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Over the past few years, it has been shown, through theory and experiments, that the AC current

produced by spin torque nano-oscillators (STNO), coupled in an array, can lead to feedback

between the STNOs causing them to synchronize and that, collectively, the microwave power

output of the array is significantly larger than that of an individual valve. Other works have

pointed, however, to the difficulty in achieving synchronization. In particular, Persson et al.
[J. Appl. Phys. 101, 09A503 (2007)] shows that the region of parameter space where the

synchronization state exists for even a small array with two STNOs is rather small. In this work,

we explore in more detail the nature of the bifurcations that lead into and out of the

synchronization state for the two-array case. The bifurcation analysis shows bistability between

in-phase and out-of-phase limit cycle oscillations. In fact, there are two distinct pairs of such

cycles. But as the input current increases, the limit cycles may increase their amplitudes until they

merge with one another in a gluing bifurcation. More importantly, we show that changing the

direction of the applied magnetic field can, in principle, increase the region of synchronized

oscillations. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795266]

I. INTRODUCTION

Spintronics—the emerging science that seeks to exploit

the intrinsic spin of the electron—has stimulated scientists

and engineers around the world to envision, design, and fab-

ricate an entire new generation of smaller, faster, and more

energy-efficient nano-electronic devices.1 Spintronic devices

work on the quantum mechanical effects of electrons having

two-state spins, “up” or “down.” By running current through

a ferromagnetic material, a spin-polarized current can be cre-

ated and manipulated by magnetic fields. The most common

application of this effect is the spin nano-valve device, which

consists of at least two layers (about 100 nm in lateral size)

of ferromagnetic materials separated by a nonmagnetic mate-

rial layer, see Fig. 1. In one layer, the magnetization vectors

are fixed while on the other hand they are free in order to

exploit the giant magnetoresistive (GMR) effect. This effect

is observed as a significant change in the electrical resistance

of some materials depending on whether the magnetization

of adjacent ferromagnetic layers is in antiparallel (high re-

sistance) or in parallel (low resistance). One immediate

application of the spin valve is as a sensor of weak fields.

But a later discovery of the spin-polarized phenomenon may

soon allow spin valves to be used also as miniaturized micro-

wave signal generators.

Indeed, in 1996, Slonczewski3 and Berger2 predicted the

spin-polarized phenomenon in which a polarized current can

exert a torque on the magnetization of a ferromagnetic layer.

For large enough currents, this torque can lead to switching

and/or precession of the magnetization, see Fig. 1. Then the

magnetic precession of the free layer can lead, through the

GMR effect, to an oscillating dipolar field in the form of a

microwave voltage signal and turn the valve into a spin tor-
que nano-oscillator (STNO). This nano-oscillator is, in prin-

ciple, tunable over a broad frequency band, about 40 GHz,4

FIG. 1. Schematic representation of a spin torque nano-oscillator. This

nano-oscillator consists of at least two layers (about 100 nm in lateral size)

of ferromagnetic materials separated by a nonmagnetic material layer or

spacer.a)Electronic mail: palacios@euler.sdsu.edu.

0021-8979/2013/113(11)/114901/10/$30.00 VC 2013 American Institute of Physics113, 114901-1
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which renders it ideal for many applications, including: tele-

communications, e.g., wireless systems; radar, e.g., air traffic

control, weather forecasting, and navigation systems. But the

microwave power emitted by a single valve is very small,

about 1 nW,5 which is not adequate for on chip applications.

A possible solution to this problem, which has been proposed

by various groups,6–10 is to synchronize several STNOs so

that a coherent signal with a common frequency and phase

can be extracted from the ensemble to produce a more

powerful (on the order of micro-watts) microwave signal. To

date, there is no report, however, that even just five STNOs

connected in series can be synchronized. Thus, an alternative

solution to achieve practical power is to boost the power of a

single STNO. Indeed, large power (over 1 lW) in single

STNOs has been recently demonstrated.11 In this manuscript,

we focus on the first alternative as we are motivated by all

previous works that have tried to address the problem of

synchronization.

As noted by the 2007 Nobel Laureate Professor Albert

Fert: “the synchronization of STNOs raises complex prob-

lems that are new in spintronics and related to the general

field of Dynamics of Nonlinear Systems.”6 Presumably, the

problems that Professor Fert had envision include: under-

standing and classifying the various coherent states that an

ensemble of STNOs can produce, finding conditions for the

existence and stability of such coherent states, determining

the effects of different couplings and connection topologies,

establishing scaling laws of microwave power output for

large 1D and 2D multi-layers, and conducting transformative
research to translate theory into actual device realizations of

STNOs. These problems, and many other related issues,

remain open and are currently the subject of intense research

efforts, analytically, computationally, and experimentally,

across the world.

Thus, in 2005, Kaka and collaborators from the National

Institute of Standards and Technology (NIST) reported in

Nature,7 the first experiments that show that two spin torque

nano-oscillators tend to phase lock when they are in close

proximity of one another. The coupling in this case is

“soft” as it depends on the magnetic fields produced by each

nano-oscillator. Soon after, Grollier et al.6 investigated, com-

putationally, the behavior of a 1D array of N¼ 10 STNOs

electrically coupled in series. Their study showed that the

AC current produced by each individual oscillator can also

lead to synchronization and that, collectively, the microwave

power output of the array is significantly larger than that of

an individual valve. In a follow-up study, Persson et al.8

mapped out numerically the region of synchronization of the

1D serially connected array considered by Grollier for the

special case of N¼ 2 STNOs. The critical observation, albeit

disappointing, points out that synchronization is difficult to

achieve because the region of parameter space where this re-

gime exists is rather small. Subsequently, Li et al.12 showed

that this difficulty was due, mainly, to the coexistence of

multiple stable attractors, which suggests that the synchroni-

zation regime is highly sensitive to initial conditions. On a

more positive note, a joint effort by researches from the

Army Research Laboratory (ARL) and from NIST produced

recently the first demonstration of the ability of a single

STNO to radiate energy through space.5 At about 250 pW

and high frequency of 9 GHz, the generated signal carried

lower power than expected from the previous theoretical

studies7 but it was able to travel through air over a distance

of 1 m.

In the present work, we provide a detailed description of

the nature of the bifurcations that lead into and out of the

synchronization regime in the 1D array of two serially con-

nected STNOs considered by Persson et al.8 Although

Persson’s work, and also our work, is focused on only two

oscillators, we believe that a better understanding of the na-

ture of the bifurcations in this small array can provide help-

ful insight to achieve synchronization in larger arrays. The

bifurcation analysis shows bistability between in-phase and

out-of-phase patterns of oscillations, which emerge via back-

to-back Hopf bifurcations from a branch of nontrivial

saddle-node equilibria. There are, in fact, two distinct pairs

of such limit cycles. When the applied magnetic field occurs

in a direction that leads to reflectional symmetry in the gov-

erning equations then it might be possible to manipulate only

the input current to bring together the cycles until they merge

with one another in a gluing bifurcation.13 But if the applied

magnetic field breaks the symmetry of the equations then

two parameters must be varied to glue together the cycles.

This is the case because the gluing bifurcation is a global

bifurcation that is facilitated by the presence of reflectional

symmetry. That is, when reflectional symmetry is present in

the system the cycles can be considered as mirror images of

one another. Thus, generically, only one parameter needs to

be varied to move the two cycles and the codimension of the

bifurcation is one. In the absence of reflectional symmetry,

each cycle can be moved independently of one another and

thus the bifurcation becomes codimension two. While the

symmetry of the system is important, from a mathematical

standpoint, for the creation of the gluing bifurcation the criti-

cal observation that we wish to emphasize from a physics

standpoint is that the bistability of the out-of-phase oscilla-

tions is what seems to make the synchronization state very

difficult to achieve. As the basins of attraction of these two

solutions compete for stability, it appears that the volume of

phase space that the basin of attraction of the out-of-phase

solution occupies is much larger than that of the synchroni-

zation regime. The good news is, however, that a change in

the direction of the applied field can significantly enlarge the

basin of attraction of the synchronization state and reverse

the preferred state towards synchronization. This type of

enhanced synchronization offers an alternative to the use of

delays as it was originally proposed by Persson et al.8

Another bit of good news is that the synchronization regime

appears to be significantly robust to fluctuations of parame-

ters and, in turn, to variations in the frequency of oscillation

of each individual spin valve. In particular, when the spin

valves are non-identical, differences in the anisotropy and

demagnetization fields and gyromagnetic ratio can lead to

dispersion among the free-evolving frequency of each indi-

vidual spin valve. However, careful tuning of the DC current

and of the resistors in the circuit can lead the array to over-

come the frequency mismatch and for the system dynamics

to evolve towards the synchronization attractor. This result is

114901-2 Turtle et al. J. Appl. Phys. 113, 114901 (2013)



expected because numerical computations show that all

Lyapunov exponents transverse to the synchronization mani-

fold are negative; so that small perturbations or fluctuations

in system parameters can be absorbed by the array while the

solution trajectories asymptotically converge to the synchro-

nization state. From the standpoint of the bifurcation analy-

sis, we also wish to emphasize that differences in parameter

values tend to shift the onset of oscillations shown in the

computational bifurcation diagrams while the overall struc-

ture of the diagrams is preserved. We do not attempt in this

work to quantify the frequency mismatch nor the shift in the

location of the Hopf bifurcations that lead to limit cycle

oscillations. Those tasks, and a more comprehensive analysis

of the effects of the nonhomogeneity of parameter values

and an investigation of stochastic effects, such as noise in

the system, are part of ongoing work. We expect to report

those results in a follow-up manuscript.

II. MODELING

A. Single STNO dynamics

An originally unpolarized electric current I, in units of

Amp, is applied to a fixed magnetic layer whose magnetiza-

tion is represented by M̂. As the electrons pass through the

layer, their spins move (and flip if necessary) to align their

orientations to that of the fixed layer, thus, creating a spin-
polarized current, see Fig. 1 for a schematic diagram.

The electrical potential that exists across the nonmag-

netic layer (labeled spacer) allows the spin-polarized current

to preserve its polarization. So when the spin-polarized cur-

rent enters the free magnetic layer, it exerts a torque on its

magnetization m̂. According to Newton’s third law, the

amount of torque is directly proportional (and of opposite

sign) to the difference in the magnetization of the spins in

the polarized current and those of the free layer. We will

assume the layers to be uniform so that the spin precession is

proportional to �m̂ � ~Heff , where ~Heff is the effective mag-

netic field, which consists of the exchange field, ~Hexchange,

among magnetic moments, a surface anisotropy field,
~Hanisotropy, which defines a preferred direction of magnetiza-

tion, a demagnetization field ~Hdemagnetization, and the applied

magnetic field ~Happlied . Collectively, the effective field

becomes

~Heff ¼ ~Hexchange þ ~Hanisotropy þ ~Hdemagnetization þ ~Happlied:

Also it can be shown that the spin-transfer torque is pro-

portional to m̂ � ðm̂ � M̂Þ. Energy dissipation effects such as

those due to spin scattering lead to a damping term proportional

to m̂ � dm̂
dt . Together, these quantities govern the dynamics of

the free magnetization layer through the Landau-Lifshitz-

Gilbert-Slonczewski (LLGS)2,14–17 equation:

dm̂

dt
¼ �c m̂ � ~Heff

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{precession

þ k m̂ � dm̂

dt

zfflfflfflfflfflffl}|fflfflfflfflfflffl{damping

� c a gðP; m̂ � M̂Þm̂ � ðm̂ � M̂Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{spin transfer torque

; (1)

where c is the gyromagnetic ratio, in units of 1
Oe ns

, where ns

represents nanoseconds, while k serves as the magnitude of

the damping term, in dimensionless units. In the spin torque

term, a has a unit of Oe and is proportional to the electrical

current density14,18,19 which can be written as a ¼ �hIj

2S0Ve,

where S0 is the constant magnitude of the average magnet-

ization vector S(t), in units of Oe, so that m̂ ¼ Ŝ=S0 is the

dimensionless unit vector in the direction of S, g is a function

of the polarization factor P, which will be assumed to be

exactly one in dimensionless units. �h ¼ 6:582� 10�16 is

Planck’s constant in units of eV s, V ¼ 3:0732 is volume in

units of cm3, e ¼ 1:602� 10�19 is the elementary charge in

units of Coulombs.

B. Series array of STNOs

We now consider a 1D array of STNOs connected in se-

ries, as is shown in Fig. 2, and derive the governing equa-

tions for the general case of N STNOs though the remaining

work is focused on the particular case of N¼ 2 studied by

Persson et al.8

Following the work of Grollier et al.,6 we assume the

standard equation for the resistance (in units of X) of the ith
oscillator to be RiðtÞ ¼ R0i � DRicoshiðtÞ, where hiðtÞ is the

angle between the magnetization of the fixed and free ferro-

magnetic layers, R0i is the mean while DRi is half the differ-

ence between the resistances in the parallel, RPi, and the

anti-parallel, RAPi, magnetization states, respectively. That

is, R0i ¼ ðRAPi þ RPiÞ=2 and DRi ¼ ðRAPi � RPiÞ=2. The

input I0 is a known DC current. To determine the instantane-

ous current through the jth STNO element, we combine

Kirchoff’s Current Law and Ohm’s Law to produce a simple

current divider equation:

Ij ¼
RCXN

i¼1

Ri þ RC

I0: (2)

Because the right-hand side of Eq. (2) is independent of

j, the current must be the same in all oscillators. Removing

the j index and substituting Ri into Eq. (2) produces, after

some manipulation, the following equation for the current:

FIG. 2. Circuit array of spin torque nano-oscillators connected in series.
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IðtÞ ¼

RC

RCþ
XN

i¼1

R0i

1�

XN

i¼1

DRi cos hiðtÞ

RCþ
XN

i¼1

R0i

I0: (3)

Notice that the numerator is time invariant. In fact, this

numerator is a good approximation for the DC current in the

oscillator circuit branch. Expanding Eq. (3) in a first order

Taylor approximation, we can rewrite I(t) in the simplified

form:

IðtÞ ¼ IDC

�
1þ

XN

i¼1

bDRicoshiðtÞ
�
; (4)

where

IDC ¼
RC

RC þ
XN

i¼1

R0i

I0 and bDRi ¼
DRi

RC þ
XN

i¼1

R0i

:

We note that the current I appears in the spin torque

term of the LLGS Eq. (1) through the parameter a. Thus,

assuming a polarization factor g¼ 1, we arrive at the follow-

ing model for the array of N STNOs electrically coupled in

series

dm̂j

dt
¼ �cm̂j � ~Hef f þ km̂j �

dm̂j

dt

� c
�h

2S0Ve
IDC

�
1þ

XN

i¼1

bDRicoshiðtÞ
�

m̂j � ðm̂j � M̂Þ:

(5)

It is observed from Eq. (5) that the series configuration

results in an all-to-all coupling scheme where each individ-

ual STNO is influenced by the angles between the free and

fixed layers of every other STNO. Thus, the symmetries of

the series array of N STNOs are described by the group SN,

which is the group of all permutations of N objects. While

these equations are valid for up to j ¼ 1…N oscillators, our

aim in this work is to focus on the case N¼ 2 considered by

Persson et al.8 But first we conduct computer simulations of

the governing equations (5) in order to get insight into

the type of transitions that lead to the synchronization state.

We employ the relations introduced by Murugesh and

Lakshmanan18,19 for the following terms: ~Hanisotropy

¼ jðm̂ � êjjÞêjj, where j ¼ 45 Oe, ejj ¼ ½sinhjjcos/jj; sinhjj
sin/jj; coshjj�T is dimensionless, ~Hdemagnetization ¼ �4pS0

ðN1m1x̂ þ N2m2; ŷ þ N3m3ẑÞ, where Ni, i ¼ 1; 2; 3 are

dimensionless constants with N1 þ N2 þ N3 ¼ 1, and

fx̂; ŷ; ẑg are the orthonormal unit vectors. However, we devi-

ate slightly in considering the applied magnetic field to lie

on the yz-plane instead of the z-axis, so that ~Happlied

¼ ha ½0; sinhh; coshh�T , where ha is in units of Oe. In what

follows we assume the direction of demagnetization to be

along the x̂-axis so that N ¼ ½1; 0; 0�T , thus, creating a yz-

plane. We also assume hjj ¼ 0 so that ejj ¼ ½0; 0; 1�, which

produces an easy axis in the z-direction. Finally, we assume

the direction of polarization of the spin-polarized current to

remain constant along the z-direction M̂ ¼ ẑ.

In the computational work of Persson et al.,8 it was

reported that the magnetization states mjðtÞ relax to stable

equilibrium states for small and for very large positive values

of the input DC current, IDC. It was also reported that non-

synchronized oscillations occur for most intermediate values

of IDC while synchronized oscillations are rare—as they occur

on very small regions neighboring the equilibrium states.

Something very similar occurs in our simulations, see Figure

3, except that now the large values of current where equilib-

rium states appear are negative. This inversion of sign is due

to the fact that in our formulation of the LLGS Eq. (1) we

have employed the notation introduced by Lakshmanan,15

which contains a negative sign in front of the gyromagnetic

ratio c as oppose to the positive sign used by Persson et al. Up

to a conjugacy in sign, these two formulations are equivalent

So we can proceed with the exploration of the dynamics. As

reported by Persson et al., our simulations show that for

FIG. 3. Collective behavior of two STNOs coupled in a series array through an external electrical current IDC. Parameters are: c ¼ 0:0176 1
Oe ns

, k ¼ 0:008,

hjj ¼ 0 rad, hh ¼ 0 rad, ha ¼ 300 Oe, j ¼ 45 Oe, S0 ¼ 8400=ð4pÞ Oe, N̂ ¼ ½1; 0; 0�T , R0i ¼ 0:1 X, Rc ¼ 50 X, and DRi ¼ 0:03 X.
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intermediate values of IDC the dynamics is attracted to stable

limit cycle oscillations. There are, indeed, two types of limit

cycles. One of them corresponds to the out-of-phase oscilla-

tions, OP, where the two magnetization states oscillate with

the same waveform and amplitude but out of phase by half a

period. The other cycle corresponds to the in-phase oscilla-

tions, IP, leading to a complete synchronization state. Next we

study in more detail the nature of the bifurcations that lead

into/out-of the synchronization state. We would like to

emphasize that such bifurcation study was not discussed in

Persson et al.8 but it can be an important tool to help us look

for clues to increase the region of stability of the synchronized

pattern of collective behavior with the ultimate goal of achiev-

ing higher power output through an array of spin valves.

III. COMPUTATIONAL BIFURCATION ANALYSIS

In order to understand the nature of the bifurcations that

lead into and out of the synchronization state, we perform

next a computational bifurcation analysis, with the aid of the

continuation software package AUTO,20 of the governing

equations. For convenience, we convert to complex stereo-

graphic coordinates18,19 through the following change of

variables:

zj ¼
mj1 þ imj2

1þ mj3
: (6)

Direct and tedious calculations using Eq. (6) lead to the

following set of differential equations in stereographic

coordinates:

ð1� ikÞ dzj

dt
¼ � cazj þ icha3zj þ

cha2

2
ð1þ z2

j Þ

þ imjjjc coshjjzj �
1

2
sinhjjðei/jj � z2

j e�i/jj Þ
� �

� ic4pSo

ð1þ jzjj2Þ

�
N3ð1� jzjj2Þzj

� N1

2
ð1� z2

j � jzjj2Þzj �
N2

2
ð1þ z2

j � jzjj2Þzj

�ðN1 � N2Þ
2

zj

�
: (7)

As a first case, we set hh ¼ 0 so that the applied mag-

netic field ~Happlied lies exactly along the z-axis as it was origi-

nally considered by Persson et al.8 We then use Eq. (7) to

generate the one-parameter bifurcation diagram in Fig. 4,

which illustrates how the magnetization state changes as a

function of input current. As expected, for positive, small

and large values of the input current, the magnetization state

relaxes to the stable trivial or zero equilibrium state, which is

indicated as a solid (red) line. For large negative values of

the input current, in particular, two branches of nontrivial

stable equilibrium points emerge via the saddle node bifurca-

tions, labeled SN1 and SN2. Along these branches, the spin

valves cannot oscillate, as they remain in a steady state.

Many other equilibrium points also exist over a wide range

of values of IDC but they are mostly unstable (dashed line).

As the input current increases from the saddle-node

bifurcation points SN1, the nontrivial equilibrium point

remains almost constant until it loses stability and two

branches of periodic solutions then emerge via back-to-back

Hopf bifurcations, labeled HB4 and HB5. One branch (blue)

corresponds to the out-of-phase pattern, OP, and the other

one (green) corresponds to the complete synchronization

state, IP. It is not surprise that these are the only oscillations

that appear for they are the most common patterns of collec-

tive behavior observed in a system of two identical oscilla-

tors coupled symmetrically, as it the case of our STNO

array. Furthermore, it can be shown that the oscillations

emerge through symmetry-breaking bifurcations in which

the synchronous state preserves the S2 symmetry of the array

while the out-of-phase pattern breaks it. Now, since the mag-

netic field was applied directly along the z-axis, the govern-

ing equations exhibit also a reflectional Z2 symmetry for the

internal dynamics of each individual spin valve, which mani-

fests as a mirror-image symmetry across the X1 ¼ 0 axis in

the bifurcation diagram. This symmetry leads to a second

pair of limit cycle oscillations that emerge from the back-to-

back Hopf points HB2 and HB3 with the same characteristics

as those of HB4 and HB5. Now as the coupling DC current

IDC increases the amplitude of the limit cycles in each branch

increases gradually until the cycles merge with one another

in a gluing bifurcation near IDC ¼ 0. The onset of the gluing

bifurcation occurs just before the Hopf bifurcation HB1,

which appears off of the trivial equilibrium.

Additionally, we wish to emphasize that when the spin

valves are non-identical, fluctuations in system parameters,

such as anisotropy and demagnetization fields and gyromag-

netic ratio, can shift the onset of the Hopf bifurcation points

that lead to limit cycle oscillations. However, the overall

structure of the bifurcation diagrams remains the same pro-

vided that the fluctuations are not extremely large. In a

follow-up manuscript, we plan to explore the effects of the

nonhomogeneity of parameter values as well as the effects of

noise on the bifurcation structure.

Up to now, we have described somehow mathematically

complex behaviors associated with the bifurcation diagrams,

as illustrated in Fig. 4, where IP and OP oscillations overlap

across a wide range of IDC values. From an experimental

physics standpoint, our main interest is to better understand

the conditions for the existence and stability properties of the

synchronization behavior, as it can provide benefits in oper-

ating an array of STNOs to increase the overall radiative

power. The regions of existence are outlined through the

bifurcation diagrams while the stability properties can be

studied through many different approaches. One such

approach is to compute the transverse Lyapunov exponents

(TLE) of the synchronization manifold21,22 of the coupled

system. To do this, we start by re-scaling time so that s
¼ c

1þk2 t and replace the complex stereographic coordinates

zj, j ¼ 1; 2, with real coordinates ðxj; yjÞ, where zj ¼ xj þ yji,
so that the governing Eq. (7) becomes

_xj ¼ f ðxj; yjÞ þ h1ðx1; y1; x2; y2Þ;
_yj ¼ gðxj; yjÞ þ h2ðx1; y1; x2; y2Þ; (8)

where
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f ðxj; yjÞ ¼ �kha3xj � ha3yj � j
1� r2

j

1þ r2
j

 !
ðkxj þ yjÞ

þ ha2

2
ð1þ x2

j � 2kxjyj � y2
j Þ

þ 4pS0

1þ r2
j

ðkx3
j þ 2x2

j yj � kxjy
2
j � kxjÞ;

gðxj; yjÞ ¼ ha3xj � kha3yj þ j
1� r2

j

1þ r2
j

 !
ðxj � kyjÞ

þ ha2

2
ðkþ kx2

j þ 2kxjyj � ky2
j Þ

þ 4pS0

1þ r2
j

ð�x3
j þ 2kx2

j yj þ xjy
2
j þ xjÞ;

represent the internal dynamics of the xj and yj components

of the jth nano-oscillator, respectively, and r2
j ¼ x2

j þ y2
j . The

terms hj are the (all-to-all) coupling functions that connect

the two nano-oscillators together, they are given by

h1ðxj; yjÞ ¼ �axj þ akyj;
h2ðxj; yjÞ ¼ �akxj � ayj:

The coupling strength is set by the parameter a. If we assume

that all the oscillators have the same resistance R0i ¼ R0 and

magnetoresistance DRi ¼ DR then the coupling strength for

N¼ 2 can be written as

a ¼ �h

2S0Ve
IDC 1þ AGMR

N

XN

j¼1

1� r2
j

1þ r2
j

 !
; AGMR ¼

DR
Rc

N þ R0

:

Let uj ¼ ðxj; yjÞ, j ¼ 1; 2. We now transform Eq. (8) to

the transversal coordinates x? ¼ u1 � u2 and consider only

small perturbations to the synchronization manifold, i.e.,

FIG. 4. (Top) One parameter bifurcation

diagram of changes in magnetization in

a 1D array of N¼ 2 STNOs connected in

series. Blue circles indicate out-of-phase

oscillations while green circles indicate

synchronized limit cycle oscillations.

Filled-in (empty) circles indicate stable

(unstable) oscillations. (Middle)

Visualization of the dynamics on the unit

sphere and (bottom) on the stereographic

plane. Parameters are: c ¼ 0:0176 1
Oe ns

,

k ¼ 0:008, hjj ¼ 0 rad, hh ¼ 0 rad, ha

¼ 300 Oe, j ¼ 45 Oe, S0 ¼ 8400=ð4pÞ
Oe, N̂ ¼ ½1; 0; 0�T , R0i ¼ 0:1 X, Rc ¼ 50

X, and DRi ¼ 0:03 X.
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u1 � u2. Then the dynamics along the transverse direction to

the synchronization manifold becomes

_x?1
¼ f ðx1; y2Þ � f ðx2; y2Þ � ax?1

þ akx?2
;

_x?2
¼ gðx1; y2Þ � gðx2; y2Þ � akx?1

� ax?2
:

(9)

We can now proceed in two ways. Expand f ðx2; y2Þ in a

Taylor’s series expansion about ðx1; y1Þ or expand f ðx1; y1Þ
about the second coordinate. We choose the former approach

for both f and g, and also for the terms in a. Neglecting

higher order terms of x?, we obtain, in matrix form, the lin-

earization of Eq. (8) transverse to the synchronization

manifold

_x? ¼ ðJ þ KÞx?; (10)

where J is the Jacobian matrix of the vector field F
¼ ðf ðx; yÞ; gðx; yÞÞ evaluated at the synchronization manifold,

i.e., J ¼ dFðxs;ysÞ, where xs ¼ x1 ¼;…; xN , ys ¼ y1 ¼;…; yN ,

and K is the matrix that results from the linearization of the

coupling terms

K ¼ �h

2S0Ve
IDC

�
�1� AGMR

1� r2

1þ r2

� �
kþ kAGMR

1� r2

1þ r2

� �
�k� AGMR

1� r2

1þ r2

� �
� 1� AGMR

1� r2

1þ r2

� �
2
664

3
775:

The synchronization state u1 ¼ u2 is said to be asymp-

totically stable if x? ! 0 as t!1 or if the transverse

Lyapunov exponents, which are the Lyapunov exponents

associated with the linearized equations (10), are all nega-

tive. Numerical computations, see Fig. 5, reveal that the sum

of TLEs is always negative except for the interval

IDC 2 ½�1700;�1660�, which is enhanced in the inset.

Recall from the one-parameter bifurcation diagram of Fig. 4

that the subinterval IDC 2 ½�1700;�1675� is the region

between the Hopf points HB4 and HB5 where only the out-

of-phase solution exists, so the calculation of TLEs picks up

the instability of the unstable non-trivial steady state and that

explains why the sum of TLEs is positive. As IDC reaches

the right-end of that subinterval, the synchronized solution

emerges via a subcritical Hopf bifurcation at HB5, so the

sum of TLEs is still negative. However, as IDC increases fur-

ther within the subinterval IDC 2 ½�1675;�1660�, the

synchronized pattern becomes less unstable and the sum of

TLEs decreases until it eventually crosses zero near

IDC ¼ �1660, at which point the synchronized state becomes

stable. From then on, the sum of TLEs decreases monotoni-

cally while the synchronized pattern increases stability until

the gluing bifurcation point is reached near IDC � �100.

Past this point, the sum of TLEs increases until IDC reaches

the Hopf point HB1. To the right of HB1 the trivial equilib-

rium is stable and so the sum of TLEs is negative. Similarly,

in the region where the sum of TLEs is negative, all individ-

ual TLEs are also negative; though, they are not shown for

brevity. Consequently, in that region there is a contraction of

the phase space volume of the dynamics that is transversal to

the synchronization manifold.23 Negative TLEs also account

for the robustness exhibited by the synchronization state to

fluctuations in parameters. Indeed, we have verified through

computer simulations that when the spin valves are non-

identical, changes in the anisotropy and demagnetization

fields and gyromagnetic ratio can lead to dispersion among

the free-evolving frequency of each individual spin valve.

Small frequency dispersions can still lead the system dynam-

ics towards the synchronization attractor by careful tuning of

the DC current and/or the resistors in the circuit which in

turn control the parameter AGMR. We do not attempt, how-

ever, to measure the largest dispersion that can be overcome

by the system. That task is part of ongoing work.

Now, since the nano-oscillators are mutually coupled in

an all-to-all fashion, the synchronized state may not neces-

sarily be globally asymptotically stable and may still depend

on initial conditions. Indeed, we already know from the

bifurcation diagram that the out-of-phase solution coexists

and is stable within the same parameter region of the syn-

chronization state. Each one of these solutions has its own

basin of attraction. We do not attempt in this work to visual-

ize those basins of attraction. However, we try to get a sense

of their size by measuring the coherence parameter, also

known as the Kuramoto24,25 order parameter

r ¼ 1

N

				XN

k¼1

ei/k

				; 0 � r � 1:

In Fig. 6, we compute the Kuramoto24,25 order parameter

r when hh ¼ 0 over a region where one of the pairs of limit

cycles coexist as a function of DC current. This parameter

serves as a measure of coherence of the phase dynamics of an

ensemble of oscillators. Indeed, direct calculations show that

when r¼ 0 the phase dynamics is asynchronous while r¼ 1

corresponds to full or complete synchronization. Intermediate

values of r can be associated with more complicated states

where the oscillators organize themselves into clusters of in-

phase, traveling waves, and other related patterns. Thus, the

calculation of the coherence parameter suggests that when

hh ¼ 0 the coupled system is highly sensitive to changes in

input current. Sometimes the phase dynamics of the two nano-

FIG. 5. Transverse Lyapunov exponents computed as a function of input

current for an array of N¼ 2 STNOs connected in series with applied field

along the z-direction, i.e., hh ¼ 0 rad. All other parameters are the same as

in Fig. 4.
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oscillators synchronize but then a slight change in the input

current can easily push the system in and out of the synchroni-

zation state. The transitions from one pattern of oscillation to

another do not occur, in general, instantaneously so r can fluc-

tuate slightly between zero and one. Presumably we could cor-

rect those fluctuations by integrating for longer periods of

time. However, we would like to point out that we are already

integrating the equations for a vey long time interval, so fur-

ther increases can yield minor changes in r. More importantly,

the lack of large open intervals where r could remain close to

one, see Fig. 6, suggest that the basin of attraction of the

synchronized oscillations occupies a relatively small volume

of phase space. This, again, confirms the observation by

Persson et al.8 that “nonsynchronized precession largely dom-

inates the phase diagram.” Similar results are obtained for the

other pair of limit cycles.

Figure 7 shows the two-parameter continuation of the

Hopf bifurcation points HB1 � HB5 and saddle-node points,

in parameter space j vs IDC. Recall that j is a coefficient

associated with the anisotropy field. For small values of j,

the Hopf points HB2;…;HB5 are significantly separated

from the saddle-node points SN1 and SN2, as is the case in

the one-parameter bifurcation diagram of Fig. 4. As j
increases, however, the locus of the back-to-back Hopf

points move closer to that of the saddle-nodes, which remain

almost constant. At the same time, the region of stable

synchronized limit cycle solutions, shaded gray, starts to

shrink. For significantly larger values of j, the locus of the

Hopf point has merged with the locus of the saddle-node

points and the region of stable limit cycle in-phase oscilla-

tions has all but disappeared. For completeness purposes, the

bifurcation diagram is carried out over negative values of j.

Observe that the loci of the Hopf points HB2;…;HB4 meets

the almost circular curve that defines the loci of pitchfork

bifurcations of nontrivial equilibrium points. These equilib-

rium states are the continuation of the saddle-node points for

small negative values of j, so they do not show up in Fig. 4.

Applying the magnetic field with a small angle along the

y-direction, e.g., hh ¼ p=4, breaks the Z2-symmetry of the

governing equations but the one- and two-parameter bifurca-

tion diagrams exhibit similar characteristics to the perfectly

symmetric case, i.e., hh ¼ 0, as is shown in Fig. 8(left). That

is, there are two pairs of branches of periodic oscillations,

each pair contains a branch of synchronized limit cycle oscil-

lations and a branch of out-of-phase oscillations. The two

pairs might merge together again in a gluing bifurcation.

However, in the absence of the Z2-symmetry, it may be nec-

essary to vary two parameters simultaneously for the gluing

of the limit cycles to occur. This result shows that the reflec-

tional Z2 symmetry is important to generate the gluing bifur-

cation via a codimension one bifurcation; otherwise the

codimension is two. As we discussed earlier, the two patterns

of oscillations emerge again via symmetry-breaking bifurca-

tions of the network, and in which the synchronized state pre-

serves the S2 symmetry of the array while the out-of-phase

state breaks it. Now a critical observation is that if the angle

of the applied field is further increased, e.g., hh ¼ 3p=4, then

it is possible for the IP and OP branches of oscillations to

switch position, as is shown in the one-parameter bifurcation

of Fig. 8(right). This is a critical observation because the

switch leads to an interval of the DC current where only the

synchronized state is stable while the OP solution is unstable.

Thus, in principle, on this interval it should be easier to

achieve synchronization. Furthermore, we can see in Fig.

9(left) that, when hh ¼ p=4, small open intervals where r �
1 start to appear throughout the region where the two limit

cycles, IP and OP, coexist. This suggests that a slight change

in the direction of the applied field can facilitate the existence

of the synchronization state. Indeed, increasing hh further to

3p=4 shows, see Fig. 9(right), a very large open interval of

DC current where the coherence parameter r is, approxi-

mately, equal to one. Thus, changing the direction of the

applied field appears to have the net effect of changing the

FIG. 7. Two parameter bifurcation diagram depicts the boundary curves, as

functions of input current and anisotropy coefficient, which separate equilibrium

states from limit cycle oscillations in a 1D array of N¼ 2 STNOs connected in

series. IP/OP indicate in-plane and out-of-plane oscillations, respectively.

Parameters are the same as in Fig. 4 but we emphasize hh ¼ 0 rad.

FIG. 6. Coherence parameter r computed as a function of input current for an

array of N¼ 2 STNOs connected in series with applied field along the z-direc-

tion, i.e., hh ¼ 0 rad. r¼ 1 is associated with full synchronization while r¼ 0

is indicative of asynchronous behavior. Parameters are the same as in Fig. 4.
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basin of attractions so that the one associated with the IP so-

lution now dominates a larger volume of phase space. This

change is already a significant improvement in achieving

synchronization especially when we compare Figs. 6 and 9.

IV. CONCLUSION

In this work, we have studied the collective behavior of

an array of spin torque nano-oscillators connected in series.

The derivation of the governing equations for the array leads

to an all-to-all SN symmetric coupled system of ordinary dif-

ferential equations, in which each individual nano-oscillator is

modeled through the Landau-Lifshitz-Gilbert-Slonczewski

equation. A computational bifurcation analysis, focused on

two nano-oscillators, shows transitions between equilibrium

states and limit cycles oscillations in a manner that is consist-

ent with related studies conducted by other researchers. In par-

ticular, the bifurcation diagrams reveal two patterns of

FIG. 8. One- and two-parameter bifurcation diagrams indicating regions of existence and stability of equilibrium states and limit cycle oscillations for a 1D

array of N¼ 2 STNOs connected in series, with hh ¼ p=4 rad and hh ¼ 3p=4 rad. All other parameters are the same as in Fig. 4.

FIG. 9. Coherence parameter r computed as a function of input current for an array of N¼ 2 STNOs connected in series with applied field defined by (left)

hh ¼ p=4 rad and (right) hh ¼ 3p=4 rad. All other parameters are the same as in Fig. 4.
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collective behavior: an in-phase pattern, in which all oscilla-

tors are fully synchronized with one another, and an out-of-

phase pattern. These two patterns are generic, i.e., most

common, solutions in arrays of two identical oscillators

coupled symmetrically. Furthermore, the presence of reflec-

tional symmetry in the internal dynamics of each nano-

oscillator leads naturally to gluing bifurcations of these two

cycles. However, of greater interest from a physics standpoint

is the region of existence and stability properties of the in-

phase pattern because synchronized oscillations can, in princi-

ple, yield higher microwave power output. Previous works

have shown that such pattern is rather difficult to realize. The

work conducted in this manuscript provides answers to cir-

cumvent this difficulty. More specifically, the bifurcation

analysis and measures of coherence presented in this manu-

script reveal that a change in the direction of the applied field

can significantly enhance the basin of attraction of the syn-

chronous state without the need of adding delay into the

model equations. Work in progress includes visualization of

the basins of attraction and a similar analysis of the collective

behavior of larger arrays, which we can expect to show more

complicated patterns of oscillations. Additionally, we plan to

carry out a comprehensive analysis of the robustness of the

system to fluctuations in parameters, quantification of the non-

homogeneity of parameter values, and an investigation of sto-

chastic effects such as noise in the system. We expect to

report those results in a follow-up manuscript.
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