signals, and fine-
grained finger movements. Gesture-based interaction with 
computers has seen a recent explosion of interest with the 
availability of inexpensive sensors such as Microsoft Kinect™. 
Vision-based gesture recognition is widely researched [1] but 
can be very sensitive to lighting conditions. Gesture 
recognition using hand-held devices such as Nintendo WiiMote 
has also been researched widely [2], but typically involves a 
user holding a device in the hand to make gestures. 

Gesture recognition research has had different use cases in 
mind. In some cases, gestures are used as an interface to games 
as with the WiiMote; in others, it is used for recognizing letters 
or shapes written in the air [3]. Of particular relevance are 
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systems that use gestures to communicate commands to robotic 
systems [4]. In some cases, gesture is a primary mode; in 
others, gestures can be used to supplement other modalities, for 
example, pointing while speaking [5]. 

Much of the work in gesture systems has been done in 
laboratory settings with very controlled lighting conditions, or 
but a few examples include daytime outdoor uses [4]. In 
contrast, a robotic mule will operate in wide-ranging light and 
weather environments, and recognition must be reliable at any 
time, day or night, rain or shine.  

Some work has focused on the development of custom 
gesture languages to make recognition easier [6]. Alternatively, 
some attention has been paid to established gesture sets such as 
American Sign Language [7] or military gestures [1, 8]. Like 
these, our approach uses gestures from an established language. 
In this paper, we take a step back to look at the qualities of the 
prescribed gestures as a way to guide recognition. 

III. GESTURE ANALYSIS 

A. Operational Setting 
To consider how an interface for robotic mules might need 

to recognize gestures, we need to examine how these gestures 
would be made in practice. Infantry patrol missions, like those 
expected a robotic mule would participate in, are conducted 
around the clock, in various lighting and weather conditions. 
Squads move through various terrain types that may include all 
kinds of obstacles and occlusions. The user may be moving 
around the robotic mule, along with the rest of the squad. The 
squad may hope to hide their visual, audio and electronic 
signature in the presence of enemy forces, by using camouflage 
and minimizing noise, but also by emitting as little 
electromagnetic signal as possible. The operator’s distance 
from the vehicle may vary widely, depending on the task, threat 
level, formation, and terrain. All of these factors make for a 
challenging interaction environment, even for soldiers. 

B. Gesture Dimensions and Analysis 
For the use case of signaling to a robotic mule, we 

examined US Army Field Manual 21-60 Visual Signals as a 
source of existing gestures that are used in human-to-human 
communication in different infantry contexts. (This is trained 
as doctrine in the US Army, though units may adopt their own 
unit-specific gestures.) The use of a pre-established gesture set 
presents some interesting challenges. Because there is an 
existing language, we do not have to generate one from scratch, 
which saves time and effort. However, with an existing 
language, we are at the mercy of the designers of that language. 
We do not get to craft gestures that might be easily 
recognizable or distinguishable by a computer, and we must 
deal with ambiguities or overloading that are present. 

Analyzing an existing language is an important first step in 
determining how to go about recognizing it. There have been 
many gesture taxonomies developed over the years, mostly 
focused on gesture as language, including the semiotic aspects 
of gesture, gesture’s relation to speech, etc. (See [9] for an 
overview.) Different gesture qualities can have implications for 
the kinds of technology that might be used to do the 
recognition. Since these gestures have been developed 

organically over time, presumably they were selected because 
they are easily seen and made by people. However, the military 
didn’t have in mind robotic systems when they were designed. 
Here, we look from the practical perspective of ease of 
recognition by a robot. 

We focused our analysis on FM 21-60, in particular, the 
sections having to do with signals to vehicle drivers, combat 
formations, and infantry patrols (sections 2-2, 2-4, and 2-5), 
based on their applicability to robotic mules. If there was a day-
night distinction, we only included the daytime gestures, 
yielding 58 gestures. With this gesture subset in mind, we 
developed a set of seven dimensions to describe these gestures: 

1. Is the gesture a held pose or does it include movement? (Static 
versus Dynamic) (also from [10]) 

2. Does the gesture repeat or is given once? (Continuous versus 
Discrete) 

3. Does the gesture include one arm or both? (1-Arm versus 2-Arm) 
4. Does the gesture only use arms or does the hand also convey 

meaning? (Arm-only versus Hand Articulation) 
5. Does the gesture use only hands and arms, or are other parts of 

the body or equipment referred to? (Only Hand/Arm versus Other 
Reference) 

6. Does the person face the intended recipient or does the person 
face another direction? (Facing Target versus Other Orientation) 

7. Does the gesture happen only in the x-y plane of the body, or 
does it include z-plane? (X-Y plane versus Z Plane) 

8. Is the gesture unique or is the same gesture used in different 
contexts? (Unique versus Overloaded) 

These are dimensions are defined further, and examples 
given, in Table I, which also includes a breakdown of how 
gestures fall into these categories. Our categorization was 
partly subjective based on the diagrams given in FM 21-60; we 
used two judges to assess for each category and broke ties 
through discussion. 

The different qualities of gestures can have an impact on 
the kinds of technologies needed to perform recognition. For 
example, two-arm gestures would require that sensors are able 
to track both arms. Gestures that include articulated hands 
require a much finer recognition (with higher resolution), at the 
level of individual fingers. Gestures referring to other body 
parts or equipment can be especially complex because the 
system would need to have a sense of those body parts or 
equipment to understand the meaning of the gesture. Dynamic 
gestures require tracking the movement of the body whereas 
static gesture recognition need only identify a pose. Discrete 
gestures require a different kind of behavior than continuous 
gestures on the part of the recognizer (repetitive capture) as 
well as the robotic platform. Gesture orientation (facing the 
vehicle or away) has an impact on how to interpret the gesture. 
Gestures x-y plane alone is less information to worry about 
than if the gesture also includes information in the z-plane 
between the gesturer and the receiver. If gestures are 
overloaded instead of unique, then we also need to understand 
the context in which they were given to know their meaning. 

There are some interesting observations we can make about 
this categorization. For example, over 70% of the gestures 
analyzed were dynamic gestures, meaning that motion is an 
important component that needs to be recognized. However, 
among the static gestures are the “Halt”-type commands, which 



are critical to be able to recognize, especially for robotic 
vehicles. There is also more overlap among gestures than might 
be hoped for: the same gesture can mean different things in 
different contexts. For the example given in the table, the same 
gesture means opposite things in different contexts. 

IV. APPROACH 
Based on the above analysis, and especially the operational 

setting, one major design choice was between placing the 
sensors on the robotic platform (e.g., a stereo camera and 
microphone) and having a device on the user to capture speech 
and gesture data. Placing sensors on the vehicle is attractive 
from a user perspective because the user carries no extra gear. 
However, a platform-mounted gesture recognizer is susceptible 
to occlusions or obstacles that might appear between the user 
and the system. Passive sensors are also highly susceptible to 
variable lighting conditions, and active sensors (e.g., LIDAR) 
emit energy that could be detected by adversaries. Field of 
view (FOV) and range are also both major issues to content 
with: it is very difficult for the user to know where the FOV 
and range boundaries are, which makes for a challenging user 
experience when trying to communicate. The user also has to 
stand in a particular orientation to the sensor to achieve good 
recognition. Having a microphone quite a distance away from 
the user, mounted on a noisy platform, poses large speech 
recognition challenges. 

The alternative of a user-carried device has its own 
tradeoffs. It increases the user’s weight burden and requires 
some wireless communication framework, but it is not 
susceptible to occlusions, FOV, or range concerns that are 

major problems with platform-mounted sensors. It also has to 
be able to capture enough of the body’s motion to be 
recognized as a gesture. A user-worn microphone also has a 
much better potential for speech recognition.  

Given the operational setting, including the potential for a 
range of lighting conditions, obscuration, and the user moving 
anywhere around the vehicle, we chose to experiment with a 
user-worn smartphone that has a 9-axis IMU to capture 
gestures and speech input. With this approach, we avoid the 
occlusion and FOV problems, but we are limited to single-arm 
gestures with no hand articulation. Theoretically, we can 
capture data to be able to recognize static and dynamic 
gestures, discrete and continuous, and capture data in x,y, and z 
dimensions relative to the user. 

A. Gesture Recognition Algorithm 
We divided the gesture recognition problem into two 

phases: first, estimating the position and orientation of the 
device as a function of time; and second, comparing the 
resulting “state-space curve” to a library of recorded gestures 
and identifying the closest suitable match. 

1) Phase 1: Data Fusion. The raw IMU data was sent 
from the device at a rate of around 50Hz; each packet 
contained a timestamp and some subset of the three measured 
quantities (acceleration, angular velocity, and magnetic field), 
with measurements taken in a reference frame co-moving and 
co-rotating with the device (the “body frame”). In the absence 
of measurement errors, these data can be used to derive the 
device’s position and orientation relative to a fixed reference 

TABLE I.  GESTURE DIMENSIONS, EXAMPLES, AND ANALYSIS 

Dimension Examples and Analysis Dimension Examples and Analysis 
Static vs Dynamic: A static 
gesture is recognized by 
being “held” in position for a 
time; a Dynamic gesture is 
recognized by the motion it 
makes through space and 
time 

Dynamic: 70.2%           Static: 29.8%  

                  
Follow                                 Halt 

Only Hand/Arm vs  Other 
Reference: Some gestures are 
relative only to the body’s 
frame; others are relative to 
another body part such as the 
head or helmet 

Body Frame: 77.2%   Other: 22.8% 

           
         Freeze                     Pace Count 

Continuous vs Discrete: 
A continuous gesture 
invokes a response while 
the gesture is repeated; a 
discrete gesture invokes a 
response until a new 
command is given 

Continuous: 12.5%      Discrete: 87.5% 

                       
Move Forward                           Halt 

Facing target vs Facing 
other: Some gestures face the 
target; some gestures are 
oriented away from the person 
being communicated with. 

Facing Target: 47.4%   Other: 52.6% 

          
Move Right              Advance/Move out 

1-Arm vs 2-Arm: Some 
gestures are made with 
one arm, some are made 
with two 

1-arm: 51.8%              2-arm: 48.2% 

                            
     Halt                                Disregard 

Gestures in x-y plane only vs 
Include z-plane: Some 
gestures are perpendicular to 
the target; others include 
information in the space 
between gesturer and target. 

X-Y plane only: 56.1%   Z-plane: 43.9% 

                    
   Action Right                        Follow 

Just arms vs Include 
Hand Articulation: 
Some gestures do not 
articulate the hands to 
convey meaning, others 
do 

Just arms: 63.2%  Hand Articulation: 36.8% 

                 
Move Right         Message Acknowledged 

Unique vs Overloaded: Some 
gestures are unique; others 
have meaning dependent on the 
context in which they are 
given. 

Unique: 82.8%        Overloaded: 17.2% 

                  
   Halt             Slow Down / Quick Time 

 



frame (the “lab frame”). We process each data packet as 
follows: 

1. Use the current orientation to obtain the angular velocity, 
acceleration, and magnetic field in the lab frame. 

2. Update the current orientation using the lab-frame angular 
velocity. 

3. Subtract the effect of gravity from the lab-frame 
acceleration. Update the current velocity using the residual 
acceleration. 

4. Update the current position using the lab-frame velocity. 

Measurement noise degrades the quality of the orientation 
estimates (in step 2), and errors in the orientation will 
propagate back (in step 1) to degrade the other estimates as 
well, at an accelerating pace. To minimize this degradation, we 
calibrated the device to remove sensor bias, and added an 
orientation-correction step. We performed calibration by 
instructing the user to hold the device stationary for a few 
seconds in each of several orientations (face up, face down, 
vertical). During the calibration period, the gyroscope readings 
were expected to be zero, while the acceleration and magnetic 
field readings were expected to be constant (in the lab frame) 
vectors. By appropriately rotating and averaging the 
measurements, we determined the gyroscope bias vector, the 
gravitational acceleration, the accelerometer bias vector, and 
the background magnetic field. These calibration settings were 
used to correct the raw measurements from the device prior to 
further analysis. Ideally, one would have to calibrate a given 
device only once. However, the environment in which the 
device is used may have an impact on this; for instance, the 
local magnetic field will differ from location to location. 

To prevent orientation errors from accumulating, we 
included an additional correction step, which leveraged the 
measured magnetic field. Since the gravitational acceleration 
and magnetic field vectors in the lab frame are constant, we 
defined at each point in time the “reference orientation” as the 
orientation that best aligns the measured (body-frame) 
acceleration and magnetic field with the predetermined lab-
frame values. This orientation is not exactly correct, since the 
acceleration has a residual component beyond gravity (when 
the user is accelerating the device), but it gives some indication 
of the correct orientation. We incorporate it in a fifth step: 

5. Adjust the current orientation in the direction of the 
reference orientation; make a small adjustment when the 
estimated residual acceleration is large, and vice versa. 

The overall data fusion process, which includes the bias 
correction, compass-based orientation correction, and the usual 
frame conversion and integration steps, is shown in Fig. 1. 

The result of this process is a stream of position and 
orientation estimates, as shown in Fig. 2 for several distinct 
gestures. While the orientation estimates are not expected to 
drift, the position and velocity estimates will diverge from their 
true values over time, due to the lack of a position correction 
analogous to step 5. This is already visible in Fig. 2, in that the 
endpoints of a gesture that returns to its starting position are 
estimated by the system to be as much as a meter apart. 

2)  Phase 2: Classification: Having captured a state-space 
curve, we then want to compare it to a set of pre-recorded and 
-labeled exemplars (a “gesture library”), and find the type of 
gesture it most closely resembles. The gesture-to-gesture 
comparison itself is fairly straightforward, but has a few 
subtleties worth discussing. When comparing two gestures, we 
want to use a distance measure that only depends on the 
essential shape of the gestures. In particular, we want to ignore 
differences between their overall locations, their absolute 
headings, and, to some extent, their speeds. 

We normalized each gesture by (1) translating its initial 
position to the origin, (2) rotating it around the z-axis so that its 
most horizontal measurement pointed north, and (3) subtracting 
a constant-acceleration curve in order to force the final velocity 
to be zero. Step (3) is intended to correct for the velocity drift 
discussed in the previous subsection. (The gestures we want to 
recognize are unambiguous with respect to (2), and do not lose 
information due to (3); but some gestures would require 
qualitatively different normalization.) To find the distance 
between two normalized gestures, ignoring speed differences, 
we used the Dynamic Time Warping (DTW) algorithm, as 
described in [11]. DTW finds the optimal pairing between two 
discretized curves in a metric space, producing a measure of 
distance that is invariant under an arbitrary rescaling of time 
(for either curve). In our case, the metric space consists of 
<orientation, position> pairs; for the distance between two such 
points, we used: 

 . 

Here drot is the usual rotation distance (in radians), deuc is 
the Euclidean distance (in meters), and A is a conversion factor 
that we also used to reduce the importance of the (less reliable) 
position estimate. (We used A=0.25/m^2.) Finally, we added to 
the total DTW distance an additional term proportional to the 
rotation distance between the final points of the two gestures. 

 
Figure 1.  Depiction of the fusion algorithm 

 
Figure 2.  IMU position data for three gestures: Turn-Right, Forward, Stop 
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For our preliminary implementation, we recorded only a 
dozen or so exemplars for each gesture type. Before doing any 
recognition, we computed the diameter (i.e., the largest 
pairwise distance) of each class of exemplars, and used this as 
an indicator of how close a “good gesture” should be to the 
exemplars in a given class. To recognize a new gesture, we 
computed the distance between the gesture and each library 
gesture, dividing each distance by the library gesture’s class 
size. (With such a small gesture library, this was 
computationally feasible; but if there were many more 
exemplars, we would need to develop a more efficient testing 
strategy.) The gesture was assigned the class of the best-
matching library gesture according to this measure. The result 
was given a high confidence (measure less than 0.8), low 
confidence (0.8-1.2), or no confidence (greater than 1.2). 

B. Preliminary Evaluation 
1) Command Language: As a starting point for this work, 

we chose a subset of the gestures defined in FM 21-60 as a 
language to control a robot – a mix of infantry patrol gestures 
and vehicle maneuver gestures: follow me, move forward, 
stop, turn-left, and turn-right. These are depicted in Fig. 3. 
These include a mixture of static and dynamic gestures, those 
that have information in the x-y plane as well as the z-plane, 
as well as both discrete and continuous gestures. In most 
cases, the user is facing the platform, but does not have to be 
for follow-me. We only included gestures that used arm 
motions – no hand articulation, and no reference to other 
equipment or body parts.  

Because we chose to use just a single IMU sensor on the 
user, we could only track a single arm, we were limited to 
single-arm gestures (or those that had two arms making the 
same gesture). Because of this, we could not implement a 
standard turn-left, which (doctrinally) is similar to the turn-
right gesture, but using the opposite arm. Instead, we chose a 
single-arm mirror turn-right. This is not completely ideal (our 
turn-left overloads the already existing slow-down gesture) but 
some kind of adaptation was required for the single sensor and 
we didn’t want to invent a completely new gesture. 

Voice commands covered the gesture commands and added 
three more: Move Backward, “Robot” (take control) and 
“We’re done” (release control). 

2) Gesture Evaluation Procedure and Results: We 
recruited 13 users (11 male, 2 female) to test the recognizer, 
consisting primarily of software engineers. None had prior 
experience using the system, but most had exposure to the 
concept. The capture device was a Motorola Moto X 
smartphone with an on-board 9-axis IMU; data was sent from 
the phone to a laptop for recognition. The recognizer used a 

pre-build gesture library to classify user inputs. The user held 
the phone in his or her right hand to perform the gesture. All 
the data was collected in the same location using a single 
calibration. Each was given an orientation to the task, and had 
each gesture demonstrated for them. Participants then 
practiced for a few minutes in front of a display that showed 
them the recognition result as feedback, until they felt 
comfortable with the gestures. After this, they were asked to 
repeat each gesture at least 25 times (first forward, then left, 
etc.) without the aid of feedback, but with visual depictions in 
front of them to remind them of the gesture forms. The gesture 
library against which the user inputs were tested had been built 
previously. 

TABLE II.  TABLE 1: GESTURE RECOGNITION CONFUSION MATRIX 

  Output 
 
Input 

Forward Left Right Stop Follow None N Acc. 
% 

Forward 97% 0% 0% 1% 0% 2% 327 97.2% 
Left 0% 59% 3% 38% 0% 0% 334 58.7% 

Right 0% 0% 98% 1% 0% 0% 325 98.5% 
Stop 2% 0% 0% 98% 0% 0% 368 98.1% 

Follow 3% 0% 0% 3% 92% 1% 334 92.2% 
 1688 88.9% 
 

The confusion matrix of the data is shown in Table II. In 
most cases, the recognizer performs better when the gesture is 
performed in a snappier way; more nonchalant movements 
yield lower performance. This makes sense because the 
algorithm currently looks for an accelerometer impulse as the 
trigger to the gesture. Turn-left was consistently the most 
difficult to recognize, and in doing the data collection, we 
found that it was very sensitive to the orientation of the phone 
at the start of the gesture. If the user held it face down, then we 
got very good recognition; if it was held somewhat obliquely, 
recognition rates dropped. For some users, holding the phone 
flat with the arm outstretched parallel to the body seems to be 
difficult ergonomically. A few participants adjusted by starting 
with their arm slightly out of parallel with their bodies, and in 
these cases recognition of turn-left rose to 78% (N=100, 4 
users). Other gestures were not as sensitive to this starting 
position. More diverse training data for this gesture may help 
improve these results.  

3) Speech Evaluation Procedure and Results. We recruited 
5 users (2 male, 3 female) to test the speech recognizer, again 
with the population consisting of mostly software engineers. 
We used the SPEAR® speech recognizer from Think-a-Move. 
The audio data was captured on the same smartphone as above 
using with a custom user interface that included a push-to-talk 
button to delimit each utterance. We used only the 
smartphone’s on-board microphone rather than special 
recording equipment. The smartphone was held roughly 30cm 
(12 inches) from the user’s mouth. The audio was sent over 
wi-fi to a Windows7 laptop to perform the speech recognition. 
For this data collection, each was shown a list of 8 commands 
to speak, and given the chance to practice a few times. They 
had the list of commands in front of them during the entire 

 
Figure 3.  Implemented Gestures: Follow Me, Move Forward, Stop, Turn 

Left, Turn Right 



trial. The participants were asked to repeat each at least 10 
times. During all trials, a recording of a large robot was 
playing to provide background noise. The noise is similar to 
being next to a motorcycle that occasionally revs its engine, 
ranging from roughly 75-95 decibels. Results are given in 
Table III. For space, we just include aggregate results per 
command. A total of 520 utterances were spoken There were 
only 5 instances of confusion with other commands; most of 
the errors were non-recognition (37 instances). 

TABLE III.  TABLE 2: SPEECH RECOGNITION RESULTS 

Input Accuracy 
“Forward” 90.8% 
“Turn left” 98.5% 
“Turn right” 100.0% 
“Stop” 78.5% 
“Follow” 93.8% 
“Move Backward” 96.9% 
“Robot” (take control) 95.4% 
“We’re done” (release control) 80.0% 
Average Accuracy 91.7% 

V. PROTOTYPE IMPLEMENTATION 
Using the gesture and speech recognizers described above, we 
integrated with an rGator, a robotic version of the John Deer 
Gator. Prior to this test, we had added custom hardware and 
software for driving and steering the vehicle as well as stereo 
cameras to perform user tracking and following behaviors. 
The only other sensors involved for this test were those on the 
smartphone strapped to the user’s wrist: the microphone and 
the IMU. We used push-to-talk to delimit audio The CPUs 
performing recognition were mounted on the rGator itself, and 
the smartphone communicated user data over wifi. The gesture 
and speech accuracy outdoors with the robot was generally 
better than with the study results reported above, likely 
because our demonstration user had more practice than any of 
the study participants, but we did not collect data as much 
outdoors to compare directly. 

VI. CONCLUSIONS AND FUTURE WORK 
We have described a prototype system for heads-up, hands-

free speech and gesture-based interaction with robotic 
platforms. The current form factor is a smartphone attached to 
a user’s wrist to capture both speech and gesture data, which is 
sent to a remote laptop for processing and commanding the 
vehicle. Smaller for factors are possible, as long as they allow 
both speech and gesture capture. Speech recognition uses 
Think-a-Move’s SPEAR® speech recognizer. Gesture 
recognition is based on a 9-axis IMU using a custom 
recognition algorithm. We have demonstrated this system with 

a surrogate robotic mule, in which a user is able to speak or 
gesture to the robot. The advantage of this gesture recognition 
approach is that recognition is not susceptible to user position, 
orientation, lighting, or occlusions. The recognition rates we 
have seen so far in a quick prototype are very promising. We 
have also described a practical taxonomy of gestures that has 
aided us in how we approached gesture recognition. 

Our future work includes expanding the gesture and speech 
vocabulary and providing feedback to the user. We have more 
work to do on recognition accuracy to be useful in the field, 
and we’d like to explore whether using a more deliberate 
trigger for gesture recognition would improve accuracy. We 
also need to explore the sensitivity of gesture recognition to the 
initial calibration of the phone, in particular to different 
magnetic field environments. We will also evaluate the 
robustness of the system in more natural settings, such as 
soldiers on patrol with a robotic mule. 
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Figure 4.  Figure 1: Demonstration snapshots: turn-right gesture  

(left pane) and stop gesture (right pane) 


