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1 Statement of Problem

Animals move in response to threats from predators, a change in the environment, or to
pursue prey. This motion is generated by a complex interaction of the neural circuits in the
spinal cord and brain, the body, the muscles, sensory organs and the environment. With-
out sensory input, neural circuits are capable of producing movement by sending signals to
motor circuits that in turn contract the muscles. Biomechanical systems of body, muscle
and environment can also produce motion with simple activation input. However, in isola-
tion, neither the neural circuit or the biomechanical system can produce movement efficient
enough to support chasing prey or avoiding predators. Thus, it is essential that the neural
circuit receive input from sensory organs that are affected by the position of the body, the
activation of the muscle and the environment. Conversely, efficient movement also requires
that the motor system receive signals from the neural circuit. Therefore, a central ques-
tion in modeling integrated neuromechanical systems is how to close the loop between the
neural circuit and the sensory feedback from the body, muscle, and environment. Under-
standing how these components interact at a systems level is important to understanding
the complexities in vertebrate locomotion.

Vertebrate locomotion includes walking, swimming, and flying and each of these be-
haviors involves the interaction between the neural circuit, sensory organs, body, muscle,
and environment. Each mode of locomotion has its own challenges and environments, but
the feedback loop remains similar. We have closed the loop between the neural circuitry,
body, and fluid environment for swimming locomotion, where the lamprey serves as a model
system1,2,3,4,5,6,7,8.

Our philosophy of modeling includes a hierarchy of models with varying degrees of detail
and complexity. Certainly the computational power to simulate an all neuron simulation with
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full muscle, body and fluids exists, yet the results may not yield insight into the mechanisms
that comprise the system. Therefore, we have chosen to start with a tractable system in
which the CPG is modeled with a phase model and the plant (body, muscle and fluid) is
modified from McMillen et al.9. It is crucial to understand the closed loop feedback from
the simple phase model perspective before incorporating more detailed realistic models for
CPG or the fluid. Looking ahead to future research directions that would build on the work
proposed here, the next step in the modeling hierarchy is to combine results with E.Tytell
at JHU, who is using Floquet multiplier theory to understand which eigenmodes of the limit
cycle are important to perturbations in the environment. Then, the combined work will be
integrated into a two or three dimensional simulation of a Navier-Stokes fluid and elastic
body3.

2 Summary of results

We have taken two approaches to understanding the role of sensory feedback in locomotion:
a control-theory approach and a CPG-based approach. In the control theory approach (§2.1),
we have developed a general method of computing the optimal local feedback control law
given a model of the plant (the mapping from muscle activation to movement) and a cost
rate function that penalizes muscle activation and rewards speed through the environment.
The first step in this method is to the compute the optimal steady-state swimming pattern,
which we have done for a simple plant model of lamprey swimming (§2.2). In our CPG-based
approach (§2.3), we have combined a simple CPG model with the plant model of §2.2 to
produce a closed-loop model of lamprey swimming in which a the CPG produces a pattern
of muscle activation which is modified by sensory feedback related to body curvature.

2.1 Computation of optimal feedback for the control of locomotion

We have a developed a general method of computing the optimal feedback control law for
the control of periodic motion. Consider a locomotion control problem of the form

ẋ(t) = f(x(t), u(t)),

cost rate g(x(t), u(t)),

where x(t) is the state vector, u(t) is the control vector, and g(x, u) punishes the use of
control (e.g., muscle activation) and rewards speed through the environment in the desired
direction.

Let ũ(t), x̃1(t), x̃2(t) be the open-loop periodic solution that minimizes the time average
of g(u(t), x(t)). Let T be its period and T̂ = T/2π. Apply the change of coordinates in the
vicinity of the limit cycle

x1 = x̃1(T̂ θ),

x2 = x̃2(T̂ θ) + r,

u = ũ(T̂ θ) + û,

ĝ(x̂, û) = g(h(x̂, û)),
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where θ is absolute phase (mod 2π), r describes deviations in velocity, û describes deviations
in the control signal, x̂ = (r, θ), and (x, u) = h(x̂, û) denotes the change of variables.

In the new variables x̂ and û, the system has the form(
ṙ

θ̇

)
= f̂(x̂, û) =

(
A10(θ)r + A01(θ)û+ A20(θ)r

2 + A11(θ)rû+ A02(θ)û
2

ω +B10(θ)r +B01(θ)û+B20(θ)r
2 +B11(θ)rû+B02(θ)û

2

)
+O(3),

ĝ(x̂, û) = ĝ00(θ) + ĝ10(θ)r + ĝ01(θ)û

+ ĝ20(θ)r
2 + ĝ11(θ)rû+ ĝ02(θ)û

2 +O(3),

where ω = 1/T̂ and we have the subtracted the mean from ĝ00(θ).
For any initial state (r(0)), q(0)), we want to choose û(t) for 0 ≤ t ≤ tf , where tf is a time

far in the future, to minimize

V (r(0), θ(0)) = D(θ(tf)) +

∫ tf

0

ĝ(r(t), θ(t), û(t))dt.

where

D(θ) = − 1

ω

∫ θ

0

ĝ00(φ)dφ

so that V converges in the limit as tf →∞.
The solution is given by the Hamilton-Jacobi-Bellman (HJB) equation

0 = min
û

[ĝ(r, θ, û) +∇V (r, θ) · f̂(r, θ, û)]

Using a perturbation analysis, we can approximate the solution of the HJB equation:

V (r, θ) = V0(θ) + V1(θ)r + rTV2(θ)r +O(||r||3),
û = C1(θ)r +O(r2),

so that the solution of optimal feedback control problem in the vicinity of the limit cycle is

u = C0(θ) + C1(θ)r +O(r2)

where C0(θ) = ũ(T̂ θ).
The quantity F (r, θ, û) = ĝ(r, θ, û) + ∇V (r, θ) · f̂(r, θ, û) to be minimized in the HJB

equation can be written up to second order as

F (r, θ, û) = F00(θ) + F10(θ)r + F01(θ)û+ rTF20(θ)r + rTF11(θ)û+ ûTF02(θ)û

= ĝ00(θ) + ĝ10(θ)r + ĝ01(θ)û+ rTĝ20(θ)r + rTĝ11(θ)û+ ûTĝ02(θ)û

+ (V1(θ) + 2rTV2(θ))(A10(θ)r + A01(θ)û+ A20(θ)[r, r] + A11(θ)[r, û] + A02(θ)[û, û])

+ (V ′0(θ) + rTV ′1(θ)T + rTV ′2(θ)r)

(ω +B10(θ)r +B01(θ)û+ rTB20(θ)r + rTB11(θ)û+ ûTB02(θ)û),
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where

F00(θ) = ĝ00(θ) + ωV ′0(θ),

F10(θ) = ĝ10(θ) + V1(θ)A10(θ) + V ′0(θ)B10(θ) + ωV ′1(θ),

F01(θ) = ĝ01(θ) + V1(θ)A01(θ) + V ′0(θ)B01(θ),

F20(θ) = ĝ20(θ) + (V1 ◦ A20)(θ) + 2V2(θ)A10(θ) + V ′0(θ)B20(θ) + V ′1(θ)TB10(θ) + wV ′2(θ),

F11(θ) = ĝ11(θ) + (V1 ◦ A11)(θ) + 2V2(θ)A01(θ) + V ′0(θ)B11(θ) + V ′1(θ)TB01(θ), (1)

F02(θ) = ĝ02(θ) + (V1 ◦ A02)(θ) + V ′0(θ)B02(θ). (2)

To find the û that minimizes F (r, θ, û) for each r and û, we solve

0 = ∇ûF (r, θ, û) = F01(θ)
T + F11(θ)

Tr + 2F02(θ)û

for û. For r = 0, the solution must be û = 0, since this corresponds to the solution of the
open-loop optimal-control problem. Therefore, F01(θ) = 0. Then the solution to (2.1) is

û = −1
2
F02(θ)

−1F11(θ)
Tr. (3)

Therefore,

min
û
F (r, θ, û) = F00(θ) + F10(θ)r + rTF20(θ)r − 1

2
rTF11(θ)F02(θ)

−1F11(θ)
Tr

+ 1
4
rTF11(θ)F02(θ)

−1F11(θ)
Tr

= F00(θ) + F10(θ)r + rT
(
F20(θ)− 1

4
F11(θ)F02(θ)

−1F11(θ)
T
)
r.

To solve the HJB equation, we want this minimum to be 0 for all r and θ. Therefore,

F00(θ) = 0,

F10(θ) = 0,

F20(θ)− 1
4
F11(θ)F02(θ)

−1F11(θ)
T = 0.

We write F20(θ) and F11(θ) in the form

F20(θ) = G20(θ) + 2V2(θ)A10(θ) + wV ′2(θ),

F11(θ) = G11(θ) + 2V2(θ)A01(θ),

where

G20(θ) = ĝ20(θ) + (V1 ◦ A20)(θ) + V ′0(θ)B20(θ) + V ′1(θ)B10(θ),

G11(θ) = ĝ11(θ) + (V1 ◦ A11)(θ) + V ′0(θ)B11(θ) + V ′1(θ)B01(θ).

Then V2(θ) is the solution to

G20(θ) + 2V2(θ)A10(θ) + wV ′2(θ)

− 1
4
[G11(θ) + 2V2(θ)A01(θ)]F02(θ)

−1[G11(θ) + 2V2(θ)A01(θ)]
T = 0.

Once we have solved for V0(θ), V1(θ) and V2(θ), we can use (1) and (2) to solve for F11(θ)
and F02(θ) and then use (3) to obtain the optimal feedback control law in the vicinity of the
limit cycle.
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2.2 Computation of optimal steady-state swimming for a simple
model of lamprey swimming

To apply the method of §2.1 to a plant model of lamprey swimming, the first step is to
find the optimal steady-state swimming solution. We have done this for a simple model
of lamprey swimming, as described in this subsection. (We are currently in the process of
implementing the feedback step of the method of §2.1 for this model.)

The plant model we used is based on Ekeberg (1993)1 and McMillen & Holmes (2006)9

with further simplifications. The body is modeled as a chain of n segments with n− 1 links.
For simplicity, we assume that all segments are identical (in contrast to the lamprey body
which tapers from head to tail). The system has n + 2 mechanical degrees of freedom: the
2-d position of the head and the angles of each of the n segments. Therefore, the state
is described by a vector x(t) of dimension 2n + 4. We assume that when a segment moves
through the water there are resistive water forces in the directions perpendicular and parallel
to the segment’s orientation that depend on the segment’s velocity components in these two
directions.

We assume that the control vector u(t) consists of the torques produced by muscles at
each of the n− 1 links. Therefore, we have a plant model of the form

ẋ(t) = f(x(t), u(t)),

where x(t) has dimension 2n+ 4 and u(t) has dimension n− 1.
We assume a simple cost rate that penalizes mean squared muscles torques and rewards

velocity of the center of mass vCOM(t) in the leftward direction:

cost rate g(x(t), u(t)) =
1

n− 1

n−1∑
j=1

uj(t)
2 − cvCOM(t),

where the parameter c specifies the relative importance of swimming fast versus minimizing
muscle activation.

To optimize steady-state swimming we minimize the average cost rate over one cycle of
swimming by adjusting the following set of 6n − 2 parameters: the swimming frequency
fs = 1/T ; the initial 2-d velocity of the head and time derivative of the first segment angle;
and the Fourier coefficients for modes 1, 3 and 5 describing link angles as a function of time.
We assume left-right spatio-temporal symmetry, so we only need the odd-numbered modes.
We assume that that at t = 0, the 2-d head position and first segment angle are zero. We
have the equality constraints that the 2-d velocity of the head and time derivative of the
first segment angle must be the same at the beginning and end of the cycle. To reduce the
number of parameters, here we set the number of links n to be 6. We solve the constrained
optimization problem using the Lagrange method as implemented by the fmincon function
in Matlab. The average cost rate is computed by numerically integrating the plant system
of ODEs over one cycle.

Figure 1 shows results of optimizing swimming for different rewards c for swimming
speed. As the reward c increases, the lamprey swims faster (Fig. 1A). As in the lamprey, as
swimming speed in the model increases, swimming frequency increases (Fig. 1B) and phase
lags among muscle torques and body curvature at different locations along the body remain
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Figure 1: Optimal steady-state swimming as the reward for swimming speed is varied.
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roughly constant (Fig. 1C). Also note that as in the lamprey, the wave of muscle activity
moves more faster along the body than the wave of body curvature. As expected muscle
torques also increase with increasing swimming speed (Fig. 1D).

2.3 A closed-loop CPG-based model of lamprey swimming

In this subsection we describe our CPG-based approach to understanding closed-loop lo-
comtion. Vertebrate locomotion central pattern generators (CPG) are known to produce an
electrical signal that is projected to the motorneurons, which in turn contract the muscle
and propel the animal through the environment. Sensory input to the vertebrate locomo-
tion CPG is known to modulate the signal of the CPG. In the model system that we are
studying, the lamprey have several forms of sensory inputs. The lamprey lateral line system
transmits information regarding the fluid flow around the body as a direct input through
the lateral line nerve to the brain. Additionally, there are edge cells that sit on the margin
of the spinal cord that transmit information directly to the locomotion CPG. Edge cells are
stretch receptor, and essentially measure the curvature of the body. In our model of closed
loop swimming, we focus on this type of sensory input and show that sensory input to the
lamprey locomotion CPG modulate the motion of the animal though a closed feedback loop.

The vertebrate, and lamprey in particular, central pattern generator of locomotion is
commonly represented by a chain of coupled oscillators with neural connections between the
oscillators. Each individual oscillator can be represented by models with varying biological
detail6,10,1,8,11. We consider the simplest model of a chain of n coupled phase oscillators:

θ̇i = ω +
n∑
j=1

αi−j sin(θj − θi − ψi−j) + Ai sin(θmi − θi − ψm
i ), (4)

where θi for i = 1, . . . , n are the absolute phases (mod 2π) of oscillators in the chain (i = 1
for the oscillator nearest the head) and the parameter ω is the uncoupled angular frequency
of the oscillators in the chain, which we assume to be the same for all oscillators, ω = 1Hz.

Each oscillator in the central pattern generator receives two types of input. The first type
of input, which we will call internal inputs, are from other oscillators in the central pattern
generator. This describes the coupling between the oscillator in the locomotion CPG. The
model assumes that coupling is translation invariant, meaning that the properties of the
connection from oscillator j to oscillator i only depend on the relative position k = i − j:
αk is the strength of the connection and ψk is its preferred phase. Here, k > 0 for de-
scending (toward the tail, or caudal) connections and k < 0 for ascending (toward the head,
or rostral) connections. (Note the conflict between the anatomical terms “descending” and
“ascending” and our indexing scheme in which i increases from head to tail.) There is no
connection between an oscillator and itself, so α0 = 0. Supported by numerical evidence12,13,
we assume all-to-all coupling with coupling strength decaying exponentially with distance
|r|: for r > 0 (descending connections), αr = Ade

−|r|/λd ; for r < 0 (ascending connections),
αr = Aae

−|r|/λa ; for r = 0 (intrasegmental connections), αr = 1, where Ad, λd and Aa, λa
are the amplitudes and length constants for descending and ascending connections, respec-
tively. Experimental evidence suggests non-uniform coupling asymmetry, specifically, that
short ascending connections are stronger than short descending connections, whereas long

7



descending connections are stronger than long ascending connections, which are reflected in
the parameters Ad, λd and Aa, λa.

The second type of input into the central pattern generator is external inputs from the
edge cells. This input provides the sensory feedback information into the central pattern
generator. Experimentally, it has been shown that edge cells project directly onto the central
pattern generator, and that it responds to both stretch and rate of stretch of the body, but
the exact form of the feedback function has not been experimentally determined. We model
the input from the edge cells using curvature information from the body equations. We
tried two forms of feedback functions: one that was proportional to the body curvature, and
one that was proportional to the square of the body curvature. We determined values of
the constant of proportionality, which we will call the strength of feedback and denote by
αf , for which the animal reaches steady state swimming. The feedback function that was
proportional to the body curvature produced unrealistic ranges of feedback strength that
produced steady state swimming. The ranges in feedback strength to achieve steady state
swimming were on the order of 10−6, which essentially represents no feedback from the edge
cells onto the central pattern generator. The feedback function that was proportional to
the square of body curvature produced more realistic results in terms of values of feedback
strength that produced steady state swimming, and these results are shown below.

For our simulations, we used a lamprey with (n = 10) segments, a Young’s modulus of
0.7, and all-to-all coupling between the CPG oscillators with a slight non-uniform coupling
asymmetry with Ad = 10.0 and Aa = 10.1. The simulation was performed in Matlab using
the ode23s package. Figure 2a illustates the phase lags relative to the first oscillator for
oscillators 2,4,6, and 8 of the body, in red, blue, green, cyan, respectively. The effect of
the feedback is to slightly increase the phase lags between the oscillators, with oscillator 8
showing the largest increase, as expected since in incorportates the previous six increases.
Figure 2b shows that the period is constant, as a function of body position, as expected in
steady state swimming, but the period is different for each value of the feedback strength.
In particular, the period decreases as the feedback strength increases. Figure 2c shows
the maximum curvature as a function of body position for varying values of the feedback
strength. As the feedback strength increases, the maximum curvature decreases for each
body position, although the difference between the maximum curvatures at points along the
body for a given feedback strength seems to increase as feedback strength increases. The
final graph, figure 2d shows swimming speed as a function of feedback strength. There is
a sharp rise in swimming speed for small feedback strength. The sharp increase is followed
by a gradual decrease in swimming speed as feedback strength increases. We note here that
swimming speeds on the order of 10–40 cm/sec are not realistic for a swimming lamprey,
which may indicate that the feedback function is more complicated than simply squared
curvature.
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(a) Phaselags Relative to the first Oscillator (b) Period

(c) Curvature (d) Swimming Speed

Figure 2: Closed-loop swimming for various levels of feedback. This figure illustrates the
effect of feedback on phase lags relative to the first oscillator in figure 2a, period in figure 2b,
the curvature as a function of body position in figure 2c and velocity of swimming in figure 2d.
In figure 2a, the phaselags relative to the first oscillator are shown as a function of feedback
strength αf , in a range of values that produce steady state swimming. Relative phaselags
are shown for oscillator 2 in red, oscillator 4 in blue, oscillator 6 in green and oscillator 8 in
cyan. Figure 2b shows that the period is a constant function of body position, as expected in
steady state swimming, but that period decreases as feedback strength increases. Figure 2c
plots maximum curvature as a function of body positions for varying values of feedback
strength. The body curvature decreases as a function of feedback strength. The final graph
figure 2d shows the effect of feedback strength on swimming speed.
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