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Final Report for Award W911NF-09-1-0116 (ending 4/15/2013) 
(1) Rationale 

The first step of the project was to perform intrinsic optical imaging and 
electrophysiological recordings in posterior parietal cortex (PPC) of non-human 
primates (NHP). Two areas on the surface of the cortex were selected: area 7a and the 
dorsal prelunate (DP) while the NHP performed a visual spatial attention task. Previous 
studies from this laboratory demonstrate that PPC is strongly modulated by eye position 
and plays a crucial role in attentional processing (Raffi & Siegel, 2005; Quraishi et al., 
2007) and motor planning for visually guided eye and hand movements (Heider & 
Siegel, 2013). The intrinsic signal is characterized by relatively high spatial resolution in 
the range of ~100 µm compared to other hemodynamic imaging techniques such as 
functional magnetic resonance imaging (fMRI). Electrophysiological recordings on the 
other hand have high temporal precision (<0.1 ms). Various analyses were performed 
on the optical imaging and electrophysiological data to extract information from the two 
PPC areas most likely related to the NHP’s behavior. Of particular interest was the 
prediction of the locus of attention, which corresponds to the saccade target.  

Thus, the second step of the project was the classification of the experimental 
conditions (locus of attention, eye position) based on the imaging and 
electrophysiological recordings. The main goal is to predict the experimental conditions 
from the cortical activity in PPC. Generating a reliable decoder will form the basis to 
create a brain-computer interface (BCI) that can predict the upcoming behaviors of the 
subject before the motor plan is executed. In order to optimize the decoding of the brain 
signals, multiple analysis approaches have been evaluated and tested over large 
numbers of experiments and conditions. 
 
(2) Task and Experimental Design 

The NHP performed a visual spatial attention task (Fig. 1) based on previous 
publications (Raffi & Siegel, 2005). A trial starts with the onset of a central fixation dot, 
which prompts the NHP to start fixation within 500 ms. After one second, a small cue 
stimulus (0.3º gray diamond) on either the left or right side of the fixation dot was 
displayed for 400 ms. Two seconds after trial start, two identical stimuli (white squares 
10° visual angle) were presented at 10º eccentricity on either side of the fixation dot. 
The NHP had to maintain central fixation but was instructed by the cue to which 
stimulus of the pair attention had to be directed. After a variable time interval (2000-
2500 ms), the cued stimulus dimmed slightly and the NHP had to saccade to the 
changed stimulus within a 500 ms reaction time window. Successful completion of a trial 
was rewarded with a drop of juice. An incorrect trial was aborted immediately and no 
reward was given. Optical and electrophysiological recordings were performed during 
the entire trial period of approximately 6.5 s. 

This basic task was performed in two versions to control for the effects of instructed 
locus of attention. 1) Cued condition, as described above (Fig. 1A). 2) Non-cued 
condition, that is, the NHP was not being instructed which side of the display was going 
to change (Fig. 1B). In the latter condition, attention could not be directed to a particular 
stimulus location but rather was divided or switching back and forth between the two 
locations. The use of these two conditions was specifically designed to enable the 



separation of the attentional or planning from the motor aspect of the eye movement. 
The basic task was performed in the primary position (i.e., fixation point is straight 
ahead) or the entire test coordinate system can be shifted up or down in order to 
contrast gain fields with locus of spatial attention. Typically, one imaging run consisted 
of about 400 trials (duration ~1.5 hours). On many imaging sessions (days) data from 2 
runs could be collected.  

 
(3) Data Collection 

Intrinsic optical imaging data were collected from the left hemisphere of one NHP 
(M3L). More than 50 experiments were performed in this first series. Additional optical 
imaging data from the right hemisphere of another NHP (M1R) were added to allow 
comparison between subjects and experimental parameters. In M3L, additional 
electrophysiological recordings were performed over the cortical regions that had been 
imaged previously. Thus, electrophysiological and optical (hemodynamic) signals can 
be compared directly over the same cortical regions during different stages of the task 
to optimize performance of the BCI (Zimmermann et al., 2011; Fazli et al., 2012).  

Imaging: Intrinsic optical imaging allows measuring changes in blood oxygenation 
during a given task using reflectance of the cortical tissue. The exposed cortex is 
covered by a transparent artificial dura and illuminated with orange light (625 nm). 
Under these conditions, the amount of reflected light is proportional to the proportion of 
oxygenated and deoxygenated hemoglobin in the tissue and thus can be considered an 
indirect indicator of cortical activity. We decided against utilizing voltage sensitive dye 
(VSD) imaging over the same cortical areas. The potential advantage of this form of 
imaging is the fast and direct neural signal. However, for imaging in behaving NHP, this 
method has serious drawbacks and thus proved to be unsuitable. One problem was the 
fact that the cortex has be infused repeatedly with the non-toxic dye for several hours 
prior to imaging while the NHP is required to wait in the primate chair (Slovin et al., 
2002). This prolonged waiting period (2-3 hours) compromised the cooperation of the 
NHP in the subsequent imaging experiments. In addition, the staining of the cortex 
made it difficult to illuminate the cortex sufficiently. 

Electrophysiology: Targeted recordings were performed either through the artificial 
dura or through the regrown native dura after removal of the artificial dura. Basic 
methods and related data have been described previously (Heider et al., 2010). Single-
unit and multi-unit activity (SUA and MUA) are the spiking activity from one or several 
recorded neurons. This activity represents the output of neurons. At the same time, 
local field potentials (LFP) can be measured, which represent average synaptic input 
activity from thousands of neurons. These electrical signals were recorded 
extracellularly from fine, glass-insulated Pt-Ir electrodes in targeted cortical locations. As 
expected, spiking activity and LFP generally did not match with respect to their spatial 
tuning (see Figs. 15 and 17 of Attachment). Previous imaging studies further suggest 
that LFPs correlate more strongly with the hemodynamic response (Logothetis et al., 
2001). Activity from a total of 54 neurons was recorded from areas 7a and DP from 
M3L. The electrical signal was analyzed offline and spiking activity and LFPs were 
synchronized with the stimulus onset (pre) and saccade events (post), and the resulting 
values compared between conditions. 
 



(4) Basic Imaging Results 
The reflectance signal followed the typical biphasic time course over the course of the 

trial (Figs. 2A, 5A), that is, an increase in reflectance with a peak at ~2 s after stimulus 
onset (overshoot) and a subsequent decrease (undershoot). This temporal profile of the 
hemodynamic response was similar in both areas. Therefore, it is important to 
remember that the hemodynamic response lags behind the crucial event by about 1.5 s. 
Linear regression coefficients were extracted pixel-by-pixel from the reflectance signal 
by fitting the spatial parameters (eye position, vertical ay; locus of attention, horizontal 
ax) and mean reflectance (intercept a0), as published previously (Siegel et al., 2003; 
Raffi & Siegel, 2005). Over the course of the trial the values of the various regression 
parameters increased and peaked at 1.5-2 s after stimulus onset (Figs. 2B, 5B). These 
regression parameters and their corresponding time course varied considerably 
between experiments (Figs. 3, 4). This variability was also observed for the non-cued 
experiments (Figs. 6, 7). The time course of the reflectance signal was not substantially 
different during the non-cued task condition (compare Fig. 5 with Fig. 2). These 
combined results confirm that the intrinsic reflectance signal displayed a typical 
temporal profile over the course of a trial. Despite this consistency, the selectivity of the 
reflectance signal for the experimental parameters varied considerably between 
experiments (Figs. 3, 4, 6,7).  
 
(5) Data Analysis and Decoding 

Two main challenges were encountered when utilizing intrinsic optical imaging as a 
basis for a BCI: First, the intrinsic signal is inherently slow so that it takes at least 1.5 s 
after stimulus onset to generate reliable maps (Figs. 2B, 5B). Signal separation between 
experimental conditions peaked even later (2-3 s). However, for prediction, it is 
important to extract a useful signature as early as possible. Second, the intra-subject 
variability across experiments (Figs. 3, 4, 6, 7) made it difficult to establish a decoding 
mechanism that would operate reliably across days. Thus, a wide selection of prediction 
and decoding routines has to be evaluated so that a useful signal can be extracted from 
the noisy and variable data. 

The main goal was the extract parameters from the reflectance images of the cortex 
that allow prediction of the experimental parameters that guide the behavior of the NHP. 
By selecting the most accurate and reliable classification algorithm, we can attempt to 
build a BCI capable of predicting the NPH’s upcoming behavior based on the 
hemodynamic activity in PPC. It is important to consider that we can only evaluate one 
hemisphere at a time. This differs from approaches using whole brain imaging such a 
multi-channel near infra-red spectroscopy (NIRS) (Herrmann et al., 2005).  

Support Vector Machine (SVM) is based on a statistical learning approach that allows 
mapping of experimental or behavioral conditions onto the cortex. SVM does not imply 
assumptions about the distribution of the signal or the noise. Various SVM classifiers 
were applied to the imaging data. Linear kernels (LSVM) allow direct mapping of the 
classification performance onto the cortical map (LaConte et al., 2005; Xiao et al., 
2008), as illustrated in Figs 9,10,12,13. As the prediction of attentional locus was the 
main goal of the current project, upper and lower eye positions were analyzed 
separately to allow a binary classification. First, a training set was assembled from 
randomly selected trials (10% of the original data set). The remainder of the data was 



used to test the decoder (cross validation). The goal of the training was to find the 
hyperplane (Fig. 8A) that could distinguish between the two classes (left vs. right locus 
of attention). The optimal hyperplane is the one with a maximal margin of separation 
between the two classes (Fig. 8B). This hyperplane serves as a decision function that 
can be used for classifying a test example. Depending on the learning method there are 
many possible solutions or hyperplanes. The temporal profile of the reflectance signal 
demonstrated that the separation between classes increased over time (Figs. 2-6), thus 
two methods were chosen for the assembly of the data with respect to training set.  

First, all 47 frames were included to calculate the weight vector for classification 
(Figs. 9,10), which was then applied to the test data separately for different time 
segments (always 4 frames averaged). Thus, the entire time course was included in the 
training set and thus contained frames early in the trial that did not contain any relevant 
signals. For the illustrated sample experiments, the resulting average prediction 
accuracy across all time segments ranged from 60-66% for the cued task, and from 53-
61% for the non-cued task. The prediction strength was distributed in a patchy manner 
across the cortex and also varied strongly between time segments. The difference in 
accuracy between cued and non-cued condition were not significant (Fig. 11) but overall 
accuracy using this method was significantly greater than chance level (50%). 

Second, the training and testing was performed separately for each time segment (4 
frames) to assess the temporal profile of the prediction accuracy (Figs. 12,13). Thus, 
the vector for the training set contained only 4 frames. Prediction accuracy increased 
over time and reached a maximum around 3 s after stimulus onset. Earlier time 
segments yielded accuracies around chance level. The color-coded projections of the 
test classification onto the cortex again showed a patchy topographical distribution of 
the predicted experimental parameters (locus of attention). However, there was little 
consistency between experiments as demonstrated when plotting accuracy over time 
separately for each experiment and condition (Fig. 14).  

Thus, based on the results from both methods it is clear that neither approach yielded 
satisfactory prediction accuracies, which is mostly due to the slow hemodynamic 
response and the variability of the responses over PPC (Raffi & Siegel, 2005; Raffi & 
Siegel, 2007). A decoder would need to be recalibrated from one experiment to the 
next, which is impractical for the current project. 

Electrophysiological recordings provide much greater temporal resolution than the 
hemodynamic signal, that is, spiking and LFP responses happen almost 
instantaneously. One example neuron from each area illustrates the variety of spike 
modulation with the spatial (eye position, attentional locus) and temporal (event 
synchronization) task parameters (Fig. 15). The area 7a neuron had sparse firing and 
was weakly modulated by the spatial parameters during either task. However, the non-
cued task yielded overall higher firing rate. The area DP neuron had higher firing rates 
and was strongly modulated by the spatial parameters and the saccade response. 
These differences were confirmed in the population of neurons by plotting the average 
firing rate for the 1 s epoch after stimulus onset against to the average firing rate for the 
epoch after saccade onset separately for each neuron (Fig. 16).  

LFP recordings from the same site as the single neuron examples showed different 
modulations than the single spike results (Fig. 17). Strong increases in power across 
many frequencies (10-80 Hz) were observed for the 7a site (same as for single neuron 



in Fig. 15) before stimulus onset indicative of a strong anticipatory modulation, which 
was present during cued and non-cued conditions. Such increases in power were 
absent in the DP site. The average spectrogram was calculated for each epoch and 
recording site and plotted separately for each area (Fig. 18). Consistently, area 7a sites 
were more strongly modulated than the DP sites in particular for the cued attention task. 
This suggests that LFP data could provide essential information regarding separation 
temporal and spatial task parameters, which has been confirmed in another PPC area, 
the so-called parietal reach region PRR (Scherberger et al., 2005). The inter-areal 
differences with respect to spiking vs. LFP measurements suggest that connections 
from DP to 7a are directed from single neuron to node (network).  

 
(6) Conclusions 
Based on the current imaging and electrophysiological findings it could be concluded 
that areas 7a and DP are not ideal cortical candidates for a BCI application. Other 
cortical areas such as motor or sensory cortices have proven to be suitable for BCI 
application both in human and non-human primates (O'Leary & Hatsopoulos, 2006; 
Truccolo et al., 2008; Vargas-Irwin et al., 2010). However, PPC might offer other 
advantages namely adaptability and flexibility, due to the representation of cognitive 
variables (Hauschild et al., 2012). Unlike the lateral intraparietal (LIP) or PRR, which 
contain relatively stable representations for saccade target and reach targets (Snyder et 
al., 2000; Scherberger et al., 2003), areas 7a and DP do not have very precise spatial 
representations (Heider et al., 2005; Raffi & Siegel, 2005). These two areas have 
variable representations that indicate a high degree of flexibility, which might be 
beneficial in changing environments. Our and other results suggest that the ideal BCI 
will consist of a combination of areas that combine stable and flexible representations. 
Moreover, brain activity from various sources should be utilized, hemodynamic (e.g., 
optical) for the spatial specificity and electrophysiological (e.g., EEG) for the temporal 
resolution.  
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Task sequence (top) and task display (bottom) for cued (A) and non-cued (B) spatial attention task: 1) start 
fixation, 2) cue (to left), 3) stimulus pair (left and right targets), 4) stimulus change (left) and start saccade.  
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Figure 2 A

B

(A) Sample time course of reflectance signal (mean ± standard deviation) for cued attention task over area 7a 
(left) and area DP (right). (B) Evolution of linear regression parameters during the task. Intercept (a0), horizontal 
coefficient (ax), vertical coefficient (ay),  R2, vector amplitude, and angle.  
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Figure 3 A B

Time course of linear regression parameters (mean ± standard error) for all cued experiments: intercept (a0), 
horizontal coefficient (ax), vertical coefficient (ay) for area 7a (A) and area DP (B). 
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Figure 4 A B

Time course of linear regression parameters (mean ± standard error) for all cued experiments: vector amplitude (top) 
and angle (bottom) for area 7a (A) and area DP (B). 
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Figure 5 Stimulus Change Stimulus Change A

B

(A) Sample time course of reflectance signal (mean ± standard deviation) for non-cued task over area 7a (left) 
and area DP (right). (B) Evolution of linear regression parameters during the task. Intercept (a0), horizontal 
coefficient (ax), vertical coefficient (ay),  R2, vector amplitude, and angle.  
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Figure 6 A B

Time course of linear regression parameters (mean ± standard error) for all non-cued experiments: intercept (a0), 
horizontal coefficient (ax), vertical coefficient (ay) for area 7a (A) and area DP (B). 
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Figure 7 
A B

Time course of linear regression parameters (mean ± standard error) for all non-cued experiments: vector amplitude 
(top) and angle (bottom) for area 7a (A) and area DP (B). 
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Figure 8 

A B

Basic principles of linear support vector machine (LSVM). (A) Binary classification can be viewed as the task of separating classes 
into feature space. A hyperplane (white diagonal line) separates the two classes. This hyperplane is described by a learning weight 
vector (w) and an offset (b). (B) Classification margin with examples closest to the hyperplane representing support vectors. 
Margin ρ of the separator is the distance between support vectors. 
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LSVM binary classification for two sample experiments for cued (A) and non-cued (B) tasks plotted for the upper eye position (attention 
left vs. right). For the training, the signal was averaged across all 47 frames to estimate the weight vector (wT), and then applied to each 
time segment (4 frames averaged). Overall accuracy does not exceed 62% but certain regions on the map are reliable predictors for 
attention left (dark blue) or attention right (dark orange). 
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DP 
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LSVM binary classification for two sample experiments for cued (A) and non-cued (B) tasks for the lower eye position (attention left vs. 
right). For the training, the signal was averaged across all 47 frames to estimate the weight vector (wT), and then applied to each time 
segment (4 frames averaged). Overall accuracy does not exceed 66% but certain regions on the map are reliable predictors for attention 
left (dark blue) or attention right (dark orange). 
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Figure 11 

LSVM binary classification accuracy (mean ± standard error) across multiple 
experiments (cued and non-cued task) separated by eye position (up, blue; down, 
red). The signal was averaged across all frames to estimate the weight (wT) and 
then applied to each time segment (4 frames averaged). Overall accuracy (~60%) 
is significantly greater than chance (50%). 
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LSVM binary classification for two sample experiments for each cued (A) and non-cued (B) task for the upper eye position (attention left 
vs. right). In these examples, the weight (wT) was determined for each time segment (4 frames averaged) during training and then 
applied to each time segment for testing. Over the course of the trial, accuracy improves from chance level (50%) to above 60% for the 
last segments (~3 s after stimulus onset).  
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LSVM binary classification for two sample experiments for each cued (A) and non-cued (B) task for the lower eye position (attention left 
vs. right). In these examples, the weight (wT) was determined for each time segment (4 frames averaged) during training and then 
applied to each time segment for testing. Over the course of the trial, accuracy improves from chance level (50%) to above 60% for the 
last segments (~3 s after stimulus onset).  
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Figure 14 

Stimulus Change Stimulus Change 

Time course of LSVM binary classification accuracy (mean ± standard error) separated by task condition and eye 
position. Cued task: (A) upper eye position, (B) lower eye position. Non-cued task: (C) upper eye position, (D) lower 
eye position. After stimulus onset, accuracy increases gradually from ~50% to ~60% for the last time segments (~2.5s 
after stimulus onset). 
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Figure 15 
Cued Non-cued 

Single unit examples for each area (7a, top panels; DP, bottom panels) during cued (A) and non-cued (B) task. Each pair of 
panels shows synchronization for stimulus onset (stim-on, PRE) and saccade onset (sacc-on, POST). Panels are arranged 
according to stimulus conditions indicated to the left. 
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Figure 16 Cued Non-cued 

C D

Population single unit analysis from all recorded neurons. Average spike rate from 1 s after 
stimulus onset (PRE) is compared with average spike rate 1 s after saccade response (POST). 
(A) Cued task (area 7a, upper panel; area DP, lower panel). (B) Non-cued task (area 7a, upper 
panel; area DP, lower panel). (C) Inter-areal comparison for cued task. (D) Interareal 
comparison for non-cued task 
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Figure 17 

Local field potential analysis for sample sites in each area (7a, top panels; DP, bottom panels) during cued (A) and non-cued 
(B) task. Each quadrant per area and condition contains two pairs of panels showing the LFP spectrum as a function of 
frequency (top) and the corresponding color coded spectrograms (bottom, frequency range 10-80 Hz) for the stimulus onset 
(PRE, left) and saccade onset (POST, right) synchronization. Panels are arranged according to stimulus conditions indicated to 
the left. 
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Figure 18 

C D

Cued Non-cued 

Population local field potential analysis from all recording sites. Average spectrogram 1 s after 
stimulus onset is compared with average spectrogram 1 s after saccade response, taken from 
frequency range 5-20Hz. (A) Cued task (area 7a, upper panel; area DP, lower panel). (B) Non-
cued task (area 7a, upper panel; area DP, lower panel). (C) Inter-areal comparison cued task. 
(D) Interareal comparison non-cued task 


