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1. Introduction 

 
Crack detection and impact source identification in materials 
is a  renowned  problem  found  in  variety of commercial 
and military applications like beams, bridges, turbines, 
pavements, armor plates, vehicle body plates, bones, teeth, 
and so on. This long-standing interest in development of 
CDISI is evident  from  variety of  methods  proposed  in 
the literature [1–33]. Ultrasonic guided waves are used for 
the crack detection [1, 2]. The crack detection is done by 
measuring lamb wave signals using the dual PZT transducers 
[3]. Wireless inductively-coupled transducers are used for 
the crack detection [4]. The wave velocities of concrete are 
measured by the portable transient elastic wave system to 
track the health of concrete [5]. Automation for different 
crack detection and impact source identification methods 
is lately carried out in the literature using soft computing 

   and VLSI techniques. Image processing techniques are used 
for the crack detection [6, 7]. One of the most effective 
tools to deal with complex problems with lack of certainty, 
accuracy, and absolute truth  is the soft computing. Zadeh 
[8] describes soft computing “Soft computing is tolerant of 
imprecision,  uncertainty, partial truth,  and  approximation 
than the traditional Hard Computing. The role model for soft 
computing is  the human  brain.” A fuzzy inference system 
[9] is developed to predict location and depth of the crack 
of a cracked cantilever beam structure in a close proximity 
to the real results. A hybrid artificial intelligence technique 
with  fuzzy-neuro  controller  is  used  to  detect  the  crack 
with its location in cantilever beam [10]. Fuzzy logic and 
expert system techniques are efficiently used in evaluation 
of pavement  distress like cracking [11].  A genetic fuzzy 
system [12] is used for crack density and  crack location 
detection. The genetic fuzzy logic system [13] is used as 
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method for automatic rule generation in fuzzy systems for 
structural damage detection. Reference [14] has presented a 
comprehensive structural fault detection method using fuzzy 
logic which is better suited to tolerate noise and uncertainty. 

Table 1: Linguistic labels for the index location parameter. 
 

Parameter  Labels 
Near  Far Faraway 

A fuzzy rule-based system [15] is developed for the blade of 
a BO-105 helicopter rotor modeled as a cantilever beam and 
demonstrated that the fuzzy system performs accurately even 
in the existence of noisy data. The sensitivity of the modal 
frequencies and other parameters to a crack increases when 

 

Index location 
Segments 

Segments 
adjacent to 

sensor 

Segments adjacent 
sidewise to the 
near section 

 

Rest of the 
segments 

the crack is near the sensors and decreases as the crack moves 
away, thus a modular  neural network architecture [16] is 
presented as a nondestructive method for health monitoring 
of structures. The issue of uncertainty in material properties 
in structural damage detection with fuzzy logic is addressed 
by [30–33], with use of the fuzzy cognitive maps [30] used to 
solve this problem. Recently Meitzler et al. [1] have proposed 
an ultrasonic crack detection system, which uses transducers 
to  detect the crack in metal armor  plates. The existence 
of cracks is determined  by comparing the output  voltage 
waveforms with those of an undamaged plate manually using 
metrics. 

NDT of an object determines its usefulness without 
ruining it to avoid its intended  use. A CDISI problem is 
quite important  to issues related to the security and safety 
of soldiers as it affects the armored  vehicles’  body plates 
and soldier’s body armor on the battlefield. The NDT for 
CDISI accomplishes to perk up the reliability by assuring the 
quality level of armor material and operational readiness of 
armored vehicles and soldier’s body armor plate prior to or 
during its day-to-day use. A CDISI system for armor plates 
is presented as a new soft computing method based on the 
fuzzy logic component.  The FPGA implementation  [1] of 
CDISI fuzzy inference system is done with an intention to 
embed it on a chip designed for a CDISI handheld device. 
Our approach uses the theory of soft computing to develop a 
model supported by VLSI design to determine the following 
metrics. 

 
(1) Nature of plate: It is diagnosed to be in one of the four 

possible states like unknown, undamaged, slightly 
damaged, and damaged. The system generates degree 
of crack value in the range of [0, 1] where 0 represents 
an unknown state and 1 represents a damaged plate. 
As the degree of crack value increases, the amount of 
crack in the plate also increases. 

 
(2) Source of impact: The CDISI system currently rec- 

ognizes two different sources of impact. This can 
be expanded for incorporation  of a larger range of 
sources. 

 
This  paper  is  organized  in  the  following  manner. 

Section 2 focuses on the literature review and discusses the 
CDISI system description. Section 3 discusses the  funda- 
mental  theory of fuzzy systems, fuzzy models, and  fuzzy 
logic-based modeling techniques for CDISI. The proposed 
CDISI fuzzy inference system is given in Section 4. Section 5 
presents FPGA implementation of CDISI system. An inte- 
grated approach of CDISI system which is based on the Fuzzy 

model and FPGA implementation is the topic of discussion 
in Section 6. Finally Section 7 concludes the paper. 
 
2. CDISI System Description 
 
Crack detection and impact source identification has been 
a widely studied problem in the literature using NDT 
approaches. The work of Meitzler et al. [1] is reviewed here 
for the ready reference. An ultrasonic crack detection system 
[1] for ceramic vehicle body armor support system (VBASS) 
plates  as  shown  in  Figure 1  uses two  piezoelectric lead 
zirconate titanate (PZT) transducers attached with ceramic 
plate to be tested for the crack. Generally transducers are 
used to transmit  energy from one type to another.  Here 
they  are  used  to  stimulate  and  measure  the  resonances 
mode of rectangular ceramic armor  plates in 50–300 kHz 
range of frequencies. PZT transducer/sensor A is connected 
to the variable AC source, and the PZT transducer/sensor 
B is connected to the oscilloscope for transmitted  energy 
and excited vibrational mode analysis. The alteration in the 
mechanical structure or presence of cracks is determined by 
comparing the output  voltage waveforms with those of an 
undamaged plate manually using metrics. 

The impact  source identification system consists of a 
ceramic plate [17, 18] as shown in Figure 2. The two sensors, 
sensor A and  sensor B, are  positioned  on  two  sides of 
the ceramic plate which sense the acoustic emissions from 
submicron cracking caused by the hitting pressure. These 
sensors read the waveforms when the plate is hit  by the 
source. The data acquisition system (DAS) extracts data from 
these waveforms. The location being hit on the plate affects 
the decision of impact source identification, so it has 16 parts 
where the source can be hit. These parts are labeled P00 to P33 
as seen in Figure 2. The accuracy of the identification of the 
source of impact depends on the part number being hit by a 
source. 

An automated  procedure  for the  CDISI is proposed, 
which reads the waveforms from the sensors A and B in 
the  test  circuits seen in  Figures 1  and  2  with  the  help 
of a DEWESoft data acquisition [19] system. The various 
parameters extracted from the CDISI system waveforms are 
frequency, average RMS, standard  deviation, RMS value, 
peak value, median, mode, and FFT value. After systematic 
study of parameters it was noticed that some of these 
parameters  are  instrumental  in  the  process  of  decision 
making  towards conclusion = {Nature of plate, Source  of 
Impact} and some are redundant.  The unique parameters 
extracted from sensors A and B for the CDISI assessment are 
input frequency, average RMS, standard deviation, location 
index, Arms, Amax, Brms, and Bmax. The Arms and Brms 
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Variable 

AC source 

   

 

 
 

Table 2: Linguistic labels for the different parameters. 
 

Labels LL LH ML MM MH HL HH VH 
Range of value    Low-low Low-high Medium-low Medium-medium Medium-high High-low High-high Very high 

 
 

Oscilloscope 
 
 
 
 

PZT transducers/ 
sensor A 

PZT transducers/ 
sensor B 

 
Ceramic armor plate 

 
Figure 1: CDISI: crack detection test system circuit. 

 
 

are the RMS value for sensors A and B. Amax and Bmax are 
the peak value for the sensors A and B. The details of the 
input and output parameters of the CDISI are 

 
 

Input Parameters 

= 
{

Input Frequency, Average RMS, Std. Deviation, 

Location Index, Arms, Amax, Brms, Bmax}, 
(a) 

Output Parameters= 
{

Nature of Plate, Source of Impact
}
, 

(b) 
 

Nature of Plate 

3. CDISI Fuzzy Model 
 
A fuzzy system is developed on the basis of the fuzzy logic, 
which is based on  the  fuzzy set theory  [9].  Fuzzy logic 
supports approximate reasoning by taking a broader view of 
Boolean values of 1 and 0 with fine merger of symbolic and 
numeric computation. All the input and output parameters 
in a fuzzy system are essentially fuzzy-subset [20] with each 
element having some degree of membership in the subset. 

The CDISI fuzzy system model portrayed  in Figure 3 
consists of following elements. 
 
(1)  Numerical Data Inputs. The numerical  values for all 
input parameters are extracted from the output waveforms 
generated with the help of data acquisition system. These 
numerical values for different parameters are used as inputs { } 

= Unknown, Undamaged, Damaged, Slightly Damaged , 
(c) 

 
Source of Impact 

to  CDISI fuzzy model.  The  numerical  data  inputs  for 
CDISI system are input  frequency, average RMS, standard 
deviation, location index, Arms, Amax, Brms, and Bmax. 

= 
{

SourceType1, SourceType2, SourceUnknown
}
. 

(d) (2)  Numerical and  Linguistic Data  Outputs. The  CDISI 
output waveform parameters lead to determine the nature of 
plate and the source of impact. The nature of plate ∈ [0, 1] 

The CDISI test circuits as shown in Figures 1 and  2 
generate a sufficiently large database for {Input Parameters, 
Output Parameters}. This database is influential in defining 
fuzzy relation between the inputs and output  parameters. 
In practice the time and frequency domain analysis of the 
sensor waveforms is used for CDISI, which many  times 
turns  out  to  be  very expensive. To  the  best  of  authors 
knowledge fuzzy logic is the best candidate to express the 
relation between the input and the output parameters, due 
to the lack of strong mathematical model to represent this 
system. CDISI fuzzy system outperforms the conventional 
comparison method involving human error due to manual 
comparison  of the waveforms with that  of an ideal plate 
and the known source of impact. The CDISI fuzzy inference 
system is a fast, reasonably priced fault-diagnosis solution 
in the complex system which involves human thinking. The 
CDISI fuzzy model is discussed in Section 3. 

is also represented as degree of crack; the smaller the value of 
degree the less the amount of cracking. The linguistic labels 
applied to the output parameters are 

(i) NatureOfPlate ∈ {Unknown, Undamaged, Slightly 
Damaged, Damaged} ∈ [0, 1], 

(ii) SourceOfImpact  ∈ {SourceType1, SourceType2, 
SourceUnknown} ∈ [0, 1]. 

 
(3) Fuzzification. It maps observed nonfuzzy input param- 
eters into  suitable linguistic values, which are defined as 
the labels of fuzzy parameter sets. The linguistic labels for 
input parameter location index can be seen in Table 1. The 
near label segments are shaded grey, far label segments are 
white, and faraway label segments are shaded in gradient 
in Figure 2. The linguistic labels for input parameters input 
frequency, average RMS, std. deviation, Arms, Amax, Brms, 
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Figure 2: CDISI: impact source identification test system circuit. 
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Degree of crack 
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Figure 3: CDISI fuzzy system model. 
 
 

and Bmax can be illustrated in Table 2. The transformation 
of data into linguistic labels and vice versa is done with help 
of (1) and (2) and Table 3. 

⎧
LL  if 01 x < 30, ⎪ ⎪
LH  if 30 ≤ x < 60, ⎪ ⎪ML  if 60 ≤ x < 70, ⎨ 

(b) fuzzy rule database: sets up the relation and defines 
the membership functions for each input and output 
parameter being used by the CDISI fuzzy rules; 

 
 
 
(c) reasoning mechanism: this block generates the result 

by implementing  the  inference procedure  on  the Frequency(x) = MH    if 70 ≤ x < 80, ⎪HL  if 80 ≤ x < 90, ⎪ ⎪HH if 90 ≤ x < 100, 
⎩VH if > 110. 

(1) given conditions  and  the  formed  rules. Different 
reasoning mechanisms can be used in a fuzzy system 
to obtain the desired result. The CDISI results are 
obtained by aggregating the result of each rule in the 
fuzzy rule base. 

In (1) label is allocated to different values of the input fre- 
quency. These labels are further associated with membership 
functions from Table 3 equations for the different values of 
the linguistic labels used in the fuzzy model. 

 
(4) Fuzzy Inference Engine. The major components of this 
block are 

 
(a) a rule base: fuzzy rule can be expressed as 

 
“If input1 is A or input2 is B and input3 is C, 
then output is D,” where A, B, and C are the 
input  and D is output  linguistic label values 
defined. With some experimentation, trialerror, 
past experience, and familiarity with the system 
that is to be developed the rules are formulated; 

 
 
 
(5) Defuzzification. This component  takes inputs as aggre- 
gated fuzzy dataset, the result of fuzzy inference engine and 
further maps it to a nonfuzzy output value for the degree of 
crack/nature of plate and source of impact outputs. The reverse 
process of the fuzzification is 
 
 
 
 
SourceOfImpact(x) 

⎧
SrcType1 if trimf(x, [−0.4, 0, 0.4]), ⎪⎨ 

=  SrcType2 if trimf(x, [1, 0.5, 0.9]), ⎪⎩SrcUnknown    if trimf(x, [0.6, 1, 1.4]), 
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⎨

 

 

⎨ 

 

⎨ 

 

⎨ 
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⎧ 

⎨ 
= 
⎩ 

 
 Table  3:  Linguistic label  membership  function  equations  for 

different parameters. 
4. CDISI Fuzzy Inference System 

   Taking into consideration the automation of CDISI system 
 Membership function equations ⎧ 

⎪0,  x ≤ 0, ⎪⎨ 
LL(x) =  0.1429 − x/0.1429, x ∈ (0, 0.1429), ⎪ 
  

⎪⎩0,  x ≥ 0.1429. ⎧ 
⎪0,  x ≤ 0.1429 ⎪ ⎪x/(0.1429),x ∈ (0, 0.1429), 

x  = ⎪0.3 − x/0.1428, x ∈ (0.1429, 0.2857), ⎪ 
⎩0,  x ≥ 0.2857. ⎧ 
⎪0,  x ≤ 0.1429, ⎪ ⎪x − 0.1429/0.1428,  x ∈ (0.1429, 0.2857), 

for armor plates and the uncertainties pertaining to these 
kinds of systems, the fuzzy logic approach [12, 23] seems to 
be one of the promising candidates. 

The CDISI Fuzzy Inference System is a multiple input 
multiple  output  (MIMO)  system as  shown  in  Figure 4. 
It  has  eight  input  and  two  output  unique  parameters. 
The Linguistic labels for the Index Location parameter are 
tabulated  in Table 1 and  rest of the input  parameters in 
Table 2. The linguistic labels for the output parameters are 
expressed in (2). Table 4 shows the labels and range of values 
for different input parameters. The membership functions 
are assigned to each of these parameters. All of the CDISI 
parameter  membership  functions  selected are  triangular ML(x) = ⎪0.2857 − x/0.1429, x ∈ (0.2857, 0.4286), ⎪ 

⎩ 

 
functions  after some trial  and  error  after experimenting 
with other membership functions like Gaussian, Trapezoidal, 

 

 
 

MM(x) = 
 
 
 
 

MH(x) = 

0, x ≥ 0.4286. ⎧ 
⎪0,  x ≤ 0.2857, ⎪ ⎪x − 0.2857/0.1429,  x ∈ (0.2857, 0.4286), 
⎪0.4286 − x/0.1428, x ∈ (0.4286, 0.5714), ⎪ ⎩0,  x ≥ 0.5714. ⎧ 
⎪0,  x ≤ 0.4286, ⎪ ⎪x − 0.4286/0.1428,  x ∈ (0.4286, 0.5714), 
⎪0.5714 − x/0.1429, x ∈ (0.5714, 0.7143), ⎪ 
⎩0,  x ≥ 0.7143. 

Gaussian bell and few more. It was observed that triangular 
function works well with the CDISI Fuzzy Inference System. 
Figure 5  shows the  triangular  membership  function  for 
the output parameters NatureOfPlate and SourceOfImpact. 
Figure 6 shows the triangular membership function for the 
input parameters like Average RMS and Location. 

Table 5 shows a sample of the rule base, expressing the 
relationship between the input and output parameters. If any 
of the input parameter labels are “true” for a certain rule then 
that rule is said to be activated. About five dozen rules are 
incorporated in the CDISI System. 

 
 

HL(x) = 
 
 
 
 

HH(x) = 

⎧ 
⎪0,  x ≤ 0.5714, ⎪ ⎪x − 0.5714/0.1429,  x ∈ (0.5714, 0.7143), 
⎪0.7143 − x/0.1428, x ∈ (0.7143, 0.8571), ⎪ ⎩0,  x ≥ 0.8571. ⎧ 
⎪0,  x ≤ 0.7143, ⎪ ⎪x − 0.7143/0.1428,  x ∈ (0.7143, 0.8571), 
⎪0.857 − x/0.1429, x ∈ (0.8571, 1), ⎪ 
⎩ 

Fuzzy Logic Toolbox from MATLAB  is used to  build 
the CDISI fuzzy Inference System using Mamdani method 
[21]. The CDISI Fuzzy Inference System implementation 
snapshots can be seen in Figure 7. Figure 7(a) shows the 
MIMO structure of the CDISI Fuzzy Inference System. This 
portrays the input and the output  parameters as discussed 
in Sections 2 and 3. A snapshot of CDISI Fuzzy System Rule 
Editor Window can be seen in Figure 7(b), which provides 
an environment to add, delete and update rules in the rule 
database. 0, x ≥ 1. ⎧ 

⎪0,  x ≤ 0.8571, 
⎪ 

VH(x) = 
⎨

x ⎪ 
− 0.8571/0.1429,  x ∈ (0.8571, 1), 

5. FPGA Implementation of CDISI 
⎪⎩0,  x ≥ 1. 

 
 
 
 

NatureOfPlate(x) 
 

⎪UnKnown if trimf(x, [−0.3333, 0, 0.3333]) 
⎪Undamaged if trimf(x, [0, 0.3333, 0.6667]) 
⎪Slightly Damaged   if trimf(x, [0.3333, 0.6667, 1]) 
⎪Damaged if trimf(x, [0.6667, 1, 1.333]), 

(2) 
 
 
 

where trimf(x, [a, b, c]) is the triangular function [21] with 
a, b, and c as left feet, right feet, and the peaks of triangle. 

CDISI system automation  is done by rapid prototyping of 
a chip with the help of FPGA implementation [24–26]. The 
reference [1] has discussed the standalone device designed to 
detect cracks in armor plates. An effort is made to develop 
a chip which can detect crack and identify the source of 
impact on basis of logic used in the CDISI fuzzy inference 
system discussed in Section 4. FPGA implementation of the 
CDISI system is done using hardware description language 
Verilog with the Xilinx ISE WebPack [27], SynaptiCAD 
[28], and ModelSim XE [29] using Spartan 3 FPGA. CDISI 
FPGA implementation  is a general-purpose, multi-level 
programmable logic device supported with advantages like 
 

(1) flexibility to change rules on the hardware, 
 

(2) programing   and   reprograming   using  reasonably 
priced hardware and software on the field, 



 6 
A

dvances in Fuzzy System
s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Labels for the input function for CDISI fuzzy. 
 

Range  
LL 

 
LH 

 
ML 

Labels 
MM 

 
MH 

 
HL 

 
HH 

 
VH 

Arms 0.1–1.1 1.1–1.4 1.4–1.7 1.7–1.9 1.9–2.3 2.3–3.5 3.5–4 >4 
Amax 0–6.5 6.5 6.5–8 8 8–10 10 10–17 >17 
Brms 0–1.5 1.5–2.4 2.4–2.9 2.9 2.9–3.3 3.3 3.3–4.0 >4 
Bmax 0–10 10 10–13 13 13–15.4 15.4 15.4–17 >17 
Frequency (KHz) 1–30 30–60 60–70 70–80 80–90 90–100 100–110 >110 
Avg. RMS voltage 0–0.001 0.001–0.00199 0.00199–0.00225 0.00225–0.00250 0.00250–0.002971 0.002971–0.003111 0.003111–0.004 >0.004 
Standard deviation ≤0.00003 0.00003–0.00003229 0.00003229–0.00006229 0.00006229–0.0001 0.0001–0.0001889 0.0001889–0.000199 0.000199–0.00021 >0.00021 
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 Unknown Undamaged Slightly damaged Damaged ImpactSource-One ImpactSource-Two 
Output bus code 00 01 10 11 0 1 
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Table 5: Sample rule base for the CDISI fuzzy inference system. 
 

Rule no. Freq Avg. RMS Std. dev. Loc. Arms Amax Brms Bmax Nature of plate Impact source 
1 MM MM MM Far HL HH LH ML Unknown SourceType2 
5 MM MM MM Faraway HL HH MH ML Unknown SourceType1 
18 MM MM MM Near VH HH ML MH Unknown SourceType1 
35 HH LL HH Far MM MM MM MM Damaged SourceUnknown 
42 HH HH MM Far MM MM MM MM Undamaged SourceUnknown 
54 MM HH LL Far MM MM MM MM Slightly damaged SourceUnknown 

 
Table 6: CDISI FPGA implementation output status code bits. 

 

CDISI output  Nature of Plate status (2-bit)  Source of Impact (1-bit) 
 
 
 
 
 

Table 7: CDISI FPGA implementation input status code bits. 
 

Input labels 3-bit input parameters  2-bit input parameters 
 

Range of 
value 
Input bus 
code 
Numerical 
value 

 
 

Input frequency 
Average RMS voltage 
Standard deviation 

Amax 
Arms 
Bmax 
Brms 

Location index 

 
 
 

CDISI 
fuzzy inference 

model 

 
 
 
Degree of crack / 
nature of plate 

 
Source of impact 

 
Figure 4: CDISI fuzzy inference system. 
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Unknown  Undamaged  Slightly Damaged   Damaged 
 
 
 
 
 
 
 
 
 
 
 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Output variable “Nature Of Plate” 
 

(a) 

 
1 

 
 
 
 
0.5 
 
 
 
 

0 

Source Type1 Source Type2 Source Unknown 
 
 
 
 
 
 
 
 
 
 
 
0   0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9   1 

Output variable “Source Of Impact” 
 

(b) 
 

Figure 5: Output parameters membership function: (a) NatureOfPlate and (b) SourceOfImpact. 
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Figure 6: Input parameters membership functions: (a) average RMS and (b) location. 
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Figure 7: CDISI fuzzy inference system: (a) the fuzzy inference system (FIS) and (b) the FIS rules. 
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Table 8: Analysis of FPGA implementation of CDISI. 
 

Metric Used  Available Utilization 
Number of 4 input LUTs   10 3,840  1% 
Number of Slices occupied  6 1,920  1% 
Additional JTAG gate count for IOBs  912    —  — 
Number of bonded IOBs:   19   173 10% 
Total equivalent gate count for design  66    —  — 

 
 

(3) cheaper option over the respective chip, with respect 
to the manufacturing cost and complexity of the chip. 

 
Figures 8(a)  and  8(b)  show  the  structure  of  CDISI 

FPGA system and  the  RTL schematic, respectively. The 
system has the following 3-bit inputs: Input Frequency, 
Average RMS, Standard Deviation, Amax, Arms, Bmax, and 
Brms. The input Location Index is the only 2-bit input 
parameter. The output is restricted for the experimental 
purpose to 1-bit ImpactSource and 2-bit Pltstatus for source 
of impact and the nature of plate, respectively. The number 
of bits can be extended further  to expand the input  and 
the output  domains.  The status code bits, that  represent 
the meaning  associated with each numerical  value result 
are tabulated  in Table 6. They show the value of output 
bus. For example, Pltstatus = 11 indicates that the plate is 
damaged, and ImpactSource = 1 indicates that the source of 
impact is ImpactSource-Two. Table 7 shows the CDISI FPGA 
implementation input status code bits for various 3-bit and 
2-bit input parameters. This table has tabulated the possible 
input values that can be assigned to different input buses. 

CDISI system technology schematic can be seen in 
Figure 9(a), which represents the design in terms of logic 
elements optimized to the target device. Figure 9(b) shows 
the detailed system register transfer level (RTL) schematic of 
the proposed CDISI system. RTL schematic view symbolizes 
design in terms of macro blocks. Each macro block has 
combinatorial logic mapping onto elementary logic function 
gates. Figure 10(a) shows the output HDL log of the software 
simulation using SynaptiCAD software of the CDISI system 
developed. Some sample results can be observed here in 
Figure 10(a)  for  a  set  of  input  parameters.  Figure 10(b) 
shows the waveform simulation for the CDISI system. Table 8 
shows the analysis of CDISI system implementation device 
usage. It can be seen that LUT (Lookup Table 8) utilization 
is 1%. Slice, an elementary programmable logic block which 
includes two  4-input  LUTs, two  multiplexers, arithmetic 
logic unit, and two 1-bit registers, has the utilization of 1%. 
Thus Table 8 illustrates minimal device usage by the CDISI 
system. 

 
6. CDISI System: An Integrated Approach 

 
CDISI System supports an automated  and integrated 
approach towards crack detection and the impact source 
identification in ceramic plates. This integrated approach 
consists of CDISI fuzzy inference system and  the  CDISI 
field-programmable gate array (FPGA) implementation  as 
shown in Figure 11. The test circuit discussed in Section 2 

generates waveforms which can be displayed on an oscil- 
loscope. The test circuit results are further used to extract 
the  data  which proceed  as input  for  the  CDISI System. 
The  CDISI  fuzzy inference  system  generates  the  result 
{Pltstatus, ImpactSource}. CDISI field-programmable gate 
array (FPGA) implementation utilizes and implements the 
rule base from fuzzy inference system. 

The  proposed  algorithm  for  an  integrated  approach 
towards CDISI consists of following subsystems. 
 

(1) CDISI  system  test  circuit  parameter   extraction: 
extracts the parameters from the results generated by 
the circuits discussed in Section 2 with the help of 
DEWESoft Data acquisition system. 

(2) CDISI fuzzy inference system: develops CDISI fuzzy 
inference system which essentially is a multiple- 
input,  multiple-output  fuzzy system, based on the 
behavior extracted from the data. 

(3) CDISI field-programmable gate array (FPGA) imple- 
mentation:  identifies the  inputs  and  outputs  for 
the  CDISI chip, develops Verilog code for CDISI 
in ceramic plates on  Spartan 3 FPGA, and  writes 
a test-bench  file to simulate and  verify the FPGA 
implementation. 

(4) Display output: nature of plate (Pltstatus) and source 
of impact (ImpactSource) are the two outputs  dis- 
played by both the fuzzy and the FPGA implemen- 
tations. 

 

The detailed proposed algorithm for overall development of 
CDISI system which consists of the fuzzy inference and FPGA 
implementation consists of the following steps. 
 

(1) Acquire sensors A and B waveforms  using DEWESoft 
7 data acquisition system (DAS) and save them in two 
data files. 

(2) Extract the input parameters from the waveform data 
obtained by the test circuit discussed in Section 2. 

(3) Identify the input and output parameters for CDISI 
fuzzy inference system as seen in (a) and (b). 

(4) Set the range for the input and output  parameters. 
CDISI parameter range is tabulated in Table 4. 

(5) Define CDISI fuzzy model [6, 17] using Mamdani 
type fuzzy inference system, considering absolute 
values of parameters. 

(6) Fuzzify the input parameters and map an observed 
nonfuzzy input space into suitable linguistic values as 
seen in Tables 1 and 2. 

(7) Define membership  function  for  each  input  and 
output parameter with experimentation. 

(8) Develop fuzzy rule base on the basis of data collected. 
(9) The result is obtained by aggregating the result of 

each rule in the fuzzy rule base for the considered 
input. 

(10) Defuzzify the output and map it to nonfuzzy linguis- 
tic output values (NatureofPlate) and (SourceOfIm- 
pact). 
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Figure 8: CDISI system FPGA implementation: (a) system design structure and (b) RTL schematic. 
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Figure 9: CDISI system: (a) technology schematic and (b) detailed RTL schematic. 
 
 

(11) Identify number  of bits required  to  represent  the 
CDISI system input and output parameters on a chip 
as identified for the fuzzy system and determine the 
dimension  of the system structure  as observed in 
Figure 8. 

 
(12) Develop Verilog hardware description language code 

for CDISI system for ceramic plates. 
 

(13) Select device as FPGA and assign package pins for 
CDISI design on FPGA. 

(14) Generate a netlist PROM file to be downloaded on 
the Spartan 3 FPGA. 

 
(15) Configure the FPGA and program FPGA; verify the 

design using input output  signal pins/buttons  on 
FPGA. 

 
(16) Write a Verilog test-bench file for software simulation 

and verification of the FPGA implementation. 
 
(17) Run the test bench file with help of any of the tools 

like SynaptiCAD Verilogger Pro and ModelSim. 
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Figure 10: CDISI simulation: (a) HDL log and (b) waveform simulation. 
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Figure 11: An integrated approach towards CDISI. 

 
 
7. Conclusion 

 
The problem of crack detection has aroused interest amongst 
a large number of investigators because of its importance in 
a variety of applications. Similarly there has been interest in 
identifying the source which is responsible for making the 
crack. In this paper a unified approach for crack detection 
and the impact source identification is proposed. Because 
of the importance of the problem it is essential to develop 
the chip which can have the algorithm for CDISI problem 
implemented. It is revealed in this paper that the concept of 
fuzzy logic and the rule base developed by the fuzzy logic can 
be implemented to solve this problem in industry. The fuzzy 
rule base can be developed in the form of a Verilog code, 
which further enables the field-programmable gate array 
(FPGA) implementation  of the suggested technique.  The 
suggested technique is implemented using Xilinx’s Spartan 
3 FPGA and  ISE WebPACK 9.1i software. The  software 
simulation and debugging is done by means of SynaptiCAD’s 
Verilog Simulator — VeriLogger pro—and ModelSim. The 
proposed FPGA implementation  reads the values of input 
parameters and exhibits the nature of plate and source of 
impact. The entire algorithm has been successfully imple- 
mented for integrated crack detection and impact source 
identification and can possibly act as a hand held device for 
the detection of crack and to identify the source of impact. 
The current CDISI system can be expanded by inclusion of 
more parameters and extended range for the parameters. The 

suggested procedure can show the way to the solutions for 
several other similar problems of interest in the industry. 
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