
Technical Report

IISc/SID/AE/AOARD/2013/01

Reactive Collision Avoidance of UAVs with Stereovision

Sensing

Amit Kumar Tripathi Ramsingh G. Raja Radhakant Padhi

Ph.D. Student Project Associate Associate Professor

Department of Aerospace Engineering

Indian Institute of Science

Bangalore, India.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
17 JAN 2014

2. REPORT TYPE
Final

3. DATES COVERED
 09-08-2011 to 08-08-2013

4. TITLE AND SUBTITLE
Collision Avoidance guidance of UAVs with Obstacle Estimation from
Vision Sensing

5a. CONTRACT NUMBER
FA23861114096

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Radhakant Padhi

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Indian Institute of Science,Indian Institute of Science,Bangalore
560-012,India,IN,560-012

8. PERFORMING ORGANIZATION
REPORT NUMBER
N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AOARD, UNIT 45002, APO, AP, 96338-5002

10. SPONSOR/MONITOR’S ACRONYM(S)
AOARD

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
AOARD-114096

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Using simple passive stereovision pin-hole sensors, an effective reactive collision avoidance algorithm is
presented in this report for unmanned aerial vehicle (UAV). Both kinematic model as well as point mass
models of UAV are considered for system dynamics. The stereovision camera is considered mounted on the
UAV. The camera sensors and the obstacle are forming a geometrical configuration and triangulation
methods are used to estimate the position and velocity of the obstacle falling under the field of view of the
camera sensors. For simplicity, shape of the obstacle is considered as spherical. The position estimation of
the obstacle is also carried out by image processing methods wherein the feature points detection, stereo
matching and triangulation algorithm are used to compute the 3D reconstruction of obstacle. This method
uses the computer vision system toolbox and VRML viewer of MATLAB r, Using this we are able to
compute the approximate size and centre of the obstacle. This geometrical formulation takes advantage of
both ‘stereo vision’ as well as ‘optical flow’ signatures and hence it is capable of estimating the range
information as well, making its position estimate quite accurate. A large number of simulation studies,
which also includes consistency checks for filtering algorithms, leads to the conclusion that this strategy is
quite effective in avoiding popup obstacles within a very short time and hence can be very useful for
reactive collision avoidance.

15. SUBJECT TERMS
Aircraft Control, Flight Control, UAV

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

104

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Table of Contents

Table of Contents i

List of Figures iii

1 Introduction 1
1.1 Motivation . 5
1.2 Contribution . 6

2 Obstacle Position and Velocity Estimation 9
2.1 Stereo Geometry . 10
2.2 Obstacle Position Estimation using EKF . 12

2.2.1 Dynamics of System . 12
2.2.2 Camera Sensor Measurement Noise Model 13
2.2.3 Initialization . 13
2.2.4 Extended Kalman Filter . 14

2.3 Unscented Kalman Filter . 16
2.3.1 Unscented transformation . 16
2.3.2 Time update equations . 17
2.3.3 Measurement update equations . 18

2.4 Velocity Estimation . 20
2.4.1 Relative Velocity Estimation . 20
2.4.2 Reactive collision avoidance with moving obstacles 24

3 Collision Avoidance Philosophy and Guidance Design 27
3.1 Aiming Point Computation . 28
3.2 Nonlinear Differential Geometric Guidance 33
3.3 Controller Design . 33

3.3.1 Autopilot Compensation . 35
3.4 Noise-free Performance of the System . 36

3.4.1 Kinematic Model Noise-free Performance: Stationary Obstacle 36
3.4.2 Point mass Model Noise-free Performance: Stationary Obstacle 37
3.4.3 Point mass Model Noise-free Performance: Moving Obstacle 37

i

3.5 Extension of the Algorithm for Multiple Stationary Obstacles 40
3.5.1 Formulation of Reconfigurable Obstacles 40
3.5.2 Collision Avoidance algorithm for Multiple Individual Obstacles . . . 41

4 Obstacle Position and Size Estimation with Camera 44
4.1 Camera Model . 44
4.2 Stereo Camera . 47

4.2.1 Feature detection . 47
4.2.2 Stereo matching . 48
4.2.3 Epipolar constraint . 48
4.2.4 Fundamental Matrix . 49

4.3 3D Reconstruction . 50
4.4 Simulation Result . 51

4.4.1 Single Obstacle . 51

5 Simulation Results 54
5.1 Simulation Results . 54
5.2 Kinematic model of UAV with EKF Estimation 54

5.2.1 Single obstacle . 55
5.3 Kinematic model of UAV with UKF Estimation 58

5.3.1 Single obstacle . 60
5.4 Point mass model of UAV with EKF Estimation 62

5.4.1 Single obstacle . 62
5.4.2 Multiple obstacle . 70

5.5 Point mass model of UAV with UKF Estimation 73
5.5.1 Single obstacle . 73
5.5.2 Multiple obstacle . 78
5.5.3 Randomized Validation . 81

6 Acknowledgements 83

7 Conclusion 84

Bibliography 86

A Mathematical Model 91
A.1 Kinematic Model . 92
A.2 Point Mass Model . 92

ii

List of Figures

1.1 Obstacle Collision Avoidance . 3

2.1 Geometry Formulation with Two Pin-hole Camera 10

2.2 Non-cooperative conflict resolution . 24

3.1 Collision Cone Representation . 28

3.2 UAV Kinematic model with Single Stationary Obstacle: UAV Trajectory . . 36

3.3 UAV Kinematic model with Single Stationary Obstacle: χ, γ and Velocity . 36

3.4 UAV Point mass model with Single Stationary Obstacle: UAV Trajectory . 37

3.5 UAV Point mass model with Single Stationary Obstacle: µ, α and Thrust . 37

3.6 UAV Point mass model with Single Moving Obstacle: UAV Trajectory . . . 38

3.7 UAV Point mass model with Single Moving Obstacle: µ, α and Thrust . . . 38

3.8 UAV Point mass model with Single Moving Obstacle: Velocity Profile . . . 39

3.9 UAV Point mass model with Single Moving Obstacle: Minimum Distance Profile 39

3.10 Flowchart for formulation of Reconfigurable Obstacles 42

3.11 Flowchart for Collision Avoidance of Multiple Individual Obstacles. 43

4.1 The camera coordinate and world coordinate frame 45

4.2 The geometry of stereo camera . 49

4.3 Feature points detected by Harris corner . 52

4.4 SSD based stereo matching . 52

4.5 3D reconstruction of matched feature points 53

4.6 UAV Trajectory . 53

4.7 Angle of attack Profile . 53

4.8 Bank angle Profile . 53

4.9 Thrust Profile . 53

iii

5.1 UAV Kinematic model with EKF Single Stationary Obstacle: UAV Trajectory 55

5.2 UAV Kinematic model with EKF Single Stationary Obstacle: χ, γ and Ve-

locity . 55

5.3 UAV Kinematic model with EKF Single Stationary Obstacle: Sigma error

bound . 56

5.4 UAV Kinematic model with EKF Single Stationary Obstacle: UAV to Obsta-

cle and Target Distance . 56

5.5 UAV Kinematic model with EKF Single Moving Obstacle: UAV Trajectory 57

5.6 UAV Kinematic model with EKF Single Moving Obstacle: Autopilot Com-

pensation . 58

5.7 UAV Kinematic model with EKF Single Moving Obstacle: χ, γ and Velocity 58

5.8 UAV Kinematic model with EKF Single Moving Obstacle: Sigma error bound 59

5.9 UAV Kinematic model with EKF Single Moving Obstacle: UAV to Obstacle

and Target Distance . 59

5.10 UAV Kinematic model with EKF Single Moving Obstacle: True and Esti-

mated Velocity of Obstacle . 59

5.11 UAV Kinematic model with EKF Single Moving Obstacle: Obstacle and

UAV’s X-direction Position . 59

5.12 UAV Kinematic model with UKF Single Stationary Obstacle: UAV Trajectory 60

5.13 UAV Kinematic model with UKF Single Stationary Obstacle: χ, γ and Ve-

locity . 60

5.14 UAV Kinematic model with UKF Single Stationary Obstacle: Autopilot Com-

pensation . 61

5.15 UAV Kinematic model with UKF Single Stationary Obstacle: UAV to Obsta-

cle and Target Distance . 61

5.16 UAV Point mass model with EKF Single Stationary Obstacle: UAV Trajec-

tory . 63

5.17 UAV Point mass model with EKF Single Stationary Obstacle: χ, γ Velocity 63

5.18 UAV Point mass model with EKF Single Stationary Obstacle: µ, α and Thrust 64

5.19 UAV Point mass model with EKF Single Stationary Obstacle: Autopilot Com-

pensation . 64

iv

5.20 UAV Point mass model with EKF Single Stationary Obstacle: Sigma error

bound . 65

5.21 UAV Point mass model with EKF Single Stationary Obstacle: UAV to Ob-

stacle and Target Distance . 65

5.22 UAV Point mass model with EKF Single Moving Obstacle: UAV Trajectory 66

5.23 UAV Point mass model with EKF Single Moving Obstacle: χ, γ Velocity . . 67

5.24 UAV Point mass model with EKF Single Moving Obstacle: µ, α and Thrust 67

5.25 UAV Point mass model with EKF Single Moving Obstacle: Autopilot Com-

pensation . 68

5.26 UAV Point mass model with EKF Single Moving Obstacle: UAV to Obstacle

and Target Distance . 68

5.27 UAV Point mass model with EKF Single Moving Obstacle: Obstacle True

and Estimated Velocity . 69

5.28 UAV Point mass model with EKF Single Moving Obstacle: Obstacle and UAV

Position in x-direction . 69

5.29 UAV Point mass model with EKF Multi Stationary Obstacle: UAV Trajectory 70

5.30 UAV Point mass model with EKF Multi Stationary Obstacle: UAV to Ob-

stacles and Target Distance . 71

5.31 UAV Point mass model with EKF Multi Stationary Obstacle: χ, γ and Ve-

locity . 71

5.32 UAV Point mass model with EKF Multi Stationary Obstacle: µ, α and Thrust 71

5.33 UAV Point mass model with EKF Multi Stationary Obstacle: Autopilot Com-

pensation . 72

5.34 UAV Point mass model with EKF Multi Stationary Obstacle: Sigma error

bound . 72

5.35 UAV Point mass model with UKF Single Moving Obstacle: UAV Trajectory 74

5.36 UAV Point mass model with UKF Single Moving Obstacle: χ, γ Velocity . . 74

5.37 UAV Point mass model with UKF Single Moving Obstacle: µ, α and Thrust 74

5.38 UAV Point mass model with UKF Single Moving Obstacle: Autopilot Com-

pensation . 75

5.39 UAV Point mass model with UKF Single Moving Obstacle: UAV to Obstacle

and Target Distance . 75

v

5.40 UAV Point mass model with UKF Single Moving Obstacle: Obstacle True

and Estimated Velocity . 76

5.41 UAV Point mass model with UKF Single Moving Obstacle: Obstacle and

UAV Position in x-direction . 76

5.42 UAV Point mass model with UKF Single Moving Obstacle: Sigma error bound 76

5.43 UAV Point mass model with UKF Multi Stationary Obstacle: UAV Trajectory 78

5.44 UAV Point mass model with UKF Multi Stationary Obstacle: UAV to Ob-

stacles and Target Distance . 79

5.45 UAV Point mass model with UKF Multi Stationary Obstacle: χ, γ and Ve-

locity . 80

5.46 UAV Point mass model with UKF Multi Stationary Obstacle: µ, α and Thrust 80

5.47 UAV Point mass model with UKF Multi Stationary Obstacle: Autopilot Com-

pensation . 80

5.48 UAVs Closest Approach to Obstacle for 1000 runs 82

A.1 AE-2 (Picture of All Electric airplane-2) . 93

vi

Abstract

Using simple passive stereovision pin-hole sensors, an effective reactive collision avoidance al-

gorithm is presented in this report for unmanned aerial vehicle (UAV). Both kinematic model

as well as point mass models of UAV are considered for system dynamics. The stereovision

camera is considered mounted on the UAV. The camera sensors and the obstacle are forming

a geometrical configuration and triangulation methods are used to estimate the position and

velocity of the obstacle falling under the field of view of the camera sensors. For simplicity,

shape of the obstacle is considered as spherical. The position estimation of the obstacle is

also carried out by image processing methods wherein the feature points detection, stereo

matching and triangulation algorithm are used to compute the 3D reconstruction of obstacle.

This method uses the computer vision system toolbox and VRML viewer of MATLAB r,

Using this we are able to compute the approximate size and centre of the obstacle. The

camera sensors are considered noisy and the noise is approximated by a gaussian random

variable. First, an Extended Kalman Filtering (EKF) approach is proposed to extract the

useful information from the noisy information generated. Further Unscented Kalman Fil-

ter (UKF) approach is proposed for capturing the camera sensor nonlinearity in a better

manner as UKF enables a second order approximation. This geometrical formulation takes

advantage of both ‘stereo vision’ as well as ‘optical flow’ signatures and hence it is capable of

estimating the range information as well, making its position estimate quite accurate. Fur-

ther the obstacle velocity information is also estimated based on optical flow information.

Next, an ‘aiming point’ is computed after putting an artificial safety ball around the obsta-

cle and using the collision cone approach. Next, the velocity vector of the vehicle is steered

away towards this aiming point using a recently developed ‘differential geometry guidance’

which is a dynamic inversion based three-dimensional nonlinear aiming point guidance law.

The guidance command generation is based on angular correction between the actual and

the desired direction of the velocity vector. Note that the velocity vector gets aligned along

the selected aiming point quickly (i.e. within a fraction of the available time-to-go), which

makes it possible to avoid pop-up obstacles. A large number of simulation studies, which

also includes consistency checks for filtering algorithms, leads to the conclusion that this

strategy is quite effective in avoiding popup obstacles within a very short time and hence

can be very useful for reactive collision avoidance. The guidance algorithm has been verified

with simulations carried out both for single obstacles as well as for multiple obstacles on

the path, stationary as well as moving obstacles and also with different safety sphere sizes

around the obstacles. The proposed algorithm has been validated using both kinematic as

well as point mass model of a prototype unmanned aerial vehicle. For better confidence,

results have also been validated by incorporating a first order autopilot delay compensation

for control commands.

ii

Chapter 1

Introduction

UAV’s are used for many missions of practical importance due to their ability to fly au-

tonomously at low altitudes. The UAVs can be deployed in numerous fields. The major

areas of applications are reconnaissance and surveillance, targeted attacks with less collat-

eral damage, battle damage assessment, traffic monitoring for crime prevention, detection

and containment of hazardous leakages in industries, assessment and rehabilitation in case

of natural calamities, military and terrain mapping etc. While operating at low altitude,

the UAV may come across many obstacles on it’s path, some of them are well known such

as urban structures, buildings, trees etc. Other obstacles may suddenly appear as pop-up

threat across it’s path. The UAV’s are generally equipped with path planning algorithms

that take care of all known obstacles and accordingly the trajectory up to destination is well

planned. The pop-up threats are unpredictable, therefore all possible collision avoidances

cannot be accounted a-priori, hence, it is vital that UAV’s should have the capability to

cater for all kinds of collision avoidance with obstacles autonomously and safely reach to it’s

destination. A variety of path planning algorithms are available which are used to design

the trajectory of a UAV. Generally these algorithms are computed off-line and are stored

in UAV onboard processor. However, there is no such off-line mechanism for guiding the

UAV in a scenario when the obstacles suddenly appear as a pop-up threat across the UAV

trajectory. Therefore, there is an immense need of an online algorithm that is built-in the

processor to compute the alternative path for the UAV satisfying it’s own constraints and

safely protect it from colliding in a given minimum available time. The online algorithm

that is computationally fast, highly efficient and noninteractive in nature serves such kind

1

of purpose and are called as reactive collision avoidance algorithm. The trajectory described

in the Fig.1.1 shows the reactive collision avoidance for the pop-up threat.

The collision avoidance problem addressed in this report can in fact be broadly termed

into the problem of ’path planning’, which is the process of finding a safe flight path to the

goal point. It typically consists of two layers (i) a global path planner and (ii) a local path

planner. A global path planning algorithm accounts for all known obstacles in the domain

a-priori and plans a path to the destination in such a way that it avoids all obstacles on its

path. Some global path planning algorithms such as rapidly exploring random tree (RRT),

Potential field method and graph search methods have been proposed in the literature for

this task. An interested reader can see [6] for an overview of these methods. This path

planning is deterministic in nature. For local path planning, however, the main aim is to

avoid collisions with obstacles at close vicinity (especially with the pop-up threats), which

is done in the following manner. When an onboard sensor detects obstacle(s) and predicts a

possible collision, the guidance law attempts to maneuver the vehicle away from the danger

as soon as possible so that the impending collision is averted. Such a guidance is also called

as ’reactive guidance’, since the available reaction time is very small and decisions have to

be taken quickly (i.e. within a fraction of the available time-to-go). Note that reactive

collision avoidance guidance typically results in high manoeuvres for a small duration of

time. Moreover, the guidance law should also ensure that while avoiding obstacles the

vehicle should not deviate too much from its original intended path. This is both because

other obstacles should not come on its new flight path and it should not deviate too much

away from seeking its intended destination (otherwise, putting it back into track becomes

difficult). Another critical restriction on such a reactive guidance law is that it should be

computationally quite efficient (preferably available in closed form), since the time to react

is typically quite low and, if possible, the control and guidance update needs to be done

at a higher rate. Moreover, for fixed-wing UAVs, it should also assure that the vehicle

keeps moving at sufficiently higher velocity to avoid stalling. In view of these, there is a

need for developing a reactive guidance scheme based on sound geometric and mathematical

considerations. Preferably it should also have sufficient generality so that it can be applied

for a wide range of applications.

It is vital that UAV should fly autonomously to sense and avoid collisions [38]. Environ-

ment sensing is generally achieved through aboard passive vision sensing through onboard

2

Figure 1.1: Obstacle Collision Avoidance

cameras. It has been widely implemented due to their light weight, low cost and energy

usage[11]. When obstacles are sensed in the environment, UAV must be able to react and

maneuver quickly so that the collision is averted. Because of the fact that the time avail-

ability is small, the collision avoidance guidance algorithm should also be computationally

efficient (preferably should be computed in closed form). To achieve this, an algorithm needs

to be designed which steers the vehicle to avert the obstacle as well as plan the vehicle’s

path as fast enough to be implemented online. Such algorithms are called “reactive obstacle

avoidance algorithm”. These algorithm may sustain the challenge of heavy computational

limit imposed by UAV flying at high speeds. Apart from speed, an important requirement is

low computational resource usage, so that it may be suitable for onboard execution. Many

global path planning algorithms are computationally expensive, hence they are inadequate

to be solved in the limited memory usage [12]. Hence, there is a urgent need of new technique

which is preferably based on sound geometric and mathematical considerations so that, due

its generality and scalability, it can be applied for wide range of applications.

In this report, a reactive collision-avoidance algorithm is proposed, the UAV invokes

the reactive collision-avoidance algorithm only when an obstacle is encountered by onboard

stereovision sensors across its trajectory. The collision avoidance occurs in two steps; first,

the collision is detected based on the collision cone approach [41, 17] using vision sensor data.

Next, if the threat is observed, a collision avoidance maneuver is performed with respect to

3

an ’aiming point’[34], judiciously selected on the obstacle’s safety sphere surface. Note that

the concept can be interpreted in the light of ’pursuit guidance’, where the objective is to

reorient or align the velocity vector of the UAV to the line-of-sight [33]. In all the cases, the

gains are selected such that the obstacles are avoided quickly (i.e. within a fraction of the

available time-to-go).

Vision sensors are finding its usefulness as an aid for navigation and guidance systems for

UAVs in many potential operations. Since such sensors are usually cheap, light-weight, fairly

reliable and more importantly they are passive in nature. A passive sensor is not susceptible

to signal jamming either. It can also enable the vehicle in GPS denied environments as well

as in the areas where the navigation information is not available on the trajectory of UAV.

However, there are several drawbacks as well, which are the noisy nature of the signal, the

lack of range information and poor resolution. However, a single passive vision sensor is

only capable to provide direction information of the obstacle in general. Unless the relative

velocity between the vehicle and obstacle is high, the range signature is very weak (it is

zero if there is no relative velocity) and hence it can not be estimated well. To address this

drawback, a stereo vision sensor based formulation is presented in this report, where the

geometric constraint serves as a ‘virtual sensing’ of the range.

Vision sensors capture the projection of the obstacle environment on their image plane

and the data frames obtained by the vision sensor is processed by onboard image processor

to find the information about the obstacle. The practical stereo camera models available

are noisy in nature. Therefore information gathered by the Vision sensor is not accurate.

Which if used directly can give erroneous results. In order to deal with such issues filtering

algorithms such as an Extended Kalman Filter (EKF) [5, 3] and Unscented Kalman Filter

[3, 4] are used which tries to extract the useful information from the noisy data.

A local path planning algorithm attempts to avoid unforeseen obstacles which suddenly

appear on its flight path in close proximity. The time-to-go in such problems is usually small

and the vehicle has to take quick corrective action of its flight path within the available

short time. It is often called as ’reactive collision avoidance’. Since the onboard processor

installed in UAVs have a very limited computing capability, such an algorithm needs to

be computationally very efficient. Using an innovative ‘collision cone’ approach, such an

algorithm was first proposed in [41] and the philosophy has subsequently been augmented

with 3D prospective [17]. Using this idea and fusing it with the ‘aiming point guidance’ [8], a

4

‘differential geometry guidance’ algorithm has been proposed recently in [7], which has been

used in this report as well. Note that such an approach has also been proposed earlier in [9],

but it was only with a single camera formulation and hence was only moderately successful.

The approach presented here, however, involved a two camera formulation and hence turns

out to be much more effective because of better estimation of the obstacle position [10] and

velocity. A large number of simulation studies, which include σ-bound consistency checks of

EKF as well as UKF, clearly brings out this fact.

Simulation studies have been carried out with the ’Kinematic model’ as well as the

’Point mass model’ of the real fixed wing UAV to test the performance of the nonlinear

differential geometric guidance scheme. Various cases have been considered with one and

multi-obstacle scenario, different safety radius of the obstacle, stationary as well as moving

obstacles in noise-free and noisy conditions. For all the cases, the UAV avoids the obstacle

and reaches the goal point. Results are also validated by incorporating first order autopilots

for the guidance commands in case of point mass dynamics of UAV.In the present work,

the problem of reactive obstacle avoidance for UAV is addressed by collision cone approach

using differential geometric guidance and forming a geometrical configuration with a stereo

camera model.

1.1 Motivation

The problem of reactive collision avoidance for UAV has been heavily researched in recent

literature. The artificial potential field method [13] is a popular approach due to its intuitive

nature and capability to be tailored to different types of problems. The potential fields in

obstacle avoidance are tailored such that obstacles have a repulsive field while the destination

has an attractive field. The resultant field represents a safe direction for the UAV to move

along. However, this algorithm is not strictly reactive, since at every instant it takes into

account the presence of all (or most of) the obstacles in the environment before deciding the

direction. A model-predictive control (MPC) based collision avoidance algorithm is proposed

[14], in which a potential field function is incorporated in the cost function to be minimized.

The other terms in the cost function include costs for path following, control saturation

and input saturation. The advantage of using MPC is that state and input constraints are

accounted. The disadvantage of such a strategy is that the algorithm functions under rigid

5

path following requirements and does not actively seek the destination. Further, MPC is a

resource-intensive algorithm that requires a powerful processor, making the method unsuit-

able for implementation aboard a UAV. Another approach in reactive collision avoidance

is RRT [12], which is a randomized search algorithm. In RRT algorithm the length of the

path found is far from optimal and may have several extraneous branches due to the random

nature of the algorithm. Although reactive collision avoidance permits maneuvers that are

not optimal but the wastage in the path found by RRT is significant. However, a path prun-

ing algorithm can refine the path but such a step is infeasible for online collision avoidance.

Some graph search algorithms like the best-first search algorithm are implemented for reac-

tive collision avoidance [15]. In the best-first search method a sorted list of pre-computed

motion primitives are created. Saving the pre-computing motion primitives in a lookup table

is infeasible for UAV applications due to the large memory resources demanded.

Even the problem of UAV pursuing its goal is also a similar approach, which has been

implemented with intermediate obstacles in the path using PN guidance based collision

avoidance scheme [16]. However, this scheme leads to a jump in the control effort every time

a new target is pursued. Instead, a minimum effort guidance (MEG) approach minimizes the

control effort for the entire trajectory along with avoiding collisions for multiple targets [17].

A collision cone approach [41] is used to detect potential collisions by considering a threat

boundary around the obstacle in MEG guidance. It has been demonstrated that MEG is

more suitable than PN [17]. However, collision avoidance problems do not have minimum

effort requirements and emphasize vehicle safety over low control effort. The MEG guidance

causes the vehicle to maneuver until the point of impact, which is risky. Above all, the

collision avoidance algorithm must ensure that the UAV full dynamics should be accounted.

In some of the literature, obstacle avoidance issues are addressed through the kinematic

model, [18]-[19] in which the autopilot responses are approximated by first order models.

Even 3 −DOF motion is also considered to some extent [17], [20]. This may cause vehicle

to take large and practically infeasible maneuvers, leading to state or control saturation.

1.2 Contribution

In the present work, a new method of computing the aiming point is developed. The philos-

ophy is based on collision cone approach. The aiming point is the point where the vehicle

6

has to quickly maneuver in order to avoid an imminent collision. The philosophy behind

this approach is that the velocity vector is projected to a plane which intersects the obstacle

safety sphere if the point of projection lies inside the obstacle safety sphere then the aiming

point guidance is invoked and a new aiming point is computed which demands deflection in

UAV velocity so that collision can be averted. The differential geometric guidance is used

to compute the guidance command for driving the UAV to aiming point as well as to the

destination.

In the present work, a reactive obstacle avoidance algorithm is designed which has been

realized with kinematic model as well as point mass model of a realistic UAV. The nonlin-

ear differential geometric guidance (DGG) algorithm is First, successfully implemented with

kinematic model and Next, validated with the point mass model based formulation and sim-

ulations are carried out with randomized input conditions. The guidance algorithm detects

the obstacle based on the 3D collision cone approach [17] and the avoidance maneuver is

performed. The nonlinear guidance algorithm generates angular commands in the horizontal

and the vertical plane. These commands are then pursued by the UAV to reach the aiming

point [33],[34]. The aiming point is the point of contact of the tangent drawn through the

UAV location to the safety ball skirting the obstacle. The tangent is the line of sight of

the vehicle to the aiming point. The concept is implemented in the direction of the pursuit

guidance [33] where the objective is to reorient the velocity vector of the vehicle to the line

of sight (LOS) within the fraction of the available time-to-go. It finally steers UAV towards

the aiming point and hence averts the obstacle. Pursuit guidance/aiming point guidance

[33],[34] philosophy is used in the missile guidance to aim at the predicted position of the

target at the final time.

The algorithm is successfully realized with noise-free sensor as well as plant model of

UAV. In order to test the performance in noisy conditions, simulations are carried out with

noisy sensor as well as plant model. The estimation techniques are used to extract the useful

information from the noisy data. The reactive collision avoidance algorithm is successfully

realized under noisy conditions.

In the present work, a recently developed Nonlinear differential geometric guidance

(DGG) is used for reactive collision avoidance. The obstacles considered in the problem

are moving as well as stationary. The geometric configuration is formed with stereovision

pin hole camera sensors mounted on the UAV. The camera sensors capture the projection

7

of the obstacle on image plane. Using the camera coordinate information of the pixel as

well as the sequential pixel frames, one can compute the obstacle position as well as obstacle

velocity within prescribed tolerance bounds.

Simulation studies have been carried out with different plant models to test the per-

formance of the innovative nonlinear reactive guidance scheme elaborately. Scenarios with

different number and size of the obstacles in the environment have been considered. Point

mass model with a coordinated flight is demonstrated with all scenarios, where the controller

dynamics is approximated by the first order autopilots[20].

Various simulation studies clearly show that, using the stereo camera sensors in the spe-

cific geometrical formulation and using the new methodology of the aiming point computa-

tion, the reactive collision avoidance for stationary as well as moving obstacles is performed

for the UAV model. The aiming point is achieved by applying the nonlinear differential

geometric guidance law, which maneuvers the UAV quickly in available time-to-go. The

technique is quite effective in avoiding collisions in different scenarios. In all the simulations,

all the constraints posed by the vehicle capability are very well met within the available

time-to-go.

8

Chapter 2

Obstacle Position and Velocity

Estimation

In this section, stereo geometry formulation with two pin-hole cameras and an obstacle,

falling under field of view (fov) of both cameras, has been discussed. Here, the objective

is to compute the position of the obstacle using the geometry formulation. The obstacle is

considered as a point. The projection of this point obstacle on the camera image planes are

processed through the onboard image processors and the corresponding camera coordinates

are assumed to be known. The position of the obstacle can be obtained using triangulation

method using the data obtained from camera sensors. However, the vision sensors are

assumed to be noisy. So, we need to estimate exact position of the obstacle using filtering

technique such as Extended kalman filter(EKF) and Unscented kalman filter(UKF) which

are discussed in later part of this section. Due to the sensor noise, there is uncertainty in

exact position estimation. Therefore, the safety of the point obstacle is insured by assuming

the obstacle at the center of an sphere and the sphere is treated as virtual obstacle and

calling the radius of sphere as safety radius of the point obstacle. Therefore, the sphere

with finite safety radius is eventually termed as obstacle with safety bounds. The center

and radius of this spherical obstacle can be computed by image processing techniques by

capturing the spherical obstacle image through camera vision sensors.

9

2.1 Stereo Geometry

The geometrical formulation [10] for computing the position of the obstacle with stereo

vision sensors is considered as per Fig. 2.1.

y

x

z

Obstacle

Ory

B
f

rz(,)r ry z

(,)l ly z

lz

ly

(, ,)x y z

Right
Image plane

Image plane
Left

rPC

lPC

Figure 2.1: Geometry Formulation with Two Pin-hole Camera

The pin-hole cameras (PCr and PCl) are fitted on the UAV are symmetric with respect

to longitudinal axis as well as center of the gravity O. Both camera’s optical axis are parallel

and separated by baseline distance B. The focal length for both the cameras is same and is

denoted by f . Cameras are assumed to be non-rotating. The y axis of the 3D coordinate

system is parallel to the baseline. The obstacle is located at point (x, y, z) should be visible

to both the cameras for range information extraction. The range computation of the obstacle

is determined based on the baseline separation, which should be more for faraway obstacle.

The image coordinates corresponding to the obstacle for left camera is (y
′

l , z
′

l) and for the

right camera is (y
′
r, z

′
r). The range information of the obstacle is computed from the stereo

images by obtaining (θl, φl) from left camera and (θr , φr) from right camera. Where θl, θr

are the azimuth angle and φl, φr are the elevation angle of obstacle on the image plane of

both cameras.

10

Using the triangle rule for camera coordinate frame

y
′

l = f tan(θl) (2.1)

y
′

r = f tan(θr) (2.2)

z
′

l =
√

[f 2 + (y
′
l)

2] tan(φl) (2.3)

z
′

r =
√

[f 2 + (y′r)
2] tan(φr) (2.4)

Using similar triangles,

y
′

l

−f
=

(−y + B
2

)

x
(2.5)

y
′
r

−f
=

(−y − B
2

)

x
(2.6)

z
′

l

−f
=

z
′
r

−f
=
−z
x

(2.7)

The obstacle position can be computed with simple algebra on Eq.(2.5) to Eq. (2.7) as

x = − Bf

(y
′
l − y

′
r)

(2.8)

y = −B(y
′

l + y
′
r)

2(y
′
l − y

′
r)

(2.9)

z = −B(z
′

l + z
′
r)

2(y
′
l − y

′
r)

(2.10)

Thus the obstacle position is a function of disparity which is defined as (y
′

l − y
′
r).

11

2.2 Obstacle Position Estimation using EKF

Position information of the obstacle is computed with sensor data obtained from vision

sensing cameras. The vision sensors are assumed to be noisy. Moreover, the UAV model is

considered with process noise as well. To address these issues, EKF [3] is used to filter out

the noise and estimate the obstacle position accurately. An assumption made here is that

the measurement noise uncertainty is within 10% of the actual value.

2.2.1 Dynamics of System

The camera sensor’s nonlinear state dynamics as per state space model is given as follows

Ẋr = f(Xr, t) +G(t)w(t) (2.11)

Yk = h(Xr(k)) + νk (2.12)

where camera sensor state propagation equation is in continuous time domain and output

state measurement equation is in discrete time domain, where f(Xr, t) is nonlinear transition

matrix function and h(Xr(k)) is nonlinear measurement matrix function. G(t) is process

noise influence matrix, it is considered as G(t) = I. Process noise w(t) and measurement

noise νk are independent, zero mean, gaussian noise processes with their covariance matrix

Q and R respectively. The mathematical expression is as follows

E[w(t)wT (τ)] = Q(t)δ(t− τ) (2.13)

E[νkν
T
j] = Rδkj (2.14)

where δ(t− τ) is dirac-delta function and δkj is kronecker delta function.

In EKF framework, linearize the nonlinear state space model at each instant around the

current state estimate, therefore f(Xr, t) and h(Xr(k)) are linearized around X̂r. Use the

linearized model for state error covariance propagation. The state vector derivative Ẋr is

defined as

Ẋr =
[
ṙl θ̇l φ̇l ṙr θ̇r φ̇r

]T

12

where rl, θl and φl are left camera states and rr, θr and φr are right camera states. The

dynamics of camera state vector is given as

ṙl

θ̇l

φ̇l

ṙr

θ̇r

φ̇r


=



cos θl cosφlur + sin θl cosφlvr + sinφlwr

− sin θl
rl cosφl

ur + cos θl
rl cosφl

vr

− cos θl sinφl
rl

ur − sin θl sinφl
rl

vr + cosφl
rl
wr

cos θr cosφrur + sin θr cosφrvr + sinφrwr

− sin θr
rr cosφr

ur + cos θr
rr cosφr

vr

− cos θr sinφr
rr

ur − sin θr sinφr
rr

vr + cosφr
rr

wr


(2.15)

where, ur, vr and wr are relative velocity components of UAV along x, y and z directions.

2.2.2 Camera Sensor Measurement Noise Model

Camera Sensor measurement noise model is considered based on the fact that noise is pro-

portional to sensing range as the sensing range increases uncertainty also increases. There-

fore, measurement noise model is considered as per Eq.(2.16) where mk is percentage noise

at time instant k, m0 is initial percentage measurement noise taken as 20, r(k) is the range

of obstacle at time instant k and δ is a tuning parameter considered as 0.99 which defines

how mk changes with r(k)

mk = m0

(
1− δr(k)

)
(2.16)

Measurement noise covariance can be computed based on mk given as

Mk =

(
mk

wv
100
× 1

3

)2

(2.17)

where wv is the angular width of the camera field of view. It is assumed 120◦ for both

horizontal and vertical axis.

2.2.3 Initialization

The camera state vector is initialized with first measurement of vision sensors

X̂r(0) =
[
r̂l(0) θ̂l(0) φ̂l(0) r̂r(0) θ̂r(0) φ̂r(0)

]T
(2.18)

The process noise covariance matrix Q is initialize as

Q = diag(0.25, 0.028, 0.028, 0.25, 0.028, 0.028) (2.19)

13

The diagonal elements of Q corresponds to range r(m), angles θ(radian) and φ(radian)

of left and right cameras respectively. The error covariance matrix is initialized as

P0 = diag
(
P l
0, P r

0

)
(2.20)

where,

P l
0 = diag

(
a1el

2, a2(
m0wv

100
)2, a3(

m0wv

100
)2
)

(2.21)

P r
0 = diag

(
a1er

2, a2(
m0wv

100
)2, a3(

m0wv

100
)2
)

(2.22)

where P l
0 and P r

0 are the error covariance matrix and el and er are the corresponding

initial error in the range of left and right camera respectively, a1 = 1, a2 = 2 and a3 = 2 are

tuning parameters.

2.2.4 Extended Kalman Filter

In EKF design, vision sensor model is nonlinear and the kalman filter is extended through

linearization of nonlinear dynamics. The camera sensor states are estimated using lineariza-

tion and applying extended kalman filter. In order to reduce errors due to linearization, the

sensor true state should be close to estimated state at all time. Therefore the error dynamics

can be represented by the linearized system about sensor’s estimated state.

EKF is nonlinear recursive estimator. It linearizes the nonlinear dynamics around

nominal operating point and operates around the narrow zone across the nominal operating

point. The solution is recursive in the sense that each updated estimate of state is computed

from previous state estimate and new measurement input data. Therefore only previous

estimate of the state is needed and entire past state estimates need not be stored. Kalman

filter is computationally more efficient than directly computing the state estimate from entire

past observed data at each step of filtering process.

After linearization we first initialize the state estimate as well as state covariance matrix

and then propagate the state estimation vector as X̂+
r (k − 1) → X̂−r (k): The following

equation shows the state propagation which is as per state dynamics.

˙̂
Xr = f(X̂r, t) (2.23)

and propagate the covariance matrix P+
k−1 → P−k :

14

The following equation shows the state covariance propagation using the A matrix which

is also known as system matrix of the linearized sensor state equation.

Ṗ (t) = A(t)P (t) + P (t)AT (t) +Q (2.24)

The A matrix is computed by Linearizing Eq.(2.15). The mathematical expression for A is

as follows

A(t) =
∂f

∂Xr

|X̂r(t)
(2.25)

From Eq.(2.17), compute measurement error covariance matrix Rk is computed based on

measurement noise model considered

Rk = diag((Mk)θl (Mk)φl (Mk)θr (Mk)φr) (2.26)

Compute Kalman gain Kk

Kk = P−k C
T
k [CkP

−
k C

T
k +Rk]

−1 (2.27)

Linearizing h(Xr(k)) the matrix Ck is obtained , which is the measurement transition

matrix. The Ck matrix is constant therefore it is not required to compute it for each iteration

and saves computation time. It is used for computation of sensor output as described in

Eq.(2.29).

Ck =
∂h

∂Xr

|X̂−r (k) =


0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 (2.28)

Take the measurement Yk as

Yk = CkXr + νk (2.29)

As the measurement from the camera sensor Yk is obtained, update the camera sensor

state vector as per following equation. This is called correction step for state estimate.

X̂+
r (k) = X̂−r (k) +Kk[Yk − h(X̂−r (k))] (2.30)

15

Update the covariance with linear covariance dynamics. This is also called correction

step for state error covariance.

P+
k = (I −KkCk)P

−
k (I −KkCk)

T +KkRkK
T
k (2.31)

This updated camera state and covariance are used as input in the next iteration and thus

extended kalman filter estimates the camera states within a reasonable tolerance bounds.

However Q and R are tuning parameters and therefore precaution should be taken while

selecting the entries in these matrices. EKF pre-run is carried out before its actual applica-

tion. It is required to stabilize the initial error and during this period the system dynamics

is allowed to propagate without any command.

2.3 Unscented Kalman Filter

Extended kalman filter(EKF) described in previous section is used for recursive nonlinear

estimation. EKF however, provides only first order approximation to nonlinear estimation.

Another filter known as Unscented kalman filter(UKF) has better performance than EKF.

In EKF state distribution is approximated by a Gaussian random variable and the state is

propagated through first order approximation of the nonlinear system. However, for UKF

the state distribution is approximated by a gaussian random variable, but state distribution

is represented using a minimal set of sample points. These sample points capture true mean

and covariance of the gaussian random variable. In UKF approach these sample points

are propagated through true nonlinear system and capture posterior mean and covariance

accurately up to second order.

2.3.1 Unscented transformation

It is difficult to transform a probability density function(pdf) through a nonlinear function.

Unscented transformation is a method of calculating statistics of random variable which

undergoes a nonlinear transformation. Unscented kalman filter(UKF) philosophy is based on

unscented transformation. It performs a nonlinear transformation on a single point rather

than a pdf as well as it provides a set of individual points in state space whose sample

probability density function(pdf) approximates the true pdf of a state vector.

16

If the mean and covariance of a state vector x be x̄ and P respectively. Then a set

of deterministic points called as sigma points can be computed whose ensemble mean and

covariance are equal to x̄ and P. The dimension of the state vector x is n. Therefore, we

choose 2n sigma points. The unscented transformation can be expressed as follows

x(i) = x̄+ x̃(i) i = 1, 2,2n (2.32)

x̃(i) =
(√

nP
)T
i

i = 1, 2,n (2.33)

x̃(n+i) = −
(√

nP
)T
i

i = 1, 2,n (2.34)

In the Eq.(2.33)-Eq.(2.34),
√
nP can be computed by Cholesky decomposition. In camera

sensor model each camera has three states r, θ and φ therefore the value of n is 3 in the

present work carried out for state estimation.

2.3.2 Time update equations

Pin-hole camera vision sensor’s n state nonlinear system can be expressed as

xk+1 = f(xk, uk, tk) + wk (2.35)

yk = h(xk, tk) + vk (2.36)

wk ∼ (0, Qk) (2.37)

vk ∼ (0, Rk) (2.38)

where f(xk, uk, tk) is nonlinear transition matrix function as described in Eq.(2.15) and

h(xk, tk) is nonlinear measurement matrix function as per definition but in present work it

is considered linear as described in Eq.(2.28). Q and R are process noise covariance and

measurement noise covariance respectively.

The stereovision camera sensor state’s mean and covariance can be initialized as per

Eq.(2.39)-Eq.(2.40). It is normally assumed that it is known priori or if it is unknown

then there is precisely a bound within it is supposed to lie based on the physical sensor

measurement precision characteristics.

x̂+0 = E(x0) (2.39)

P+
0 = E[(x− x̂+0)(x− x̂+0)T] (2.40)

17

Time update equations propagate the camera sensor state estimate based on sensor non-

linear dynamics and the averaging of all sigma points state estimates, and propagate camera

sensor’s error covariance based on averaging the difference between sigma point estimates

and its average. Time update equations Eq.(2.41)-Eq.(2.43) for state propagation can be

written considering previous step mean and covariance as per Eq.(2.39)-Eq.(2.40) as best

guess value for computing next step state mean and error covariance.

x̂
(i)
k−1 = x̂+k−1 + x̃(i) i = 1, 2,2n (2.41)

x̃(i) =

(√
nP+

k−1

)T
i

i = 1, 2,n (2.42)

x̃(n+i) = −
(√

nP+
k−1

)T
i

i = 1, 2,n (2.43)

Using the camera sensor nonlinear dynamics, transform the sigma points obtained in

Eq.(2.41)-Eq.(2.43) as

x̂
(i)
k = f(x̂

(i)
k−1, uk, tk) (2.44)

Transformed sigma points obtained through nonlinear dynamics as per Eq.(2.44) are

again averaged and hence, the prior state estimate at time k is obtained as follows

x̂−k =
1

2n

∑
x̂
(i)
k (2.45)

Similarly, prior error covariance taking process noise into account can be propagated as

follows.

P−k =
1

2n

∑
(x̂

(i)
k − x̂

−
k)(x̂

(i)
k − x̂

−
k)T +Qk−1 (2.46)

2.3.3 Measurement update equations

Compute the sigma points again with current best guess, which is the prior mean and

covariance computed in the previous steps as per Eq.(2.44)-Eq.(2.46), the following step is

carried out to enhance the performance of Unscented kalman filter.

x̂
(i)
k = x̂−k + x̃(i) i = 1, 2,2n (2.47)

x̃(i) =

(√
nP−k

)T
i

i = 1, 2,n (2.48)

x̃(n+i) = −
(√

nP−k

)T
i

i = 1, 2,n (2.49)

18

Camera sensor measurement model is used to transform the sigma points in previous step

as per Eq.(2.47), into predicted measurements. The measurement equation is as follows.

ŷ
(i)
k = h(x̂

(i)
k , tk) (2.50)

Taking average of all predicted measurements obtained as per Eq.(2.50), which are cor-

responding to the sigma points, the predicted measurement output can be computed as

follows,

ŷk =
1

2n

∑
ŷ
(i)
k (2.51)

The covariance of predicted measurement can be computed with ŷ
(i)
k from Eq.(2.50) and

ŷk from Eq.(2.51) as follows,

Py =
1

2n

∑
(ŷ

(i)
k − ŷk)(ŷ

(i)
k − ŷk)

T +Rk (2.52)

which is based on difference between predicted measurement and its average.

Similarly, cross covariance between the difference between x̂
(i)
k from Eq.(2.44) and prior

estimate of camera state x̂−k from Eq.(2.45) and the difference between ŷ
(i)
k from Eq.(2.50)

and predicted measurement output ŷk from Eq.(2.51)can be computed as

Pxy =
1

2n

∑
(x̂

(i)
k − x̂

−
k)(ŷ

(i)
k − ŷk)

T (2.53)

The measurement update equation involving kalman gain computation is provide in

Eq.(2.54), the required inputs Py and Pxy for kalman gain computation are obtained from

previous steps. The measurement update equation for posterior camera state or the cor-

rected state estimate is provided in Eq.(2.55), the required inputs are obtained from previous

steps. The measurement update equation for posterior covariance computation is provided

in Eq.(2.56), the required inputs are obtained from previous steps. The posterior state esti-

mate and posterior covariance obtained in the following equations are again utilized as the

best guess value for next step iteration.

Kk = PxyP
−1
y (2.54)

x̂+k = x̂−k +Kk(yk − ŷk) (2.55)

P̂+
k = P̂−k −KkPyK

T
k (2.56)

19

2.4 Velocity Estimation

Reactive collision avoidance for moving obstacles involves estimation of obstacle position

as well as obstacle velocity [7]. The projection of the moving obstacle on two camera image

planes in the geometrical configuration shown in Fig. 2.1 provides the instantaneous posi-

tion of the obstacle. However, the iterative projections of the moving obstacle acquired by

the camera sensors provide the iterative positions of the obstacle and using the difference

equation for iterative positions and corresponding time instants the velocity of the obstacle

can be computed. The computed velocity serves as a reference or measured velocity.

The camera sensors are noisy and hence, the position and velocity computed by the trian-

glization method is inaccurate. Therefore, EKF or UKF techniques are used for estimating

the accurate position and velocity of the obstacle from the inaccurate data. The camera

sensor dynamics is first order differential equation. The sensor dynamics is propagated and

the updated position information is obtained. Similarly, differentiate the sensor dynamics

to obtain second order state derivative and propagate the second order sensor dynamics

and obtain the velocity information. It is assumed that the function is differentiable at all

instants of interest. Whenever, obstacle is ahead of camera and visible through both the

sensors.

The guidance command uses the estimated obstacle position as well as estimated obstacle

velocity to compute the aiming point. The prediction logic decides in advance that what

could be the point of intersection or what could be minimum distance between UAV and

the moving obstacle. The minimum distance is computed and it is compared with the safety

boundary limit of the obstacle if the minimum distance is less than the safe distance then the

guidance command is applied to divert the velocity vector of the UAV so that the upcoming

collision can be averted. The Fig.2.2 shows the miss distance between UAV and the moving

obstacle.

2.4.1 Relative Velocity Estimation

Since the left and right cameras mounted on UAV receive the projection of the obstacle

on their image planes if the obstacle lies in the field of view (FoV) of the cameras. The

geometrical configuration discussed in the previous section. The initial guess for position

and velocity of the obstacle can be obtained from the sequential data frames obtained from

20

stereo camera sensors. Since UAV’s own position and velocity is known. The vision sensors

provide the relative position and relative velocity estimate of the obstacle. The absolute

position and velocity of the obstacle can be estimated.

After initialization, the position as well as velocity of the obstacle is propagated using

sensor dynamics as well as the dynamics obtained by taking the derivative of the sensor

dynamics respectively. The assumption made here is that obstacle is moving with constant

velocity for simplicity. The relative position between UAV and the obstacle can be written

as

Xrel =
[
xrel yrel zrel

]T
(2.57)

The above equation can be represented for UAV in polar coordinates considering the

equation in inertial frame. Where rrel , θrel and φrel are the relative distance and angles

between UAV and obstacle. The expression for rrel is as follows.

rrel =
[
rrel cos(φrel) cos(θrel) rrel cos(φrel) sin(θrel) −rrel sin(φrel)

]T
(2.58)

The Eq.(2.57) can be written for UAV in polar coordinates considering the equation in

velocity frame. Where rrel , χrel and γrel are the relative distance and angles between UAV

Velocity and axes system. The velocity frame representation is as follows.

rrel =
[
rrel cos(γrel) cos(χrel) rrel cos(γrel) sin(χrel) −rrel sin(γrel)

]T
(2.59)

Taking first derivative of the Eq.(2.59) the relative velocity between UAV and the obstacle

can be written as [1]
Ṽxrel

Ṽyrel
Ṽzrel

 =


cos γrel cosχrel −r cos γrel sinχrel −r sin γrel cosχrel

cos γrel sinχrel r cos γrel cosχrel −r sin γrel sinχrel

− sin γrel 0 −r cos γrel



ṙrel

χ̇rel

γ̇rel

 (2.60)

The absolute velocity of the obstacle can be computed by adding the relative velocity with

UAV velocity. UAV’s velocity and acceleration information is known through it’s dynamics

and guidance commands. UAV’s position as well as velocity information is also known

through it’s own predefined global path planning or through the onboard computation as

in local path planning. The absolute velocity of the obstacle can be computed through the

following equation

21

Vabs = Vuav + Ṽrel (2.61)

The steps followed in velocity estimation is first the camera sensor dynamics is providing

the expected sensor’s states ṙ, θ̇, φ̇ then with UAV’s initial Velocity vector, initial γ and

initial χ , it is possible to propagate the UAV system dynamics which is considered as Point

mass model and obtain V̇ , χ̇, γ̇ as well as ẋ, ẏ, ż after the state propagation the UAV location

is updated and Sensor measures the the new states and again sensor dynamics propagates

and the next sensor states are obtained.

Using the obstacle projection on pin-hole camera sensor which are obtained from image

processor at each iteration, the relative position of the obstacle can be computed. Using the

successive position at each time step, the difference equation is used to compute the velocity

of the obstacle. This velocity can be inferred or termed as the measured velocity.

The estimated velocity can be computed using the following steps.

(1). Using the sensor states and their derivatives compute the relative velocity between

obstacle and UAV as per Eq.(2.60)

(2). Take the second derivative of sensor dynamics and compute the second order derivative

of the sensor states.


r̈

θ̈

φ̈

 =



− cos θ sinφφ̇Vxrel − sin θ cosφθ̇Vxrel + cos θ cosφV̇xrel

− sin θ sinφφ̇Vyrel + cos θ cosφθ̇Vyrel + sin θ cosφV̇yrel

+Vzrel cosφφ̇+ V̇zrel sinφ
r cosφ(− cos θθ̇Vxrel−sin θV̇xrel−Vyrel sin θθ̇+cos θV̇yrel)

r2 cos2 φ

+
−(− sin θVxrel+cos θVyrel)(−r sinφφ̇+cosφṙ)

r2 cos2 φ
r(−Vxrel(cos θ cosφφ̇−sinφ sin θθ̇)−cos θ sinφV̇xrel)+(Vxrel cos θ sinφ)ṙ

r2

+
r(−Vyrel(sin θ cosφφ̇+sinφ cos θθ̇)−sin θ sinφV̇yrel)+(Vyrel sin θ sinφ)ṙ

r2

+ r(−Vzrel sinφφ̇+cosφV̇zrel)−Vzrel cosφṙ
r2


(2.62)

Sensor state second order derivatives as obtained in Eq.(2.62) are function of sensor states

and their first order derivatives as described in Eq.(2.15), relative velocity as per Eq.(2.60)

as well as derivative of relative velocity as described in Eq.(2.66)- Eq.(2.68).

Since, Obstacle velocity is assumed to be constant, the derivative of the obstacle velocity

is zero. The UAV velocity is given by the Eq.(A.1-A.3) then by computing the derivative of

22

UAV velocity the derivative of relative velocity can be computed.

Vrel = Vo − Vu (2.63)

Taking first derivative of Eq.(2.63)

V̇rel = V̇o − V̇u (2.64)

Since obstacle velocity is constant Eq.(2.64) can be written as

V̇rel = −V̇u (2.65)

The equations for UAV velocity Vu in inertial frame is provided in the Eq.(A.1-A.3),

therefore for V̇u the Eq.(2.65) can be written as

V̇xrel = VT cos(χ) sin(γ)γ̇ + cos(γ) sin(χ)χ̇− cos(χ) sin(γ)V̇T (2.66)

V̇yrel = VT sin(χ) sin(γ)γ̇ − cos(γ) cos(χ)χ̇− sin(χ) cos(γ)V̇T (2.67)

V̇zrel = −VT cos(γ)γ̇ − sin(γ)V̇T (2.68)

(3). Propagate the sensor state derivative and using the state derivative compute the

propagated the relative velocity. The obstacle velocity is computed from the data received

from the camera sensors using difference equation as follows

Vcam =
Xobs(t+ dt)−Xobs(t)

dt
(2.69)

The obstacle Velocity obtained through Eq.(2.69) is assumed as obstacle velocity through

camera sensor measurement as obstacle positions are computed by triangulization method at

each instant. However, the obstacle velocity obtained by Eq.(2.61), which involves relative

velocity computation and is achieved through sensor dynamics propagation. The EKF or

UKF filter is used to compute the estimated absolute velocity of the obstacle as follows.

Vest(k + 1) = Vest(k) +Kv(Vabs − Vcam) (2.70)

where,Kv is kalman filter gain.

Since, the UAV velocity is known and relative velocity between UAV and obstacle is

known the absolute velocity of obstacle can be computed.

23

2.4.2 Reactive collision avoidance with moving obstacles

UAV and the obstacle’s initial position is Xu(0) and Xo(0) and their respective velocity

is Vu and Vo. UAV is moving at constant velocity as no guidance is working and obstacle

is assumed to be moving with constant velocity as per Fig. 2.2. The predicted positions

Xu(t) and Xo(t) of the UAV and the obstacle with current velocities after time t is given by

Eq.(2.71)-Eq.(2.72).The prediction logic tells the future positions of UAV and obstacle and

also the minimum separation between UAV and obstacle. Therefore, it is possible for UAV

to take corrective action in due course of time and avoid any future collision by applying the

guidance command and changing it’s velocity profile.

mr

safer

UAV

Obstacle

uV

oV

desu
V

deso
V

Figure 2.2: Non-cooperative conflict resolution

Xu(t) = Xu(0) + t ∗ Vu (2.71)

Xo(t) = Xo(0) + t ∗ Vo (2.72)

Relative distance predicted between UAV and obstacle can be computed at any time t

as per Eq.(2.73), which is a vector equation. The Euclidian norm of Rrel(t) provides the

predicted distance d(t) in scalar form and discussed later in the section.

Rrel(t) = Xu(t)−Xo(t) (2.73)

Subtracting Eq.(2.72) from Eq.(2.71) and substituting with Eq.(2.75) and Eq.(2.73), the

24

following equation can be obtained.

Rrel(t) = Rrel(0) + t(Vu − Vo) (2.74)

Where,Eq.(2.75) describes the initial separation between UAV and obstacle.

Rrel(0) = Xu(0)−Xo(0) (2.75)

The objective here is to compute the minimum separation between the UAV and the

obstacle and the corresponding predicted time. The predicted point when the UAV just

intersect each other or at a minimum distance to each other the minimum Distance d(t)

should be Minimum of ‖Rrel(t)‖. In order to compute the minimum distance

D(t) = d(t)2 = ‖Rrel(t)‖2 (2.76)

= Rrel(t)
TRrel(t) (2.77)

= (Rrel(0) + tVu − tVo)T (Rrel(0) + tVu − tVo) (2.78)

D(t) = (Rrel(0))T (Rrel(0)) + 2(Rrel(0))T (Vu − Vo)t+ (Vu − Vo)T (Vu − Vo)t2 (2.79)

Differentiating the Eq.(2.79) for D(t) with respect to time t and solving for minimum

distance we obtain as follows.

dD(t)

dt
= 2(Vu − Vo)T (Vu − Vo)t+ 2(Rrel(0))T (Vu − Vo) (2.80)

For D(t) to be minimum,

dD(t)

dt
= 0 (2.81)

Solving the Eq.(2.81) for t, which is called as ”time of closest approach” tc when the

UAV and the obstacle are closer to each other as per Eq.(2.82). tc is the available time for

UAV to maneuver and avoid the predicted collision depending on the predicted minimum

separation.

tc = −Rrel(0)T (Vu − Vo)
‖Vu − Vo‖2

(2.82)

The distance between UAV and obstacle at the time of closest approach is called as miss

distance or zero effort miss distance the ZEM can be computed as

25

Substituting the value of tc from Eq.(2.82) in Eq.(2.83) the predicted miss distance rm is

computed as

rm = Xu(tc)−Xo(tc) (2.83)

Where Xu(tc) and Xo(tc) are the predicted position of UAV and obstacle at time tc for

predicted reactive collision to occur the folowing conditions must be satisfied (i) If tc > 0 the

UAV and obstacle are coming closer to each other therfore the probable conflict is possible.

If tc < 0, then UAV and obstacle are moving away from each other. (ii) If ‖rm‖ < rsafe

then predicted position of UAV is within the safety sphere of obstacle and it can be inferred

that collision has occured. Where, rsafe is the safety radius of the sphere. If both conditions

are satisfied simultaneously then the collision is said to be occurred at the time of closest

approach tc. Therefore, the effective guidance commands must be computed to avert the

collision. In non-cooperative scenario where obstacle is autonomously moving the UAV has

to maneuver to avoid collision. The UAV has to deflect from its predicted position by residual

distance rres which is given in Eq.(2.84) so that the rsafe separation can be insured.

rres = rsafe − ‖rm‖ (2.84)

The Eq.(2.84) can be incorporated by changing the velocity vector of the UAV and the

desired velocity of UAV Vudes is provided in Eq.(2.85). The UAV velocity vector need to

align along the desired velocity so that the desired aiming point can be achieved.

Vudes =
Vutc + rvm
‖Vutc + rvm‖

(2.85)

where, rvm is defined in the Eq.(2.86), it is a distance vector with magnitude rres and

direction rm.

rvm =
rresrm
‖rm‖

(2.86)

Therefore, the differential geometric guidance(DGG) can be invoked to demand the de-

sired velocity Eq.(2.85) and correct the predicted position of the UAV to avoid collision with

obstacle.

26

Chapter 3

Collision Avoidance Philosophy and

Guidance Design

In the present work, it is assumed that global path planning has already been done off line

(or possibly loaded to the onboard processor through telemetry), where a path towards the

goal point has already been found accounting for the known obstacles in the environment.

The UAV is equipped with an onboard camera with necessary image processing algorithms to

sense an unforseen obstacle, along with its location, in its close vicinity. The main focus then

is to predict a possible collision with the obstacle, and if so, to steer it away with appropriate

generation of guidance commands. Details of this guidance algorithm are discussed in this

section.

27

3.1 Aiming Point Computation

Once the obstacle information is available through onboard sensors, the task is to predict

possible collision, and if so, to steer it away by appropriately computing of aiming point and

generation of required guidance commands. The philosophy behind computing the aiming

point is based on collision cone approach has physical relevance with torch light experiment,

where if the torch light is glown to the sphere, the locus of extreme points of the glow

area will form a circle on the sphere and the rays passing through the extreme points are

tangent to the sphere. The same analogy is replicated in 3D representation of collision cone

containing UAV’s CG at coordinate frame origin, point obstacle with safety sphere, plane

and a circle as shown in Fig. 3.1. Note that if one draws tangents to this sphere from the

CG of the UAV, it results in a ’cone’ (hence it is called as the ’collision cone’ [41]), and the

circle formed by locus of tangents contact point on sphere is named as collision circle and

represented as Cη

13

will form a circle on the sphere and the rays passing through the extreme points are tangent

to the sphere. The same analogy is replicated in 3D representation of collision cone

containing UAV’s CG at coordinate frame origin, point obstacle with safety sphere, plane

and a circle as shown in Fig. 2. Note that if one draws tangents to this sphere from the CG of

the UAV, it results in a ‘cone’ (hence it is called as the ‘collision cone’ [6]), and the circle

formed by locus of tangents contact point on sphere is named as collision circle and

represented as C

Fig. 2: 3D view of Collision cone with UAV and obstacle


X

Y

2tr

OBX

sr

tX

CX
cr

C

c

1m

W

VX

Plane

TV

c

(,)apX x y

(,)TV x y

Z

apX



2m

Figure 3.1: Collision Cone Representation

The coordinate frame assumed in Fig. 3.1 is parallel to the inertial frame and located

28

on the centre of gravity (CG) of the UAV. Let the UAV fly along the direction of the VT .

It is also assumed that the angle of attack and sideslip angles are small so that vehicle

body X-axis (along which the onboard sensor is installed) can detect obstacles along the VT

direction. Once an obstacle is detected by onboard sensors, collision avoidance algorithm is

invoked and a new aiming point is computed. As per collision cone approach the computed

aiming point is tangent to the sphere, so it should lie on this collision circle. The centre and

radius of the collision circle is determined by using the information of obstacle sphere radius

and distance between UAV and centre of the obstacle. From Fig. 3.1, let us consider the

∆XVWXOB. Where, XV is the UAV position, W is a point on the collision circle and XOB

is the obstacle position. Then by applying Pythagoras theorem on ∆XVWXOB

‖Xr‖2 = ‖rt‖2 + r2s (3.1)

‖rt‖2 = X2
r − r2s (3.2)

‖Xr‖ = m1 +m2 (3.3)

where rs is the radius of the safety sphere, rt is the tangent vector joining UAV position

XV and W , the line-of-sight (LOS) Xr, by definition, is the line joining the CG of the UAV to

the centre of the obstacle. Xc is the centre of the collision circle and the Euclidean distance

between this centre to XV is m1 and to XOB is m2 respectively. Here m1 and m2 are also

the components of the line segment ‖Xr‖. Applying Pythagoras theorem on ∆XVWXC .

‖rt‖2 = m2
1 + r2c

r2c = ‖rt‖2 −m2
1 (3.4)

Where rc is the radius of the collision circle, from ∆XVWXOB

r2s = m2
2 + r2c (3.5)

m2
2 = r2s − r2c

= r2s − ‖rt‖2 +m2
1 (3.6)

29

To find the value of m1 and m2, Squaring Eq.(3.3) on both sides and substitute Eq.(3.6),

yields

‖Xr‖2 = (m1 +m2)
2 = m2

1 +m2
2 + 2m1m2 (3.7)

m1 =
‖Xr‖2 − r2s + ‖rt‖2

2‖Dr‖

=
‖rt‖2

‖Dr‖
(3.8)

m2 =
r2s
‖Dr‖

(3.9)

The m2 value can be find out by substituting the value of m1 in Eq. (3.3)

r2c = ‖rt‖2 −m2
1

rc =
‖rt‖rs
Dr

(3.10)

The centre of the collision circle is given as

XC = XV +
m1

Dr

(XOB −XV) (3.11)

Let us consider the plane η, which contains the collision circle Cη. To find the intersection

point between the plane η and velocity vector VT projected in time t from the UAV’s current

position. Due to geometrical symmetry, the vector joining collision circle centre (xc, yc, zc)

and obstacle centre (xob, yob, zob) is always perpendicular to plane η . Therefore, the normal

vector n̂ to the plane can be described as

n̂ = (a, b, c) = (xob − xc, yob − yc, zob − zc) (3.12)

The general plane equation passing through a point (xc, yc, zc) is

a(x− xc) + b(y − yc) + c(z − zc) = 0 (3.13)

The position vector of UAV is expressed in terms of instantaneous velocity vector pro-

jected in time t is expressed as

Xt = XV + tV (3.14)

30

Substitute above equation into plane equation and solve for desired time t∗, which is

termed as time to reach the plane

a(xv + tu− xc) + b(yv + tv − yc) + c(zv + tw − zc) = 0 (3.15)

t∗ = − n̂ · (XV −XC)

n̂ · V
(3.16)

The intersection point is given as

Xt∗ = XV + t∗V (3.17)

Once intersection point is computed, the following conflict conditions are evaluated

1. ‖Xt∗ −XC‖ < Radius of the circle

2. t∗ > 0

If the above conditions are satisfied then the obstacle under consideration is said to be

critical, then the new aiming point is computed as follows

Xap = XC + rc
Xt∗ −XC

‖Xt∗ −XC‖
(3.18)

Note that, when no obstacle is critical, the goal point becomes the aiming point, i.e.

Xap = Xgoal.

The collision avoidance problem therefore can be interpreted as a sequential target in-

terception problem or way point guidance problem with angle constraints at intermediate

targets or way points. However, the basic difference is the online fixing of these intermedi-

ate points and then quickly realigning the velocity vector to visit them this is done by the

computation of required guidance commands as follows. Once the aiming point is computed,

the task then is to follow the philosophy of ’aiming point guidance’ of missile guidance lit-

erature [18] (which has a close resemblance to pursuit guidance [33]) and align the vector

towards this aiming point. For carrying out the necessary algebra (see Fig. 2), the obstacle

coordinates are given by Xob = [xob yob zob] and the relative aiming point vector is given by

Xvap = [xvap yvap zvap]. Once these co-ordinates are known (with respect to the coordinate

frame at CG that is parallel to the intertial frame), the desired flight path angle γc and

course angle χc can be calculated as:

31

γc = tan−1

(
zvap√

x2vap + y2vap

)
(3.19)

χa = tan−1
(
yvap
xvap

)
(3.20)

Note that even though it may sound logical to slow down (i.e. to reduce VT) until the

collision is avoided, in this work it is proposed to hold VT at its initial value at the start

of guidance (i.e. V c
T = VT (0)). This is because the time availability is small and very less

correction can be done for it within the available small time-to-go (usually thrust can be

varied only slowly). The angles γ and χ as well as V c
T are the necessary guidance commands

in the formulation using the kinematic model. In Fig. 2, VT (x, y) is the projection of the

velocity vector and Xvap(x, y) is the projection of the revised LOS in the horizontal plane

respectively. For the formulation using the point mass model, however, one needs to carry

out further algebra to generate the physically meaningful guidance commands, i.e. the angle

of attack, bank angle and thrust commands. Note that the alignment of velocity vector

needs to be quickly carried out within a fraction of the available time-to-go, thereby making

it possible to avoid pop-up obstacles. For this to happen, the information regarding time-

to-go to the aiming point first need to be known, which is obtained in following manner.

Note that VT needs to be aligned to the vector, which is located at the CG of the vehicle

and points towards the aiming point. This vector can be interpreted as ’Revised LOS’, the

magnitude of which is given by

R = ‖Xvap‖2 =
√
x2vap + y2vap + z2vap (3.21)

Assuming that VT remains fairly constant (which is true, as our formulation attempts to

assure it), the time-to-go to reach the aiming point can be computed as follows.

tgo =
(Xvap · VT)

‖VT‖2
=

R

VT
(3.22)

Next, the settling times of the imposed error dynamics are selected as a fraction of this

time-to-go and gain values are selected accordingly.

32

3.2 Nonlinear Differential Geometric Guidance

The present work assumes a goal point in the environment with unforseen obstacles whose

instantaneous locations are known through onboard sensors. Aiming point is calculated with

the collision cone approach [41]. The aiming point is pursued through nonlinear geometric

guidance law. In the present work, the velocity magnitude of UAV is kept constant and only

directions are manipulated to execute the guidance law. The objective of the guidance law

is to steer the UAV to the aiming point through correction of velocity direction both in the

vertical and the horizontal plane. This implies the desired values for the orientation of the

velocity vector in both the planes respectively will become

γc = λe, χc = λa

as evaluated from Eq. (3.19) and Eq. (3.20). To execute the guidance law with the point

mass model as described by Eqs. (A.7) - (A.12), the necessary forces are required to stir the

vehicle in the desired direction. Forces required by the UAV are observed in form of three

control variables–desired angle of attack αd ,the desired bank angle µd and the desired thrust

Td.

3.3 Controller Design

The control commands µd and αd are required to achieve the commanded horizontal and

vertical flight path angles whereas Td is required to track the desired velocity of the vehicle.

Desired bank angle µd is generated in the closed form as follows:

mVT cos γχ̇ = (T sinα + L) sinµ (3.23)

mVT γ̇ +mg cos γ = (T sinα + L) cosµ (3.24)

Desired bank angle µd is generated by using the philosophy of NDI [35]. Enforcing the first

order error dynamics on χ̇ and γ̇ we get

χ̇ = −kχ (χ− χc) (3.25)

γ̇ = −kγ (γ − γc) (3.26)

Since the bank angle is appearing in Eq. (3.23) and in Eq. (3.24) in affine form, so both the

equations are used to find the desired value of the bank angle. By dividing Eq. (3.23) by

33

Eq. (3.24)we get,

tanµd =
mVT cos γχ̇

mVT γ̇ +mg cos γ
(3.27)

µd = arctan
mVT cos γ(−kχ(χ− χc))

mVT (−kγ(γ − γc)) +mg cos γ
(3.28)

The desired thrust Td is required by the vehicle to maintain the velocity to its desired value

VT
c. VT

c is the initial velocity of the vehicle. It is assumed that in the short duration of

obstacle avoidance the velocity of UAV remains constant. The first order error dynamics for

the velocity can be written as

V̇T = −kV (VT − VT c) (3.29)

It can be seen from Eqs. (A.10), (A.11)and (A.12) that both the thrust and angle of attack

(α) are dependent on each other and hence closed form solution for both control variables

cannot be deduced by algebraic manipulation. V̇T dynamics in Eq. (A.12) can be rewritten

as

T cosα−D = mV̇T +mg sin γ (3.30)

By substituting Eq. (3.29) in Eq. (3.30) we get,

T cosα−D = m(−kV VT − VT c) +mg sin γ (3.31)

Similarly, by squaring and adding equation Eqs. (3.23) and (3.24) we get,

(T sinα + L)2 = (mVT cos γχ̇)2 + (mVT γ̇ +mg cos γ)2 (3.32)

(T sinα + L) =
√

(mVT cos γχ̇)2 + (mVT γ̇ +mg cos γ)2 (3.33)

By substituting Eq. (3.25) and Eq. (3.26) in Eq. (3.33) we get,

(T sinα + L) =

√
(mVT cos γ(̇− kχ(χ− χc)))2 + (mVT (−kγ(γ − γc)) +mg cos γ)2 (3.34)

The two Eqs. (3.31) and (3.34) are nonlinear and have two unknowns Td and αd. αd and Td

are generated by solving numerically, simultaneously Eqs. (3.31) and (3.34) through Newton

Raphson method [40]. The initial guess values of the control variables for Newton Raphson

34

method are taken as trim values α = 3.3140 and T = 5.56N . Learning rate parameter of 0.6

is introduced for both the variables for smooth convergence. The convergence criteria is set

as the bounded relative error in Td and αd or the maximum number of iteration assigned for

convergence. Bounded relative error can be stated as

∆α

α
< Tol1

∆T

T
< Tol2 (3.35)

where Tol1 and Tol2 are respective tolerance limits of the relative error in Td and αd. Tol1

and Tol2 can be taken differently but for present study Tol1 = Tol2 = 0.1%. The maximum

number of iterations assigned for convergence is 26. The time for convergence is around 1ms

which is lesser than one time update cycle (20ms).

3.3.1 Autopilot Compensation

The control variables µ∗, α∗, T ∗ are passed through the autopilot to account for internal

dynamics. The autopilot introduces a first order delay in response which is compensated by

designing an autopilot controller in all the three control channels. It is assumed that the

autopilot states (control variables µd, αd, Td) are available for the feedback. The controller

is designed based on the error of the actual states of the autopilot µd, αd, Td and the desired

state of the autopilot µ∗, α∗, T ∗ respectively. The error in the channel of bank angle is

given by e = µd − µ∗. Enforcing the first order error dynamics on the bank angle we get

(µ̇d − µ̇∗) + kµdc(µd − µ∗) = 0 (3.36)

µ̇d = µ̇∗ − kµdc(µd − µ∗) (3.37)

Substituting the autopilot dynamics from the Eq. (A.15) in Eq. (3.37) and rearranging we

get

µdc =
1

kµd
[kµdµd + µ̇∗ − kµdc(µd − µ∗)] (3.38)

desired rate of change of control µ̇∗ = 0 , therefore,

µdc =
1

kµd
[kµdµd − kµdc(µd − µ∗)] (3.39)

Similar controllers for autopilot compensation are designed for the remaining control vari-

ables as αdc, Tdc.

35

3.4 Noise-free Performance of the System

It is mandatory to check the performance of the system in noise-free situations. The ro-

bustness of the system can be verified in noisy conditions in the later sections. Both the

kinematic model as well as point mass model of UAV are considered for simulation studies.

The reactive collision avoidance algorithm is applied for the UAV in a single obstacle scenario

and the performance of the algorithm is evaluated.

3.4.1 Kinematic Model Noise-free Performance: Stationary Ob-

stacle

The kinematic model of UAV is considered for reactive collision avoidance in noise-free

scenario. The simulation is carried out with stationary single obstacle the Initial Position

of UAV is [0, 0, 0], Initial Velocity [19.9, 0.97, 0.99], Target Position [350,−5,−5], Obstacle

position [200,−2.5,−2.5] and UAV final location [345.6,−4.0,−4.0]. Fig. 3.2 shows the

trajectory of the UAV. The guidance commands for the UAV with kinematic model is shown

in Fig. 3.3. The guidance for χ and γ are implemented through first order autopilot lag

equations. Velocity of the UAV is kept constant throughout the simulation and aiming point

is achieved through variation of χ and γ. Therefore, UAV with kinematic model is able to

avoid the obstacle in noise-free scenario.

0
100

200
300

400

−50050
−40

−20

0

20

displacement along X(m)

UAV Estimated Trajectory

displacement along Y(m)

di
sp

la
ce

m
en

t a
lo

ng
 Z

(m
)

sphere
Obstacle
Initial position
final position
relative position
trajectory

Figure 3.2: UAV Kinematic model with Single
Stationary Obstacle: UAV Trajectory

0 2 4 6 8 10 12 14 16 18
−20

0

20
χ γ and velocity

time(sec)

χ(
de

gr
ee

)

actual
commanded

0 2 4 6 8 10 12 14 16 18
−0.5

0

0.5

time(sec)

γ(
de

gr
ee

)

0 2 4 6 8 10 12 14 16 18
20

20

20

time(sec)

V
el

oc
ity

(m
/s

)

Figure 3.3: UAV Kinematic model with Single
Stationary Obstacle: χ, γ and Velocity

36

3.4.2 Point mass Model Noise-free Performance: Stationary Ob-

stacle

The point mass model of UAV is considered for reactive collision avoidance in noise-

free scenario. This model has a close resemblance with practical UAVs as the aerody-

namic lift and drag force coefficients are taken into consideration. The simulation is carried

out with stationary single obstacle the Initial Position of UAV is [0, 0, 50], Initial Velocity

[19.9, 0.97, 0.99], Target Position [350,−5, 52], Obstacle Position [140,−3, 51] and UAV final

location [346.18,−4.35, 52.29]. Fig. 3.4 shows the trajectory of the UAV. The guidance

commands for the UAV with point mass model is shown in Fig. 3.5. The initial values

of guidance commands are α = 2.3140 , µ = 00 and Thrust = 5N . The commands are

exercised during the collision avoidance and afterwards the commands are almost constant

as the destination is determined.

0

100

200

300

400

−50050
0

20

40

60

80

displacement along X(m)

UAV Estimated Trajectory

displacement along Y(m)

di
sp

la
ce

m
en

t a
lo

ng
 Z

(m
)

sphere
Obstacle
Initial position
final position
relative position
trajectory

Figure 3.4: UAV Point mass model with Single
Stationary Obstacle: UAV Trajectory

0 2 4 6 8 10 12 14 16 18
−50

0

50
µ α and Thrust

time(sec)

µ(
de

gr
ee

)

actual
commanded

0 2 4 6 8 10 12 14 16 18
2

4

6

time(sec)

α(
de

gr
ee

)

0 2 4 6 8 10 12 14 16 18
0

10

20

time(sec)

T
hr

us
t(

N
)

Figure 3.5: UAV Point mass model with Single
Stationary Obstacle: µ, α and Thrust

3.4.3 Point mass Model Noise-free Performance: Moving Obstacle

The point mass model of UAV is considered for reactive collision avoidance in noise-free

scenario. The simulation is carried out with single moving obstacle with Velocity [2, 0, 0],

the Initial position of UAV is [0, 0, 50], Initial Velocity [19.9, 0.97, 0.99], Target Position

[350,−5, 52], Obstacle initial position [140,−3, 51], Obstacle final position [174.8,−3, 51]

37

and UAV final location [346.63,−4.3, 52.3]. Fig. 3.6 shows the trajectory of the UAV. Since

the obstacle is moving, the final location of obstacle is shown in the trajectory. The guidance

commands for the UAV with point mass model is shown in Fig. 3.7. The commands are

executed to avoid collision with the dynamic obstacle as the aiming point computation is

incurred due to relative motion caused by UAV as well as the obstacle motion.

0

50

100

150

200

250

300

350

−50050
0

50

100

displacement along X(m)

UAV Estimated Trajectory

displacement along Y(m)

 di
sp

la
ce

m
en

t a
lo

ng
 Z

(m
)

sphere
Obstacle
Initial position
final position
relative position
trajectory

Figure 3.6: UAV Point mass model with Single
Moving Obstacle: UAV Trajectory

0 2 4 6 8 10 12 14 16 18
−50

0

50
µ α and Thrust

time(sec)

µ(
de

gr
ee

)

 actual
commanded

0 2 4 6 8 10 12 14 16 18
2

4

6

time(sec)

al
ph

a(
de

gr
ee

)

0 2 4 6 8 10 12 14 16 18
0

10

20

time(sec)

T
hr

us
t(

N
)

Figure 3.7: UAV Point mass model with Single
Moving Obstacle: µ, α and Thrust

Fig. 3.8 shows the obstacle’s true and estimated velocity profile. The estimated velocity

through first order differential of sensor dynamics is inaccurate and fluctuating. In later

sections the obstacle velocity is accurately estimated using extended kalman filter as well

as unscented kalman filter. Fig. 3.9 shows the minimum distance profile. The guidance

commands for α and χ show some fluctuations at around 6 to 8 seconds which is due to

UAV’s close proximity with obstacle safety sphere and invoking sphere tracking algorithm

[9].

38

0 2 4 6 8 10 12 14 16 18
1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25
Obstacle True and Estimated Velocity(m/s)

time(sec)

T
ru

e
E

st
im

at
ed

 v
el

oc
ity

 o
bs

ta
cl

e(
m

/s
)

True velocity
Estimated velocity

Figure 3.8: UAV Point mass model with Single
Moving Obstacle: Velocity Profile

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

45

50
Distance from UAV to OBS and Target

time(sec)

D
is

ta
nc

e
be

tw
ee

n
O

bs
ta

cl
e/

T
ar

ge
t a

nd
 U

A
V

(m
)

UAV−Obstacle Distance
UAV−Target Distance
Obstacle−Safety−Radius

Figure 3.9: UAV Point mass model with Single
Moving Obstacle: Minimum Distance Profile

39

3.5 Extension of the Algorithm for Multiple Stationary

Obstacles

Without loss of generality, multiple stationary obstacles are considered here in the problem

formulation. The formulation can be treated as ’reconfigurable’ [48] in the sense that if

some of the obstacles are in close proximity with each other, then one composite obstacle

is considered encircling all of these obstacles rather than individual obstacles. The collision

avoidance algorithm is implemented considering only the composite obstacles and remaining

individual obstacles.

3.5.1 Formulation of Reconfigurable Obstacles

Let considered the onboard sensor mounted on the UAV senses the N obstacles. The

information of position and safety sphere radius of each obstacle are obtained through the

onboard sensors. First all the N obstacles position and safety radius are assigned in a vector

form as X and Rv respectively. One of the obstacles is considered as global obstacle say XOG

and the distance between this obstacle centre and remaining other N − 1 obstacles centres

are computed. If any of the N −1 obstacles are in close proximity of the global obstacle (i.e.

distance between the two obstacle centres is less than the summation of two obstacle safety

sphere radius and minimum safety distance considered between them) then one composite

safety sphere is formed, which encompassing the safety spheres of both global obstacle and

the close proximity obstacle in following manner. Let us assume that ith obstacle in obstacle

position vector X(:, i) is in close proximity to global obstacle, then a unit vector along the

line joining the centre of the global obstacle and close proximity obstacle is given as.

Xrv =
X(:, i)−XOG

‖X(:, i)−XOG‖
(3.40)

The radius and centre of composite safety sphere are compute as follows

ra = (rg +Rv(i) + ‖X(:, i)−XOG‖)/2

Xa = XOG + (ra − rg)Xrv (3.41)

Where, Rv(i) and rg are the safety sphere radius of the close proximity and global obstacle

respectively. Xa and ra are the centre and radius of the composite safety sphere respectively.

40

There may be situation such that either one of the obstacle safety sphere is completely lie

inside the other obstacle safety sphere. In such scenario the computed ra comes either less

than or equal to the bigger obstacle safety sphere radius. Therefore, choose the centre and the

radius of the bigger obstacle safety sphere as the composite safety sphere. This composite

safety sphere is updated as the global obstacle and the process is repeated for remaining

obstacles considering one by one steps. The obstacles which are not in close proximity to

the considered global obstacle are regarded as separate obstacles. The position and safety

radius information of the separate obstacles are stored in a separate vector as Xsep and rsep

respectively. Further this separate vector Xsep along with global obstacle is put together

and it forms a new set of obstacles. This method is iterated for this new set in one by one

steps considering each one as global obstacle. Finally, the N obstacle set is transformed into

a new final set say XNew which includes clustered global obstacles as well as un-clustered

global obstacles. The entire logic is described in Fig. 3.10 in flowchart format.

3.5.2 Collision Avoidance algorithm for Multiple Individual Ob-

stacles

Initialize the UAV aiming point as a goal point Xap = Xgoal and corresponding time-to-go

as minimum time to reach tmin = tgo and initialize the final set of obstacles XNew. Then

compute the aiming point Xapk, time to reach the plane t∗k and check the collision criteria

for the kth global obstacle in new set XNew using Eq.(3.16) to Eq.(3.18). If the collision

criteria is satisfied and computed t∗k is lesser than tmin then update the UAV aiming point as

Xap = Xapk and the minimum time to reach as tmin = t∗k. The above procedure is repeated

for remaining all global obstacles in the new set XNew one by one. More detailed logic is

given in flowchart as shown in Fig. 3.11

41

Distance criteria

Compute the center and radius of composite

safety sphere

START

1 2 3

1 2 3

1, 1

[, , , ,]

[, , , ,]

T
OB OB OB OBN

T
v N

Initialize p j

X X X X X

R r r r r

 









Assign 2, 1i p 

(:,1) (1)OG g vX X r R 

 
  

OG

g v d

X :,i X

r R i S

 

 

Yes

Yes

YesNo

Yes

No

No

YesNo

A

OG a

g a

X X

r r





1i i  i ln

j ln

[]

[]

[n] ()

v

Sep OG

v Sep g

Sep Sep

clear X R

X X X

R R r

clear X R

lm l size X






New

New v

X X

R R



1j j 

 

max

(:,)

(:,)

() (:,) 2

()

max(, ())

OG
rv

OG

a g v OG

a OG a g rv

g v

X i X
X

X i X

r r R i X i X

X X r r X

r r R i






   

  



(:,) (:,)

() ()

1

[ln] ()

Sep

Sep v

X p X i

R p R i

P P

lm size X





 


a maxr r

No
max gr r

maxar r

(:,)aX X i a OGX X

,a aX r

STOP

Figure 3.10: Flowchart for formulation of Reconfigurable Obstacles

42

No

*
minmin(,)a kt t t

Yes

Yes

No

No Yes

START

min

, 1ap goal

ap V
go

T

Initialize

X X k

X X
t t

V

 


 

,New NewX R

k nk1k k 

*
min k

ap apk

go gok

t t

X X

t t






[] ()Newmk nk size X

STOP

Compute aiming point apkX and time to

reach the plane (
*
kt) and time to go (gokt) for

kth obstacle in
NewX set using Eq. 19 to Eq.

22 in Sec III-A

Collision

Criteria#

min , ,ap got X t*
a kt t

Collision criteria is evaluated using Eq.(21) in Sec III. A

A

Figure 3.11: Flowchart for Collision Avoidance of Multiple Individual Obstacles.

43

Chapter 4

Obstacle Position and Size Estimation

with Camera

In the previous section, assumption is made that the obstacle is point obstacle and size

of the obstacle considering a safety radius around it was assumed spherical. The camera

coordinates of the obstacle’s projection on cameras image plane are obtained with onboard

camera sensors mounted on the UAV and image processors. In this section, the procedure

involved in obtaining the pixel data on image plane and extracting the obstacle information

is described to make a closer resemblance with realistic approach. The pin hole camera

model is considered and assumption made here is that camera is ideal and calibrated. The

shape of the obstacle is considered as sphere. The steps followed can be summerised as

firstly, Extracting the potential feature points from stereo images using harris detector and

then, stereo matching is done along epipolor line. Finally, the 3D information of obstacle

obtained by applying triangulation method to the matched feature points.

4.1 Camera Model

In this work, the pinhole camera model is used for describing the geometric relations between

3D object and their projections onto the image plane of the camera and its geometry is shown

in Fig 4.1 [46]. The camera axis system, denoted with subscript c, is defined to have its origin

at the camera centre C with the XcYc plane parallel to the image plane. The intersection

point of the Zc axis in image plane is called the principal point which is close to the centre of

44

CX

C
CZ

c

m

M

image plane

f

optical axis

Y

, tR lenscentre

imY

Z

CY

imX

X O

Figure 4.1: The camera coordinate and world coordinate frame

45

the image plane. The focal length f is defined as the distance between the camera centre and

the image plane. The mathematical relation between the camera coordinate to the projected

image (pixel) coordinate is given by a camera calibration matrix K as follows [46],

K =


sh 0 0

0 sv 0

0 0 1



fh 0 ph

0 fv pv

0 0 1

 (4.1)

K =


αh 0 ch

0 αv cv

0 0 1

 (4.2)

where, sh, sv are pixel size in the horizontal and vertical direction of the image respec-

tively, K is also called as the intrinsic matrix. αh and αv represent the focal length (in pixels)

in the horizontal and vertical direction respectively. ch, cv are the image centre.

let us define the world coordinate system with subscript w. To incorporate the camera

position and orientation with respect to world coordinate system, we rotate and translate

the point Xc in the camera coordinate system. In Euclidean coordinates this will give us

Xc = R(Xw − C) (4.3)

where, R is a 3×3 rotation matrix and C is the position of the camera centre in Euclidean

coordinates. The relation between world coordinate to camera coordinate can be represented

in homogeneous coordinates as follows,


xc

yc

zc

1

 =

[
R −RC

0T 1

]
xw

yw

zw

1

 (4.4)

The camera matrix (it is also called projection matrix) is given as,

P = KR[I,−C] (4.5)

46

4.2 Stereo Camera

A stereo vision system is composed of two pinhole cameras, a 3D object and its projection on

both image planes shown in Fig. 4.2. Using two or more images of the scene, each acquired

from a different viewpoint in space, feature detection and stereo matching of 3D structure is

carried out by triangulation [21] method.

4.2.1 Feature detection

The detection of feature points is the determination of interest points in a given im-

age frame. Various methods for finding interest points are available, some of them are the

Scale-Invariant Feature Transform (SIFT) [23, 24], the Speeded Up Robust Features (SURF)

detector [25], Feature form accelerated segment test (FAST)[26] and the Harris corner [28].

The SIFT feature points are computed by finding the potential feature in different scale

space. These features are localized upto the subpixel accuracy and are given in the form

of descriptor vector. Each descriptor consists of scale and orientation of the corresponding

feature. SIFT features are very accurate and it is invariant to scale, rotation, projective

transformation and illumination changes but it’s slow to execute and computationally in-

tensive. In SURF detector is computationally fast and less accurate when it’s compared to

SIFT. It uses hessian matrix which can be calculated using integral images. In this report

we have used the Harris corner detector [28], compared to remaining methods it is simple

and less computational complexity.

Harris corner detection is used to extract a set of feature points from the left and right

images. An interest operator tuned for corner detection is applied to image pair and pixels

with the highest interest values selected as features. These potential features are also used

for calibration of stereo camera. In this method involves shifting a small patch or window

of image in all directions. If the window contains any corner point then shifting the window

along all direction results in large change in its intensity values.

E(u, v) =
∑
x,y

Wx,y|Iu+x,v+y − Ix,y|2 (4.6)

Ix,y intensity value at point (x, y), u, v introduce a small shift amount of the window.

The window is chosen as a gaussian window Wx,y. Using the Taylor series, the expression

47

Iu+x,v+y in above equation can be rewritten as,

E(u, v) =
∑
x,y

Wx,y|Ix,y + uIx + vIy − Ix,y|2 (4.7)

E(u, v) = [u, v]M

[
u

v

]
(4.8)

,

where M is called covariance matrix,

M =
∑
x,y

Wx,y

[
Ix,x Ix,y

Ix,y Iy,y

]
(4.9)

The quality of the corner can be measured by the following response function,

R = Det(M)−K(Trace(M))2 (4.10)

The response function R only depends on the eigen values of M . For corner points it will

produce the large positive value (R > 0), for edge region it will give the large negative value

(R < 0) and for flat region it will give small |R| value.

4.2.2 Stereo matching

Stereo matching algorithm is used to find correspondences between the extracted feature

points between left and right images which gives relative position and orientation between

stereo cameras (i.e. Fundamental matrix).

4.2.3 Epipolar constraint

In this section, the epipolar geometry [21] is presented. Consider two image planes with the

distinct viewpoints as in Fig. 4.2. Let xl, yl and xr, yr be the corresponding feature points in

two image planes. The epipolar geometry defines the geometric relationship between these

corresponding points. The plane passing through the camera center Cl and Cr and the 3D

world point xw is called an epipolar plane. The projection e(e′) of one camera center onto

the image plane of the other camera frame is called an epipole. An epipolar line l(l′) is the

48

� �

�������	
���� �������	
����

������� �������

�������

�

�
��

�
�

�

�������	
�����

xw

l r

x x

Figure 4.2: The geometry of stereo camera

intersection of an epipolar plane for xw with the image plane. All epipolar lines pass through

the epipole.

4.2.4 Fundamental Matrix

The fundamental matrix represents the epipolar geometry algebraically and contains most

of the information about the relative position and orientation between the two views. If F

is the fundamental matrix [42, 44], then F T is the matrix which satisfies

X ′TFX = 0 (4.11)

for all corresponding points x and x′ in both left and right image planes. For any point x

in the first image, the corresponding epipolar line is l′ = Fx . Similarly, l = F Tx′ represents

the epipolar line corresponding to x′ in the second image plane. For any point x(other than

epipole e), the epipolar line l′ = Fx contains the epipole e′. Thus e′ satisfies e′TFx = 0 for

all x.

In this work, we have used SSD-based matching by searching both the images to minimize

the similarity criterion. The similarity criteria can be represented by,

SSD(x, y) =
∑

(i,j)εW

(Ileft(i, j)− Iright(x+ i, y + j))2 (4.12)

49

The stereo matching is done strictly along the epipolar line with only a few pixels to

offset above and below it. RANSAC [22],[27] is used to reject outliers.

4.3 3D Reconstruction

The relationship between a point in the scene and its corresponding point in the camera and

the projector image coordinates can be written for left and right images as follows [47],


w1xp

1

w1yp
1

w1

 =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34



xw

yw

zw

1

 (4.13)


w2xp

2

w2yp
2

w2

 =


q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34



xw

yw

zw

1

 (4.14)

xp
1 ∼= Pxw, xp

2 ∼= Qxw

Where, P and Q denote the projection matrix of the camera and the projector respec-

tively, and the superscripts p1 and p2 mean the pixel coordinate frames of the camera and

w1 and w2 denotes world frame projector respectively. If a pair of corresponding points in

two images can be found, it suggests that they are the projection of a common 3D point.

This can be Reconstruction by Singular Value Decomposition (SVD) or inverse pseudo spec-

tral method. In our work SVD is used for finding object points. Finally it (Eqn 4.13 and

4.14) is expressed in terms of homogeneous coordinates.

Mxw = 0

Where M = 
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 (4.15)

50

m11 = p11 − xp
1
p31 , m12 = p12 − xp

1
p32

m13 = p13 − xp
1
p33 , m14 = p14 − xp

1
p34

m21 = p21 − yp
1
p31 , m22 = p22 − yp

1
p32

m23 = p23 − yp
1
p33 , m24 = p24 − yp

1
p34

m31 = q11 − xp
2
q31 , m32 = q12 − xp

2
q32

m33 = q13 − xp
2
q33 , m33 = q14 − xp

2
q34

m41 = q21 − yp
2
q31 , m42 = q22 − yp

2
q32

m43 = q23 − yp
2
q33 , m44 = q24 − yp

2
q34

Thus, we can estimate the point through singular value decomposition (SVD) related

techniques. The four elements of the last column of V obtained by SVD of M (UDV T) are

the homogeneous coordinates of xw.

4.4 Simulation Result

In this section, point mass model of UAV is considered. Simulations are carried out in

Matlab’s VRML environment. For simplicity, obstacle shape with safety radius is taken

as spherical. Virtual stereo camera is mounted on UAV in VRML environment. The base

length B between two cameras is taken as 30cm. Field of view of horizontal and vertical

direction is taken as fov = 60◦. Resolution of the virtual camera is 576× 380 and the focal

length (in pixel) can be computed using following expression.

αh = fhsh =
0.5 ∗ width

tan(fov ∗ 0.5)
∗ 576

width
(4.16)

αv = fvsv =
0.5 ∗ height
tan(fov ∗ 0.5)

∗ 380

height
(4.17)

The camera center is taken as ch=288, cv=190.

4.4.1 Single Obstacle

The simulation is carried out with stationary single obstacle and the initial position of

UAV is [20, 10, 10], Initial Velocity is [10, 1.2, 1.0], Target Position is [150, 22, 22]. The fea-

ture points detection algorithm results are shown in Fig. 4.3. The stereo matching is done

by searching the minimum sum of square difference (SSD) of potential features along the

51

epipolor line and outliers are removed by RANSAC algorithm shown in Figs. 4.4. The 3D-

Reconstruction of the potential features are shown in Fig. 4.5. The approximate value of

the obstacle centre can be obtained by finding the mean of the reconstructed 3D-potential

feature points. However obstacle centre may not be an exact one but due to 3D symmet-

rical nature of the sphere the calculation of centre is closed to the actual one. Radius of

the sphere can be computed by taking average distance between computed centre and all

feature points. Moreover, if the UAV is approaching closer to the obstacle it may get only

partial information about the obstacle because of the restriction of its field of view . To

avoid this problem the value of the obstacle centre and radius is freezed from some threshold

distance between UAV and the computed obstacle. In this simulation we got obstacle centre

as [110.46, 14.52, 6.62] and radius is 15.15m.

Figure 4.3: Feature points detected by Harris
corner

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

Geometrically matched points in I1
Geometrically matched points in I2

Figure 4.4: SSD based stereo matching

The 3D trajectory of UAV is shown in Fig. 4.6. The guidance command such as Angle of

attack and Bank angle profile is shown in Figs 4.7 and 4.8 respectively. The Thrust profile

is shown in Fig. 4.9

52

20
40

60
80

100
120

140
160

−20
−10

0
10

20
30

40
50

−20

−10

0

10

20

30

displacement along Xdisplacement along Y

di
sp

la
ce

m
en

t a
lo

ng
 Z

Current
Position

Start
Position

End
Position

Figure 4.5: 3D reconstruction of matched feature points

20 40 60 80 100 120 140 160
0

10
20

30
−10

−5

0

5

10

15

20

25

displacement along Xdisplacement along Y

di
sp

la
ce

m
en

t a
lo

ng
 Z

Start

End

Figure 4.6: UAV Trajectory

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

time (s)

al
ph

a
(d

eg
re

e)

Figure 4.7: Angle of attack Profile

0 1 2 3 4 5 6 7 8 9
−10

−8

−6

−4

−2

0

2

4

time (s)

m
u

(d
eg

re
e)

Figure 4.8: Bank angle Profile

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

16

Time (s)

T
hr

us
t (

N
)

Figure 4.9: Thrust Profile

53

Chapter 5

Simulation Results

5.1 Simulation Results

Simulations are carried out to test the performance of reactive collision avoidance algo-

rithm. Both the Kinematic model and Point mass model of UAV is considered for the system

dynamics. The aerodynamic data for the model is taken from the AE-2 model of the UAV

as shown in Fig.A.1. Single stationary obstacle, single moving obstacle with constant veloc-

ity and multiple stationary obstacles are considered for simulation study. Validation of the

reactive collision avoidance algorithm is also carried out with randomized simulations. For

extracting the accurate data from noisy sensor measurements EKF as well as UKF estima-

tion techniques are used which estimate the obstacle position as well as obstacle velocity. In

order to have similarity with practical stereovision sensors the separation between the two

sensors is 0.40 meter and focal length is 0.22 centimeter is considered for both the sensors.

5.2 Kinematic model of UAV with EKF Estimation

In this section Kinematic model of UAV is considered and camera sensor model is assumed

to be noisy and the camera sensor state estimation is carried out using Extended Kalman

Filter. The simulation is carried out with single stationary as well as single moving obstacle

with constant velocity. The objective here is to compute the estimated position of the

obstacle and use the guidance command to avoid the collision with in the available time to

go and guide the UAV to appropriate destination.

54

0
50

100
150

200
250

−40−20020

−20

0

20

40

displacement along Y(m)

UAV Estimated Trajectory

displacement along X(m)

di
sp

la
ce

m
en

t a
lo

ng
 Z

(m
)

sphere
Obstacle
Initial position
final position
relative position
trajectory
trajectory autopilot compensation

Figure 5.1: UAV Kinematic model with EKF
Single Stationary Obstacle: UAV Trajectory

0 5 10 15
−50

0

50
χ γ and velocity

time(sec)

χ(
de

gr
ee

)

autopilot compensation
commanded

0 5 10 15
−50

0

50

time(sec)

γ(
de

gr
ee

)

0 5 10 15
20.121

20.121

20.121

time(sec)

V
el

oc
ity

(m
/s

)

Figure 5.2: UAV Kinematic model with EKF
Single Stationary Obstacle: χ, γ and Velocity

5.2.1 Single obstacle

Case 1: Stationary Obstacle

The simulation is carried out with single stationary obstacle the initial position of UAV is

[0, 0, 0], Initial Velocity [19.33,−4.5, 3.3], Target Position [279,−6.3, 9.2], Obstacle position

[138,−7.0, 4.0] and UAV final location [274,−7.4, 10.0]. Kinematic model of UAV is con-

sidered and Extended Kalman Filter is used for sensor state estimation. Fig. 5.1 shows

the trajectory of the UAV. The guidance commands for the UAV with kinematic model is

shown in Fig. 5.2. Autopilot lag compensation is provided for the guidance command and

corresponding trajectory is also plotted which almost overlaps the actual trajectory. Velocity

profile of the UAV is constant throughout the simulation. The guidance commands χ and γ

are tracking the desired guidance command.

The sigma error bounds for stereovision camera sensor states r, χ and γ are given as Fig.

5.3. The plot shows that errors are within the bounds. The UAV to target distance and the

UAV to obstacle distance is shown in Fig. 5.4 where the UAV to obstacle distance is firstly

decreasing and further increasing as the UAV first approaches towards the obstacle and then

avoids it by executing the guidance cammand and moves towards the destination. However,

the distance to target is constantly decreasing. Simulation stopping criteria is applied when

the UAV reaches within 5m range of the destination.

Case 2: Moving Obstacle

55

0 5 10 15
−20

0

20
OBSTACLE:1−Sigma−Bound

EKF−Prestart−to−end−time(sec)

R
an

ge
(m

)

0 5 10 15
−50

0

50

EKF−Prestart−to−end−time(sec)

χ(
de

gr
ee

)

0 5 10 15
−50

0

50

EKF−Prestart−to−end−time(sec)

γ(
de

gr
ee

)

Figure 5.3: UAV Kinematic model with EKF
Single Stationary Obstacle: Sigma error bound

0 5 10 15
0

5

10

15

20

25

30

35

40

45

50
Distance from UAV to OBS and Target

time(sec)

D
is

ta
nc

e
be

tw
ee

n
O

bs
ta

cl
e/

T
ar

ge
t a

nd
 U

A
V

(m
)

UAV−Obstacle Distance
UAV−Target Distance
Obstacle−Safety−Radius

Figure 5.4: UAV Kinematic model with EKF
Single Stationary Obstacle: UAV to Obstacle
and Target Distance

The simulation is carried out with single obstacle moving with constant velocity [2, 0, 0], the

Initial position of UAV is [0, 0, 0], UAV Initial Velocity is [19.9, 0.97, 0.99], Target Position is

[389.9,−3.0,−3.0], Obstacle initial position is [120.0,−0.54,−0.51], Obstacle initial position

is [159.10,−0.54,−0.51] and UAV final location is [386.9,−2.6,−2.7]. Kinematic model of

UAV is considered and extended kalman filter is used for estimation. The objective here is to

compute the estimated position as well as the estimated velocity of the obstacle and use the

guidance command for the reactive collision avoidance with the obstacle in the available time

to go. In the moving scenario the obstacle is considered non-cooperative and the concept

of miss distance [7] is used. Fig. 5.5 shows the trajectory of the UAV. The trajectory with

autopilot compensation is also plotted. The UAV is able to avoid collision with moving

obstacle.

56

0

100

200

300

400−50
0

50
−50

0

50

displacement along X(m)

UAV Estimated Trajectory

displacement along Y(m)

di
sp

la
ce

m
en

t a
lo

ng
 Z

(m
)

sphere
Obstacle
Initial position
final position
relative position
trajectory
trajectory with autopilot compensation

Figure 5.5: UAV Kinematic model with EKF Single Moving Obstacle: UAV Trajectory

The guidance commands for the UAV with kinematic model is shown in Fig. 5.7. The

guidance command is tracking the desired command. The following Fig. 5.6 shows autopilot

compensation provided for guidance command. Sigma error bounds for stereovision camera

sensor states are given as Fig. 5.8 which are well with in bounds. The UAV to target distance

and the UAV to obstacle distance profile is shown in Fig. 5.9

The obstacle is assumed to be moving with constant velocity and based on successive

data obtained from stereovision camera sensors in their coordinate frames, using camera

sensor state dynamics and using the Extended Kalman Filter estimation, the velocity of the

obstacle is estimated and as shown in the Fig.5.10. The velocity estimate becomes erroneous

as the camera sensor comes to closer to obstacle. This can be correlated with the time

instants shown in the fig.5.11 where the forward direction(x-direction) position components

of UAV and obstacle are plotted.

It is observed that the guidance command is efficiently able to perform the reactive

collision avoidance in single obstacle scenario when the obstacle is stationary as well as

moving with constant velocity.

57

0 5 10 15 20
−50

0

50
χ γ and velocity actual and autopilot compensation

time(sec)

χ(
de

gr
ee

)

 actual
autopilot compensation

0 5 10 15 20
−10

0

10

time(sec)

γ(
de

gr
ee

)

0 5 10 15 20
0

50

time(sec)

V
el

oc
ity

(m
/s

)

Figure 5.6: UAV Kinematic model with EKF
Single Moving Obstacle: Autopilot Compensa-
tion

0 5 10 15 20
−20

0

20
χ γ and velocity commanded and actual

time(sec)

χ(
de

gr
ee

)

actual
commanded

0 5 10 15 20
−10

0

10

time(sec)

γ(
de

gr
ee

)

0 5 10 15 20
0

50

time(sec)

V
el

oc
ity

(m
/s

)

Figure 5.7: UAV Kinematic model with EKF
Single Moving Obstacle: χ, γ and Velocity

5.3 Kinematic model of UAV with UKF Estimation

In this section Kinematic model of UAV is considered and camera sensor model is as-

sumed noisy and the camera sensor state estimation is carried out using Unscented Kalman

Filter(UKF). The UKF’s excellence over EKF for nonlinear systems in noisy conditions are

exploited and the simulation results are presented for single stationary obstacle environment.

58

0 5 10 15 20
−2

0

2
OBSTACLE:1−Sigma−Bound

EKF−Prestart−to−end−time(sec)

R
an

ge
(m

)

0 5 10 15 20
−50

0

50

EKF−Prestart−to−end−time(sec)

χ(
de

gr
ee

)

0 5 10 15 20
−50

0

50

EKF−Prestart−to−end−time(sec)

γ(
de

gr
ee

)

Figure 5.8: UAV Kinematic model with EKF
Single Moving Obstacle: Sigma error bound

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50
Distance from UAV to OBS and Target

time(sec)

D
is

ta
nc

e
be

tw
ee

n
O

bs
ta

cl
e/

T
ar

ge
t a

nd
 U

A
V

(m
)

UAV−Obstacle Distance
UAV−Target Distance
Obstacle−Safety−Radius

Figure 5.9: UAV Kinematic model with EKF
Single Moving Obstacle: UAV to Obstacle and
Target Distance

0 5 10 15 20
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
True and Estimated Velocity(m/s)

time(sec)

T
ru

e
E

st
im

at
ed

 v
el

oc
ity

 o
bs

ta
cl

e(
m

/s
)

True velocity
Estimated velocity

Figure 5.10: UAV Kinematic model with EKF
Single Moving Obstacle: True and Estimated
Velocity of Obstacle

0 5 10 15 20
0

50

100

150

200

250

300

350

400

time(sec)

O
bs

 a
nd

 U
A

V
 P

os
iti

on
 in

 x
−

di
r(

m
)

Obs and UAV Position in X−direction (m)

Obs Position
UAV Position

Figure 5.11: UAV Kinematic model with EKF
Single Moving Obstacle: Obstacle and UAV’s
X-direction Position

59

0

50

100

150

200

250

300

350

−50
0

50
−50

0

50

displacement along X(m)

UAV Estimated Trajectory

displacement along Y(m)

di
sp

la
ce

m
en

t a
lo

ng
 Z

(m
)

sphere
Obstacle
Initial position
final position
relative position
trajectory
trajectory with autopilot compensation

Figure 5.12: UAV Kinematic model with UKF
Single Stationary Obstacle: UAV Trajectory

8.5cm

0 2 4 6 8 10 12 14 16 18
−20

0

20
χ γ and velocity

time(sec)

χ(
de

gr
ee

)

 actual
commanded

0 2 4 6 8 10 12 14 16 18
−50

0

50

time(sec)

γ(
de

gr
ee

)

0 2 4 6 8 10 12 14 16 18
20

20

20

time(sec)

V
el

oc
ity

(m
/s

)

Figure 5.13: UAV Kinematic model with UKF
Single Stationary Obstacle: χ, γ and Velocity

8.5cm

5.3.1 Single obstacle

The simulation is carried out with single stationary obstacle the initial position of UAV is

[0, 0, 0], Initial Velocity [19.95, 0.97, 0.99], Target Position [319.9, 0.65, 3.3], Obstacle position

[123.85, 1.21, 0.78] and UAV final location [316.35, 1.16, 4.0] kinematic model of UAV is con-

sidered and Unscented kalman filter is used for estimation. Fig. 5.12 shows the trajectory

of the UAV with actual guidance as well as guidance with autopilot compensation. The

guidance commands for the UAV with kinematic model is shown in Fig.5.13 where tracking

of the desired guidance command is shown. The velocity of the UAV is considered to be

constant throughout the simulation.

The autopilot compensation for lag in guidance command is provided in Fig.5.14. The

UAV to target distance and the UAV to obstacle distance is shown in Fig. 5.15. It is observed

that the guidance command is efficiently able to perform the collision avoidance in single

stationary obstacle scenario with kinematic model of UAV and with UKF estimation.

60

0 2 4 6 8 10 12 14 16 18
−20

0

20
χ γ and vel

time(sec)

χ(
de

gr
ee

)

 actual
autopilot compensation

0 2 4 6 8 10 12 14 16 18
−50

0

50

time(sec)

γ(
de

gr
ee

)

0 2 4 6 8 10 12 14 16 18
0

50

time(sec)

V
el

oc
ity

(m
/s

)

Figure 5.14: UAV Kinematic model with UKF
Single Stationary Obstacle: Autopilot Compen-
sation

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

45

50
Distance from UAV to OBS and Target

time(sec)

D
is

ta
nc

e
be

tw
ee

n
O

bs
ta

cl
e/

T
ar

ge
t a

nd
 U

A
V

(m
)

UAV−Obstacle Distance
UAV−Target Distance
Obstacle−Safety−Radius

Figure 5.15: UAV Kinematic model with UKF
Single Stationary Obstacle: UAV to Obstacle
and Target Distance

8.5cm

61

5.4 Point mass model of UAV with EKF Estimation

In this section Point mass model of UAV is considered and stereovision camera sensor

model is assumed noisy and the camera sensor state estimation is carried out using Ex-

tended Kalman Filter. The simulation is carried out with single stationary obstacle, single

moving obstacle with constant velocity as well as multiple stationary obstacle. The objective

here is to compute the estimated position of the obstacle as well as estimated velocity of the

obstacle (for moving obstacle only) and use the guidance command to avoid the collision in

the available time to go.

5.4.1 Single obstacle

Case 1: Stationary Obstacle

The simulation is carried out with single stationary obstacle the initial position of UAV

is [0, 0, 50], Initial Velocity [19.95, 0.97, 0.99], Target Position [267.0,−4.0, 46.0], Obstacle

position [169.95,−1.50, 48.40] and UAV Final location [266.6,−2.4, 46.0]. Point mass model

of UAV is considered and Extended Kalman Filter is used for estimation. Fig. 5.16 shows

the trajectory of the UAV obtained with actual guidance command as well as guidance with

autopilot compensation. The guidance commands for the UAV with point mass model is

shown in Fig. 5.17 where the desired guidance command is computed through the aiming

point and actual guidance tracks the desired guidance command. Keeping velocity constant

the angle commands are used to achieve the aiming point.

62

0

50

100

150

200

250

300

−50
0

50

−20

0

20

40

60

80

displacement along Y(m)

UAV Estimated Trajectory

displacement along X(m)

di
sp

la
ce

m
en

t a
lo

ng
 Z

(m
)

sphere
Obstacle
Initial position
final position
relative position
trajectory
trajectory autopilot compensation

Figure 5.16: UAV Point mass model with EKF
Single Stationary Obstacle: UAV Trajectory

0 2 4 6 8 10 12 14
−50

0

50
χ γ and velocity

time(sec)

χ(
de

gr
ee

)

 actual
commanded

0 2 4 6 8 10 12 14
−10

0

10

time(sec)

γ(
de

gr
ee

)

0 2 4 6 8 10 12 14
20

20

20

time(sec)

ve
lo

ci
ty

(N
)

Figure 5.17: UAV Point mass model with EKF
Single Stationary Obstacle: χ, γ Velocity

63

0 2 4 6 8 10 12 14
−50

0

50
µ α and Thrust

time(sec)

µ(
de

gr
ee

)

 actual
commanded

0 2 4 6 8 10 12 14
2

4

6

time(sec)

α(
de

gr
ee

)

0 2 4 6 8 10 12 14
0

5

10

time(sec)

T
hr

us
t(

N
)

Figure 5.18: UAV Point mass model with EKF
Single Stationary Obstacle: µ, α and Thrust

0 2 4 6 8 10 12 14
−50

0

50
µ α and Thrust

time(sec)

µ(
de

gr
ee

)

actual
autopilot compensation

0 2 4 6 8 10 12 14
2

4

6

time(sec)

α(
de

gr
ee

)

0 2 4 6 8 10 12 14
0

5

10

time(sec)

T
hr

us
t(

N
)

Figure 5.19: UAV Point mass model with EKF
Single Stationary Obstacle: Autopilot Compen-
sation

The physical guidance commands α, µ and thrust which are in turn computed using

the guidance commands χ, γ and velocity is shown in Fig. 5.18. Since the UAV model

is an aerodynamic model the physical guidance commands are more relevant. The actual

guidance command closely tracks the commanded value. The autopilot compensation for

lag in guidance command is shown in Fig. 5.19. The UAV to target distance and the UAV

to obstacle distance is shown in Fig. 5.21. The sigma error bounds for stereovision camera

sensor states are given as Fig.5.20.

The simulation results show that UAV with point mass model is able to perform the

reactive collision avoidance with the stationary obstacle.

64

0 2 4 6 8 10 12 14
−50

0

50
OBSTACLE1−3Sigma−Bound

EKF−Prestart−to−end−time(sec)

R
an

ge
(m

)

0 2 4 6 8 10 12 14
−100

0

100

EKF−Prestart−to−end−time(sec)

T
he

ta
(d

eg
re

e)

0 2 4 6 8 10 12 14
−100

0

100

EKF−Prestart−to−end−time(sec)

P
hi

(d
eg

re
e)

Figure 5.20: UAV Point mass model with EKF
Single Stationary Obstacle: Sigma error bound

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

45

50
Distance from UAV to OBS and Target

time(sec)

D
is

ta
nc

e
be

tw
ee

n
O

bs
ta

cl
e/

T
ar

ge
t a

nd
 U

A
V

(m
)

UAV−Obstacle Distance
UAV−Target Distance
Obstacle−Safety−Radius

Figure 5.21: UAV Point mass model with EKF
Single Stationary Obstacle: UAV to Obstacle
and Target Distance

65

0

50

100

150

200

250

300

−50
0

50

−20

0

20

40

60

80

displacement along Y(m)

UAV Estimated Trajectory

displacement along X(m)

di
sp

la
ce

m
en

t a
lo

ng
 Z

(m
)

sphere
Obstacle
Initial position
final position
relative position
trajectory
trajectory with ap compensation

Figure 5.22: UAV Point mass model with EKF Single Moving Obstacle: UAV Trajectory

Case 2: Moving Obstacle

The simulation is carried out with single obstacle moving with constant velocity. Obstacle

velocity [2, 0, 2], the Initial position of UAV is [0, 0, 50], Initial Velocity [19.95, 0.97, 0.99],

Target Position [269.95,−4.0, 46.0], Obstacle initial position [169.95,−1.52, 48.4], Obstacle

final position [197.7,−1.52, 48.49] and UAV Final location [266.80,−2.50, 46.0]. Point mass

model of UAV is considered and extended kalman filter is used for stereovision camera state

estimation. Fig. 5.22 shows the trajectory of the UAV obtained with guidance command as

well as guidance with autopilot compensation. The guidance commands for the UAV with

point mass model is shown in Fig. 5.23 where the actual guidance command is tracking the

desired command. Since it is being a moving obstacle scenario and the trajectory plot shows

only the final location of the obstacle, the perturbation in the commanded guidance is due

to the UAV’s close proximity with the obstacle safety sphere.

The physical guidance command is shown in Fig. 5.24 which is showing the α, µ and

thrust profiles for averting the collision with a moving obstacle. The autopilot compensation

for the physical guidance command is shown in Fig. 5.25. The UAV to target distance and

66

0 2 4 6 8 10 12 14
−50

0

50
χ γ and velocity

time(sec)

χ(
de

gr
ee

)

 actual
commanded

0 2 4 6 8 10 12 14
−20

0

20

time(sec)

γ(
de

gr
ee

)

0 2 4 6 8 10 12 14
19.8

20

20.2

time(sec)

ve
lo

ci
ty

(m
/s

)

Figure 5.23: UAV Point mass model with EKF
Single Moving Obstacle: χ, γ Velocity

0 2 4 6 8 10 12 14
−50

0

50
µ α and Thrust

time(sec)

µ(
de

gr
ee

)

actual
commanded

0 2 4 6 8 10 12 14
2

4

6

time(sec)

α(
de

gr
ee

)

0 2 4 6 8 10 12 14
0

5

10

time(sec)

T
hr

us
t(

N
)

Figure 5.24: UAV Point mass model with EKF
Single Moving Obstacle: µ, α and Thrust

the UAV to obstacle distance profiles are shown in Fig. 5.26.

67

0 2 4 6 8 10 12 14
−50

0

50
µ α and Thrust

time(sec)

µ(
de

gr
ee

)

 actual
autopilot compensation

0 2 4 6 8 10 12 14
2

4

6

time(sec)

α(
de

gr
ee

)

0 2 4 6 8 10 12 14
0

5

10

time(sec)

T
hr

us
t(

N
)

Figure 5.25: UAV Point mass model with EKF
Single Moving Obstacle: Autopilot Compensa-
tion

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

45

50
Distance from UAV to OBS and Target

time(sec)

D
is

ta
nc

e
be

tw
ee

n
O

bs
ta

cl
e/

T
ar

ge
t a

nd
 U

A
V

(m
)

UAV−Obstacle Distance
UAV−Target Distance
Obstacle−Safety−Radius

Figure 5.26: UAV Point mass model with EKF
Single Moving Obstacle: UAV to Obstacle and
Target Distance

The obstacle is assumed to be moving with constant velocity and based on successive

data obtained from stereovision camera sensors in respective camera coordinate frames, using

sensor state dynamics and with the extended kalman filter estimation, the velocity of the

obstacle is estimated and as shown in the Fig.5.27. The velocity estimate becomes erroneous

as the camera sensor comes to closer to obstacle. This can be correlated with the time

instants shown with Fig.5.28 where the forward direction(x-direction) position components

of UAV and obstacle are plotted.

The simulation results show that UAV with point mass model dynamics is able to perform

reactive collision avoidance in moving obstacle scenario.

68

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30
Obstacle True and Estimated Velocity(m/s)

time(sec)

T
ru

e
E

st
im

at
ed

 v
el

oc
ity

 o
bs

ta
cl

e(
m

/s
)

True velocity
Estimated velocity

Figure 5.27: UAV Point mass model with EKF
Single Moving Obstacle: Obstacle True and Es-
timated Velocity

0 2 4 6 8 10 12 14
0

50

100

150

200

250

300

time(sec)

O
bs

 a
nd

 U
A

V
 P

os
iti

on
 in

 x
−

di
r(

m
)

Obstacle and UAV Position in X−dir(m)

Obs Position
UAV Pos

Figure 5.28: UAV Point mass model with EKF
Single Moving Obstacle: Obstacle and UAV Po-
sition in x-direction

69

0
100

200
300

400

−50050
0

50

100

150

displacement along X(m)

UAV Estimated Trajectory

displacement along Y(m)

di
sp

la
ce

m
en

t a
lo

ng
 Z

(m
)

Obstacle1
Obstacle2
Obstacle3
Initial position
final position
relative position
trajectory
trajectory with ap compensation

Figure 5.29: UAV Point mass model with EKF Multi Stationary Obstacle: UAV Trajectory

5.4.2 Multiple obstacle

In order to test the performance of the reactive collision avoidance algorithm in multiple

stationary obstacle scenario, the simulation is carried out with three stationary obstacles

with Initial positions [89.97,-2.5,83.49], [179.97,7.48,84.49] and [299.97,12.48,90.49]. The

initial position of UAV is [0,0,50], Initial Velocity of UAV [19.95,0.97,0.99], Target Position

[362.97,-4.51,88.49], UAV final position [359.57,-4.44,86.40]. Point mass model of UAV is

considered with EKF Estimation. Fig. 5.29 shows the trajectory of the UAV obtained

through actual guidance command as well as guidance with autopilot compensation. In

order to provide a clear view of UAV’s closest approach with the three obstacles, the UAV

to target distance and the UAV to three different obstacles distance is shown in Fig. 5.30.

The guidance commands for the UAV with point mass model is shown in Fig. 5.31 with

actual and commanded guidance profiles for χ,γ and velocity.

70

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50
Distance from UAV to Obstacles and Target

time(sec)

D
is

ta
nc

e
be

tw
ee

n
O

bs
ta

cl
es

/T
ar

ge
t a

nd
 U

A
V

(m
)

UAV−Obstacle1 Distance
UAV−Obstacle2 Distance
UAV−Obstacle3 Distance
UAV−Target Distance
Obstacle1−Safety−Radius
Obstacle2−Safety−Radius
Obstacle3−Safety−Radius

Figure 5.30: UAV Point mass model with EKF Multi Stationary Obstacle: UAV to Obstacles
and Target Distance

0 5 10 15 20
−5

0

5
χ γ and velocity

time(sec)

χ(
de

gr
ee

)

 actual
commanded

0 5 10 15 20
−50

0

50

time(sec)

γ(
de

gr
ee

)

0 5 10 15 20
10

20

30

time(sec)

ve
lo

ci
ty

(N
)

Figure 5.31: UAV Point mass model with EKF
Multi Stationary Obstacle: χ, γ and Velocity

0 5 10 15 20
−5

0

5
µ α and Thrust

time(sec)

µ(
de

gr
ee

)

actual
commanded

0 5 10 15 20
0

5

10

time(sec)

α(
de

gr
ee

)

0 5 10 15 20
0

10

20

time(sec)

T
hr

us
t(

N
)

Figure 5.32: UAV Point mass model with EKF
Multi Stationary Obstacle: µ, α and Thrust

71

0 5 10 15 20
−5

0

5
µ α and Thrust

time(sec)

µ(
de

gr
ee

)

actual
autopilot compensation

0 5 10 15 20
0

5

10

time(sec)

α(
de

gr
ee

)

0 5 10 15 20
0

10

20

time(sec)

T
hr

us
t(

N
)

Figure 5.33: UAV Point mass model with EKF
Multi Stationary Obstacle: Autopilot Compen-
sation

0 5 10 15 20
−10

0

10
OBSTACLE1−Sigma−Bound

EKF−Prestart−to−end−time(sec)

R
an

ge
(m

)

0 5 10 15 20
−50

0

50

EKF−Prestart−to−end−time(sec)

θ(
de

gr
ee

)

0 5 10 15 20
−50

0

50

EKF−Prestart−to−end−time(sec)

φ
(d

eg
re

e)

Figure 5.34: UAV Point mass model with EKF
Multi Stationary Obstacle: Sigma error bound

72

The physical guidance commands α, µ and thrust actual and commanded profiles is shown

in Fig. 5.32. The autopilot compensation is shown in Fig. 5.33. It can be observed that

guidance with autopilot compensation tries to minimize the lag with the desired guidance

command. The sigma error bound with respect to obstacle is shown in Fig. 5.34, the camera

sensor states are well within bounds.

It is observed that the guidance command is efficiently able to perform the reactive

collision avoidance in single stationary obstacle,single moving obstacle as well as multiple

stationary obstacles scenario in the noisy sensor environments with EKF estimation of cam-

era sensor states.

5.5 Point mass model of UAV with UKF Estimation

In this section Point mass model of UAV is considered and camera sensor model is assumed

noisy and the stereovision camera sensor states estimation is carried out using Unscented

Kalman Filter(UKF). The UKF excellence over EKF for nonlinear systems in noisy condi-

tions are exploited and the results are presented for single moving obstacle with constant

velocity as well multiple stationary obstacles environments.

5.5.1 Single obstacle

The simulation is carried out with single obstacle moving with constant velocity. Obstacle

velocity [2, 0, 0], the Initial position of UAV is [0, 0, 50], Initial Velocity [19.95, 0.97, 0.99],

Target Position [389.90,−3.0, 103.9], Obstacle initial position [159.9,−1.5, 62.9], Obstacle

final position [199.0,−1.5, 62.98] and UAV Final location [386.7,−2.4, 103.3]. Point mass

model of UAV is considered and unscented kalman filter is used for estimation. Fig. 5.35

shows the trajectory of the UAV. The trajectory plot is obtained through actual guidance

as well as guidance through autopilot compensation. The guidance commands for the UAV

with point mass model is shown in Fig. 5.45 where actual guidance command is tracking

the desired guidance command.

The physical guidance command is shown in Fig. 5.46 with actual and commanded values

of α, µ and thrust. The autopilot compensation for physical guidance command is shown in

Fig. 5.38.

73

0

100

200

300

400

−50050

0

50

100

150

displacement along Y(m)

UAV Estimated Trajectory

displacement along X(m)

di
sp

la
ce

m
en

t a
lo

ng
 Z

(m
)

sphere
Obstacle
Initial position
final position
relative position
trajectory
trajectory with autopilot compensation

Figure 5.35: UAV Point mass model with UKF Single Moving Obstacle: UAV Trajectory

0 5 10 15 20
−20

0

20
χ γ and velocity

time(sec)

χ(
de

gr
ee

)

 actual
commanded

0 5 10 15 20
−20

0

20

time(sec)

γ(
de

gr
ee

)

0 5 10 15 20
19.5

20

20.5

time(sec)

ve
lo

ci
ty

(N
)

Figure 5.36: UAV Point mass model with UKF
Single Moving Obstacle: χ, γ Velocity

0 5 10 15 20
−50

0

50
µ α and Thrust

time(sec)

µ(
de

gr
ee

)

 actual
commanded

0 5 10 15 20
2

3

4

time(sec)

al
ph

a(
de

gr
ee

)

0 5 10 15 20
5

10

15

time(sec)

T
hr

us
t(

N
)

Figure 5.37: UAV Point mass model with UKF
Single Moving Obstacle: µ, α and Thrust

74

0 5 10 15 20
−50

0

50
µ α and Thrust

time(sec)

µ(
de

gr
ee

)

 actual
with autopilot compensation

0 5 10 15 20
2

3

4

time(sec)

α(
de

gr
ee

)

0 5 10 15 20
5

10

15

time(sec)

T
hr

us
t(

N
)

Figure 5.38: UAV Point mass model with UKF
Single Moving Obstacle: Autopilot Compensa-
tion

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50
Distance from UAV to OBS and Target

time(sec)

D
is

ta
nc

e
be

tw
ee

n
O

bs
ta

cl
e/

T
ar

ge
t a

nd
 U

A
V

(m
)

UAV−Obstacle Distance
UAV−Target Distance
Obstacle−Safety−Radius

Figure 5.39: UAV Point mass model with UKF
Single Moving Obstacle: UAV to Obstacle and
Target Distance

The UAV to target distance and the UAV to obstacle distance profiles are shown in Fig.

5.39.

The obstacle is assumed to be moving with constant velocity and based on successive

data obtained from camera sensors in their respective coordinate frames, using sensor state

dynamics and using the unscented kalman filter estimation, the velocity of the obstacle is

estimated and as shown in the Fig.5.40. The velocity estimate becomes erroneous as the

camera sensor comes to closer to obstacle. This can be correlated with the time instants

shown in the Fig.5.41 where the forward direction(x-direction) position components of UAV

and obstacle are plotted.

75

0 5 10 15 20
1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45
Obstacle True and Estimated Velocity(m/s)

time(sec)

T
ru

e
E

st
im

at
ed

 v
el

oc
ity

 o
bs

ta
cl

e(
m

/s
)

True velocity
Estimated velocity

Figure 5.40: UAV Point mass model with UKF
Single Moving Obstacle: Obstacle True and Es-
timated Velocity

0 5 10 15 20
0

50

100

150

200

250

300

350

400

time(sec)
O

bs
 a

nd
 U

A
V

 P
os

iti
on

 in
 x

−
di

r(
m

)

Obstacle and UAV Position in X−dir(m)

Obs Position
UAV Pos

Figure 5.41: UAV Point mass model with UKF
Single Moving Obstacle: Obstacle and UAV Po-
sition in x-direction

0 5 10 15 20
−50

0

50
OBSTACLE1−3Sigma−Bound

EKF−Prestart−to−end−time(sec)

R
an

ge
(m

)

0 5 10 15 20
−200

0

200

EKF−Prestart−to−end−time(sec)

T
he

ta
(d

eg
re

e)

0 5 10 15 20
−10

0

10

EKF−Prestart−to−end−time(sec)

P
hi

(d
eg

re
e)

Figure 5.42: UAV Point mass model with UKF Single Moving Obstacle: Sigma error bound

76

The sigma error bound for stereovision camera sensor states is shown in Fig. 5.42. The

camera sensor states are well with in bounds.

77

0
100

200
300

400 −50050

40

60

80

100

120

140

displacement along Y(m)

UAV Estimated Trajectory

displacement along X(m)

di
sp

la
ce

m
en

t a
lo

ng
 Z

(m
)

Obstacle1
Obstacle2
Obstacle3
Initial position
final position
relative position
trajectory
trajectory with ap compensation

Figure 5.43: UAV Point mass model with UKF Multi Stationary Obstacle: UAV Trajectory

5.5.2 Multiple obstacle

In order to test the performance of reactive collision avoidance algorithm in multiple sta-

tionary obstacle scenario, the simulation is carried out with three stationary obstacles with

Initial positions [89.9,-2.5,94.4],[179.9,7.48,99.49] and [299.9,12.48,101.49] the initial posi-

tion of UAV is [0,0,50], Initial Velocity of UAV [19.95,0.97,0.99], Target Position [359.9,-

4.5,102.45], UAV final position [356.23,-4.8,100.68]. point mass model of UAV is considered

with UKF Estimation. Fig. 5.43 shows the trajectory of the UAV obtained through actual

guidance command as well as guidance with autopilot compensation. In order to provide a

clear view of UAV’s closest approach with the three obstacles, the UAV to target distance

profile and the UAV to three different obstacles distance profile is shown in Fig. 5.44. The

guidance commands for the UAV with point mass model is shown in fig. 5.45 with actual

and commanded guidance profiles for χ,γ and velocity.

The physical guidance commands α, µ and thrust actual and commanded profiles is

shown in Fig. 5.46. The autopilot compensation for physical guidance command is shown

in Fig. 5.47.

78

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50
Distance from UAV to Obstacles and Target

time(sec)

D
is

ta
nc

e
be

tw
ee

n
O

bs
ta

cl
es

/T
ar

ge
t a

nd
 U

A
V

(m
)

UAV−Obstacle1 Distance
UAV−Obstacle2 Distance
UAV−Obstacle3 Distance
UAV−Target Distance
Obstacle1−Safety−Radius
Obstacle2−Safety−Radius
Obstacle3−Safety−Radius

Figure 5.44: UAV Point mass model with UKF Multi Stationary Obstacle: UAV to Obstacles
and Target Distance

79

0 5 10 15 20
−20

0

20
χ γ and velocity

time(sec)

χ(
de

gr
ee

)

actual
commanded

0 5 10 15 20
0

20

40

time(sec)

γ(
de

gr
ee

)

0 5 10 15 20
15

20

25

time(sec)

ve
lo

ci
ty

(N
)

Figure 5.45: UAV Point mass model with UKF Multi Stationary Obstacle: χ, γ and Velocity

0 5 10 15 20
−50

0

50
µ α and Thrust

time(sec)

µ(
de

gr
ee

)

 actual
commanded

0 5 10 15 20
0

5

10

time(sec)

α(
de

gr
ee

)

0 5 10 15 20
5

10

15

time(sec)

T
hr

us
t(

N
)

Figure 5.46: UAV Point mass model with UKF
Multi Stationary Obstacle: µ, α and Thrust

0 5 10 15 20
−50

0

50
µ α and Thrust

time(sec)

µ(
de

gr
ee

)

 actual
autopilot compensation

0 5 10 15 20
0

5

10

time(sec)

α(
de

gr
ee

)

0 5 10 15 20
5

10

15

time(sec)

T
hr

us
t(

N
)

Figure 5.47: UAV Point mass model with UKF
Multi Stationary Obstacle: Autopilot Compen-
sation

80

It is observed that the guidance command is efficiently able to perform the reactive

collision avoidance for single moving obstacle as well as multiple stationary obstacles scenario

in the noisy sensor environments with UKF estimation of camera sensor states.

5.5.3 Randomized Validation

In order to test the performance of the reactive collision avoidance algorithm in different

randomized initial conditions, simulations are carried out for single moving obstacle. Point

mass model of UAV is used for system dynamics and UKF is used for camera sensor state

estimation. The parameters randomly chosen are UAV initial velocity and initial position,

obstacle initial position and destination. 1000 randomized simulation runs are carried out.

The obstacle position is estimated using UKF and the effectiveness of nonlinear DGG guid-

ance law is tested. Fig. (5.48) shows the success criteria of proposed algorithm in different

success bands S1, S2, S3 and S4. The percentage of success for different bands are tabulated

in Table 5.1.

Table 5.1: Success Percentage with Obstacle Estimation
Success Tolerable safety sphere Success
Band violation (as % of percentage

the safety sphere radius)
S1-Band 10 % 86 %
S2-Band 20 % 99.2 %
S3-Band 30 % 100 %
S4-Band 40 % 100 %

Validation results show that reactive collision avoidance algorithm is quite effective and

reliable.

81

Figure 5.48: UAVs Closest Approach to Obstacle for 1000 runs

82

Chapter 6

Acknowledgements

This work is supported by AOARD/AFRL, USA, under the contract FA-2386-11-1-4096,

which operated at the Society for Innovation and Development (SID), Indian Institute of

Science, Bangalore, India, with the project code SID/PC 99203.

83

Chapter 7

Conclusion

UAVs are playing a vital role in numerous applications. Even in the areas which are inac-

cessible to human beings, UAVs can outperform with onboard vision sensors and in-built

processors. The present work focuses on the reactive obstacle avoidance problem for un-

accountable stationary obstacles like urban edifices, poles as well as moving obstacles like

another UAV, flying birds etc.

The guidance strategy applied in the kinematic model as well as point mass model based

formulation uses the collision cone approach for obstacle detection and executes the avoidance

maneuver by generating the angular guidance commands in the horizontal and the vertical

planes. UAV pursues the guidance commands by quickly aligning its velocity vector along

the aiming point while enforcing the turn coordination in the case of point mass model. The

obstacle position as well as velocity can be considered to be partially known with some noise

and hence can be estimated by using the EKF and UKF techniques. In all the simulations,

all the constraints posed by the vehicle capability are very well met within the available

time-to-go.

The proposed Formulation can be enhanced by augmenting it with features like introduc-

ing moving obstacles with specific maneuvers along with the stationary obstacles. Instead

of spherical safety zones around the obstacles, more optimized shape of the safety zone like

cylinder can be considered to accommodate obstacles like electric poles and wires. The ob-

stacle information can also be processed through real passive sensors like cameras which may

involve wide exploration in the computer vision techniques.

Reactive maneuvers for obstacle avoidance demands guidance and control to execute in

84

synergy. Test cases for the point mass model with a coordinated flight and kinematic model

is demonstrated with all scenarios, where the controller dynamics were approximated as the

first order autopilots. Using the stereovision camera, an effective reactive collision avoidance

algorithm is presented in this report. The following assumptions are made, (i) the shape and

size of the obstacle is known and (ii) the data collected from the vision sensors are assumed to

be noisy. So the camera captured position information may become noisy, to overcome this,

two standard filtering techniques such as Extended Kalman Filter(EKF) and Unscented

Kalman Filter(UKF) are proposed to extract the useful information about the obstacle

position from the noisy camera data. Obstacle velocity information is also derived from the

second order sensor dynamics and estimated. However in later portion of the report, virtual

simulation is carried out for spherical obstacle by extracting the potential feature points from

stereo images using harris detector and then, stereo matching is done along the epipolor line.

Finally, the 3D information of obstacle obtained by applying triangulation method to the

matched feature points. Next, following the collision cone approach, an ‘aiming point’ is

computed and nonlinear differential geometric guidance is applied to steer away the vehicle

quickly from the impending danger. Simulation studies leads to the conclusion that this

strategy is quite effective in avoiding popup obstacles within a very short time and hence

can be very useful for reactive collision avoidance. This algorithm generalized to include (i)

moving obstacles with simple maneuvers, (ii) more than one obstacle at the same time and

(iii) appropriate guidance of the vehicle after reaching the aiming point.

85

Bibliography

[1] Choi, H. and Kim, Y., “Reactive Collision Avoidance of Unmanned Aerial Vehicles Using

a Single Vision Sensor”, Journal of Guidance, Control and Dynamics, Vol.36,No.4,July-

August 2013.

[2] Williams, S. P., Antoniewicz, R. F., Duke, E. L. and Menon, P. K. A., “Study of a

Pursuit-Evasion Guidance Law for High Performance Aircraft”, Proceedings of American

Control Conference, Pittsburg, PA, USA, 21-23 June, 1989.

[3] D. Simon, Optical State Estimation, John Wiley and Sons, New Jersey,2006.

[4] S. Haykin, Kalman Filtering and Neural Networks, John Wiley and Sons, 2001.

[5] Grillo, C. and Vitrano, P. F., “State Estimation of a Nonlinear Unmanned Ariel Vehicle

Model using an Extended Kalman Filter”, 15th AIAA International Space Planes and

Hypersonic Systems and Technologies Conference, Dayton, Ohio, 28 April-1 May, 2008.

[6] Mujumdar, A. and Padhi, R., “Evolving Philosophies on Autonomous Obstacle/Collision

Avoidance of Unmanned Aerial Vehicles”, AIAA Journal of Aerospace Computing, Infor-

mation and Control, 2011a, Vol.8, pp.17–41.

[7] Mujumdar, A. and Padhi, R., “Reactive Collision Avoidance Using Nonlinear Geometric

and Differential Geometric Guidance”, AIAA Journal of Guidance, Control and Dynamics,

2011b, Vol.34, No.1, pp.303–311.

[8] Lu-Ping, Tsao, Ching-Lain, Chou, Chuen-Ming, Chen, and Chi-Teh (1998), “Aiming

Point Guidance Law for Air-to-Air Missiles”, International Journal of Systems Science,

Vol. 29, No. 2, 1998, pp.95-102.

86

[9] Padhi, R. and Gupta, A., “Dynamic Estimation of Obstacle Position with Vision Sensing

for Reactive Collision Avoidance of UAVs”, Journal of Aerospace Sciences and Technolo-

gies, 2012, Vol.64, No.3, pp.187–200.

[10] Tripathi, A.K.,Raja R.G., and Padhi, R., “Reactive Collision Aviodance of UAVs

with Vision Sensing using Pin-hole Cameras”, IFAC Symposium on Automatic Control

in Aerospace, Wurzburg , Germany, September 2–6,2013.

[11] Hrabar, S., Sukhatme, G. S., Corke, P., Usher, K., and Roberts, J., “Combined optic-

flow and stereo-based navigation of urban canyons for a UAV”, In Proceedings of IEEE

International Conference on Intelligent Robots and Systems, Alberta, 2004, pages 3609

3615.

[12] LaValle, S. M., and Kuffner, J. J., “Rapidly-exploring random trees: Progress and

prospects”, Algorithmic and Computational Robotics: New Directions, 2001.

[13] Scherer, S., Singh, S., Chamberlain, L., and Elgersma, M., “Flying Fast and Low Among

Obstacles: Methodology and Experiments”, The International Journal of Robotics Re-

search, 2008, Vol. 27, No. 5, pages 549 574.

[14] Shim, D. H., Chung, H., and Sastry, S., “Autonomous Exploration in Unknown Urban

Environments for Unmanned Aerial Vehicles”, IEEE Robotics and Automation Magazine,

2006, Vol. 13, No. 3, pages 27 - 33.

[15] Hwangbo, M., Kuffner, J., and Kanade, T., “Efficient Two-phase 3D Motion Planning

for Small Fixed-wing UAVs”, IEEE International Conference on Robotics and Automation,

10 - 14 April 2007, Rome, Italy.

[16] Han, S. C., and Bang, H., “Proportional Navigation-Based Collision Avoidance for

UAVs”, International Journal of Control, Automation and Systems, 2009, Vol.7, No.4,

pages 553 - 565.

[17] Watanabe, Y., Calise, A. J., and Johnson, E. N., “Minimum Effort Guidance for Vision-

Based Collision Avoidance”, AIAA Atmospheric Flight Mechanics Conference and Exhibit,

21 - 24 August 2006, Keystone, Colorado.

87

[18] Carbone, C., Ciniglio, U., Corraro, F., and Luongo, S., “A Novel 3D Geometric Al-

gorithm for Aircraft Autonomous Collision Avoidance”, Proceedings of the 45th IEEE

Conference on Decision and Control, 13 - 15 December 2006, San Diego, CA, USA.

[19] Park, J. W., Oh, H. D., and Tahk, M. J., “UAV Collision Avoidance Based on Geometric

Approach”, SICE Annual Conference, 2008, pages 2122 - 2126.

[20] Hull, D. G., “Fundamentals of Airplane Flight Mechanics”, Springer, 2007.

[21] R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”, Cam-

bridge University Press, 2000.

[22] Sergiu Nedevschi, Radu Danescu and C. Pocol, “High accuracy stereo vision system for

far distance obstacle detection, in 2004 IEEE intelligent vehicle symposium, university of

parama,2004.

[23] D. G. Lowe, “Object recognition from local scale-invariant features”, Int. Conf. Com-

puter Vision, Corfu, Greece, September 1999, pp. 1150-1157.

[24] D. G. Lowe, “Distinctive image features from scale-invariant keypoints”, Int. J. Comput.

Vis. vol. 60 no.2, pp. 91-110, 2004.

[25] H. Bay, A. Ess, T. Tuytelaars, L. van Gool, “Speeded-up robust features (SURF)”,

Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346359, 2008.

[26] E. Rosten, T. Drummond, “Machine learning for high-speed corner detection”, European

Confer- ence on Computer Vision, pp. 430443, 2006.

[27] Zhiwei Zhu, Taragay Oskiper and R. Kumar, An improved stereo-based visual odometry

system, Sarnoff Corpo- ration 201 Washington Road, Princeton, NJ 08540, USA.

[28] C. Harris and M. Stephens, A combined corner and edge detector, 4th Alvey Vision

Conf, Manchester, 1988

[29] Mujumdar A., and Padhi, R.,“Nonlinear Geometric and Diferential Geometric Guid-

ance of UAVs for Reactive Collision Avoidance”,AOARD Project, 2010, Project Ref. No.

IISc/SID/AE/LINCGODS/AOARD/2010/01,Department of Aerospace Engineering, In-

dian Institute of Science, Bangalore.

88

[30] Xin, M., Balakrishnan, S. N., Stansbery, D. T., and Ohlmeyer, E. J., “Nonlinear Missile

Autopilot Design with θ −D Technique”, Journal of Guidance, Control, and Dynamics,

Vol.27, No.3, May-June 2004.

[31] Chawla, C., and Padhi, R., “Reactive Obstacle Avoidance of UAVs with Dynamic

Inversion Based Partial Integrated Guidance and Control”, AIAA Guidance, Navigation,

and Control Conference and Exhibit, 2 - 5 August 2010, Toronto, Canada.

[32] Stevens, B., and Lewis, F., “Aircraft Control and Simulation 2nd Edition”, J.Wiley &

Sons, 2003.

[33] Shenoydor, N. A., “Missile Guidance and Pursuit: Kinematics, Dynamics and Con-

trol”,Horwood Publishing Limited, 1998.

[34] Tsao, P. L., Chou, C. L., Chen, C. M., and Chen, C. T., “Aiming Point Guidance Law

for Air-to-Air Missiles”, International Journal of Systems Science, 1998, Vol. 29, No. 2,

pages 95 - 102.

[35] Enns, D., Bugajski, D., Hendrick, R., and Stein, G., “Dynamic inversion: an evolving

methodology for flight control design”, International Journal of Control, 1994, Vol. 59,

No. 1, pages 71 - 91.

[36] Singh, S. P., and Padhi, R., “Automatic Path Planning and Control Design for Au-

tonomous Landing of UAVs using Dynamic Inversion”, American Control Conference, 10

- 12 June 2009, St. Louis, USA.

[37] Singh, S. P., “Autonomous Landing of Unmanned Air Vehicles”, Department of

Aerospace Engineering, Indian Institute of Science, Bangalore, 2009.

[38] Beard, R., Kingston, D., Quigley, M., Snyder, D., Christiansen, R., Johnson, W.,

McLain, T., and Goodrich, M. A., “Autonomous Vehicle Technologies for Small Fixed-

Wing UAVs”, Journal of Aerospace Computing, Information, and Communication, Vol.

2, January 2005.

[39] Surendra nath, V., Govindaraju, S. P., Bhat, M. S., and Rao, C. S. N., “Configuration

Development of All Electric Mini Airplane”, ADE/DRDO Project, 2004, Project Ref.

No: ADEO/MAE/VSU/001, Department of Aerospace Engineering, Indian Institute of

Science, Bangalore.

89

[40] Atkinson, K. E.,“An Introduction to Numerical Analysis”,John Wiley & Sons, 2001.

[41] Chakravarthy, A., and Ghose, D., “Obstacle Avoidance in a Dynamic Environment: A

Collision Cone Approach”, IEEE Transactions on Systems, Man and Cybernetics-Part A:

Systems and Humans, 1998, Vol. 28, No. 1, pages 562 - 574.

[42] Pollefeys M., “Self Calibration and 3D Reconstruction from Uncalibrated Image Se-

quences”, PhD Thesis Report,Katholieke Universiteit Leuven,3001 Heverlee, Belgium,

1999.

[43] Haoxiang L., Muhammad T. K.,Kok-Kiong T., C. W. deSilva,“Developments in Visual

Servoing for Mobile Manipulation”, Unmanned Systems, Vol. 1, No. 1, 1-20,2013.

[44] Sabestian G.,“Camera Pose Estimation from a Stereo Setup”, Thesis Report,University

of Ottawa,Ontario,Canada, Feb.2005.

[45] Roberto Sabatini R., Richardson M.,Bartel C.,Shaid T. and Ramasamy S., “A Low-cost

Vision Based Navigation System for Small Size Unmanned Aerial Vehicle Applications”,

J. of Aeronaut Aerospace Eng, May, 2013.

[46] Wikus B.,“Stereo vision for simultaneous localization and mapping”, Thesis Re-

port,Stellenbosch University, December, 2012.

[47] Ravikumar L.,Philip N.K., Bhat M.S. and Padhi R.,“Object detection and obstacle

avoidance for rover using stereo camera”, IEEE-MSC Conference, Hyderabad, India, Au-

gust, 2013.

[48] Raja R.G., Chawla C. and Padhi R.,“Dynamic Inversion-Based Nonlinear Aiming Point

Guidance of Unmanned Aerial Vehicles for Reactive Obstacle Avoidance”, Unmanned

Systems, Vol. 1, No. 2 (2013) 259275.

90

Appendix A

Mathematical Model

In this report, two standard system dynamics for the vehicle movement have been considered.

First, a simplistic ”kinematic model” has been considered with autopilot lags in all channels

of the state equation for quick validation of the basic philosophy. Subsequently, to be more

realistic, the proposed guidance strategy has been reworked using a ”point mass model” of

the vehicle and further algebra has been carried out by introducing an additional inner loop

to generate the physically meaningful guidance parameters, namely the desired bank angle,

angle of attack and the thrust required for the vehicle, as the necessary guidance parameters.

Note that to be even more realistic, autopilot lags for these quantities have been assumed as

well while validating our proposed guidance strategy, which will be discussed later. In this

section, the relevant details of the mathematical models of both kinematic as well as point

mass models used in this research are given in fair detail.

91

A.1 Kinematic Model

The relevant set of equations in this model are given by

ẋ = VT cosχ cos γ (A.1)

ẏ = VT sinχ cos γ (A.2)

ḣ = VT sin γ (A.3)

V̇T = kv(V
c
T − VT) (A.4)

γ̇ = kγ(γ
c − γ) (A.5)

χ̇ = kχ(χc − χ) (A.6)

where, VT is the velocity of the UAV whose directions are given by two angles, namely the

flight path angle γ and course angle χ. The first three equations of Eq.(A.1-A.3) represent the

movement of the centre of mass of the vehicle in an inertial frame depending on the velocity

vector magnitude and its orientation. The next three equations essentially represent first

order lags, which in turn govern the evolution of VT , γ and χ, based on their commanded

values V c
T , γc and χc respectively. The key idea here is to generate γc and χc from an

appropriate guidance formulation, as well as giving an appropriate V c
T command, so that the

obstacles can be avoided.

A.2 Point Mass Model

To achieve obstacle avoidance in a more realistic environment, the vehicle is considered as

a point mass object. VT is the inertial velocity of the UAV whose directions are given by

two angles, course angle(χ) and flight path angle(γ). Hence, the angular corrections on

the point mass are realized by the basic aerodynamic forces acting on the vehicle. The 6th

order model representing the coordinated, symmetric flight over a flat earth (with standard

meaning of the variables [20]) is considered. In the coordinated flight, the side force acting

92

on the vehicle is null and hence the side slip angle β = 0 [32].

ẋ = VT cosχ cos γ (A.7)

ẏ = VT sinχ cos γ (A.8)

ḣ = VT sin γ (A.9)

χ̇ =
1

mVT cos γ
(T sinα + L) sinµ (A.10)

γ̇ =
1

mVT
[(T sinα + L) cosµ−mg cos γ] (A.11)

V̇T =
1

m
(T cosα−D −mg sin γ) (A.12)

Therefore, the only forces acting on the vehicle are thrust, lift, drag and weight. To model the

aerodynamic forces, aerodynamic data of a prototype UAV, named as all electric airplane-2

(AE − 2) [39] is used.

Figure A.1: AE-2 (Picture of All Electric airplane-2)

This UAV has a reference area of S = 0.6m2 and it has mass 6kg. Maximum value of

thrust (Tmax) which can be produced by its electric motor and propeller assembly is 15N .

It is assumed that thrust produced has linear relation with the throttle input. Forces L and

D acting on the vehicle are given by

L = q̄SCL D = q̄SCD (A.13)

q̄ is the dynamic pressure,CL and CD are the lift and drag coefficients in wind axes system

which can be expressed in terms of axial and normal force coefficients CX and CZ of the

93

body axes system. [
−D
−L

]
= mLW/B

[
Xa

Za

]
(A.14)

Xa, Za are the body axes accelerations, LW/B is the transformation matrix from body to

wind axes system and is given by

LW/B =

[
cosα sinα

− sinα cosα

]

Note that Eq. (A.14) assumes that the side-slip angle is zero. This is very close to

reality with the assumption of co-ordinated turn, which is ensured in the formulation while

generating the necessary bank angle as the set of equations in Eq.(A.10-A.12) are valid only

under this assumption. By expanding Eq. (A.14), drag and lift forces can be expressed in

terms of body axes axial and normal force coefficients as follows

D = −q̄S
[
(CX0

+ CXa1α + CXa2α
2) cosα + (CZ0 + CZa1α) sinα

]
L = −q̄S

[
(CX0

+ CXa1α + CXa2α
2)(− sinα) + (CZ0 + CZa1α) cosα

]
Where, CX0 and CZ0 are the aerodynamic coefficients and CZa1 ,CXa1 ,CXa2 are the dynamic

derivatives of the aerodynamic coefficients. The initial values of the aerodynamic coefficients

and their derivatives corresponding to the UAV model [39] are given in Table A.1.

Table A.1: Initial Value of Coefficients

CX0 CZ0 CZa1 CXa1 CXa2

0.0386 0.1653 0.087138 -0.0040376 -0.0010525

Note that the ultimate aim here is to find the desired values of angle of attack α , bank

angle σ and the desired thrust T that will ensure collision avoidance.

First order autopilots are designed for all the control variables which can be stated as

µ̇d = −kµ(µd − µ∗) (A.15)

α̇d = −kα(αd − α∗) (A.16)

Ṫd = −kT (Td − T ∗) (A.17)

94

µ∗, α∗, T ∗ are the control variables with full bandwidth and the µd, αd, Td are the control

variables obtained after the first order delay of the autopilot. Gains for autopilot are much

higher than the gains for the guidance loop due to difference in the settling time of the

guidance and autopilot dynamics. The position limits on the control variables µd, αd, Td

are given by µd ≤ ±450 (maximum turn angle), αd ≤ ±100 (stall angle) and Td ≤ ±150

(maximum thrust limit).

95

