
Final Report for AOARD Grant 104138 
 

“Contextual Awareness for Robust Robot Autonomy” 
 

December 30, 2013 
 
Name of Principal Investigators (PI and Co-PIs): Reid Simmons 

- e-mail address : reids@cs.cmu.edu 
- Institution : Robotics Institute, Carnegie Mellon University 
- Mailing Address : 5000 Forbes Avenue, Pittsburgh PA 15213 
- Phone : 412-268-2621 
- Fax : 412-268-7350 

 
Period of Performance:  08/24/2010 – 08/23/2013 
 
 
Abstract:  

Contextual awareness refers to having autonomous robots reason about their capabilities and 
limitation and improve on those limitations through the help of others.  This project explored three 
areas of contextual awareness – detecting when anomalous behaviors occur, reacting to situations 
where plans are failing, and learning new plans through human demonstration.  Each of these areas is 
important in achieving robust, reliable robot autonomy.  The work on detecting anomalous behavior 
focused on finding subtle anomalies that could not be detected from single events; the work on 
reacting to failing plans focused on deciding when to switch between risk-neutral and risk-seeking 
policies, for domains in which the goal is to achieve above a certain threshold of reward; and the work 
on learning new plans focused on complex manipulator trajectories, where multiple human examples 
are combined so as to smooth out noise in the examples without losing important details.  The first 
and third areas were demonstrated using actual robots; the second area was demonstrated using a 
video game simulator. 
 
Introduction:   

Contextual awareness refers to having autonomous robot systems reason about their capabilities and 
limitation and improve on those limitations through the assistance of others. The idea is for robots to 
become more robust through a better understanding of how they interact with the environment, and 
how people interact with the environment.  We have investigated three areas of contextual awareness 
that we believe are critical in achieving robust behavior in autonomous robots. 
1. Awareness of the robot’s behaviors – specifically, investigating how to detect anomalous 

behaviors that are too subtle to detect from a single perceptual event.  The idea is that certain 
problems, such as wheel slippage, are hard to distinguish from noisy sensor readings, but show 
up when aggregated over time.  By determining the contexts in which these anomalies occur, 
the robot can reason more accurately about its behavior, and avoid anomalous regions of the 
state space, if necessary. 

2. Awareness of the ability to achieve the robot’s goals – specifically, investigating when to decide 
that one plan is failing and to switch to another, more appropriate, strategy.  The idea is that the 
plan that is optimal, in general, may not be best under certain circumstances.  This idea was 
investigated in domains where the agent must achieve a given reward threshold – anything 
reward below that threshold is equivalent to failure.  This includes competitive games, such as 
sports, where losing is everything, and it really does not matter by how much one loses.  By 
being aware of the contexts in which one plan may be more desirable than another, the robot can 
intelligently decide how best to achieve its goals in certain, perhaps unusual, situations. 

3. Awareness of the need for assistance – specifically, we investigated the ability of a robot to utilize 
human examples of achieving a task in order to learn how to reliably achieve the task itself.  
Here, the human provides example trajectories of the robot performing a complex manipulation 
task.  The robot uses the example to plan new trajectories to achieve the goal, smoothing out 
noise and disturbances present in the human example, while maintaining important details that 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
16 JAN 2014 

2. REPORT TYPE 
Final 

3. DATES COVERED 
  24-08-2010 to 23-08-2013  

4. TITLE AND SUBTITLE 
Contextual Awareness for Robust Robot Autonomy 

5a. CONTRACT NUMBER 
FA23861014138 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Reid Simmons 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Carnegie Mellon University,5000 Forbes Avenue,Pittsburgh, PA
15213-3890,United States,PA,15213-3890 

8. PERFORMING ORGANIZATION
REPORT NUMBER 
N/A 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
AOARD, UNIT 45002, APO, AP, 96338-5002 

10. SPONSOR/MONITOR’S ACRONYM(S) 
AOARD 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 
AOARD-104138 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Contextual awareness refers to having autonomous robots reason about their capabilities and limitation
and improve on those limitations through the help of others. This project explored three areas of
contextual awareness ? detecting when anomalous behaviors occur, reacting to situations where plans are
failing, and learning new plans through human demonstration. Each of these areas is important in
achieving robust, reliable robot autonomy. The work on detecting anomalous behavior focused on finding
subtle anomalies that could not be detected from single events; the work on reacting to failing plans
focused on deciding when to switch between risk-neutral and risk-seeking policies, for domains in which
the goal is to achieve above a certain threshold of reward; and the work on learning new plans focused on
complex manipulator trajectories, where multiple human examples are combined so as to smooth out noise
in the examples without losing important details. The first and third areas were demonstrated using actual
robots; the second area was demonstrated using a video game simulator. 

15. SUBJECT TERMS 
Artificial Intelligence, Robotics, computational intelligence, Autonomous Agents and Multi-Agent Systems 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

40 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 



Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



are common in all/most of the examples.  By taking advantage of the facility that people have 
in performing tasks, even though they do not perform them identically each time, the robot can 
learn a robust policy for performing such tasks. 

Overall, our three investigations produced techniques and algorithms that can improve the robustness 
of autonomous systems.  The techniques have been tested and demonstrated using actual robots 
and realistic simulators.  While they have not been integrated, they are naturally 
complementary, and we expect that their integration would produce synergistic effects. 

  
Approach: 

The focus on awareness of the robot’s behaviors was to detect subtle and unexpected failures.  More 
specifically, we wanted to detect anomalies – differences between the expected behavior of the robot 
and its actual behavior.  The idea was that it would be difficult, or impossible, to enumerate all 
possible fault behaviors, but that modeling the nominal behavior would be rather straightforward.  
Then, if the robot would estimate that its current behavior differed significantly from its commanded 
behavior, that would indicate a problem.  While we might not understand what actually caused the 
problem (but see below), it is still a good first step to acknowledge that a problem exists.  At the very 
least, the robot could stop (or go into a safe mode) and communicate back to a human for help.  This 
would be much more desirable than continuing to operate in a potentially unsafe manner. 
 
Our first investigation into this area was to learn to detect motion interference, where something is 
interfering with the normal navigation of a mobile robot [Mendoza 2012a].  The idea is to learn a 

Hidden Markov Model (HMM) that described the nominal behavior of an 
autonomous mobile robot (figure at left).  The HMM was trained using 
hand-labeled data, with the inputs being motion commands and wheel 
encoder data.  The system learned the transition probabilities from each 
state (e.g., stop) to the other states (e.g., accelerate) plus the observation 
probabilities of all states.  In addition, a special “motion interference” 
(MI) state was defined as an 
anomalous state, with the 
transition probabilities to that 
state being a tunable parameter.  
During execution, the system 

would estimate the probabilities for each state, and would stop 
the robot if the MI state ever became the most probable.  By 
changing the probability of the transition to the MI state 
(which is not actually readily measurable, since it occurs so 
infrequently, the precision and recall of the system could be 
varied.  The best value tested gave a precision of 1 and a 
recall of 0.93, with a median time of 0.36 seconds to detect an 
anomaly (where sensor input was at 20Hz).  The figure on 
right shows an example where the robot hit an obstacle (see 
figure above left) at time 2.  The system predicts the robot is 
stopped until about 0.5, then accelerates until time 2, then is in 
collision until time 3, then decelerates until time 3.7, then 
stops.  There is a slight blip at time 3.8 where the system is 
thought to be accelerating – this is probably because it moves 
forward slightly as it disengages from the obstacle. 
 
Our next investigation was to determine regions of the robot’s state space where anomalies typically 
occur.  The idea is to detect anomalies that are too subtle to be found using only a single event, or in 
a single state, but may be detected in the aggregate, both over time and in a region of the state space 
[Mendoza 2012b].  For instance, the robot might be found to slip more in certain hallways, or only 
when turning left, or only when going between 75-90 cm/sec.  Again, we use a model of nominal 
behavior, and define a residual function that is (close to) zero during nominal behavior.  If the system 
them determines that the sample mean of the residual function is greater than some epsilon, it 
indicates an anomalous situation (again, we do not know what caused it, only that it is not nominal).  
Much of the work in this area has been in researching how to efficiently aggregate parts of the state 



space to find anomalous regions.  The work reported in [Mendoza 2012b] used axis-aligned 
hyper-rectangles, which were indeed efficient to calculate, but of limited representational 
expressiveness.  More recently, we have looked into representing the regions using hyper-ellipsoids 
and have developed a method that combines RANSAC and gradient ascent for picking the regions that 
are most likely to include the anomaly [Mendoza 2014].  We are currently working to validate these 
ideas by porting this approach to a mobile robot that autonomously navigates the corridors of the 
CMU Computer Science building. 
 
The focus on awareness of the ability to achieve the robot’s goals was to estimate when an agent is 
likely not making sufficient progress towards it goals and to try to recover from such situations.  This 
is important because, often, robots will not detect such problems until it is too late to recover, if at all.  
We investigated a particular class of domains, one in which the agent incurs costs for taking actions 
and receives rewards for achieving certain goals, and the objective is to exceed a given reward 
threshold.  For instance, one might have the goal of making a certain number of deliveries within 30 
minutes, or having the point differential in a sports game be positive in the agent’s favor.  Often, in 
such domains, humans will take risks (e.g., a “hail Mary pass” in football, trying risky military tactics 
if the situation appears dire) if they believe that they would not otherwise achieve their objectives.  
The idea is that it does not matter how much less than the threshold the agent achieves, as long as it 
still has a chance of not falling below. 
 
Our basic approach is to model the task as a Markov Decision Process (MDP) and to track the 
anticipated reward that the robot will receive (current cumulative reward plus expected future reward) 
and compare that with the threshold value [Kane, 2012].  When the threshold is crossed, the robot 
switches policies (e.g., to a more, or less, risky policy).  Specifically, given the MDP, we compute 
both a risk-neutral and risk-sensitive policy.  The risk-sensitive policy typically will have a greater  
downside (more chance of receiving a lower value), 
but also a greater upside (greater probability of 
getting a higher value).  We run many simulations 
of each policy to construct a CDF curve showing 
the cumulative probability of achieving at least 
some given value (figure on right, where the lower 
the curve the better it is).  Representing the 
complete reward distribution differs from other 
work that characterizes the reward either in 
expectation (mean) or mean and variance.  
Having the complete distribution enables us to 
reason about the tails of the distribution, which is 
critical in determining which policy is better in a 
given situation. 
 
The objective, then, is to maximize the probability that the robot will achieve at least a certain 
minimum threshold value.  At each step of execution, our algorithm determines the probability that 
each policy will lead to a value above the threshold, given the current state and the reward 
accumulated, so far.  The policy with the highest probability is chosen for each step.  In practice, 
this does exactly what we would like to see – when things are going well, the risk-neutral policy is 
chosen; when the predicted future reward gets closer to the threshold value, the risk-sensitive policy is 
seen as more attractive and is chosen.  If using the risk-sensitive policy produces a “good” outcome, 
the system switches back to the risk-neutral policy.  The results are illustrated in the figure above – 
the switching approach (labeled thresh=-88.5, which is the given threshold for this particular 
experiment) is much more likely than the risk-neutral or risk-sensitive policy, alone, to exceed the 
given threshold.  Even though, when it fails, it achieves worse reward than the risk-neutral policy, 
this is not really a problem, since the formulation of this domain stipulates that there is no penalty for 
how far below the threshold one falls.  Similarly, it is worse that the risk-sensitive policy, starting at 
around reward -78, but again that is not an issue, since it also does not matter how far above the 
threshold one gets, as long as one is above. 
 
We have tested this approach extensively with a simple “pizza delivery” domain (must make the 
delivery in a given amount of time), where there are expensive, risky driving actions and more 



conservative, cheaper actions.  Depending on the threshold chosen, the 
switching strategy fails between 10-20% less than using the risk-neutral 
policy alone (and does even better than using the risk-sensitive policy 
alone).  We also tested the approach in a much more complex, realistic 
domain, that of the Infinite Mario video game simulator (figure on right).  
Here, we collected reward statistics both using an MDP learned from 
having a human play the game and from having the agent play the game.  
Even though the models were not accurate (e.g., did not accurately 
represent the number of coins or monsters that were available), our approach still failed between 
5-15% less than using the risk-neutral strategy found be solving the learned MDP.  Finally, we 
compared our approach against a more straightforward approach of explicitly representing the 
cumulative reward, so far, in the state space, and solving the augmented MDP.  This augmented MDP 
has significantly more states than the original MDP, and takes exponentially longer to solve.  In 
addition, it must be solved for each threshold value, whereas in our approach, the MDPs need to be 
solved only once, for each risk value.  In tests, the augmented MDP failed only 7% less than our 
switching strategy (in the pizza delivery domain), which we consider a good tradeoff, given the 
amount of computation needed to solve the augmented MDP. 
 
In recent months, we have shifted focus to looking at recovering from unexpected failures.  This is 
somewhat of a paradox – how can you figure out how to recover from something that is truly 
unexpected (i.e., unmodeled).  Our approach to this conundrum is to have many models, at multiple 
levels of detail, and choose which model to plan in dynamically.  For instance, one would start doing 
path planning in a geometric state space (maybe just taking X,Y into account) and then move to a 
more detailed geometric model (X,Y,Z or X,Y,theta), depending on the type of failure encountered.  
If the geometric model was still not detailed enough, one would move to dynamical models, adding 
velocities and/or accelerations, as appropriate.  This approach provides the ability to plan using the 
model that is most appropriate to the situation, but still enables the agent to “dig deeper” when the 
situation warrants.  We are in the process of implementing this approach in the domain of 
autonomous robot navigation using a realistic, dynamical simulator, and are currently preparing a 
paper on the subject to submit to a robotics conference. 
 
The focus on awareness of the need for assistance was to use 
human examples to learn how to plan precise, complex 
trajectories for a robotic manipulator.  The idea is to avoid 
having to model all the geometric and non-geometric (task) 
constraints by having people show the robot how to perform a 
task.  The robot generalizes the examples to remove the 
extraneous noise and jitter that often accompanies human 
kinesthetic demonstrations (figure on right).  The motivation 
for this area of research was an earlier project where we found 
that programming the various constraints that the manipulator 
must obey was arduous, yet people could easily teleoperate 
the robot into place.  The project developed techniques, based on dimensionality reduction [Melchior 
2010], to find the common parts of different example trajectories and then used those correspondences 
to plan novel trajectories that maintained the important commonalities of the human examples 
[Melchior 2012].  By using multiple examples, the algorithm was able to smooth out imperfections 
in the examples while maintaining relevant task features.  The approach was context-aware, in that it 
was correctly able to deal with examples that got near to, or even crossed, one another (either in state 
or configuration space), which previous techniques were not able to handle very robustly.  We also 
developed several quantitative metrics to evaluate the quality of plans produced, including the overall 
smoothness and path length.  In general, the generated plans were found to be significantly smoother 
and somewhat shorter than the examples provided by the human teachers, showing that our approach 
is able to use noisy examples to produce high-quality trajectories. 
 
Sometimes, the human demonstrations followed qualitatively different strategies (for instance, 
sometimes going around an obstacle to the right, and sometimes to the left).  We used “active 
learning” to help the robot better handle such situations.  The idea is for the robot to reason about 



those parts of the state space where the example trajectories may be ambiguous or inconsistent, and 
ask the human teacher for help in disambiguating.  Specifically, we developed an algorithm, based on 
min-cuts, to determine where “bifurcations” occur (qualitative splits in the strategies for achieving a 
task), demonstrating to the user plans that illustrate both branches of the bifurcation, and asking the 
user for his/her preference (or indifference to) the two trajectories.  Based on the human’s answer, the 
robot will either prefer one branch over the other when generating plans in the future, or may ask the 
user for additional examples to remove any existing ambiguities.  The algorithm was tested on 18 
participants with varying degrees of expertise with robots.  Results indicate that participants found 
the learning by demonstration methodology very easy to use, producing effective, high-quality plans, 
especially for novice users.   
 
List of Publications and Significant Collaborations:   

a) papers published in peer-reviewed journals - none 
b) papers published in peer-reviewed conference proceedings 
“Graph-based Trajectory Planning through Programming by Demonstration,” N.A. Melchior and R. 

Simmons, In Proceedings of International Conference on Intelligent Robots and Systems, 
Vilamoura, Portugal, October 2012 

“Motion Interference Detection in Mobile Robots,” J.P. Mendoza, M. Veloso and R. Simmons, In 
Proceedings of International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 
October 2012 

“Mobile Robot Fault Detection based on Redundant Information Statistics,” J.P. Mendoza, M. Veloso 
and R. Simmons, In IROS Workshop on Safety in Human-Robot Coexistence and Interaction, 
Vilamoura, Portugal, October 2012 

“Risk-Variant Policy Switching to Exceed Reward Thresholds,” B. Kane and R. Simmons, ICAPS, 
Sao Paulo Brazil, June 2012 

“Dimensionality Reduction for Trajectory Learning from Demonstration,” N. A. Melchior and R. 
Simmons. In Proceedings of IEEE International Conference on Robotics and Automation, May 
2010 

c) papers published in non-peer-reviewed journals and conference proceedings 
“Graph-based Trajectory Planning through Programming by Demonstration,” Nik Melchior, PhD 

Thesis, CMU RI-TR-11-40, August 2012 (technical report) 
d) conference presentations without papers – none 
e) manuscripts submitted but not yet published 
“Early Detection of Anomalous Clusters for Task Execution Monitoring,” J.P. Mendoza, M. Veloso 

and R. Simmons, submitted to International Conference on Robotics and Automation, 2014 
f) interactions with industry or with Air Force Research Laboratory scientists - none 



Graph-based Trajectory Planning through

Programming by Demonstration

Nik A. Melchior and Reid Simmons1

Abstract— As robots are utilized in a growing number of
applications, the ability to teach them to perform tasks safely
and accurately becomes ever more critical. Programming by
demonstration offers an expressive means for teaching while
being accessible to domain experts who may be novices in
robotics. This work investigates a programming by demon-
stration approach to learning motion trajectories for robotic
manipulator tasks. Using a graph constructed to determine
correspondences between multiple imperfect demonstrations,
the robot learner plans novel trajectories that safely and
smoothly generalize the teacher’s behavior, while attenuating
those imperfections. The learner also actively detects instances
of diverging strategy between examples, requesting advice for
resolving these ambiguities. We demonstrate our approach in
example domains with a 7 degree-of-freedom manipulator.

I. INTRODUCTION

Robots are becoming more common in many domains:

They are used as tools for manufacturing, instruments for

surgery, and toys for consumers. As their areas of application

expand, it becomes increasingly critical to reliably transfer

task knowledge to the robot. While domain experts often can

be found who understand the task, they may know nothing

about programming robots. Programming by demonstration

(PbD) is an approach that facilitates knowledge transfer from

a domain expert to an autonomous system. It provides an

intuitive approach for someone skilled in performing a task to

teach a robot to perform that task without having to learn to

program the robot. Conversely, it does not require a robotics

expert to become skilled in the task.

A primary difficulty in PbD approaches to robotic ma-

nipulation is representing and understanding the constraints

imposed by the physical world. Geometric constraints, in-

cluding the locations of physical obstacles, are the most

obvious issues, since detecting the locations of objects can

be difficult for current sensor technologies. Vision or LIDAR

sensors must be located to observe the entire environment,

without suffering from occlusion due to the objects or the

robot itself. Alternately, the robot may be provided with an a

priori model of the objects of interest, but constructing this

model may require the skills of a robotics specialist.

Even if a model could be constructed to provide the robot

with knowledge of obstacles, non-geometric task constraints

must also be considered. For example, a robot carrying

a cup of liquid must maintain its end-effector orientation

to avoid spilling. Similarly, a robot routing cable around

complex objects may need to follow a particular path to avoid

snagging the cable. While a detailed physical simulation may

1Robotics Institute of Carnegie Mellon University, 5000 Forbes Avenue,

Pittsburgh, USA; {nmelchio,reids}@cs.cmu.edu

be able to detect violations of such constraints, it would be

challenging for a novice robot user to communicate them

to a planner. However, if a user is able to demonstrate

successful strategies for completing the task, he does not

need to articulate the criteria that he is optimizing in a

manner comprehensible to the robot.

Thus, PbD enables domain experts to teach robots about

geometric and non-geometric task constraints without explic-

itly formalizing those constraints. The robot then create novel

plans respecting the constraints, generalizing the actions

performed by the teacher. In this work, we present a method

for planning novel motion trajectories for robot manipulators

based on demonstrations. Our approach learns to perform

fixed, repetitive tasks in the presence of static obstacles,

with minor variations due to uncertainty in both initial

conditions and the ability to follow a trajectory precisely.

In particular, we do not assume that example demonstrations

are flawless, but rather that they contain jitter, non-optimal

movements, and inconsistencies between examples. The

robot must therefore discern the essential motions common

to multiple examples and incorporate them in novel plans.

In addition, we assume that the examples may differ in

essential characteristics, making it difficult for the robot to

combine the trajectories into a single, learned strategy. In

such cases, the robot must refine its knowledge by actively

requesting additional information from the teacher, in order

to differentiate the manipulation strategies.

Our approach relies on a neighbor graph over the demon-

strations, a representation that relates discretely sampled

points from example trajectories. Our previous work [1],

summarized in Section III, details a method to build such

a data structure. The planning algorithm contributed in the

present work uses this neighbor graph to create new plans

that are guaranteed to be safe (avoiding obstacles) as long

as the demonstration trajectories are also safe. Each point

in a new plan is constructed using a set of neighbors from

the demonstration set, refined to reduce jitter and minor

inconsistencies, while maintaining the essential (common)

characteristics of the demonstration trajectories. The plan-

ning algorithm also detects demonstrations that cluster into

qualitatively distinct trajectories (for instance, circumventing

an obstacle by two entirely different routes). In such cases,

the robot requests additional advice from the operator to

determine which strategy should be preferred. Experimen-

tal results in Section V demonstrate our approach in two

different domains: The robot learner is able to safely trace

a smooth path through a maze (with a single solution) and

across a planar surface with multiple obstacles and multiple



demonstrated routes between them. We also present results

from a user study that indicates how well novices can use

our approach to train the robot.

II. RELATED WORK

Approaches to programming by demonstration differ

widely in their use of prior knowledge and the models used

to create new plans. Simplified motion or world models [2],

[3], [4] and even traditional motion planning [5] can be used

to plan between demonstrated states if an environment model

is available. Use of the model may alternately be limited to

collision testing plans created by other methods [6], [7].

Many approaches collect similar actions into libraries,

which can be applied to create motion plans for new tasks

or situations. [8], [9]. Others attempt to learn dynamical

models of the system using GMMs [10], Neural Networks

[11], or other statistical feedback techniques [12]. These

models may then be used to create new plans. Feature-

based policy-learning approaches such as that of Argall [13],

Chernova [14], and Ratliff [15] also create results that are

applicable to new tasks and domains.

Our approach is most similar in spirit to data-driven

approaches such as the interpolation-based methods of

Ude [16], Lee [17] and Aleotti [6] or flow-field techniques

developed by Mayer [18] and Drumwright [19]. These

approaches, like ours, focus on learning entire tasks (or

portions of tasks) at a time, rather than computing an action

based solely on local features. Among similar approaches,

only Delson’s work [20], though, explicitly considers safety

during the generation of novel trajectories. This approach

is most completely developed in two dimensions, but an

extension to three dimensions is presented in [21].

Dimensionality reduction approaches attempt to discover

a lower dimensional representation of the demonstrated mo-

tions that retains the crucial features of the examples. While

some such approaches use techniques, such as PCA, that

retain as much variance as possible [22], others attempt

to directly estimate correspondences between portions of

example trajectories [23]. Rather than optimize for variance

across the entire dataset, this alternative, which builds upon

Isomap [24], optimizes for distances between points in the

dataset. This approach requires a neighbor graph connecting

points that are considered qualitatively similar. Distances

between neighboring points are calculated directly using the

metric of choice (e.g. Euclidean), but all other pairwise

distances are calculated as the sum of shortest-path link dis-

tances through the neighbor graph. These geodesic distances

indicate the nearness of points in terms of task execution, and

provide a basis for determining which points can reasonably

be clustered and interpolated.

III. BACKGROUND

Our previously reported work [1] developed a neighbor-

finding technique that used a set of heuristics to produce a

neighbor graph suitable for reduced-dimensionality planning.

Planning in a low-dimensional latent space is attractive

because the arrangement of trajectory points in this space

(a) Demonstration slalom trajectories (blue) with neighbor links (red).

(b) Slalom trajectories in the latent space.

Fig. 1. Slalom trajectories.

is expected to correlate with the semantics of the task.

For example, the trajectories of Figure 1(a) cross over

themselves in work space, but are “unrolled” in the latent

space (Figure 1(b)). The start and goal points, previously

close to one another, are now at opposite ends of the

horizontal axis. Thus, this dimension represents progress

through the task, while the vertical dimension separates

distinct demonstrations. Planning through this space would

seem to be intuitive since movement in each direction has a

semantic explanation.

Unfortunately, we have found that this and similar ap-

proaches to dimensionality reduction do not lead to robust

planning. For one, distances in the neighbor graph are par-

ticularly susceptible to spurious neighbor links. While these

algorithms are robust to a large number of false negatives

(missing neighbor links), even a single false positive link

can have disastrous effects on the embedding [25]. This

is because spurious neighbor links create “short circuit”

connections between unrelated portions of trajectories, thus

lowering the geodesic distances between points in seman-

tically distant regions. This forces the embedding to retain

the proximity of these regions in the low-dimensional latent

space, introducing false semantic relevance between points.

While our neighbor-finding approach mostly avoids the

problem of spurious neighbor links [1], another fundamental

problem is that lifting novel trajectories from the latent space

back to the work (Euclidean or configuration) space often

produces second-order discontinuities. Lifting is typically

performed by projecting discrete points sampled from the

trajectory in the latent space into the work space. Individual

query points are lifted by considering nearby sample points

whose corresponding high-dimensional points are known.

The high-dimensional point corresponding to the query is

calculated by interpolating between the high-dimensional

neighbor points, weighted by their distance from the query

in the low-dimensional space. Unfortunately, non-linear em-



Fig. 2. The WAM manipulator traversing a wire maze. The fiducial in the
lower-left is used to detect the location of the rig relative to the robot.

beddings, such as Isomap [24], do not guarantee smoothness

of lifted trajectories, even when points are densely sampled

from a smooth latent-space trajectory. Moreover, because

dimensionality reduction is not injective (multiple regions

of the work space can map to the same regions of the latent

space), there may be ambiguities in lifting points back to

the work space. These problems are actually exacerbated as

additional example trajectories are provided to the learner.

More examples produce a more cluttered latent space with

more interconnections between neighbor points. This creates

additional opportunities for discontinuities in lifted trajec-

tories. Clearly, decreasing performance with an increasing

amount of information is not a desired attribute of a planner.

These problems are clearly illustrated in our wire maze

domain (Figure 2). Here, participants were asked to guide

a 7-DOF Barrett WAM arm through a wire maze, with

the arm in passive gravity-compensation mode. Figure 3

displays workspace traces of six demonstration trajectories

(in purple) beginning at the green points near the bottom

of the image and ending at the red points. The latent

space embedding created by our algorithm is shown on

the right. As expected, this embedding essentially “unrolls”

the trajectories, stretching them out so that task time, or

progression through the maze, maps from left to right on

the horizontal axis. The vertical axis provides a dimension

for variation between examples. The blue line represents a

candidate plan, created as a series of line segments stretching

from the start to the goal in the latent space. Discontinuities

result, however, when this plan is lifted back to the original

workspace in the left image. Although a post-processing step

could be applied to smooth the planned trajectory, it is not

clear whether a smoothed version would follow the nuances

of the demonstration trajectories, or even maintain safety.

IV. APPROACH

The approach described in this paper addresses these

issues by planning directly in the work space. We still use

the neighbor graph to determine correspondences between

trajectory points, but rather than planning in the latent

space, interpolation and distance calculations are performed

in the original (higher-dimensional) work space. Our planner

interpolates between the multiple demonstration trajectories,

eliding inconsistencies (errors and suboptimal motions) while

maintaining the essential geometric characteristics of the

demonstrations.

As the first step in neighbor finding, we uniformly sample

each trajectory at fixed distances in the work space. The

sampling is done to compensate for temporal differences

in the demonstrations (this assumes that dynamics are not

fundamental to task achievement). Then, heuristics (de-

scribed in detail in [1]) are used to find correspondences

between neighboring points. The heuristics attempt to find

local coherence between trajectories; for instance, encoding

the idea that corresponding points are more likely to have

nearby predecessors that also correspond. The result is a

graph where connections between trajectories (usually) in-

dicate semantically meaningful matches, while points that

remain unmatched typically result from imperfections in the

demonstrations, such as jitter or small detours.

The planning algorithm proceeds iteratively by calculating

an action to take based on a set of neighbor points and

then choosing a new set of neighbor points based on that

action, until a goal state is reached. The initial set of neighbor

points is chosen simply as those nearest the start state of the

robot. The action is computed as a locally weighted average

of the actions associated with each point in the neighbor

set (Fig. 4(b)). Since the points in the neighbor graph are

sampled from the demonstration trajectories, the actions

recorded during demonstration do not necessarily correspond

exactly to those points. Instead, actions are computed as the

vector from the current neighbor point to its subsequent point

in the same trajectory. As a matter of notation, we represent

an example trajectory point as ti and its successor as t+
i

.

Thus, given N neighbors of a plan point p, their weights

wn, normalization factor W , and the subsequent plan point

p+ are calculated as:

wn = |tn − p|

W =

N
∑

n=0

wn

p+
= p +

N
∑

n=0

wn

W

(

t+
n
− tn

)

The next step is to select a new set of neighbors. These are

not merely the closest points to p+, but must also represent

portions of the demonstration trajectories at semantically

equivalent states during execution of the task. Since distinct

portions of the trajectories may appear in close proximity

in non-Markovian regions (c.f. Figure 1) we need to rely

on points that are close geodesically in the neighbor graph.

However, because the demonstration trajectories may have

small imperfections, rather than simply advancing to the set

of points subsequent to the previous neighbors, we search



Fig. 3. Traces of the end-effector position while traversing the wire maze, shown in the workspace (left) and in the learned reduced dimensionality space
(right). The light blue trace is a naı̈ve plan created in the reduced dimensionality space, then lifted to the original workspace.

near p+, removing neighbors that are too far away and

adding new neighbors that are nearby in both metric and

graph distance (Fig. 4(c)). In our experiments, we found

that searching for points within du (the trajectory sampling

distance) of p+ and three graph links from the previous

neighbor set gave good results.

Finally, we refine our choice of p+. While the action

computed from the neighbor set faithfully reproduces the

actions demonstrated by the teacher at that point in the

task, undesired actions are represented as well. We thus

adjust p+ toward a position that is both representative of

the average action performed by the teacher and close to the

new neighbor set. To do this, we place a Gaussian over each

new neighbor and use gradient ascent to refine the position of

p+. Figure 4(d) illustrates level sets of this reward function

around the new neighbors. The new plan point is refined to

lie at a local peak of this function.

This approach to planning ensures that interpolation occurs

only between demonstrated points that are similar in pose and

graph distance: precisely where interpolation is expected to

safely respect both geometric and non-geometric constraints.

In addition, we use a volumetric model of the robot to ensure

safe operation. A CAD model of the robot is used to calculate

the volume of space that the robot occupies as it moves

through the demonstration trajectories. These swaths of space

are known to be free of physical obstacles. Then, during

planning, we check whether the robot stays within the union

of the swaths all along the path. If not, we use a signed

distance field (SDF) [26] to further adjust the position of

the planned point p+. An SDF is an occupancy grid that,

in addition to a bit indicating the safety of a given grid cell

or voxel, provides a vector pointing to the nearest safe cell.

This provides a computationally efficient means for adjusting

trajectory points that stray into unsafe regions.

An important concern when planning is bifurcations in

the neighbor graph: areas where demonstration trajectories

diverge into two (or more) qualitatively distinct strategies. A

common cause of bifurcations is physical obstacles that the

teacher must circumvent. In a two-dimensional workspace,

the potential for such obstacles may be reliably detected by

examining the swaths of workspace occupied during training.

More simply, the teacher may be instructed to demonstrate

only trajectories that follow the same path around and

between obstacles. If this instruction is observed, we can be

assured that interpolating between any demonstrations must

be safe (at least with respect to geometric constraints). All

such demonstrations are homotopic because there exists a

safe, continuous deformation between any pair of paths while

keeping start and end points fixed [27]. If two demonstrations

take different paths around an obstacle, say one to the left

and the other to the right, a continuous deformation between

them would pass through the obstacle, which is clearly not

desirable.

This strategy is demonstrated in the plane by [20], but

does not extend to higher dimensions. For instance, if the

previous example were extended to three dimensions, there

may be a safe path above the obstacle. Thus, the paths to

the left and the right could safely be continuously deformed

through this third path. The paths to the left and the right

are thus homotopic, but a simple linear interpolation is

not safe. In fact, the interpolation between them may be

arbitrarily complex. A robot learner should ideally reach

the same conclusion suggested by our intuition: these paths

follow separate strategies, and should be treated separately.

Moreover, the learner should take advantage of the teacher’s

knowledge in order to determine whether one strategy should

be preferred over the other.

Using the SDF to detect bifurcations is a tempting, but

incomplete, approach. We might produce trial robot poses

by interpolating between two trajectories, then test whether

these poses are safe. However, this will detect only those

bifurcations caused by physical obstacles. For a more general

approach, we once again rely up the neighbor graph. A

bifurcation in demonstration strategies should appear as a

localized partition in the graph. Example trajectories that are

linked in the graph at some point in time will no longer be



(a) Initial neighbors (b) Locally-weighted Average Action Plan

(c) Neighbor Extension (d) Plan Refinement

Fig. 4. (a) The graph-based planning algorithm begins with a partial plan (red points) and a set of neighbors (blue points) selected from among
demonstration trajectories (blue and white). (b) The initial estimate for the next plan point (red diamond) is computed using the locally-weighted average
of neighbor actions (black arrows). (c) Neighbors (blue) are selected for the new plan point. (d) The pose of the new plan point p

+ (red circle) is refined
using the new set of neighbors.

Fig. 5. The example trajectories (purple) from figure 3 with a new plan in blue. The graph on the right shows a cumulative curvature plot, illustrating
discontinuities of the lifted plan (in red), while the new plan (in blue) is smoother than the examples.

linked after the bifurcation. We use the normalized cuts graph

partitioning algorithm [28] to detect these locations. This

algorithm compares the number of links within a partition,

or cluster, to the number of links between clusters. The links

between clusters are cut to form partitions. A good partition

should cut relatively few links, with a large number of links



remaining within clusters.

To apply this algorithm to trajectories, we iterate over the

points of each example trajectory to find clusters of points

that are densely linked to other examples relative to some

point in the near future. In our experiments, we compared the

interconnections at each query point to the interconnections

that exist between ten and 20 steps in the future. Since cuts

must occur between trajectories, all the points along a single

trajectory are coalesced into a single graph node and the best

normalized cut partition is calculated for each such node. In

most cases, when no bifurcation exists, the normalized cuts

algorithm will successfully assign all trajectories to the same

cluster. Otherwise, a high score will indicate that a partition

may exist. When many high scores occur within a few graph

links of one another, this collection of points is considered

to be a cut neighborhood, a region in which a bifurcation is

likely to exist.

To handle bifurcations, we use active learning, where the

robot learner asks the human teacher which branch of the

bifurcation is to be preferred. Rather than present graphical

representations of the trajectories on a computer screen,

which may be hard for novices to interpret, the robot learner

instead executes partial trial trajectories to demonstrate the

branches of the bifurcation. In this way, the user is given

a clear conception of what the robot plans to do. The user

may indicate that one plan or the other is to be preferred,

and future plans will follow that branch of the bifurcation.

That is, when a future plan encounters points from the cut

neighborhood, points from the preferred branch are used as

neighbors, but points from the other branch are not. The user

may also indicate “no preference,” in which case the planner

will choose a branch randomly, weighted by the number of

demonstrations provided in each branch.

A final possibility is that the user discerns no distinction

between the two branches. This may occur if the provided

trajectories are widely separated, causing the robot to discern

a bifurcation where none actually exists. In such cases, the

robot requests a new example demonstrating the possibility

of planning in the (currently) unknown region. The learner

solicits this additional demonstration by creating a plan that

approaches the bifurcation and proceeds through it, averaging

the trial trajectories, until it reaches a point no longer known

to be safe. At this point, the user is asked to continue the

task, essentially demonstrating the equivalence of the two

strategies by providing ⁀rajectory that bridges the gap. If the

learner continues to detect bifurcations, additional examples

are requested.

V. EXPERIMENTAL RESULTS

This planning algorithm has been tested in two experi-

mental domains. The wire maze domain (Figure 2) provides

a testbed for comparison with plans created in the reduced-

dimensionality latent space. Figure 5 illustrates a plan in

the maze domain created by our current approach. This plan

compares favorably to the jagged lifted plan of Figure 3,

produced by our previous approach [1]. To quantify our claim

that the current planning approach produces smooth plans,

Fig. 6. The artist domain, in which the task is to sweep a paint brush
across the board, while avoiding obstacles.

Figure 5, right, is a cumulative curvature plot that shows

the percentage of points with curvature less than or equal to

the value on the horizontal axis. The red curve, representing

the original plan lifted from the latent space, is shifted to

the right of the example trajectories, indicating that more

points in this trajectory have higher curvature. The blue line,

representing the new approach, is to the left of the example

trajectories, indicating that it is smoother than all of the

examples. This is mainly because our new approach averages

out the imperfections in the demonstration trajectories. While

not an explicit objective of the planner, this smoothing also

decrease trajectory length. On average, in this domain, the

new approach produces plans that are 1.5% shorter than the

demonstrations.

We also investigated the effects of adding more demon-

strations. An untrained user provided six demonstrations of

the wire maze task (mean curvature 3.86). With just two

examples, the planner produced a plan with mean curvature

of 3.86. Adding in one extra trajectory at a time, the mean

curvature decreased monotonically (and approximately lin-

early), reaching 3.2 using all six demonstration trajectories.

Fig. 7. A detailed view of the neighbor graph at a bifurcation.

In the second domain, which we call the artist domain

(Figure 6), the user is asked to paint a line across a board with



Fig. 8. Example trajectories in the artist domain. Half the examples loop
around an obstacle.

vertical dowel rods protruding. This domain was developed

to investigate the detection of bifurcations and the strategy

for planning through them. In particular, multiple strategies

are possible for traversing between and around the dowels.

Two sets of example trajectories are shown in Figures 7

and 8. Figure 7 shows six demonstrations that split in half.

The trajectories are shown in yellow and red, indicating

their partitioning into two groups at the bifurcation, and

their neighbor links are shown in blue. The six examples

in Figure 8 follow similar paths across the space, but half of

them take a detour in the form of a loop around one of the

dowel rods. This optional detour is correctly detected as a

bifurcation. Depending on the branch preferred by the user,

the learner’s future plans may, or may not, include this loop.

A user study was run to evaluate the ease and efficiency

of training, and to test the bifurcation detection technique.

18 participants, with varying degrees of experience with

robots, were recruited from Carnegie Mellon. 11 had no

prior experience with robots, 4 had general experience with

robots, and 3 considered themselves experienced with robotic

manipulation. They were requested to provide three demon-

strations each of two different strategies for achieving the

task. Most complied, but one provided only a single strategy

and one demonstrated four (Figure 9). The system success-

fully detected the bifurcations, except in the case where there

was only a single trajectory for the strategy. At the end,

the users filled out a survey on their experience, consisting

of 13 questions on a 5 point Likert scale. Chronbach’s

alpha was used to cluster responses that were internally

consistent, and we ended up with four general categories:

ease of programming, quality of plans, training questions

(the robot’s active learning) and effectiveness of learning.

With respect to ease of programming, all users felt that

the approach was effective (mean 1.22) but inexperienced

users rated the ease of use significantly higher than more

experienced users. In terms of quality of plans, the users

rated the plans as reasonably good (mean 1.861), although

the 3 users with manipulator experience rated the plans worse

(2.5, but that did not reach significance). The responses to

the adequacy of the robot’s training questions tended towards

neutral (2.5), but with large variation, and the effectiveness

Path Length Curvature
Dataset Mean Std. Dev. Mean Median

maze:

demonstrations 1.52 0.053 3.83 3.75
planned 1.50 0.060 3.20 3.16

artist:

demonstrations 0.702 0.211 3.64 2.83
planned 0.608 0.154 1.82 1.43

TABLE I

USER TRIAL STATISTICS

of learning question had a mean of 1.611, indicating general

agreement that the robot’s plan followed the strategy the

teacher chose to convey. The data show a trend towards

more positive assessment as experience decreases, but not

to statistical significance.

Fig. 9. A set of demonstrations from a single user. Four distinct strategies
are shown in different colors. Our system detected two bifurcations, but did
not detect the singleton strategy shown in yellow.

In addition, we quantified the improvements in path length

and smoothness achieved by the planner in both domains.

Table I presents the mean and standard deviation of path

lengths across all demonstration and planned trajectories.

For curvature, we instead report mean and median; standard

deviation is less informative because the trajectories consist

of curved and straight segments. In both cases, the planned

trajectories are significantly smoother. The improvement is

most pronounced in the artist domain, where the task and

workspace were far less constrained, and the mean curvature

is reduced by 50%. This helps support our claim that the

approach is applicable to users who are not robotics experts.

Similarly, the planned artist trajectories are, on average, 13%

shorter than the average of the demonstrations, although there

is wide variance amongst the different strategies (ranging

from under 1% to 28% shorter).

VI. CONCLUSIONS AND FUTURE WORK

The planning by demonstration manipulator motion plan-

ning algorithm described here is able to successfully create

safe, smooth, novel plans using only demonstrations provided

by a domain expert and a volumetric model of the robot.

This represents a feasible method for novices in robotics to

train a robot to perform sophisticated motion tasks without

programming or modeling the environment. In particular, the

approach enables the teacher to indicate both geometric and

non-geometric constraints to the robot learner. While the

approach smooths out jitter and inconsistencies, it maintains



the essential characteristics of the demonstrations, including

small perturbations that are consistent across the various

demonstration trajectories.

One extension is to consider additional objectives, such

as path smoothness constraints or non-uniform costs over

regions of the work space. The current implementation

preserves high-frequency noise only in areas where that noise

is correlated between multiple examples. Otherwise, it is

eliminated as unintended jitter when, in fact, small random

motions may be necessary for some sorts of tasks. Another

extension is to apply our approach to other types of robotic

platforms. Although our focus has been on redundant robot

manipulators, the approach is equally applicable to mobile

robot platforms. Planning on a non-holonomic base is likely

to present a unique set of challenges, however, particularly if

dynamics are to be considered. A significant extension is to

learn safe trajectories in the presence of moving obstacles.

While this would necessitate detecting obstacles, we still

would not have to model them explicitly within the planner.

Finally, we would like to analyze our approach more formally

– the approach uses a number of heuristics and parameters,

and it would be useful to investigate how these choices

affect performance and the guarantees associated with the

approach.

In summary, we believe that our approach will enable

domain experts to teach robots effectively and efficiently,

with minimal training in robotics. As a result of this, and

similar efforts, we anticipate that autonomous robots will

become applicable to a much wider variety of domains.

VII. ACKNOWLEDGMENTS

This work was supported by AFOSR grant #FA2386-10-

1-4138 and NASA award NNX06AD23G under subcontract

Z627402.

REFERENCES

[1] N. A. Melchior and R. Simmons, “Dimensionality reduction for
trajectory learning from demonstration,” in Proceedings International

Conference on Robotics and Automation, May 2010.

[2] H. Asada and H. Izumi, “Automatic program generation from teaching
data for the hybrid control of robots,” IEEE Transactions on Robotics

and Automation, vol. 5, pp. 166–173, 1989.

[3] H. Asada, “Teaching and learning of compliance using neural nets:
representation and generation of nonlinear compliance,” in Proceed-

ings International Conference on Robotics and Automation, vol. 2,
1990, pp. 1237–1244.

[4] J. Chen and A. Zelinsky, “Programing by demonstration: Coping
with suboptimal teaching actions,” International Journal of Robotics

Research, vol. 22, no. 5, pp. 299–319, 2003.

[5] M. Stolle and C. Atkeson, “Policies based on trajectory libraries,” in
Proceedings International Conference on Robotics and Automation,
2006, pp. 3344–3349.

[6] J. Aleotti, S. Caselli, and G. Maccherozzi, “Trajectory reconstruction
with nurbs curves for robot programming by demonstration,” in
Proceedings International Symposium on Computational Intelligence

in Robotics and Automation, 2005, pp. 73–78.

[7] H. Friedrich, J. Holle, and R. Dillmann, “Interactive generation of
flexible robot programs,” in Proceedings International Conference on

Robotics and Automation, vol. 1, 1998, pp. 538–543.

[8] D. Bentivegna and C. Atkeson, “Learning from observation using
primitives,” in Proceedings International Conference on Robotics and

Automation, vol. 2, 2001, pp. 1988– 1993 vol.2.

[9] G. Hovland, P. Sikka, and B. McCarragher, “Skill acquisition from
human demonstration using a hidden markov model,” in Proceedings

International Conference on Robotics and Automation, Minneapolis,
MN, 1996, pp. 2706–2711.

[10] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE

Transactions on Robotics, 2008.
[11] J. D. Bagnell and J. Schneider, “Autonomous helicopter control

using reinforcement learning policy search methods,” in Proceedings

International Conference on Robotics and Automation, May 2001.
[12] P. Maes and R. A. Brooks, “Learning to coordinate behaviors,” in

Proceedings National Conference on Artificial Intelligence, 1990, pp.
796–802.

[13] B. Argall, B. Browning, and M. Veloso, “Learning by demonstration
with critique from a human teacher,” in Proceedings International

Conference on Human-Robot Interaction. Arlington, Virginia, USA:
ACM Press, 2007, pp. 57–64.

[14] S. Chernova and M. Veloso, “Tree-based policy learning in continuous
domains through teaching by demonstration,” in Modeling Others

from Observations: Papers from the AAAI Workshop, G. Kaminka,
D. Pynadath, and C. Geib, Eds. American Association for Artificial
Intelligence, 2006, pp. 24–31.

[15] N. Ratliff, D. Bradley, J. Bagnell, and J. Chestnutt, “Boosting
structured prediction for imitation learning,” in Advances in Neural

Information Processing Systems 19. Cambridge, MA: MIT Press,
2007.

[16] A. Ude, C. Atkeson, and M. Riley, “Planning of joint trajectories
for humanoid robots using b-spline wavelets,” in Proceedings Inter-

national Conference on Robotics and Automation, vol. 3, 2000, pp.
2223–2228 vol.3.

[17] C. Lee, “A phase space spline smoother for fitting trajectories,” IEEE

Transactions on Systems, Man and Cybernetics, Part B, vol. 34, pp.
346–356, 2004.

[18] H. Mayer, I. Nagy, A. Knoll, E. Braun, R. Lange, and R. Bauern-
schmitt, “Adaptive control for human-robot skilltransfer: Trajectory
planning based on fluid dynamics,” in Proceedings International

Conference on Robotics and Automation, Rome, Italy, 2007.
[19] E. Drumwright, O. Jenkins, and M. Matarić, “Exemplar-based primi-

tives for humanoid movement classification and control,” in Proceed-

ings International Conference on Robotics and Automation, vol. 1,
2004, pp. 140–145.

[20] N. Delson and H. West, “Robot programming by human demonstra-
tion: adaptation and inconsistency in constrained motion,” in Proceed-

ings International Conference on Robotics and Automation, vol. 1,
1996, pp. 30–36.

[21] ——, “Robot programming by human demonstration: the use of hu-
man variation in identifying obstacle free trajectories,” in Proceedings

International Conference on Robotics and Automation, vol. 1, 1994,
pp. 564–571.

[22] S. Calinon and A. Billard, “Recognition and reproduction of gestures
using a probabilistic framework combining PCA, ICA and HMM,”
in Proceedings International Conference on Machine Learning, 2005,
pp. 105–112.

[23] O. C. Jenkins and M. J. Matarić, “A spatio-temporal extension to
isomap nonlinear dimension reduction,” in Proceedings International

Conference on Machine Learning. Banff, Alberta, Canada: ACM
Press, 2004, p. 56.

[24] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
pp. 2319–2323, Dec. 2000.

[25] A. Tsoli and O. C. Jenkins, “Neighborhood denoising for learning
high-dimensional grasping manifolds,” in International Conference on

Intelligent Robots and Systems, Nice, France, Sep 2008, pp. 3680–
3685.

[26] J. A. Sethian, Level Set Methods and Fast Marching Methods. Cam-
bridge University Press, 1999.

[27] J. R. Munkres, Topology. Upper Saddle River, NJ: Prentice Hall,
2000.

[28] J. Shi and J. Malik, “Normalized cuts and image segmentation,” in
Proceedings Conference on Computer Vision and Pattern Recognition

(CVPR). Washington, DC, USA: IEEE Computer Society, 1997.



Motion Interference Detection in Mobile Robots

Juan Pablo Mendoza

The Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213–3890

jpmendoza@ri.cmu.edu

Manuela Veloso

Computer Science Department

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213–3890

mmv@cs.cmu.edu

Reid Simmons

The Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213–3890

reids@cs.cmu.edu

Abstract—As mobile robots become better equipped to au-
tonomously navigate in human-populated environments, they
need to become able to recognize internal and external factors
that may interfere with successful motion execution. Even
when these robots are equipped with appropriate obstacle
avoidance algorithms, collisions and other forms of motion
interference might be inevitable: there may be obstacles in
the environment that are invisible to the robot’s sensors, or
there may be people who could interfere with the robot’s
motion. We present a Hidden Markov Model-based model for
detecting such events in mobile robots that do not include
special sensors for specific motion interference. We identify
the robot observable sensory data and model the states of
the robot. Our algorithm is motivated and implemented on an
omnidirectional mobile service robot equipped with a depth-
camera. Our experiments show that our algorithm can detect
over 90% of motion interference events while avoiding false
positive detections.

I. INTRODUCTION

Autonomous mobile robots have reached the point where

they can start to perform useful tasks in unconstrained

human-populated environments. For robots to become an

efficient means for performing such tasks, they need to be

able to navigate safely and effectively without supervision.

Therefore, robustness during navigation (and, more generally,

during task execution) is an area of increasing importance

in robotics. To perform tasks robustly in unconstrained and

uncertain environments, robots need to reason about their

own state and execution, which is why execution monitoring

–the problem of recognizing and indicating anomalies in

behavior– has gained importance in the robotics community

[1]. This paper presents a Hidden Markov Model (HMM)-

based model for detection of Motion Interference (MI)

events–events that disrupt the normal motion of the robot–

with the purpose of increasing the robustness, and thus the

autonomy, of robots in human-populated environments.

Previous work on execution monitoring for mobile robots

has mostly focused on model-based monitors, such as

the hierarchical monitor of Xavier [2], the knowledge-

based SKEMon monitor [3], and the Unit Circle qualitative

representation-based monitor [4], in all of which properties

such as the dynamics of the mobile robot are explicitly

modeled. More recently, there has also been robotics work

in model-free monitors [5], in which fault detection arises

solely from observing the robot’s behavior, rather than from

a predictive model. The model presented in this paper

Fig. 1: The CoBot mobile service robots. CoBot robots au-

tonomously perform tasks in human-populated environments,

often without any supervision. This makes robustness during

navigation a particularly relevant problem.

more closely resembles some estimation-based methods (e.g.,

using HMMs or Kalman Filters) that have been used for

execution monitoring of outdoor robots [6], [7] and planetary

rovers [8], [9]. In contrast to these methods, however, where

the dynamics or the parameters of the robot are explicitly

given, our model is built as an observer outside of the

robot’s existing architecture: the monitor builds a model from

navigation data, such as driving commands and measurable

velocity, as opposed to using pre-existing knowledge of the

robot’s properties. In this respect, our model takes some ideas

from activity recognition work [10], [11], where the inner

workings of the system to be described are unknown, yet

behaviors are successfully classified. In some ways, then,

our approach combines strengths from both model-based and

model-free monitors: while an explicit model of the robot’s

behavior is built, this model is learned from observed data,

which potentially allows for modeling of complex behaviors

whose properties might be too difficult to define analytically.

II. THE MOTION INTERFERENCE DETECTION PROBLEM

The robotic platform used to test the algorithm presented in

this paper is the CoBot service robot (Figure 1). CoBots are



(a) (b) (c)

Fig. 2: Types of Motion Interference considered in this paper: (a) Collision against a partially detectable obstacle, (b) Being

held by a person, and (c) Having one or more wheels stuck

equipped with an omnidirectional wheeled base for motion,

laser range-finders and/or Microsoft Kinects for obstacle

avoidance and localization in the environment and cameras.

The level of autonomy of the CoBots is very high, having

navigated more than 8.7 km while autonomously completing

service tasks requested by inhabitants of the Gates-Hillman

Center at Carnegie Mellon University [12]. However, the

CoBots’ ability to reason about their own state and per-

formance during execution is still limited. The goal of this

paper is to provide a model to increase the robustness of

CoBots’ (and, more generally, mobile robots’) autonomous

navigation by detecting when some environmental or internal

event is interfering with its regular motion. For the remainder

of this paper, we focus on the following types of motion

interference, as they are the most relevant to the CoBot’s

execution, though we believe our algorithm is more generally

applicable to motion interference.

Collision with partially detectable objects (collision)

While the fairly reliable perception mechanisms

of the CoBots, combined with obstacle avoidance

algorithms, can provide successful local navigation

the vast majority of the time, there are some ob-

stacles that are either undetectable or only partially

detectable to the sensors. Transparent obstacles are

particularly challenging for such light-based sen-

sors, but opaque obstacles can also be only partially

detectable. For example, the top of the table shown

in Figure 2a is too tall for either the Kinect or the

laser range-finder to perceive it. While the robot

avoids the leg of the table successfully, it cannot

detect and avoid the much larger full width of the

table, leading to potential collisions.

Being held by a person (hold)

In some situations, a person may want to stop the

CoBot’s motion, and although the CoBots have

emergency stop buttons, a person’s first reaction

may reasonably be to directly stop it by holding it,

as shown in Figure 2b. Furthermore, the effect of

being suddenly grabbed and stopped seems similar

to the effect of a head-on collision between the

robot and a transparent or otherwise undetectable

wall. In either case, it is important for the robot to

be able to detect the situation and react accordingly.

Having one or more wheels stuck (stuck)

Several events in the environment might cause one

or more of the robot’s wheels to get stuck. For ex-

ample, a person might accidentally place their foot

in front of the robot’s wheels during navigation (see

Figure 2c), or the robot could have trouble passing

over gaps or level changes, such as the entrance into

an elevator. A similar type of motion interference

might occur independently of the environment due

to malfunctioning wheel motors.

Note that all of the described forms of interference will

have a similar effect on the robot: the robot’s motion in the

direction of travel will be impeded, and thus its velocity is

going to be diminished to a value smaller than the given

velocity command. Because of this similarity, all of these

events are grouped for this paper under the category of

Motion Interference, and are treated as equivalent events.

Experimental results in Section IV support this abstraction.

However, in the case of non-equivalent events (e.g., a person

pushing the robot forward, or a defective motor given only

a fraction of the expected current), the model can readily

support detection of different types of events by adding the

appropriate states to the model of Section III.

III. A HMM FOR MOTION INTERFERENCE DETECTION

Hidden Markov Models are particularly well-suited for

modeling an MI detector: even though the CoBots don’t have

sensors to directly detect MI events, the occurrence of these

events can be inferred from the observations that are available

to the robot. HMMs provide an appropriate framework to

perform these inferences.

A Hidden Markov Model M can be defined as a 5-tuple

M = {S,Π, A,O,B}, where



Stop

Accel

Decel

Constant

MI

Fig. 3: Diagram of the HMM modeling the Motion In-

terference Monitor. Ellipses represent hidden states, while

arrows represent transitions between states. (While no arrows

are shown in transitions which the data determined had

probability 0, no transitions were explicitly forbidden)

S = {si} the set of hidden states in M

Π = {πi} the initial distribution of M such that

P (S1 = si) = πi

A = {aij} the transition probabilities such that

P (St+1 = sj |St = si) = aij
O = {~oi} the space of possible observations

B = {bi} the emission probabilities such that

P (~oj |St = si) = bi(~oj)
For the detector described in this paper, each possible

simple behavior of the robot is represented by a state in S.

The possible behaviors assigned to the CoBot for purposes of

MI detection are S = {stop, accel, constant, decel,mi} rep-

resenting the states where the robot is stopped, accelerating,

at constant positive speed, decelerating, and having its motion

interfered, respectively. A diagram for the resulting HMM is

shown in Figure 3. Since the robot always starts from the

stop state, the respective values for Π are Π = {1, 0, 0, 0, 0}.

True transition probabilities between pairs of states were

approximated from a large amount of hand-labeled gathered

training data. In general, given a set of observations accom-

panied by state labels St for all times 0 ≤ t ≤ T ,

aij =

∑T−1

t=0

(

δSt,si · δSt+1,sj

)

∑T−1

t=0
δSt,si

, (1)

where δi,j is the Kronecker delta function. That is, the

transition probability from state si to sj is given by the

total number of labeled observations in which the robot

transitioned from state si to sj divided by the total number of

labeled observations in which the robot transitioned from si
to anywhere. The only transition probabilities not calculated

using Equation 1 were transitions into MI ai,mi∀i 6= mi.

Given the rarity of MI events in normal CoBot runs, MI

events had to be artificially created to gather significant data

for experimenting, and thus the real probabilities to transition

from a different state to the MI state are extremely difficult

to gather. These values were thus set to ai,mi = pmi, where

pmi is the only parameter for the MI detector. Tuning pmi has

the effect of varying the total number of MI events detected,

and therefore it serves as a parameter to find the desired

trade-off value between precision and recall of MI events

(see Section IV for more details).

Observation space O may vary greatly depending on the

sensors of the specific robot and the type of event that needs

to be detected. For the task of detecting MI events in the

CoBot, observations were of the form

~ot = (ut − vt, at, jt, ut), (2)

where ut is the commanded forward velocity of the robot,

and vt, at and jt are the forward velocity, acceleration and

jerk of the robot as measured by its wheel encoders. The

reasoning for each observation and the method for obtaining

it are the following:

Velocity difference ut − vt.

One can expect that when the robot’s movement

is being interfered, its measured velocity would be

significantly lower than its commanded velocity.

While ut is directly obtained as a command, vt
needs to be calculated from the individual encoder

velocities. Velocity vt was obtained from the least

squares solution transforming the encoder values

for each of the four wheels to forward, sideways

and rotational components of the robot’s velocity.

Acceleration at.

There are times during normal (i.e., not MI) robot

motion when the velocity difference ut − vt is

significantly positive. For example, when the robot

accelerates from a stopped position to full speed,

the change in ut is discrete, while vt smoothly

changes from 0 to ut over time. Thus, ut−vt alone

is not a sufficient observation to detect MI events.

Therefore, acceleration at is added as an additional

layer to distinguish between these events: while

an accelerating robot has a positive acceleration, a

robot during a MI event usually has either negative

(at the moment the MI event begins) or near-zero

(once velocity has stabilized) acceleration. at can

be obtained by applying linear regression to the

last Na measures of velocity vt as a function of

t, and then getting the slope of the resulting line.

Even though at could be obtained from only the

last 2 values of vt and t, a larger number Na is

used to reduce the effects of noise in the data. Na

must be large enough to negate the effects of noise,

but small enough to provide a meaningfully recent

value for at. For this paper, Na = 4.

Jerk jt.

In the event that the robot’s motion is disrupted

while the robot is accelerating, it might be the

case that the positive acceleration continues for a

while until the final velocity under the disturbance

is reached. In these cases, at might be within the

normal parameters of an accelerating motion at

any instant, but the change in acceleration in time

may provide valuable information to distinguish

MI acceleration from normal acceleration. For this



reason, the second time derivative of the velocity

is also used as part of the observations. Jerk jt is

obtained by dividing the difference between the two

last acceleration measurements by the difference in

time between measurements. However, since jerk

is significantly more sensitive to noise in the data

than acceleration, a larger number of measurements

Nj ≥ Na is used to calculate the accelerations to

be used for jt, for purposes of further smoothing

of noise at the cost of a more outdated jerk mea-

surement. For this paper, Nj = 8. Various values

of Na and Nj were tested on small portions of the

data, and the final values were those that maximized

performance in these portions.

Velocity command ut.

The final attribute of the observation is simply

the commanded velocity ut. The purpose of this

attribute is to distinguish between stop , where

ut = 0, and constant, where ut 6= 0. Otherwise

these states would have identical properties.

There are some design decisions behind the use of the

attributes of Equation 2 as observations. First, notice that

only the forward velocity, acceleration and jerk of the robot

are used. While the CoBot’s base is omnidirectional, most

of its movements are restricted to the forward direction (plus

rotations) because its sensors are pointing forward. Therefore,

using only the forward direction has the benefit of requiring

estimation of fewer parameters at little cost. Furthermore

while the CoBot has other sensors (e.g., Kinect) that could

provide estimates of velocity apart from the encoders, for

this paper only encoder estimates were used. While encoders

provide the simplest method for velocity estimation, the

biggest concern with using them as the only estimator is

that, on extremely slippery surfaces, the robot’s wheels could

keep spinning at the commanded velocity even during an MI

event. We determined, however, that even in the most slippery

surfaces in the CoBots’ environment (i.e., hardwood floors),

slipping was not enough to make MI events undetectable

using only encoder-based velocities. If this were not the case,

however, additional sources of velocity information could be

added as observations at the cost of additional parameter

estimation.

Finally, emission probabilities B are calculated from hand-

labeled training data in a similar manner to transition prob-

abilities A. For the specific monitor described in this paper,

the data is treated as being generated by conditionally inde-

pendent Gaussian variables. The Gaussian assumption fits the

data relatively well, but the independence assumption does

not hold for the data in question: velocity, acceleration and

jerk are strongly correlated. While the general model readily

supports treating data as conditionally dependent, there is

a trade-off between higher model accuracy at the cost of

more parameter estimation and processing (conditionally de-

pendent) and lower model accuracy with a simpler and more

efficient model (conditionally independent). For the purposes

26 28 30 32 34 36 38

Control Run

time     

F
o

rw
a

rd
 V

e
lo

c
it
y

 

 

command

measured

26 28 30 32 34 36 38
time     

P
(S

t=
s

i|O
)

 

 

stop accel constant decel MI

Fig. 4: Sample of data gathered from a normal (control) run

of the CoBot navigating in its environment. The top figure

shows the velocity command and the measured velocity

(meters per second) over time (seconds)), while the bottom

stacked probability figure shows the respective assigned

probabilities P (St = si|O) (each between 0 and 1) for each

state given the sequence of observations.

of this paper, the simpler model provided satisfactory results

(see Section IV), and therefore the it was preferred over the

more complex one. Rewriting the observation attributes as

(o1 ≡ ut − vt, o2 ≡ at, o3 ≡ jt, o4 ≡ ut) for brevity, the

emission probabilities can then be written as:

bi(o1, o2, o3, o4) = P (o1, o2, o3, o4|St = si)

=

4
∏

j=1

P (oj |St = si)

=





3
∏

j=1

f(oj ;µi,j , σ
2
i,j)



Pi(o4), (3)

where the individual probabilities are defined as:

f(oj ;µi,j , σ
2
i,j) =

1

σi,j

√
2π

e
−

(oj−µi,j)
2

2σ2
i,j (4)

Pi(o4) =







δ0,o4 if i = 1
1 if i = 2, 4, 5

1− δ0,o4 if i = 3
(5)

Equation 4 simply describes a Gaussian probability distri-

bution whose parameters were obtained from training labeled

data, while Equation 5 describes the probability of observing

a certain velocity command ut = o4 depending on the current

state: in state stop, o4 = 0 always; in state constant, o4 6= 0,

and in any other state o4 could be anything.

Having defined all S,Π, A,O,B, the HMM-based MI de-

tector is fully defined. Now, given any sequence of observa-



0 1 2 3 4

Collision from Stop

time     

F
o

rw
a

rd
 V

e
lo

c
it
y

 

 

command

measured

0 1 2 3 4
time     

P
(S

t=
s

i|O
)

 

 

stop accel constant decel MI

(a)

4 5 6 7 8

Hold from Accel

time     

F
o

rw
a

rd
 V

e
lo

c
it
y

 

 

command

measured

4 5 6 7 8
time     

P
(S

t=
s

i|O
)

 

 

stop accel constant decel MI

(b)

0 2 4 6 8

Stuck from Constant

time     

F
o

rw
a

rd
 V

e
lo

c
it
y

 

 

command

measured

0 2 4 6 8
time     

P
(S

t=
s

i|O
)

 

 

stop accel constant decel MI

(c)

Fig. 5: Examples of data gathered from MI runs. As in Figure 4, top figures show velocities while bottom figures show

probabilities for each state, as predicted by the monitor. Figures show (a) a collision against a partially detectable obstacle

right as the robot starts to move, (b) somebody holding the robot as it is accelerating, and (c) something interfering with a

wheel’s rotation when the robot is traveling at constant speed. Vertical dotted lines indicate the beginning of an MI event,

while rise in P (St = smi|O) above 0.5 indicates detection of the event.

tions, the probability of being in state MI at each time can be

calculated using an algorithm such as the forward algorithm

described in [13]. Then, if P (St = smi|O) > thresh (for

this paper, thresh = 0.5), an MI event has been detected at

time t. Changing the value of thresh varies the sensitivity of

the detector, but for this paper it was kept fixed, as parameter

pmi already served this purpose.

IV. DETECTOR PERFORMANCE RESULTS

A. Methods

To gather the necessary data for training and testing of

the detector, two long control runs (no MI events) and 29

short test runs (with MI events) were conducted on the CoBot

robot. For each run, the robot was instructed to autonomously

move from its current location to a different location in

the building; the driving commands, encoder-based velocity

and times of MI events (perceived by a human observer)

were then recorded. The control runs, during which a human

supervisor made sure no MI events happened, lasted about

3 minutes each, and gave a total of 7145 observations. A

subset of the data gathered during a control run is shown in

Figure 4. The test runs were each much shorter, focusing on

the MI event, and giving a total of 8101 observations. Of the

test runs, 15 contained collision events, 6 contained hold

events, and 8 contained stuck events. Figure 5 shows the

data gathered from three of these experiments.

To train and test the detector, each observation was man-

ually labeled as stop, accel, constant, decel or MI. Since

MI times were previously recorded, each observation during

those periods was labeled as MI. When the robot travels

at constant speed, the standard deviation of the encoder-

measured velocity is about σ = 0.028m/s. From this, each

observation where the velocity command ut was 0 and the

measured velocity vt was within σ of 0 was labeled as stop.

Similarly, each observation where |vt − ut| ≤ σ, ut 6= 0
was labeled as constant. To label accel (or decel), every

observation after an increase (or decrease) of ut, and while

|vt − ut| > σ was labeled as accel (or decel, respectively).

Other observations (i.e., noisy observations where |vt−ut| >
σ but ut had been constant) were labeled as constant.

The detector’s performance was then tested using leave-

one-out cross-validation: for a given parameter set, 31 tests

were conducted (one for each labeled run of the robot). For

test i, all runs except for run i were used for training the

detector (i.e., finding transition and emission probabilities),

which was then tested on run i. A true positive detection

happened when at least one frame within a MI-labeled

interval was classified as MI. A false positive detection was

defined as each group of consecutive frames outside of the

MI-labeled intervals that were classified as MI, given that

such group was not a continuation of a true positive detection

(the probability of being in state MI could take a few frames

to decay after an MI event; this was not considered a false

positive). A false negative was defined as each MI-labeled

time interval where no MI event was detected.

B. Results

The goal of the detector presented in Section III is to

detect MI events reliably and within a useful time from initial

interference. The proposed measures for judging the model

are therefore precision (the fraction of detected MI events

that were true MI events) and recall (the fraction of true MI

events detected) rates of detection, as well as the average and

median time to detection from when interference starts.

The only parameter of the model, transition probability

pmi, was varied to find the trade-off between precision and



0.75 0.8 0.85 0.9 0.95 1
0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

c
is

io
n

Fig. 6: Trade-off between precision and recall rates for

motion interference detection, as parameter pmi is varied.

recall rates. For each tested parameter value, a full test –i.e., a

set of 31 cross-validation tests as described in Section IV-A–

was conducted, with the results of Figure 6. For the purposes

of the CoBot project, optimization for high precision was

prioritized, given that the project focuses on giving a high

degree of autonomy to the robot, and stopping execution for

false positive detections would hinder this autonomy.

An optimal parameter value for our purposes was pmi =
5×10−8, since it had the highest recall rate for which 0 false

positives were detected. For this value, the precision rate was

100% while the recall rate was 93.1%; the average time to

detection from initial motion interference was t̄ = 0.647
seconds. The median time to detection was significantly

lower than this, at tm = 0.36 seconds, reflecting the fact

that a few outlier detections took significantly longer than

the average detection time. These outliers were mostly MI

events that started from the stop state (e.g., Figure 5a); this

can be explained by the fact that the wheel’s accelerations

looked normal in the beginning, even if they were mostly

slipping while spinning, before their behavior was abnormal

enough to be detected as an MI event. This suggests that

perhaps adding an estimate of velocity from a different

sensor as an observation could help diminish the average

time of detection. Overall, however, the detection time was

usually well under a second, which is a useful time-frame for

many applications, such as stopping when being held from a

dangerous situation, or reacting to an inescapable collision.

V. CONCLUSION

We presented an HMM-based model for Motion Inter-

ference (MI) detection for a mobile robot. We identified

the sensory observables of the robot and three types of

motion interference. Through experiments conducted on the

CoBot service robot, we have shown that such a model can

successfully detect events that are not directly perceivable

by the robot. Our work in general contributes an approach

in which robots can reason about specific events by looking

at their internal and external sensed state with input from

their commanded controls. While this work focuses on the

detection of MI events rather than actions to recover from

them, we considered a base stop command to the robot

when the event is detected, and will pursue research on other

possible actions.

The MI events we considered limit the forward velocity of

the robot, but other types of MI events could be detected

using a similar approach (e.g., pushing the robot so that

its measured velocity is above its velocity command). It is

in principle feasible to detect anomalies in the behavior of

the robot even if these anomalies have not been explicitly

modeled: the formulation of HMMs allows us not only to

calculate the probability of being in a particular state given a

series of observations, but also the probability that a model

describes the observable of a robot given a particular series

of observations [13]; one could thus expect that a robot that

has fallen in an unmodeled state would yield a significantly

different model probability distribution than a robot running

normally (i.e., within the model). In this way, HMM-based

models for execution monitoring could provide a natural

model for implementation of hybrid model-based and model-

free monitoring. Finding whether this is a practical method

to detect anomalies in our robots is a topic of future research.

VI. ACKNOWLEDGMENTS

This work was partially supported by the National Science

Foundation award number NSF IIS-1012733 and the AFOSR

grant number FA2386-10-14138. The views and conclusions

contained in this document are those of the authors only.

REFERENCES

[1] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics

and Autonomous Systems, vol. 53, no. 2, pp. 73–88, 2005.
[2] J. Fernandez and R. Simmons, “Robust execution monitoring for

navigation plans,” in Proceedings of IEEE Int. Conf. on Intelligent

Robots and Systems, 1998.
[3] A. Bouguerra, L. Karlsson, and A. Saffiotti, “Monitoring the execution

of robot plans using semantic knowledge,” Robotics and Autonomous

Systems, vol. 56, no. 11, pp. 942–954, 2008.
[4] H. Liu and G. M. Coghill, “A model-based approach to robot fault

diagnosis,” Knowledge-Based Systems, vol. 18, no. 4-5, pp. 225–233,
2005.

[5] O. Pettersson, L. Karlsson, and A. Saffiotti, “Model-free execution
monitoring in behavior-based robotics,” IEEE Trans. on Systems, Man

and Cybernetics, Part B, vol. 37, no. 4, pp. 890–901, 2007.
[6] S. Scheding, E. Nebot, and H. Durrant-Whyte, “The detection of faults

in navigation systems: A frequency domain approach,” in Proceedings

of the Int. Conf. on Robotics and Automation, 1998, pp. 2217–2222.
[7] E. M. Nebot, H. F. Durrant-Whyte, and S. Scheding, “Frequency

domain modeling of aided GPS for vehicle navigation systems,”
Robotics and Autonomous Systems, vol. 25, no. 1-2, pp. 73–82, 1998.

[8] R. Washington, “On-board real-time state and fault identification for
rovers,” in Proceedings of the IEEE Int. Conf. on Robotics and

Automation (ICRA). IEEE, 2000, pp. 1175–1181.
[9] V. Verma, G. Gordon, R. Simmons, and S. Thrun, “Particle filters

for rover fault diagnosis,” in IEEE Robotics & Automation Magazine

special issue on human centered robotics and dependability, 2004.
[10] D. Govindaraju and M. Veloso, “Learning and recognizing activities in

streams of video,” in Proceedings of the AAAI Workshop on Learning

in Computer Vision, 2005.
[11] K. Han and M. Veloso, “Automated robot behavior recognition,”

in Proceedings of IJCAI Workshop on Team Behaviors and Plan

Recognition, 1999.
[12] M. Veloso et al., “Symbiotic-autonomous service robots for user-

requested tasks in a multi-floor building,” 2012.
[13] L. R. Rabiner, “A tutorial on hidden Markov models and selected

applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.



Mobile Robot Fault Detection based on
Redundant Information Statistics

Juan Pablo Mendoza
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

jpmendoza@ri.cmu.edu

Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

mmv@cs.cmu.edu

Reid Simmons
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

reids@cs.cmu.edu

Abstract— Detecting and reacting to faults (i.e., abnormal
situations) are essential skills for robots to safely and au-
tonomously perform tasks in human-populated environments.
This paper presents a fault detection algorithm that statistically
monitors robot motion execution. The algorithm does not
model possible motion faults, but it instead uses a model of
normal execution to detect anomalies. The model of normal
execution is based on comparisons between redundant sources
of information; specifically, wheel encoder readings and local-
ization algorithm output are used as the redundant sources
of displacement information. The algorithm was implemented
on a service robot that often navigates in a human-populated
environment without supervision. Experimental results show
that the algorithm can detect even minor motion faults and
stop execution immediately to guarantee safety to the humans
around the robot.

I. INTRODUCTION

As autonomous mobile robots start to populate human
environments, safety during execution is becoming a pri-
mary concern for researchers and developers. This rising
necessity for robustness in unconstrained environments has
made execution monitoring –the problem of recognizing and
indicating anomalies in behavior– increasingly prominent in
the robotics community [6]. An important feature of uncon-
strained, human-populated environments is their richness: in
such complex environments, it is not realistic to assume that
the robot’s designers can foresee every way in which execu-
tion could fail. Therefore, execution monitors that explicitly
require faulty execution models (e.g., motion interference [4]
or wheel failures [10]) are helpful in detecting faults quickly,
but not sufficient to detect unforeseen faults. This work, on
the other hand, does not assume any previous knowledge
of the ways in which execution could fail, but instead only
requires some normal execution model, and uses this model
to detect deviations from normal behavior. Once a significant
deviation from normal behavior has been detected, the robot
can, at the very least, stop immediately until a qualified
operator can fix the problem.

For this paper, normal execution models are created us-
ing redundant information: equivalent information that is
provided by multiple sources. For example, robot location
can be provided by both Wi-Fi signal and visual landmarks.
Information obtained from these multiple sources is approx-
imately equal under normal circumstances, and significant
deviations from this are symptoms of failure in execution.

Fig. 1: The CoBot mobile service robots. CoBot robots
autonomously perform tasks in human-populated environ-
ments, often without any supervision. Autonomous execution
monitoring during navigation is thus essential for the safety
of people around them.

The robotic platform used to test the algorithm presented
in this paper is the CoBot service robot (see Figure 1). The
CoBots are exposed to unsupervised physical interaction with
humans constantly, having navigated among humans more
than 100 km while autonomously completing service tasks
requested on demand by inhabitants of the Gates-Hillman
Center at Carnegie Mellon University [9]. Since the CoBots
often perform these tasks without the supervision of any
member of the developing team, safe autonomous interac-
tion with humans is a high research priority. Each CoBot
is equipped with an omnidirectional four-wheel base for
motion (and encoders for odometry), laser range-finders or
Microsoft Kinects for obstacle avoidance and localization in
the environment and cameras. Under normal execution, many
precautions are taken to ensure safe execution around humans
(e.g., if there is no safe path around a human, the CoBots stop
and ask the human to move, instead of attempting to steer
around him or her). However, these algorithms may fail under
abnormal circumstances, such as malfunctioning obstacle-
detection sensors, leading to potentially unsafe execution.
Prompt detection and recovery from abnormal situations is



thus essential for robustness and safety of the CoBots.

II. PROBABILISTIC FAILURE DETECTION

The monitor described in this paper operates by comparing
equivalent observations (at time t) ot1 and ot2 given from two
separate sources. During normal execution, the difference
xt = ot1− ot2 between them is expected to be close to 0.
However, in real-world applications, with noisy sensors and
actuators, this difference at each time-step is usually not
exactly 0, and even in the limit as time goes to infinity,
the expected difference may be close to but not exactly
0. Because of this, the approach used in this work is
probabilistic in nature, incorporating uncertainty naturally
into the model.

Formally, the method for detecting faults is the following:
Given a set of comparison observations X = {x1,x2, . . . ,xT}
with sample mean X̄ , the algorithm estimates the probability
that the true mean µ of the underlying model lies within
some acceptable interval [µ−,µ+] around 0. That is, the
algorithm calculates P(µ− ≤ µ ≤ µ+). To do this, one can
first define a standardized variable Z:

Z =
X̄−µ√

σ2

n

, (1)

where σ2 is the variance of X and n is the size of X .
The standardized problem then becomes that of calculating
P(Z− ≤ Z ≤ Z+), where Z− and Z+ are calculated analo-
gously to Z from µ+ and µ− respectively. Given that these
variables are in standard form, the desired probability can
be obtained straightforwardly from the standard cumulative
normal distribution function Φ(z):

P(µ− ≤ µ ≤ µ+) = P(Z− ≤ Z ≤ Z+)

= P(Z ≤ Z+)−P(Z < Z−) (2)
= Φ(Z+)−Φ(Z−)

After calculating this probability, detecting failures in
execution is reduced to choosing a threshold probability
pthresh below which it is too unlikely that the observed data
still fits the expected model.

III. REDUNDANT INFORMATION IN THE COBOT

The CoBots have several sensors and algorithms from
which redundant information can be obtained to monitor their
execution. The algorithm presented here can be used on any
element of the following non-exhaustive list of redundant
information:
Location and displacement. Several sensors and algo-

rithms can provide information at each timestep about
the robot’s location or displacement. Currently, the
commanded velocity, wheel encoders, laser range-finder
and Microsoft Kinect are used to localize the robot using
an augmented particle filter [1], [2]. Each one of these,
including the output of the localization algorithm itself,
can be used as a source of location or displacement
information. The CoBots also have infrared detectors

for identification of pre-specified landmarks in the en-
vironment, which can provide this information as well.
Furthermore, streams of images from the RGB cameras
could be used to obtain location or displacement infor-
mation, with algorithms such as visual odometry [5] or
visual landmark recognition [8], although these are not
currently implemented on the CoBots.

Time to task completion. The knowledge base of the
CoBots include an estimate of how long each of its
tasks is expected to take [3]. This knowledge can be
computed both at the higher levels (e.g., how long it
takes to fetch an object from a certain office) as well
as the lower levels (e.g., how long it takes to traverse
a particular segment in its navigation planning graph).
This expected knowledge can be compared to the actual
measured time of task completion to look for faults in
execution.

Expected object locations. One of the CoBots’ algorithms
[7] for finding objects in their environment queries the
internet to infer the probability that a certain object will
be found in a certain space (e.g., the probability that
coffee is found in the kitchen). While searching for these
items in their environments, the CoBots could compare
the inferred probability returned by this algorithm to the
actual experienced frequency with which it finds such
objects, to find abnormal situations (e.g., if someone is
actively hiding all the coffee from the CoBots).

One of the most immediate safety concerns for the CoBots
is the need to be confident that the robots are moving as
expected while navigating among humans, without running
into problems such as wheel motor or encoder malfunctions,
collisions against imperceptible obstacles, getting lost, and
others. Many of these motion failures can lead to dangerous
situations (e.g., robots drifting to unsafe territory or attempt-
ing to drive through unperceived objects), and therefore
this paper focuses on detection of motion failures. (Once
a motion failure has been detected, the simplest safe action
is taken: the robot stops immediately.) The monitor in this
paper was thus trained to detect failures in displacement data,
and the two redundant sources were the wheel encoders and
the output of the localization algorithm. These sources of in-
formation were chosen because their output can be relatively
simply used to obtain displacement at each timestep.

To obtain displacement (in robot x, y, and heading θ

coordinates) from the wheel encoders, the displacement of
each of the four encoders is mapped to x, y and θ using
a least squares solution. To obtain displacement from the
localization algorithm, x, y and θ displacement in world
coordinates (obtained by comparing locations at consecutive
timesteps) are transformed to robot coordinates by applying
the appropriate rotation. Figure 2a shows the resulting normal
execution displacement data as obtained from these two
sources. Notice that the noise in this data is very significant,
and therefore a statistical approach to fault detection is
necessary.

To fully define a monitor based on these observations, pa-
rameters σ2, µ−, µ+ and pthresh must be defined for each of



0 5 10 15
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

D
is

pl
ac

em
en

t (
m

)

 

 
Source: localization
Source: encoders

(a)

0 5 10 15
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

D
is

pl
ac

em
en

t (
m

)

 

 
Source: localization
Source: encoders

(b)

0 5 10 15
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

D
is

pl
ac

em
en

t (
m

)

 

 
Source: localization
Source: encoders

(c)

Fig. 2: Encoder and localization-based displacement data. (a) shows the first 15 seconds of data during normal execution,
while (b) and (c) show similar periods with ε = −0.1 and ε = −0.4 respectively. Note that there is no obvious difference
between ε = 0 and ε =−0.1 from visual inspection, but at ε =−0.4, the abnormal behavior is more clear

the dimensions (x,y,θ). For this paper, these parameters were
chosen to be equal for each of the dimensions for simplicity,
although this does not need to be the case. Also, parameter
values were chosen to be conservative towards autonomy
—i.e., they were chosen with the goal of minimizing false
positive fault detections. For the experiments in this paper,
σ2 = 0.001 was chosen as a conservative approximation of
the measured σ2 = (0.00019,0.00005,0.00012) for (x,y,θ)
respectively. Similarly, µ− = −0.001 and µ+ = 0.001 were
chosen as conservative approximation of the measured long-
term error during normal execution (the measured value was
µ = (−0.0007,−0.0003,−0.0004). Finally, pthresh = 0.01
was chosen to be low enough so that no false positives were
detected during normal execution.

IV. EXPERIMENTS AND RESULTS

To test the execution monitor’s performance, a wheel
encoder malfunction was artificially induced. During each
timestep of the CoBot’s navigation, the reported displace-
ment of one of the four encoders (always the same one)
deviates from the true encoder displacement reading by
a pre-specified fraction ε of the true displacement. For
example, ε = 0 represents normal execution, while ε =−0.1
represents a situation where three of the wheel encoders work
normally, but the fourth one reports 0.9d, where d is the
true displacement of the fourth wheel. Figures 2b and 2c
show the displacement data from wheel encoders as well as
localization algorithm output for two values of ε . For the
experiments in this paper, all values of ε where less than
0; however, preliminary tests suggest the monitor can detect
faults with ε > 0 as well.

Different values of ε were tested to determine how de-
tection times would vary as a function of how subtle the
fault to be detected was. For each ε value, 10 tests were
run to find the average time to detection. For each test, the
robot was instructed, at a high level, to autonomously move
to different destinations in the building, avoiding obstacles
and interacting with people as usual. During each test, every
time a new wheel encoder observation was received, P(µ− ≤

µ ≤ µ+) was calculated as shown in Equation (2), using all
the observations received by that time. If P(µ− ≤ µ ≤ µ+)
fell below pthresh, a fault was detected. Results are shown
in Figure 3. As is shown in the figure, and consistent
with intuition, the time required to detect faults increases
significantly as the tested fault gets more subtle and thus
more observations are necessary to be confident that they
were not produced by the expected model. Some faults more
minor than ε = −0.05 (e.g., ε = −0.01 was tested) are not
detectable by the monitor, since these subtle faults maintain
the true deviation µ within the acceptable margin [µ−,µ+]
even as time approaches infinity.

V. FUTURE WORK

While the monitor presented in this paper has shown
promising detection results for detection of one type of
unmodeled failure, two directions for future work seem clear.

A first direction to expand this work is to test the monitor
on several different faults. One of the key strengths of the
monitor presented here is that it does not explicitly model
faults, but instead it uses information redundancy to assess
normality. This means that other kinds of motion failures
(e.g., collisions, getting lost) should also be detectable by this
monitor. Preliminary tests were conducted to test whether
this monitor could detect collisions against imperceptible
obstacles; on average, collisions were detected 1.98 seconds
after the collision started (significantly slower than the 0.65
seconds in [4], but without explicitly modeling the fault).
Showing detection of multiple kinds of unmodeled faults is
essential to show the flexibility of this monitor.

As a second direction for future work, notice that one of
the biggest limitations of the monitor, as presented in this
paper, is that all faults are considered to happen globally. At
each timestep, all the observations accumulated throughout
the current run of the robot are grouped into a single statistic,
which is then analyzed to determine its normality. This global
assumption works well for faults that do not depend on the
robot’s state, but other faults (e.g., collisions or getting lost)
are very much localized in specific sets of states of the



−0.5 −0.4 −0.3 −0.2 −0.1 0
0

50

100

150

200

250

300

350

400

450

  2.8   5.5   7.2  15.2

 49.7

396.2

Encoder output error

T
im

e 
to

 fa
ul

t d
et

ec
tio

n 
(s

)

(a)

−0.5 −0.4 −0.3 −0.2 −0.1 0
0

10

20

30

40

50

60

 2.8
 5.5

 7.2

15.2

49.7

Encoder output error

T
im

e 
to

 fa
ul

t d
et

ec
tio

n 
(s

)

(b)

Fig. 3: Time to fault detection as a function of the chosen fractional error ε . (a) shows all the experimental results, while
(b) leaves out ε =−0.05 for ease of visualization of the rest of the data. Error bars mark one standard deviation of the data.

robot (e.g., a particular location, velocity or time). This may
be part of the reason collision detection times were slower
than in previous work. The authors are currently working
on an extension of the monitor that will gather observations
from particular areas of the robot’s state space to find areas
in which faults have occurred. Aside from such a model’s
obvious advantage of being able to detect localized faults
more effectively, it will also contribute to the problem of
fault isolation: the robot will be able to communicate not
only that a fault has happened, but also in what region of
the state space of the robot the fault happened (e.g., a fault
happened in a certain area of the building, or only when the
robot was going at a certain speed). Such a monitor would
be significantly more helpful in the areas of fault isolation,
and would allow for more useful fault communication to a
human operator.

VI. CONCLUSION

This paper presented a probabilistic algorithm for fault
detection during robot motion execution. The algorithm does
not need a model of possible faults, but it instead looks
for deviations from normal execution to detect failures. The
algorithm thus does require a model of normal execution
to be provided. For this paper, the model of normal execu-
tion was based on comparing equivalent information from
redundant sources to find statistically significant differences
between them, indicating a fault. Specifically, displacement
data derived from wheel encoder output is compared to
displacement data obtained from a particle filter-based local-
ization algorithm to find statistically significant discrepancies
that indicate a fault in execution.

Experimental results show that the algorithm can consis-
tently detect faults and safely stop when the robot has a
malfunctioning wheel encoder, with malfunctions as small

as 5% off normal wheel encoder values. Further work will
focus on two aspects: testing the monitor for detection of
other safety-critical situations, such as collisions and getting
lost, and expanding the algorithm to be able to detect and
communicate localized faults, and not only global ones. Such
further work will demonstrate the general applicability of the
algorithm as a fault detection and isolation model.

REFERENCES

[1] Joydeep Biswas, Brian Coltin, and Manuela Veloso. Corrective
gradient renement for mobile robot localization. In Proceedings of
IEEE Int. Conf. on Intelligent Robots and Systems, pages 73 – 78.
IEEE, September 2011.

[2] Joydeep Biswas and Manuela Veloso. Depth camera based indoor
mobile robot localization and navigation. In Proceedings of the IEEE
Int. Conf. on Robotics and Automation (to appear). IEEE, 2011.

[3] Brian Coltin, Manuela Veloso, and Rodrigo Ventura. Dynamic user
task scheduling for mobile robots. In Proceedings of the the AAAI
Workshop on Automated Action Planning for Autonomous Mobile
Robots at AAAI 2011, August 2011.

[4] Juan Pablo Mendoza, Manuela Veloso, and Reid Simmons. Motion
interference detection in mobile robots. In Proceedings of IEEE Int.
Conf. on Intelligent Robots and Systems (to appear), 2012.

[5] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry.
2012 IEEE Conference on Computer Vision and Pattern Recognition,
1:652–659, 2004.

[6] Ola Pettersson. Execution monitoring in robotics: A survey. Robotics
and Autonomous Systems, 53(2):73–88, 2005.

[7] Mehdi Samadi, Thomas Kollar, , and Manuela Veloso. Using the web
to interactively learn to find objects. In Proceedings of the Twenty-
Sixth AIII Conference on Artificial Intelligence, 2012.

[8] Stephen Se, David Lowe, and Jim Little. Mobile robot localization
and mapping with uncertainty using scale-invariant visual landmarks.
International Journal of Robotics Research, 21:735–758, 2002.

[9] Manuela Veloso et al. Symbiotic-autonomous service robots for user-
requested tasks in a multi-floor building. Under submission, 2012.

[10] Vandi Verma, Geoff Gordon, Reid Simmons, and Sebastian Thrun.
Particle filters for rover fault diagnosis. In IEEE Robotics & Au-
tomation Magazine special issue on human centered robotics and
dependability, 2004.



Risk-Variant Policy Switching to Exceed Reward Thresholds

Breelyn Kane and Reid Simmons
Robotics Institute

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213
{breelynk,reids}@cs.cmu.edu

Abstract

This paper presents a decision-theoretic planning ap-
proach for probabilistic environments where the agent’s
goal is to win, which we model as maximizing the prob-
ability of being above a given reward threshold. In com-
petitive domains, second is as good as last, and it is of-
ten desirable to take risks if one is in danger of losing,
even if the risk does not pay off very often. Our algo-
rithm maximizes the probability of being above a par-
ticular reward threshold by dynamically switching be-
tween a suite of policies, each of which encodes a differ-
ent level of risk. This method does not explicitly encode
time or reward into the state space, and decides when
to switch between policies during each execution step.
We compare a risk-neutral policy to switching among
different risk-sensitive policies, and show that our ap-
proach improves the agent’s probability of winning.

1 Introduction
Many probabilistic planners seek to maximize expected re-
ward, and do little to incorporate the variance of the reward
distribution when developing a plan for an agent. Therefore,
many planners assume the agent has a risk-neutral attitude.
In competitions, however, one often sees people behave dif-
ferently (e.g., take more risks) when they believe they may
end up losing. For instance, a sports team may play more ag-
gressively when losing, but more defensively when trying to
maintain a lead. This reflects the idea that it does not matter
by how much one wins or loses, as long as the score is in the
agent’s favor. We model this as maximizing the probability
of being above a given reward threshold (e.g. a competitor’s
current top score).

An agent needs to adjust its risk attitudes dynamically to
exceed a threshold and win. For example, a campaign man-
ager may appeal to particular advocacy groups or change the
tone of the candidate’s speech based on the candidate’s po-
sition in the polls. In hockey, if a team is losing, they often
remove the goalie in hopes that having an additional offen-
sive player will increase the chances of a tying goal. This
strategy is risky since it increases the chances of losing by
more goals. If the hockey team were just trying to maximize
its expected goal differential over the season it may never

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

chose to remove the goalie. Intuitively, the idea of an agent
needing to be more aggressive or conservative while execut-
ing a policy parallels a human’s risk-seeking and risk-averse
preferences.

A straightforward approach is to encode cumulative re-
ward explicitly in the state space of a standard Markov De-
cision Process (MDP). Doing so, however, explodes the state
space since the number of different cumulative reward val-
ues is typically very large. We propose an alternate approach
in which multiple policies are generated offline. Then, an on-
line algorithm decides which policy to use based on which
is more likely to achieve the threshold constraint.

The algorithm reasons about the complete distribution of
rewards, not just mean and variance, to make fine-grained
decisions about which policy is most applicable for a given
situation. In particular, we provide an algorithm that decides
when to switch between strategies, at run-time, by estimat-
ing non-parametric distributions of the reward functions for
each of these policies. Agents with risk-sensitive policies to
choose from now have the ability to switch to a policy with a
higher variance in hopes of increasing their chances of meet-
ing the given threshold. We show that by switching policies
in such a manner, the agent will end up doing better (with
respect to the goal of finishing above a certain threshold of
reward) than if it just followed the risk-neutral policy.

2 Background
2.1 Markov Decision Processes
Initially, our algorithm requires a model of the environment.
We formulate this model as a Markov Decision Process, a
mathematical representation of a sequential decision prob-
lem. An MDP is a four-tuple {S,A, T (S,A), r(S,A)} con-
sisting of:

• S : set of states {s0 . . . s∞}
• A : set of actions {a0 . . . a∞}
• T (st, at) : transition function yielding st+1, with
P (st+1|st, at)
• r(st, at) : immediate reward function

Solving an MDP produces a policy, π, that maps states to
actions π : S → A. One approach is to use value-iteration
to find a policy using the value-update rule below. This value
function is also used to estimate the distribution of future

83

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling



discounted reward, as described in section 4.2.

V π(s) = max
a∈A
{R(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)} (1)

2.2 Utility and Risk
Incorporating risk attitudes captures the trade-off between
variance and mean in the distribution of reward outcomes.
For instance, risk-seeking policies tend to have a lower mean
and larger variance (more upside, but also more downside)
than risk-neutral policies. Utility theory provides structure
for making decisions of varying risk attitudes (Pratt 1964). A
utility function maps an agent’s value to a plan of wealth that
represents the agent’s rational choice. Linear utility func-
tions maximize expected cumulative reward and represent
risk-neutral decision makers, while exponential functions
model risk-sensitive decisions. Concave utility functions re-
flect risk-averse decisions, and convex utility functions char-
acterize risk-seeking decisions. The convexity of these func-
tions changes for different risk factors.

When an agent’s utility function is constant for the func-
tion duration (such as linear or exponential) the risk measure
is constant, and this is known as a zero-switch utility func-
tion. Zero-switch utility functions are unrealistic, since deci-
sions often change as wealth level changes. (Liu and Koenig
2008) take this a step further in defining MDPs that have a
one-switch utility function. In the one-switch case, an agent
acting risk-neutral may switch to being more conservative,
which entails one switch from a linear function to a con-
cave exponential function. While this is closer to realistic
decision making, it seems more natural to allow the agent to
switch multiple times between many utility functions, which
is what our approach supports.

3 Related Work
While previous work has investigated switching between
strategies (policies) to achieve different subgoals (Comanici
and Precup 2010), our work instead considers adapting a
strategy with the assertion of risk for a single goal – that
of winning. In defining what it might mean to win, other
works have discussed the idea of using thresholded reward
objective functions (McMillen and Veloso 2007), (Wagman
and Conitzer 2008). Our work differs by not requiring an ad-
versary, by focusing on the use of risk attitudes, not requir-
ing a threshold to be known ahead of time, and by having
the ability to switch strategies during run-time. These works
focus on solving variants of the MDP’s objective function,
and produce a single static policy. For instance, in (Geibel
and Wysotzki 2005), risk is incorporated into the estimated
objective function as a weighting factor.

By not focusing on altering the MDP’s objective function,
our work also trades off computation at execution time for
creating policies more efficiently during planning time. This
tradeoff was also a goal of work done by (Roth, Simmons,
and Veloso 2005) in limiting communication for distributed
agents modeled as DEC-POMDPs.

Another distinguishing characteristic of our work is that
we reason about the complete distribution of a policy’s re-
ward, rather than just the expectation: in particular the re-

ward is modeled as a non-parametric distribution. Other
work that estimates the variance of an MDP (Tetreault, Bo-
hus, and Litman 2007) does so by adding uncertainty to
the MDP model’s parameters. This is done by modeling
the transition probabilities as a Dirichlet distribution and
mapping confidence intervals over transition counts. Our
approach better handles the tails of the distribution, which
is very important for distinguishing the effects of different
risk-sensitive policies.

4 Run-Time Policy Switching
A utility function that maximizes the probability of being
over a given threshold, while representing the entire do-
main, is difficult to know ahead of time. This paper assumes
that function is unknown, and emulates a multi-switch utility
function by deciding which policy to follow (corresponding
to different risk attitudes) during run-time. To accomplish
this, we generate a suite of policies, including a risk-neutral
policy (linear utility function), and risk sensitive policies
(see section 4.1). A risk factor, δ, controls the amount of
convexity for the exponential utility functions.

Then, for each policy, we estimate the complete reward
distribution. This is done by executing (offline) a sufficient
number of trajectories in the original MDP and collecting
statistics on the cumulative rewards achieved at each state.
The distribution of rewards is then modeled as a Cumulative
Distribution Function (CDF) (see section 4.2). Finally, at
each step during run-time, the agent determines which pol-
icy has the highest probability of exceeding the (user spec-
ified) reward threshold, given the current state and cumula-
tive reward, so far. The agent then picks the action associated
with the current state for that policy, executes it, then deter-
mines again which policy to use (see section 4.3).

4.1 Creating Policies
Creating a suite of policies that allow a variety of strate-
gies for the agent to employ, requires a model of the world
in the form of an MDP. While different techniques may be
used to generate the various risk-sensitive policies, we use
the transformation algorithm described in (Koenig and Sim-
mons 1994) and (Liu 2005). This transformation does not
affect the state space, but merely changes the structure of
the MDP to choose actions based on probabilities that now
form an exponential utility rather than a linear utility. The
reason exponential utility functions are used is because they
maintain the Markov property, preserve the decomposability
of planning functions, and they are one of the most common
risk functions. Convex utility functions (Figure 1a) are of the
form:

U(r) = δr, δ > 1

and concave functions (Figure 1b) are of the form:

U(r) = −δr, 0 < δ < 1.

where δ is the risk factor, and r is a reward. (Liu 2005) fur-
ther simplifies the function as :

Uexp(r) = ιδr,

where
ι = sgn ln δ.

84



(a) Convex (risk seeking) (b) Concave (risk averse)

Figure 1: Convex and concave exponential utility functions

To summarize the approach described in (Koenig and
Simmons 1994), the transition probabilities of the origi-
nal MDP are transformed by multiplying them by a func-
tion of risk and the immediate rewards are also trans-
formed. Specifically, all non-goal state transition probabil-
ities are converted to P (s′|s, a)δr(s,a). The original prob-
abilities add up to one, but transforming the probabilities
cause them to decrease depending on the risk factor. Since
the transformed probabilities no longer add up to one, an
additional sink state is introduced where the probability is
1 −

∑
s′∈S P (s

′|s, a)δr(s,a). The larger the risk factor, the
greater chance the agent has of falling into this sink state,
and the more it is encouraged to take riskier actions. There-
fore, increasing the risk parameter, δ, generates policies that
select increasingly riskier actions. Models with mixed posi-
tive and negative rewards, known as arbitrary rewards, re-
quire certain properties to hold, described in (Liu 2005).
Positive rewards cause the initial MDP probabilities to be
scaled to a value less than or equal to the reward, which
might be greater than one, so arbitrary rewards are trans-
formed to [0,1].

4.2 Estimating the Reward Distribution
The next step is to empirically estimate the (non-parametric)
distribution of reward for every state of each policy. We do
this by executing the policies in the original MDP. Each tra-
jectory run will result in a cumulative discounted reward
value. These values make up the distribution.

The cumulative discounted reward is given by:

R(s) =
∞∑
i=0

γir(si, ai) (2)

where γ is the discount factor.

More explicitly:
a = π(s)
R(s) = γ0r(s0, a0) + γ

∑∞
i=0 γ

ir(si, ai)
R(s) = r(s0, a0) + γ(r(s1, a1) + γ(r(s2, a2) + . . .))
where T(s,a) is the transition function for generating all of
the next states:

R(s) = r(s, a) + γ(R(T (s, a))) (3)

Note that the discount factor decreases the contribution of
the future reward term over time. Therefore, there is a point

where the discount factor causes the future reward to be ar-
bitrarily small γTr ∗maxR ≤ ε1, where maxR is the max-
imum possible immediate reward and ε1 is a small constant.
Trajectory length (Tr), or required number of time-steps, is
then calculated as:

Tr =
log(ε1)− log(maxR)

log(γ)
(4)

A trajectory is a sequence of state and action transitions
s0 →a1 s1 →a2 s2 generated by following the known pol-
icy in the environment, and may visit the same state mul-
tiple times. The stopping criteria, for how many trajecto-
ries to run, is based on the convergence of a fourth-order
statistic. The statistic needs to be scale invariant, since our
approach is domain-independent. Convergence occurs when
the variance of the distribution variance divided by the mean
of the variance is less than some small value, ε2. This statis-
tic states that convergence occurs when the spread between
numbers in sample distributions (obtained from the overall
distribution) is arbitrarily small, and then this is scaled by
the mean.

After collecting the distribution of values for each policy,
we convert them into the corresponding Cumulative Distri-
bution Function (CDF).

F (x) =

∫ x

−∞
f(t) dt = P (V ≤ x) (5)

The CDF, F (x), gives the probability of achieving reward
less-than-or-equal to some cumulative discounted reward, x.
Note that for each policy we need a separate CDF for every
state. Example CDFs are shown in Figure 4 and pseudocode
for estimating the reward function is presented in Algorithm
1. For every state, the trajectory length is calculated by equa-
tion (4). Then, while the statistic has yet to converge, lines
7-10 go through an entire trajectory sequence saving off the
immediate reward that corresponds with each state. The next
for loop is used to discount all the states’ corresponding re-
ward values at once.

To increase efficiency, we simultaneously collect rewards
for every state visited along a trajectory. In particular, the
cumulative value of st is R(st) as given in equation (2).
Trajectories can visit the same state multiple times, so one
trajectory run may collect multiple values for that state. We
run trajectories of length 2 ∗ Tr (line 6 of Algorithm 1), but
do not include values of states st where t > Tr. Even with
having to run each trajectory twice as long, collecting mul-
tiple values per trajectory is a huge win in our experiments,
at least an order of magnitude faster.

4.3 The Switching Criteria
It is straightforward to calculate the maximum probability
over a threshold using the CDF. The probability of being
above a discrete threshold is a matter of subtracting the CDF
from one.

1− F (x) =
∫ ∞
x

f(t) dt = P (V > x) (6)

85



Algorithm 1 generates reward distributions given a policy.
For each starting state, a trajectory is run for the calculated
trajectory size. The second nested for loop is used to dis-
count the rewards by backtracking.

1: for i = 1→ stateSz do
2: Tr = getTrajectorySize(ε1)
3: do
4: vals = getAllV alsSavedForStartState(si)
5: statistic = var(var(vals))/mean(var)
6: for j = 1→ 2 ∗ Tr do
7: aj = π(sj)
8: r = r(sj , aj)
9: saveOff(r, sj , 0, j)

10: sj+1 = getNextState(T (sj , aj))
11: end for
12:
13: //backtrack to discount the values
14: R = 0
15: for x = savedOffV alsSz → 1 do
16: r = getSavedOff(x).ImmedRew
17: R = r + γ ∗R
18: if x < Tr then
19: s = getSavedOff(x).s
20: saveOff(r, s, R, x)
21: end if
22: end for
23: while(statistic > ε)
24: end for

We defineRt(s) as the running cumulative discounted re-
ward for time t, starting in state s.

Rt(s) =

t∑
i=0

γir(s, a) (7)

[Note that R(s) in equation [2] is then equal to R∞(s).]

Now, P (V > x), becomes:

P (R(s0) > thresh|π)

R(s0) =
t−1∑
i=0

γir(s, a) +
∞∑
i=t

γtγi−tr(si, ai)

R(s0) = Rt−1(s0) + γtR(st)

so to maximize the probability of being greater than thresh-
old thresh, we have:

max
π

P (Rt−1(s0) + γtR(st) > thresh|π)

max
π

P (R(st) >
thresh−Rt−1(s0)

γt
|π)

valtofind =
thresh−Rt−1(s0)

γt

The pseudocode in Algorithm 2 details the process of se-
lecting actions, by choosing the policy that maximizes the

probability of being above valtofind. Note that, if the poli-
cies are equal, the algorithm defaults to following the risk-
neutral policy. Also note that the CDF for each policy is not
required to be smooth, and in some cases may resemble a
step function. It is necessary to interpolate the values to re-
trieve the probability since the CDF is not continuous. This
occurs on lines 7 and 8 (of Algorithm 2) in the cdfGet func-
tion.

Algorithm 2 executes actions starting in some initial state. It
switches between selecting the actions from a set of policies
based on a threshold.

1: Given threshold thresh, start state s0
2: Tr = getTrajectorySize(ε)
3: r0 = 0
4: for i = 0→ Tr − 1 do
5: ri = r(si, ai)
6: cdfV al = (thresh−Ri)/γi
7: max = 0
8: πcurrBest = πrisk−neutral
9: for 0→ allcdfs do

10: cCurr = 1− cdfGet(cdfV al, cdf.this)
11: if cCurr > max then
12: max = cCurr
13: πcurrBest = πcurrCDF
14: end if
15: end for
16: ai+1 = πcurrBest(si)
17: Ri+1 = Ri + γi ∗ ri
18: si+1 = getNextState(T (si, ai+1))
19: end for

4.4 Changing the Reward Threshold

Our formulation assumes that the reward threshold is given
as an input. In some cases, threshold values can correlate to
interpretations of the world, such as cut-off times for deliver-
ing items or the current high score of a video game. A thresh-
old could also be a percentage line in the CDF, such that
60% of the time the distribution is better than some value.
The threshold depends on the problem one is trying to solve.
The algorithm does not care how the threshold is chosen or
what it represents. The algorithm attempts to maximize the
probability of being over the threshold, regardless.

Note, however, that as the threshold shifts to the lower end
of the reward distribution, the agent chooses policies that are
more risk-averse; as the threshold shifts to the other extreme,
the agent chooses more aggressive policies. Depending on
the uncertainty in the environment, it may need to switch to
risky policies earlier, rather than later, or scale back to a less
risky policy when it is performing well.

5 Evaluation
We have tested our algorithm in two domains: Super Mario
Bros (described in section 5.1) and a simpler pizza delivery
domain (described in section 5.4).

86



5.1 Mario Domain
The Super Mario Bros domain uses the Infinite Mario simu-
lator 1. Previous work using this domain (Mohan and Laird
2011) compared a learning agent to the agent provided with
the simulator for one world. Our agent generalizes a small
state space over many worlds.

Infinite Mario includes a trainer for generating episodes
of varying difficulty and type. The agent (Mario) must move
through the environment collecting objects, fighting mon-
sters, all while getting to a goal line without being killed.
The environment is made up of observations and actions.
Mario receives the visual scene as a 16 x 22 array of tiles.
Each tile contains a character or a number. If the tile is a
character, it represents the tile type (coin, block, etc); if it is
an integer, it indicates how Mario can travel through that tile.
There is also an observation vector that includes the location
and types of monsters in the environment. The primitive ac-
tions Mario can take correspond to buttons on a Nintendo
game controller: direction, jump, and speed.

Figure 2: Mario world (screen capture from the Infinite
Mario simulator)

The action space for our model is made up of nine macro-
actions (see Table 1), inspired by Function Level Operators
in (Mohan and Laird 2010). A macro-action tries to find a
path to its object of interest using A*. The A* path goes
around anything Mario is not able to travel through on his
way to the object. The macro-action executes the A* path
until the end condition is met, using the appropriate combi-
nation of primitive actions.

The state space for our MDP is based on Mario’s rela-
tionship to objects in the environment. A symbolic state rep-
resentation for Mario was presented in (Mohan and Laird
2010). Our state vector contains seven dimensions {mario,
block, coin, mushroom, pipe, finish, goomba}. Each dimen-
sion takes on two possible values; either the object is near (in
the visual scene) or far (not in the visual scene). The “mario”
dimension indicates if Mario is big or small.

In Infinite Mario, each episode is generated based on a
seed value. The rewards Mario receives are -0.01 for each
time step, -10 for dying, 1 for collecting a coin or killing a
monster, and 100 for reaching the finish line. We ran 1,000
trials over different starting episodes to estimate the transi-
tion probabilities and cumulative rewards for macro-actions.

1http://2009.rl-competition.org/mario.php

Macro-actions

Action Name Description End Condi-
tion

grabCoin go to nearest coin past coin
grabCoinForever go to nearest coin no coins
avoidMonster go past monster past monster
tackleMonster go to above mon-

ster (to smash)
past monster

tackleMonster
Forever

go to above mon-
ster (to smash)

all monsters
smashed

searchBlock hit nearest ques-
tion block

past block

searchBlock
Forever

hit nearest ques-
tion block

blocks
searched

getMushroom find hidden
mushroom

past mush-
room

moveSmart use A-Star to
move right 4

past move
position

Table 1: Macro-actions of the MDP model

Mario chooses randomly from the set of macro-actions at
each time step (biased to moving towards the finish line, in
order to avoid getting stuck too often). While the macro-
action is executing, immediate rewards are accumulated, and
these become the “immediate” reward of the macro-action.
Similarly, the state when the macro-action is started and the
state when it completes are used to update the transition
probability for that pair of states.

The MDP is solved using value-iteration, where the im-
mediate reward and transition functions return values based
on the information captured by sampling the Mario world.
To generate each risky policy, the probability changes to
P (s′|s, a)δr(s,a), where P (s′|s, a) is the transition probabil-
ity obtained from earlier testing, δ is a risk factor greater than
one, and r(s, a) is the average immediate reward for this
state and action from the recorded rewards. The Mario world
contains both negative and positive rewards, so the probabil-
ity returned must be linearly transformed to a range between
0 and 1. In other words, the interval [0, 1 ∗ δmaxReward]
needs to map to [0, 1]. Exponential functions maintain their
convexity for affine transforms. The linear transformation
for the probability mapping is just a mapping from [A,B]
to [C,D] where x′ = ((D − C)/(B −A))x+ C.

The policies produced for the risk-seeking transformation
tend to choose the forever macro-actions more (see Table 1).
For these actions, there is a chance of getting a higher score
by retrieving all the objects and an increased chance of dy-
ing, since Mario is in the environment longer. The moveS-
mart macro-action also is chosen more often in the risky
policies. This action may be chosen more because it pro-
duces more variance in the environment than just going after
a particular object. The histograms for various policies are
displayed in Figure 3. Not that, as the risk value increases,
the distributions have a larger variance but lower mean.

The reward functions for each state in the MDP are esti-
mated according to the algorithm described in section 4.2.

87



50 0 50 100 150 200
0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1

fr
e

q
u

e
n
c
y

cumulative discounted reward

Risky Neutral Histogram (risk value = 1)

(a) risk-neutral policy, risk value 1

50 0 50 100 150 200
0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1

cumulative discounted reward

fr
e

q
u

e
n
c
y

Risky Policy Histogram (risk value = 1 05)

(b) risk value 1.05

50 0 50 100 150 200
0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1

cumulative discounted reward

fr
e

q
u

e
n
c
y

Risky Po icy Histogram (risk value = 1 2)

(c) risk value 1.2

Figure 3: Histograms for varying risk values

Two variations of the domain were used. The Mario world
modeled as an MDP and the actual Infinite Mario simulator.
The difference between the two can be thought of as an ex-
ample where the model is well known and one where things
may not be modeled perfectly.

Reward distributions are estimated for each state in these
domains. For the Infinite Mario simulator, estimations are
taken over multiple random seeds (different episodes) and,
for the MDP model, domain trajectories are sampled based
on the transition probabilities constructed previously. The
number of samples needed depend on the convergence
statistic described in section 4.2. CDFs are then constructed
for all of these states. The CDF for various policies in start
state 0 {mario small, block far, coin far, mushroom far, pipe
far, finish far, goomba far} is shown for the MDP domain in
Figure 4a and the actual Mario simulator in Figure 4b. The
MDP modeled Mario is slightly more optimistic, partly be-
cause the model was constructed using the average immedi-
ate rewards collected in the environment. Also, it is possible
the MDP assumes that there are more transitions to states
with higher reward (such as more coins) than actually exist
in the real environment.

5.2 Mario Results
Different threshold values affect how often the switching
strategy chooses more risky actions. The rewards are dis-
counted so the total reward received is lower than the ex-
act values returned in the Mario simulator. First, the results
are displayed for exploiting the policy in the modeled Mario
MDP (Tables 2 and 3). Each group of results compares 1,000
trajectory runs, all with start state 0, using just the risk-
neutral policy versus 1,000 runs using the switching strat-
egy (switching between the risk-neutral policy and a risky
policy with δ = 1.2). In order to compare trajectories fairly,
random probabilities are generated offline on a per-state ba-
sis. As the policy is being exploited in the original MDP, the
probability that corresponds to the current state, and num-
ber of times visited, is retrieved. This probability is then the
same for both trajectories, and is used to determine the next
state.

Table 4 shows results in the actual Mario world for the
risk-neutral policy and the switching strategy (switching be-
tween the risk-neutral policy and a risky policy with δ =

Mario MDP model for a threshold of 30:

Switching
Wins

Switching
Loses

Risk-neutral Wins 754 18
Risk-Neutral Loses 59 169

No switching lost : 228 times
Switching strategy lost: 187 times.

Table 2: Fails 4.1% less using switching strategy; reduces
losses by 18%.

Mario MDP model for a threshold of 100:

Switching
Wins

Switching
Loses

Risk-neutral Wins 40 41
Risk-Neutral Loses 222 697

No switching lost : 919 times
Switching strategy lost: 738 times.

Table 3: Fails 18.1% less using switching strategy; reduces
losses by 19.7%

Mario simulator for a threshold of 30:

Switching
Wins

Switching
Loses

Risk-neutral Wins 72 90
Risk-Neutral Loses 107 731

No switching lost : 838 times
Switching strategy lost: 821 times.

Table 4: Fails 1.7% less using switching strategy; reduces
losses by 2%

1.05). Each group of results compares runs over 1,000 dif-
ferent worlds, generated using different seeds.

5.3 Mario Discussion
The results for trajectories run in the MDP model demon-
strate how beneficial the switching strategy is when the
model is well known. As the threshold value increases the

88



50 0 50 100 150 200
0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1

cumulative discounted reward

F
(x

)

Empirical CDF for MDP Modeled Mario

 

 

1 0

1 05

1 2

(a) State 0, Mario MDP model CDF

20 0 20 40 60 80 100
0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1

cumulative discounted reward

F
(x

)

Empirical CDF for Mario Simulator

 

 

1 0

1 05

1 2

(b) State 0, Mario simulator model CDF (collected
for the same start state)

Figure 4: CDFs for the Mario MDP model and the Infinite
Mario simulator for start state 0. The graphs show the esti-
mated reward function of the risk-neutral policy (δ=1) com-
pared to risky policies (δ = 1.05, δ = 1.2) for each domain.

switching strategy is more beneficial because the higher
threshold takes riskier actions sooner, which allows the re-
sulting CDF to reside in between the risk-neutral and risky
policy at higher values. Low thresholds may never take risky
actions soon enough to reach the higher cumulative dis-
counted reward values.

The results for trajectories in the Mario simulator show
that even in a world that may not be modeled perfectly the
switching strategy can provide some benefit. There is no im-
provement when using a threshold of 80, but in Figure 4b
one can see that a threshold this high is approaching the up-
per bound for what the agent can achieve in practice.

5.4 Pizza Domain
We also evaluated our algorithm in a navigation domain,
where a vehicle drives through a non-deterministic world for
the purpose of delivering a pizza. The idea is that the deliv-
ery driver may need to be risk-sensitive in order to make
the delivery on time. The state space has three dimensions:
an x,y location and a Boolean value indicating whether the
driver has a pizza. For a ten by ten grid, the world contains
200 states (refer to Figure 5).

The world contains the following actions: (PICKUP,

Figure 5: Navigation grid for pizza delivery world

Reward Mappings

Action Name State Reward
DROPOFF x,y=delivery

location,
have pizza

50

PICKUP x,y=pizza
shop, no
pizza

-1

RISKMOVE{N,S,E,W} any -2
MOVE{N,S,E,W} any -6

Table 5: Reward mappings of the MDP model

DROPOFF, MOVE{N,S,E,W}, RISKMOVE{N,S,E,W}).
The MOVE{N,S,E,W} actions are more deter-
ministic and have a higher cost. Riskier actions
(RISKMOVE{N,S,E,W}) are cheaper and have a chance
of traveling further, but have a lower probability of ac-
tually progressing. For action MOVE{N,S,E,W}, there
is an 80% chance of moving one square and a 20% of
staying in the same square. The probabilities for the action
RISKMOVE{N,S,E,W} are a 9% chance of moving one
square, a 7% chance of moving two squares, and an 84% of
staying put. Table 5 presents the immediate rewards for this
domain.

5.5 Pizza Domain Results
The results in Tables 6 and 7 compare the risk-neutral policy
and a risky policy with risk factor δ = 1.2, at two different
threshold values. The policies generated are run in the orig-
inal MDP domain. Each group of results compares 10,000
trajectory runs between the risk-neutral policy versus the
switching strategy. As before, we generate random proba-
bilities offline on a per-state basis to compare the policies
fairly.

As stated in the introduction, a straightforward approach
to the problem of exceeding reward thresholds is to en-
code cumulative reward explicitly in the state space. Since
the pizza delivery domain is small enough, we can feasibly
do that and compare the results against our approach. The
state space of the pizza domain was augmented to include
an additional dimension of cumulative reward. We capped
the maximum and minimum cumulative reward from 0 to
-150 and removed discounting. This inflates the 200 states

89



For a 30% threshold (threshold = -100):

Switching
Wins

Switching
Loses

Risk-neutral Wins 6422 458
Risk-Neutral Loses 1412 1708

No switching lost : 3120 times
Switching strategy lost: 2166 times.

Table 6: Fails 9.5% less using switching strategy; reduces
losses by 30.6%

For a 60% threshold (threshold = -88.5):

Switching
Wins

Switching
Loses

Risk-neutral Wins 2885 830
Risk-Neutral Loses 3271 3014

No switching lost : 6285 times
Switching strategy lost: 3844 times.

Table 7: Fails 24.4% less using switching strategy; reduces
losses by 38.8%

to 30,000 states. The MDP reward function now returns a
large positive reward if the driver delivers a pizza at the
goal and the cumulative reward exceeds the reward thresh-
old and a small positive reward for delivering the pizza while
not exceeding the threshold, to encourage the planner to
achieve the goal regardless. An additional cost is also added
for states that are not the goal and are under the threshold
value. This parallels the MDP transformation necessary to
use thresholded reward objective functions as explored in
(McMillen and Veloso 2007).

As expected, the offline planning times for the reward-
augmented policy were significantly greater than for our al-
gorithm. Solving for the policy with 30,000 states took ap-
proximately 18 hours, while solving for the 200 state policy
took a few seconds (using an Intel 3.15 Ghz processor). Even
though our algorithm must solve multiple policies, gener-
ate offline reward distributions for each state (which took
5 to 10 minutes per policy) and construct the correspond-
ing CDFs (which took about 1 minute per policy), the pro-
cessing is still significantly less than it takes to solve for the
augmented-reward policy.

The difference in run time computation is small. Our ap-
proach must evaluate a point on the CDF for each policy,
which is a straightforward linear interpolation. There is a
cost for reading in the CDFs (which are generated offline)
for each state of each policy, but that is done just once, at
start up.

Comparing the results of the policies did not show a
significant difference between the reward-augmented and
switching policies. Both performed better than the risk-
neutral policy, but their similarity could be attributed to the
fact that in such a simple domain the switching strategy is
approaching optimal. In general, the reward-augmented pol-
icy is expected to perform better (and should behave opti-
mally, with respect to the objective of exceeding the reward

threshold).

5.6 Pizza Domain Discussion
Besides performing significantly better than the risk-neutral
policy, it is interesting to note that the average trajectory
lengths are higher for the switching strategy versus the fol-
lowing the risk-neutral policy. Also, the trajectory lengths
for the switching strategy increase as the threshold increases
because as more risky actions are taken there is a higher
chance of getting stuck in the same state.

Policies generated contained all MOVE actions for the
risk-neutral case and more RISKMOVE actions depending
on the convexity of the risk factor. The reward-augmented
policy chose more risky actions as the cumulative reward
got closer to the threshold, and returned to MOVE actions
once the threshold was exceeded.

While increasing the state space to include cumulative
reward creates an optimal policy for thresholded rewards,
there is a tradeoff with longer execution time and less flex-
ibility for setting the threshold. The optimal policy must be
re-generated for every threshold that needs to be tested. This
can take days depending on the size of the state space. Our
algorithm allows a threshold to be re-set during the switch-
ing stage, and does not affect the offline policy generation.

6 Conclusion
For these specific domains, there was not a large difference
between the risk-seeking levels, so results are shown only
comparing risk-neutral with one risky policy. This algorithm
allows for more complex domains to compare with multiple
risk-sensitive policies based on the architect’s preferences.

We presented a domain-independent algorithm that aims
to maximize the probability of exceeding a threshold at ex-
ecution time using risk-sensitive policies. This was demon-
strated on two domains showing the benefits of taking more
risks to win. For future work, we would like to continue to
explore additional ways an agent adapts and operates reli-
ably in a dynamic environment. More specifically, having
the agent gather more contextual awareness on whether it
was winning or losing is useful. The long term goal is to ap-
ply these principles to enhance the robustness of real robotic
systems.

7 Acknowledgments.
This work is supported by AFOSR grant #FA2386-10-1-
4138. We thank Sven Koenig and Yaxin Liu for their help
with the risky policy transformations, and thank John Laird
and Shiwali Mohan for their assistance with the Super Mario
domain and simulator.

90



References
Comanici, G., and Precup, D. 2010. Optimal policy switch-
ing algorithms for reinforcement learning. In Proceedings of
the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1, 709–714. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.
Geibel, P., and Wysotzki, F. 2005. Risk-sensitive reinforce-
ment learning applied to control under constraints. Journal
of Artificial Intelligence Research 24(1):81–108.
Koenig, S., and Simmons, R. 1994. How to make reactive
planners risk-sensitive. In Proceedings of the International
Conference on Artificial Intelligence Planning Systems, vol-
ume 293298.
Liu, Y., and Koenig, S. 2008. An exact algorithm for solv-
ing mdps under risk-sensitive planning objectives with one-
switch utility functions. In Proceedings of the 7th interna-
tional joint conference on Autonomous agents and multia-
gent systems-Volume 1, 453–460. International Foundation
for Autonomous Agents and Multiagent Systems.
Liu, Y. 2005. Decision-theoretic planning under risk-
sensitive planning objectives. Ph.D. Dissertation, Citeseer.
McMillen, C., and Veloso, M. 2007. Thresholded rewards:
Acting optimally in timed, zero-sum games. In Proceed-
ings of the national conference on artificial intelligence, vol-
ume 22, 1250. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999.
Mohan, S., and Laird, J. 2010. Relational reinforcement
learning in infinite mario. Ann Arbor 1001:48109Y2121.
Mohan, S., and Laird, J. 2011. An object-oriented approach
to reinforcement learning in an action game. In Seventh
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Pratt, J. 1964. Risk aversion in the small and in the large.
Econometrica: Journal of the Econometric Society 122–136.
Roth, M.; Simmons, R.; and Veloso, M. 2005. Reasoning
about joint beliefs for execution-time communication deci-
sions. In Proceedings of the fourth international joint con-
ference on Autonomous agents and multiagent systems, 786–
793. ACM.
Tetreault, J.; Bohus, D.; and Litman, D. 2007. Estimating the
reliability of mdp policies: a confidence interval approach.
In Proceedings of NAACL HLT, 276–283.
Wagman, L., and Conitzer, V. 2008. Strategic betting
for competitive agents. In Proceedings of the 7th interna-
tional joint conference on Autonomous agents and multia-
gent systems-Volume 2, 847–854. International Foundation
for Autonomous Agents and Multiagent Systems.

91



Dimensionality Reduction for Trajectory Learning from Demonstration

Nik A. Melchior and Reid Simmons

Abstract— Programming by demonstration is an attractive
model for allowing both experts and non-experts to command
robots’ actions. In this work, we contribute an approach for
learning precise reaching trajectories for robotic manipulators.
We use dimensionality reduction to smooth the example tra-
jectories and transform their representation to a space more
amenable to planning. Key to this approach is the careful
selection of neighboring points within and between trajectories.
This algorithm is capable of creating efficient, collision-free
plans even under typical real-world training conditions such
as incomplete sensor coverage and lack of an environment
model, without imposing additional requirements upon the user
such as constraining the types of example trajectories provided.
Experimental results are presented to validate this approach.

I. INTRODUCTION

Precise reaching and manipulation are important skills for

robots that operate in real-world environments. Assembly-

line robots align pieces of hardware, attach bolts, and weld

seams. Humanoids need to precisely grasp and place objects.

The motions performed by these robots must often be

tediously scripted by a programmer or technician familiar

with the capabilities and limitations of the particular robot

in use.

This work seeks to make it easier for both experienced and

novice robot users to command precise motions by providing

examples. The motions are demonstrated by moving a robotic

arm in passive mode or through a teleoperation interface.

This kinesthetic form of training is intuitive for users, and

it avoids the problem of mismatched models when learning

from methods such as human motion capture.

Demonstration is also attractive because it allows the

human to convey implicitly the location of obstacles (by

avoiding them) and non-geometric constraints. Since these

robots typically operate in sensor-poor environments, it

would be difficult to place a ladar or stereo camera pair in

a position capable of observing the entire workspace of a

high degree of freedom (DOF) dexterous arm, particularly

when accounting for occlusion by the arm itself. Building a

precise model of the workspace by hand is a time-consuming

and error-prone task. However, knowledge of free space can

be inferred from the space occupied by the robot during

kinesthetic demonstrations.

Non-geometric constraints are more subtle, but are also

conveyed by the demonstrated trajectories. For example, the

task may require the robot’s end effector to remain in a

certain orientation throughout execution, or to avoid a portion

of the workspace shared with another robot or human,

even if that area is not currently occupied. Both of these

Robotics Institute of Carnegie Mellon University, 5000 Forbes Avenue,

Pittsburgh, USA {nmelchio,reids}@cs.cmu.edu

Fig. 1. The experimental platform: a Barrett WAM 7-DOF arm navigating
a wire maze.

types of constraints are conveyed implicitly by the human

teacher through demonstrations, and may be incorporated

into learned trajectories.

In this work, we present a method for learning robot ma-

nipulator trajectories from expert or novice demonstrations.

We contribute a neighbor-selection technique for finding

similar sections of demonstrated trajectories without the

parameter selection required for previous methods. Using

dimensionality reduction, we create a task-specific planning

space in which collision-free trajectories may be created,

even without a model of the environment in which the robot

operates. Figure 1 shows the wire maze used in one set

of experiments. Participants were asked to manually move

the robot manipulator to navigate the wire maze, producing

trajectories such as those in figure 5(a). The robot learner

used these examples to produce novel trajectories capable of

navigating the maze from a variety of initial conditions.

II. RELATED WORK

The problem of learning trajectories from examples oc-

cupies an interesting niche between the traditional fields

of motion planning and machine learning. Motion planning

algorithms typically choose actions for the robot to execute

based on knowledge about the environment gathered by

sensors or by some other means. Grid-based planners such

as A∗ and D∗ [1] or randomized sampling-based planners

such as RRT [2] and probabilistic roadmaps [3] all depend

on knowledge of free space that the robot is allowed to

occupy. Whether they use a binary occupancy grid or a

graduated costmap, traditional motion planning techniques

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2953



will not operate directly on the examples provided. Without

an explicit model of the environment in which the robot

operates, obstacles may be conservatively inferred to exist in

any region of the workspace not visited by the robot during

training.

Traditional machine learning techniques tend to be more

appropriate to this domain, but learning can be difficult to

generalize properly. A single trajectory of a 7-DOF robotic

arm may contain hundreds of points in a configuration space

including position, velocity, and perhaps a few other features

of individual points. For example, velocities may need to be

included in the configuration space if dynamic constraints

are to be respected. Providing examples of every area of this

configuration space would be too time-consuming, so the

learning algorithm must generalize examples correctly. With-

out knowledge of obstacles, though, simple approaches such

as k-nearest neighbor can easily generalize too broadly, and

other techniques must be used to correct this [4]. Other work

in Reinforcement Learning [5] seeks to correctly generalize

training examples as much as possible. Rather than drawing

generalizations from individual points, other strategies use

short portions of trajectories as their learning primitives.

Several approaches use an intermediate representation such

as domain-specific primitives [6], basis functions [7], or

various types of splines [8], [9], [10] to improve the fit of

example trajectories. Recent work using Gaussian Mixture

Models has focused on limiting the number of necessary

training examples while ensuring confident execution of

learned behaviors [11], or ensuring correct behaviors even

when online adaptation is required [12]. Another recent

work [13] attempts to learn the cost functions implicitly used

by the human teacher in generating entire examples.

Unfortunately, these approaches typically lack the greatest

strength of the previous category of algorithms: since obsta-

cles are not modelled, no guarantees can be made as to the

safety of a planned path. One method for dealing with this

problem is to present the planned path to a user in a graphical

interface, providing an opportunity to correct or reject the

planned path [14], [10]. Unfortunately, this introduces the

requirement that the environment be precisely modelled.

Another promising approach, provided that collisions are

not catastrophic or costly, allows the user to mark portions

of generated or example trajectories as undesirable [15]

after they are executed. Delson and West [16] introduced

an algorithm that, with certain assumptions, including a

limit of two dimensions, ensured that learned trajectories

would be collision-free. However, their work did not account

for redundant manipulators, and imposed the constraint that

all example trajectories must be homotopically equivalent.

That is, all examples must take the same route between

obstacles. While this is not an arduous restriction in simple

cases, it may be difficult to ensure homotopic equivalence in

environments with more obstacles or in higher dimensional

spaces.

Our approach to safety requires a model of the robot,

but not the environment. This requirement should be easy

to fulfill since robots change far less often than the envi-

ronments in which they operate, and many identical robots

are generally produced with the same hardware configura-

tion. Given the example trajectories, it is straightforward

(though computationally expensive) to determine all areas

of the workspace that have been occupied by the robot.

Next, every grid cell in a discretized representation of the

configuration space may be marked as safe if the robot, in

that configuration, occupies only areas of the workspace that

were occupied during training. The user may also elect to

provide a conservative buffer around the robot’s position that

is also considered safe to occupy.

III. APPROACH

In this work, we seek to develop an approach that com-

bines the strengths of previous programming by demon-

stration and planning systems. This system will learn to

perform a precise reaching task with a dexterous arm from a

variety of initial conditions. The generated trajectories should

be guaranteed collision-free in static environments despite

limited sensing and no explicit model of the environment.

Finally, the system should be intuitive and easy to use, even

without training or extensive knowledge of the algorithm

used.

Our approach uses dimensionality reduction to transform

the example trajectories to an intrinsic embedding suitable

for learning the particular task at hand. This retains ex-

plicit representation of each of the examples provided while

smoothing some noise and jitter, and providing a more

convenient domain in which to plan. By combining the

example trajectories with a model of the manipulator, the free

area in the workspace may be determined. A conservative

planner should assume that any space not occupied by the

manipulator during training may contain an obstacle. Once

the intrinsic task embedding is discovered, a novel plan may

be created in the low-dimensional space and transferred, or

lifted, to the original control space.

We will first examine the strategy and motivation for

planning in a reduced-dimensionality space. Next, we present

our extension to Isomap [17] for time-series data. Finally, we

present an implementation of the complete system on a 7-

DOF robotic arm and experimental results are discussed.

A. Dimensionality Reduction

Our primary motivation for dimensionality reduction is

to ease the task of planning by discovering an intrinsic

embedding for examples of the task. That is, rather than

planning arbitrary trajectories through the robot’s workspace

or configuration space, we create a task space in which the

desired trajectory is as simple as possible. In our work to

date, a two-dimensional task space has been used to represent

full 6-DOF trajectories using a redundant 7-DOF manipula-

tor. One dimension represents time, or progress through the

task, while the other dimension represents variations between

distinct examples.

However, finding an intrinsic low-dimensional represen-

tation of the data has other benefits. Dimensionality reduc-

tion is typically used in Programming by Demonstration to

2954



deal with the correspondence problem [18] between high-

dimensional training data (such as human motion capture)

and low-dimensional controls (such as dexterous arm joint

angles). When kinesthetic demonstrations are used, the train-

ing data is collected in the robot’s control space. However,

dimensionality reduction is still useful as it accentuates com-

monality among multiple training examples, and eliminates

much of the noise (due to imperfect sensors) and jitter (due to

imperfect human motion) that needlessly distinguishes them.

Smoothing is achieved because the lower dimensionality

space lacks the degrees of freedom to precisely represent

every aspect of the example trajectories. Thus, the high

frequency noise is eliminated while the features common to

all examples are emphasized. This strategy is to be favored

over other techniques that smooth trajectories one at a time

by removing high-frequency or low magnitude variations.

Although neither approach requires domain knowledge for

its application, dimensionality reduction is able to preserve

features common to many trajectories, even at the same

magnitude as the noise, because it operates on all the

trajectories at once. For instance, dimensionality reduction

smooths out random jitters, but can maintain small “bumps”

that are common across trajectories.

One promising technique for dimensionality reduction is

Isomap. This algorithm finds a non-linear embedding for data

using geodesic distances between nearby points. In essence,

it discovers a lower-dimensional manifold embedded in the

original space. The input data points lie on (or near) this

manifold, so they can be represented in fewer dimensions.

Isomap operates by first constructing a neighborhood graph

connecting all of the points. A matrix of all-pairs shortest

path distances are computed over this neighborhood graph.

Finally, the low-dimensional embedding is constructed by

applying Multi-Dimensional Scaling (MDS) to the distance

matrix. This creates a space in which geodesic (graph-based)

distances are preserved.

The original Isomap algorithm was not specificly tailored

for time-series data, but it may be applied to points sampled

from trajectories. One extension to Isomap, Spatio-Temporal

Isomap [19], attempts to exploit the inherent relationships

between these points to improve the embedding. ST-Isomap

introduces changes to the first two steps of Isomap: con-

struction of the neighborhood graph and computation of

the distance matrix. First, it exploits the obvious neighbor

relationships inherent in time-series data. Adjacent samples

from a single trajectory, which we call temporal neighbors,

are clearly related, and are thus linked in the neighbor graph.

ST-Isomap also attempts to discover what we call spatio-

temporal neighbors, or neighbors in different trajectories that

occur at the same time in the task. For each of these types

of neighbors, a tunable parameter is used to reduce the per-

ceived distance between linked points. Although ST-Isomap

is able to produce reasonable embeddings for many tasks,

we have found that the tunable parameters must be chosen

accurately for the nature and scale of the task at hand. In this

work, we attempt to refine the neighbor selection mechanism

in order to obviate the need for parameter selection and

Fig. 2. Regularly spaced neighbor links from the solid (blue) trajectory to
the dashed (red) trajectory result in some undesirable links (black).

Fig. 3. The solid (blue) trajectory drifts closer to distant sections of the
dashed (red) trajectory. Pointwise nearest-neighbor alone is not sufficient to
correct this problem.

produce a better embedding.

B. Neighbor Selection

Neighbor selection is the key to discovering an intrinsic

task embedding for time-series data. Although humans can

typically discern global structure even in noisy collections

of points, it is a challenging task for a robot learner. This

problem, known as graph or manifold denoising, has been

studied extensively for application to Isomap [20] and other

graph-based learning algorithms[21], [22], [23]. Time-series

data presents specific challenges to this effort, but it also

has the advantage that part of the structure of the data is

known. Specifically, we retain the temporal links between

adjacent points on the same trajectory as discussed above.

In this section, we examine the selection of spatio-temporal

neighbors between trajectories.

In keeping with the framework established by Isomap,

all neighbor links are bidirectional. The typical Euclidean

metric is used to calculate the distance between neighboring

points, and the geodesic distance between all other pairs is

the shortest distance along links in the graph.

When searching for a point’s neighbors, individual points

are not considered in isolation. Instead, we consider each

pair of trajectories separately, and search for subsequences of

those trajectories that contain points that match in a roughly

pairwise manner. That is, the indices in both subsequences

increase in the same direction, and both subsequences con-

tain approximately the same number of points. Since all

trajectories are initially subsampled at a uniform distance

between adjacent points, this mean that, informally, matching

subsequences travel in the same direction.

2955



Fig. 4. Many-to-one neighbor links result in a graph with too many links,
and thus geodesic distances that are too small. Deviations such as that shown
in the solid (blue) trajectory should appear distant in the neighbor graph.

Noisy links are detected and removed by searching for

sequences of neighbor links in one trajectory whose indices

in the matching trajectory do not monotonically increase.

This ensures that adjacent subsequences in one trajectory are

not connected to distant portions of the other trajectory, as

may occur when a trajectory contains a loop (see figure 2)

or other artifact (see figure 3). Finally, one-to-many neighbor

links are not allowed. Only the one-to-one link with the

shortest distance is permitted in the final neighbor graph.

This restriction ensures that the geodesic distances increase

quickly when trajectories deviate from one another (see fig-

ure 4). This strategy is illustrated further in the experimental

results in section IV.

Additional checks may be incorporated into this strategy

to restrict the types of neighbor links formed. For example,

given an explicit or implicit environment model, as discussed

above, we might check that a motion between every pair of

neighbors is safe to execute. If the robot would impact an

obstacle, that link may be removed from the graph. This

helps ensure that, in the embedding, movement between

nearby points is safe.

C. Planning

A robot is clearly capable of performing a demonstrated

task by simply repeating example trajectories. However, this

is undesirable for several reasons. Even expert robot oper-

ators are unlikely to produce perfect examples. Accidental

movements, unavoidable jitter, detours, and sensor errors

can all contribute to variations between demonstrations. In

addition, the robot should have a safe strategy for operation

if its position deviates from demonstrations due to sensing

or actuation noise, or even due to the variety of initial

conditions.

Planning requires a generalization of the provided example

trajectories. Extrapolating cannot be safe without additional

information about obstacles in the environment, but in-

terpolation is possible if we know which portions of the

demonstrated trajectories occur at the same point in the task.

We argued in the previous section for the use of global

information about trajectories to make this determination.

Figure 5(a) shows a neighbor graph for the maze of figure 1.

The graph alone is not sufficient to determine an action

policy for undemonstrated points in the configuration space,

(a) (b)

Fig. 5. A two-dimensional projection of the workspace trajectories for
the wire maze task (left) and the two-dimensional embedding of its 7-DOF
configuration space (right). Purple lines represent neighbor links.

though. Instead, we use the neighborhood information in

the graph to create a simple low-dimensional space that

facilitates interpolation of demonstrated actions.

MDS, the final step of Isomap, is used to create a two

dimensional embedding such as the one shown in figure 5(b).

This embedding preserves (as much as possible) the geodesic

distances between all pairs of points. Although figure 5(a)

illustrates a two-dimensional projection of the Cartesian

workspace trajectories of the end effector, planning must

occur in the seven-dimensional configuration space. Because

the manipulator is redundant, it is necessary to be able to

distinguish between different configurations that result in the

same end-effector pose. In the embedding of figure 5(b),

the starting points of the trajectories (the dark lines) are

clustered along the left edge of the image. The trajectories

end near the bottom-right of the image. The thinner, purple

lines are neighbor links between trajectory points. Although

nothing in the algorithm explicitly forces it to be so, the

horizontal axis is roughly equivalent to time. This is because

MDS selects the dimension with the greatest variance as the

first dimension in the embedding. The vertical axis sepa-

rates trajectories from one another. Vertical spikes represent

portions of example trajectories that deviated from neighbor

trajectories, similar to the examples in figures 2 and 4.

Since the problematic spatio-temporal links pictured there

were eliminated, the geodesic distances between trajectories

increases significantly, and the trajectories become distant in

the embedding.

Our previous work[24] investigated a strategy for plan-

ning in embedded spaces such as these. However, with the

improved neighbor-selection mechanism presented here, the

embedding creates a space in which planning is straightfor-

ward. A roughly linear path through this space from left to

right, remaining in the area between example trajectories, is

one simple strategy for generating novel plans. Future work

will focus on other strategies, and their relative merits. For

example, planning a path which remains near the densest

areas of example trajectories may produce a plan more

qualitatively similar to that desired by the user.

Trajectories created in this two-dimensional planning

space must be transformed to the configuration space of

the robot before they can be executed, but there is no

global linear transformation between these spaces. Instead,

2956



Fig. 6. The WAM manipulator, the wire maze (left) and the tube maze
(right). The 2-D barcode in the lower-left is a visual fiducial used to detect
the location of the rig relative to the robot. The rig and mazes are not
modelled by the learning algorithm.

individual points in the planned path must be lifted to

the original high-dimensional space. This is accomplished

using the Delaunay triangulation [25] of the trajectory points

embedded in two-dimensions. For any query point in the

plane, the unique enclosing triangle is found. The barycentric

coordinates of the query point within the triangle are used as

weights to interpolate between the points corresponding to

the triangle vertices in the original space. It should be noted

that the mapping from the planning space to the original

space is naturally a one-to-many mapping. However, since

the correspondence between points in the planning space and

the original points in the higher dimensional space is known,

interpolation ensures that the resulting point is in the correct

region of the configuration space.

This method is reliable only for query points that lie

within the triangulation of the points of the example tra-

jectories. Fortunately, this is precisely the area in which

we can be confident executing novel plans. Points outside

the triangulation cannot be lifted by interpolating between

example points, and thus represent extrapolations outside

the demonstrated area of the configuration space. A similar

method may be used to map points in the other direction,

from the configuration space to the planning space. This

mapping is required to query the plan for an action to

perform at a given configuration.

IV. EXPERIMENTAL EVALUATION

Experiments were conducted using the 7-DOF WAM

manipulator shown in figure 6 on two similar tasks. When

the arm is operated in gravity-compensation mode, it can

(a) (b)

(c) (d)

Fig. 7. Neighbors selected by (a) k-NN and (c) ST-Isomap, and their
embeddings (b) and (d). Spurious short-circuit neighbor links produce
embeddings unusable for planning.

be easily moved by hand. Participants were asked to per-

form kinesthetic demonstrations navigating the two mazes

pictured. When the robot’s copper end effector contacts the

walls of either maze, a buzzer provides auditory feedback.

The wire maze on the left is effectively two-dimensional,

though some of the rotational axes are relatively uncon-

strained, allowing additional variation in the demonstrated

trajectories. This rotational variation is not strictly necessary

for navigating the maze and is unlikely to be correlated

between example trajectories. The linear portion of the end

effector is used to navigate the maze, and the proximal and

distal loops keep the end effector within the plane of the

maze. The tube maze on the right more fully explores the

six degrees of freedom of the workspace. In this task, the

loop at the tip of the end effector must be threaded over

the copper tube to reach its base. Six demonstrations were

performed on each maze by each participant.

Figure 7 shows the neighbor links chosen by other meth-

ods and the resulting embeddings. Figures (a) and (b) were

produced using the k-nearest neighbor strategy of the original

Isomap algorithm, with k = 10 chosen to ensure the number

of neighbors per point is roughly equivalent to that of

the other algorithms. The workspace plot of figure 7(a)

appears sparser than the corresponding images for ST-Isomap

(figure 7(c)) and our algorithm (figure 5(a)) because k-

NN produces more temporal neighbors than spatio-temporal

neighbors. The ST-Isomap results illustrate some of the most

difficult situations for neighbor selection. In many cases,

such as the spurious neighbor links near the bottom of

figure 7(c), links are formed between trajectories that are

relatively near to one another, and even travelling in parallel

directions. Without considering global information about the

trajectories, these incorrect links are difficult to detect.

The trajectories learned, even by our simple initial ap-

2957



proach, appear qualitatively sound, and have been success-

fully executed on both mazes. In addition, the planned

trajectories avoided joint limits more effectively than the

example trajectories. During demonstration, users often ro-

tated arm joints to their extremes even when this was not

necessary to complete the task. Because the planning method

relies on interpolation of demonstrations, planned trajectories

remain away from joint limits whenever allowed by the

demonstration data.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a method for embedding robot

trajectories in a low-dimensional space and a simple tech-

nique for creating novel plans in this space. Our work extends

Isomap by introducing a neighbor-finding technique suited

for time-series data such as configuration-space trajectories,

and is free from the parameter selection required for the

application of other approaches to multiple domains. This

approach allows dimensionality reduction to produce a two-

dimensional task-specific space in which safe planning is

straightforward, even without a model of the environment in

which the robot operates.

Future work will focus on development and evaluation of

planning techniques in the embedded space, and possibly

over the neighborhood graph itself. We also plan to ad-

dress computational inefficiencies in the current approach.

Since the embedding is not a globally linear transformation,

straight lines are not preserved, and a large number of points

must be lifted to faithfully transfer a plan from the embedded

space to the original configuration space. By identifying

regions of the demonstrations where less detail is required,

such as areas of low diversity or low curvature, planning may

be simplified in these areas.

Finally, we expect the improved neighbor-finding approach

presented here to be useful in other applications. In addi-

tion to programming by demonstration, this technique may

prove useful for activity recognition, robot fault detection,

and other applications in which time-series trajectories are

compared.

REFERENCES

[1] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in Proceedings of IEEE International Conference on

Robotics and Automation, vol. 4, May 1994, pp. 3310 – 3317.

[2] S. M. Lavalle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[3] L. Kavraki and J.-C. Latombe, “Randomized preprocessing of configu-
ration space for fast path planning,” in Proceedings of the International

Conference on Robotics and Automation, San Diego, CA, 1994, pp.
2138–2145.

[4] M. Stolle and C. Atkeson, “Policies based on trajectory libraries,” in
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE

International Conference on, 2006, pp. 3344–3349.

[5] R. Glaubius, M. Namihira, and W. D. Smart, “Speeding up reinforce-
ment learning using manifold representations: Preliminary results,”
in Proceedings of the IJCAI 2005 Workshop on Reasoning with

Uncertainty in Robotics (RUR 05), Edinburgh, Scotland, July 2005.

[6] D. Bentivegna and C. Atkeson, “Learning from observation using
primitives,” in Robotics and Automation, 2001. Proceedings 2001

ICRA. IEEE International Conference on, vol. 2, 2001, pp. 1988–
1993 vol.2.

[7] A. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for
imitation with nonlinear dynamical systems,” in Intelligent Robots and

Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference

on, vol. 2, 2001, pp. 752–757 vol.2.

[8] C. Lee, “A phase space spline smoother for fitting trajectories,”
Systems, Man and Cybernetics, Part B, IEEE Transactions on, vol. 34,
pp. 346–356, 2004.

[9] A. Ude, C. Atkeson, and M. Riley, “Planning of joint trajectories for
humanoid robots using b-spline wavelets,” in Robotics and Automa-

tion, 2000. Proceedings. ICRA ’00. IEEE International Conference on,
vol. 3, 2000, pp. 2223–2228 vol.3.

[10] J. Aleotti, S. Caselli, and G. Maccherozzi, “Trajectory reconstruction
with nurbs curves for robot programming by demonstration,” in
Computational Intelligence in Robotics and Automation, 2005. CIRA

2005. Proceedings. 2005 IEEE International Symposium on, 2005, pp.
73–78.

[11] S. Chernova and M. Veloso, “Confidence-based policy learning from
demonstration using gaussian mixture models,” in Proceedings of

International Conference on Autonomous Agents and Multiagent Sys-

tems, May 2007.

[12] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE

Transactions on Robotics, 2008.

[13] N. Ratliff, D. Bradley, J. Bagnell, and J. Chestnutt, “Boosting
structured prediction for imitation learning,” in Advances in Neural

Information Processing Systems 19. Cambridge, MA: MIT Press,
2007.

[14] H. Friedrich, J. Holle, and R. Dillmann, “Interactive generation of flex-
ible robot programs,” in Robotics and Automation, 1998. Proceedings.

1998 IEEE International Conference on, vol. 1, 1998, pp. 538–543
vol.1.

[15] B. Argall, B. Browning, and M. Veloso, “Learning by demonstration
with critique from a human teacher,” in ACM/IEEE international

conference on Human-robot interaction. Arlington, Virginia, USA:
ACM Press, 2007, pp. 57–64.

[16] N. Delson and H. West, “Robot programming by human demonstra-
tion: adaptation and inconsistency in constrained motion,” in Robotics

and Automation, 1996. Proceedings., 1996 IEEE International Con-

ference on, vol. 1, 1996, pp. 30–36 vol.1.

[17] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
pp. 2319–2323, Dec. 2000.

[18] K. Dautenhahn and C. L. Nehaniv, Imitation in Animals and Artifacts.
MIT Press, 2002.

[19] O. C. Jenkins and M. J. Matarić, “A spatio-temporal extension to
isomap nonlinear dimension reduction,” in The Twenty-first Interna-

tional Conference on Machine Learning. Banff, Alberta, Canada:
ACM Press, 2004, p. 56.

[20] A. Tsoli and O. C. Jenkins, “2d subspaces for user-driven robot
grasping,” in Robotics, Science and Systems Conference: Workshop

on Robot Manipulation, 2007.

[21] M. Hein and M. Maier, “Manifold denoising as preprocessing for
finding natural representations of data,” in Proceedings of the Twenty-

Second AAAI Conference on Artificial Intelligence (AAAI-07). Menlo
Park, CA: AAAI Press, Jul. 2007, pp. 1646–1649.

[22] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, B. Schlkopf, and B. S.
Olkopf, “Learning with local and global consistency,” ADVANCES IN

NEURAL INFORMATION PROCESSING SYSTEMS 16, vol. 16, pp.
321—328, 2003.

[23] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding belief
propagation and its generalizations,” in Exploring artificial intelligence

in the new millennium. Morgan Kaufmann Publishers Inc., 2003, pp.
239–269.

[24] N. A. Melchior and R. Simmons, “Learning sequential composition
plans using reduced-dimensionality examples,” in Papers from the

2009 AAAI Spring Symposium, Technical Report SS-09-01. American
Association for Artificial Intelligence, 2009.

[25] M. Bern and D. Eppstein, “Mesh generation and optimal triangula-
tion,” Computing in Euclidean Geometry, vol. 1, pp. 23–90, 1992.

2958



REPORT OF INVENTIONS AND SUBCONTRACTS 
(Pursuant to "Patent Rights" Contract Clause) (See Instructions on back) 

Form Approved 
OMB No. 9000-0095 
Expires Oct 31, 2004 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and 
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, 
Directorate for Information Operations and Reports (9000-0095), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR COMPLETED FORM TO THIS ADDRESS. RETURN COMPLETED FORM TO THE CONTRACTING OFFICER. 
1.a. NAME OF CONTRACTOR/SUBCONTRACTOR c. CONTRACT NUMBER 2.a. NAME OF GOVERNMENT PRIME CONTRACTOR c. CONTRACT NUMBER 3. TYPE OF REPORT (X one) 

a. INTERIM b. FINAL 

b. ADDRESS (Include ZIP Code) d. AWARD DATE 
(YYYYMMDD) 

b. ADDRESS (Include ZIP Code) d. AWARD DATE 
(YYYYMMDD) 

4. REPORTING PERIOD (YYYYMMDD) 

a. FROM 

b. TO 

SECTION I - SUBJECT INVENTIONS 
5. "SUBJECT INVENTIONS" REQUIRED TO BE REPORTED BY CONTRACTOR/SUBCONTRACTOR (If "None," so state) 

NAME(S) OF INVENTOR(S) 
(Last, First, Middle Initial) 

a. 

TITLE OF INVENTION(S) 

b. 

DISCLOSURE NUMBER, 
PATENT APPLICATION 
SERIAL NUMBER OR 
PATENT NUMBER 

c. 

ELECTION TO FILE 
PATENT APPLICATIONS (X) 

d. 

CONFIRMATORY INSTRUMENT 
OR ASSIGNMENT FORWARDED 
TO CONTRACTING OFFICER (X) 

e.(1) UNITED STATES (2) FOREIGN 

(a) YES (b) NO (a) YES (b) NO (a) YES (b) NO 

f. EMPLOYER OF INVENTOR(S) NOT EMPLOYED BY CONTRACTOR/SUBCONTRACTOR g. ELECTED FOREIGN COUNTRIES IN WHICH A PATENT APPLICATION WILL BE FILED 

(1) (a) NAME OF INVENTOR (Last, First, Middle Initial) (2) (a) NAME OF INVENTOR (Last, First, Middle Initial) (1) TITLE OF INVENTION (2) FOREIGN COUNTRIES OF PATENT APPLICATION 

(b) NAME OF EMPLOYER (b) NAME OF EMPLOYER 

(c) ADDRESS OF EMPLOYER (Include ZIP Code) (c) ADDRESS OF EMPLOYER (Include ZIP Code) 

SECTION II - SUBCONTRACTS (Containing a "Patent Rights" clause) 
6. SUBCONTRACTS AWARDED BY CONTRACTOR/SUBCONTRACTOR (If "None," so state) 

NAME OF SUBCONTRACTOR(S) 

a. 

ADDRESS (Include ZIP Code) 

b. 

SUBCONTRACT 
NUMBER(S) 

c. 

FAR "PATENT RIGHTS" 
d. DESCRIPTION OF WORK TO BE PERFORMED 

UNDER SUBCONTRACT(S) 
e. 

SUBCONTRACT DATES (YYYYMMDD) 
f. 

(1) CLAUSE 
NUMBER 

(2) DATE 
(YYYYMM) (1) AWARD (2) ESTIMATED 

COMPLETION 

SECTION III - CERTIFICATION 
7. CERTIFICATION OF REPORT BY CONTRACTOR/SUBCONTRACTOR (Not required if: (X as appropriate)) SMALL BUSINESS or NONPROFIT ORGANIZATION 

I certify that the reporting party has procedures for prompt identification and timely disclosure of "Subject Inventions," that such procedures have been followed and that all "Subject 
Inventions" have been reported. 

a. NAME OF AUTHORIZED CONTRACTOR/SUBCONTRACTOR 
OFFICIAL (Last, First, Middle Initial) 

b. TITLE c. SIGNATURE d. DATE SIGNED 

DD FORM 882, DEC 2001 PREVIOUS EDITION IS OBSOLETE. 

Carnegie Mellon University FA2386-10-1-4138

20100824

same

same

✘

5000 Forbes Avenue 
Pittsburgh, PA  15213-3815

20100824
20130823

None None

Simmons, Reid    Professor January 3, 2014

Reset



DD FORM 882 INSTRUCTIONS 

GENERAL 

This form is for use in submitting INTERIM and FINAL invention reports to the 
Contracting Officer and for use in reporting the award of subcontracts containing 
a "Patent Rights" clause. If the form does not afford sufficient space, multiple 
forms may be used or plain sheets of paper with proper identification of 
information by item number may be attached. 

An INTERIM report is due at least every 12 months from the date of contract 
award and shall include (a) a listing of "Subject Inventions" during the reporting 
period, (b) a certification of compliance with required invention identification and 
disclosure procedures together with a certification of reporting of all "Subject 
Inventions," and (c) any required information not previously reported on 
subcontracts containing a "Patent Rights" clause. 

A FINAL report is due within 6 months if contractor is a small business firm 
or domestic nonprofit organization and within 3 months for all others after 
completion of the contract work and shall include (a) a listing of all "Subject 
Inventions" required by the contract to be reported, and (b) any required 
information not previously reported on subcontracts awarded during the course 
of or under the contract and containing a "Patent Rights" clause. 

While the form may be used for simultaneously reporting inventions and 
subcontracts, it may also be used for reporting, promptly after award, 
subcontracts containing a "Patent Rights" clause. 

Dates shall be entered where indicated in certain items on this form and shall 
be entered in six or eight digit numbers in the order of year and month 
(YYYYMM) or year, month and day (YYYYMMDD). Example: April 1999 should 
be entered as 199904 and April 15, 1999 should be entered as 19990415. 

1.a. Self-explanatory. 

1.b. Self-explanatory. 

1.c. If "same" as Item 2.c., so state. 

1.d. Self-explanatory. 

2.a. If "same" as Item 1.a., so state. 

2.b. Self-explanatory. 

2.c. Procurement Instrument Identification (PII) number of contract (DFARS 
204.7003). 

2.d. through 5.e. Self-explanatory. 

5.f. The name and address of the employer of each inventor not employed by 
the contractor or subcontractor is needed because the Government's rights in a 
reported invention may not be determined solely by the terms of the "Patent 
Rights" clause in the contract. 

Example 1: If an invention is made by a Government employee assigned to 
work with a contractor, the Government rights in such an invention will be 
determined under Executive Order 10096. 

Example 2: If an invention is made under a contract by joint inventors and 
one of the inventors is a Government employee, the Government's rights in such 
an inventor's interest in the invention will also be determined under Executive 
Order 10096, except where the contractor is a small business or nonprofit 
organization, in which case the provisions of 35 U.S.C. 202(e) will apply. 

5.g.(1) Self-explanatory. 

5.g.(2) Self-explanatory with the exception that the contractor or subcontractor 
shall indicate, if known at the time of this report, whether applications will be 
filed under either the Patent Cooperation Treaty (PCT) or the European Patent 
Convention (EPC). If such is known, the letters PCT or EPC shall be entered 
after each listed country. 

6.a. Self-explanatory. 

6.b. Self-explanatory. 

6.c. Self-explanatory. 

6.d. Patent Rights Clauses are located in FAR 52.227. 

6.e. Self-explanatory. 

6.f. Self-explanatory. 

7. Certification not required by small business firms and domestic nonprofit 
organizations. 

7.a. through 7.d. Self-explanatory. 

DD FORM 882 (BACK), DEC 2001





