REPO		ENTATION P	AGE	Form Approved OMB No. 0704-0188		
Public reporting burden for this gathering and maintaining the collection of information, include Departs (0704.0400), 1245	s collection of information is esti data needed, and completing a ding suggestions for reducing th	mated to average 1 hour per res nd reviewing this collection of inf is burden to Department of Defe	ponse, including the time for i ormation. Send comments re nse, Washington Headquarte	reviewing instructions, search egarding this burden estimat rrs Services, Directorate for	ching existing data sources, e or any other aspect of this Information Operations and	
shall be subject to any penalty	for failing to comply with a colle	ection of information if it does no	display a currently valid OMI	B control number. PLEASE	DO NOT RETURN YOUR	
FORM TO THE ABOVE ADD	RESS.				ED (Erom To)	
August 2012	\mathcal{D} -IVIIVI- $Y Y Y Y$	Z. REPORT TYPE		3. DATES COVER	ED (From - 10) tobar 2012	
August 2015		Technical Faper		August 2013-OC		
Kinetics Studies of Radical-Radical Reactions (I): The NO2 +			N2H3 System	FA9550-12-D-000	1	
				5b. GRANT NUMB	ER	
				5c. PROGRAM EL	EMENT NUMBER	
6 AUTHOR(S)				5d PROJECT NUI	MBER	
H. Sun, S. D. Chambreau, C. K. Law, A. Schenk, G. L. Vaghji			ani			
				56. TASK NUMBE		
				OOPX	SMBER	
					ORGANIZATION	
7. FERFORMING OR	SANIZATION NAME(S)	AND ADDRESS(ES)		REPORT NO.	ORGANIZATION	
Air Force Research	Laboratory (AFMC)					
AFKL/KQKP						
10 E. Saturn Blvd.	2524 7600					
Edwards AFB CA 9	/3524-7680					
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRES Air Force Research Laboratory (AFMC)			S(ES)	10. SPONSOR/MO	NITOR'S ACRONYM(S)	
				11 SPONSOR/MO		
5 POILUX Drive	02504 7049			NUMBER(S)		
Edwards AFB CA 93524-7048						
				AFKL-KQ-ED-	11-2013-217	
12. DISTRIBUTION / A Distribution A: Appro	VAILABILITY STATE ved for Public Release;	MENT Distribution Unlimited	. PA#13474			
13. SUPPLEMENTAR	Y NOTES					
Conference paper for	or the WSS-Combustio	n Meeting, Fort Collin	s, CO, 7-8 October	2013.		
14. ABSTRACT						
The state-of-the-art	hypergol combinat tine, as the fuel, and	ion currently used i nitrogen tetroxide, as	n the US for man the oxidizer. The	y space propulsion Air Force Researc	on applications consists of the Laboratory is developing	
new hypergolic fuels which will provide enhanced performance canabilities as well as improved affordability and efficiency						
Furthermore, handling of these new hypergolic fuels is also expected to have a much smaller logistical footnrint due to the fact						
that they are being designed to be environmentally being. However, practical realization of these hypergols in spacecraft						
propulsion systems will only come after attaining a satisfactory understanding of how to ontimize their combustion						
characteristics in relevant operating environments. Here we report theoretical results obtained on the prototypical radical						
radical reaction: $NO_2 \pm N_2H_2$ and the progress made towards building an apparetus consisting of lossr photolysis/fest flow tube						
reactor coupled to a mass spectrometer for investigating the kinetics of this elementary reaction						
reactor coupled to a	muss speed onleter is	of investigating the ki		indi y redetion.		
15. SUBJECT TERMS	;					
16. SECURITY CLAS	SIFICATION OF:		17. LIMITATION	18. NUMBER	19a. NAME OF	
			OF ABSTRACT	OF PAGES	G. Vaghjiani	
a REPORT		c. THIS PAGE	-	0		
			SAR	0	(include area code)	
Unclassified	Unclassified	Unclassified			661-525-5657	
	1		1	l	Standard Form	

Fall 2013 Technical Meeting of the Western States Section of the Combustion Institute Hosted by Colorado State University, October 7-8, 2013

Kinetics Studies of Radical-Radical Reactions (I): The $NO_2 + N_2H_3$ System

Hongyan Sun, Ghanshyam L. Vaghjiani^{*}, Steven D. Chambreau, and Adam Schenk Propellants Branch, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP Edwards AFB, California 93524, USA

Chung K. Law

Department of Mechanical and Aerospace Engineering, Princeton University Princeton, New Jersey 08544, USA

The state-of-the-art hypergol combination currently used in the US for many space propulsion applications consists of monomethyl hydrazine, as the fuel, and nitrogen tetroxide, as the oxidizer. The Air Force Research Laboratory is developing new hypergolic fuels which will provide enhanced performance capabilities as well as improved affordability and efficiency. Furthermore, handling of these new hypergolic fuels is also expected to have a much smaller logistical footprint due to the fact that they are being designed to be environmentally benign. However, practical realization of these hypergols in spacecraft propulsion systems will only come after attaining a satisfactory understanding of how to optimize their combustion characteristics in relevant operating environments. Here we report theoretical results obtained on the prototypical radical-radical reaction: $NO_2 + N_2H_3$, and the progress made towards building an apparatus consisting of laser photolysis/fast flow-tube reactor coupled to a mass spectrometer for investigating the kinetics of this elementary reaction.

Keywords: Hypergolic, Propellants, N2H3, Kinetics, Mechanism.

1. Introduction

The hydrazine (N₂H₄) and dinitrogen tertroxide (N₂O₄) reaction system is widely used as liquid propellants for satellite and space propulsion applications.¹ As an oxidizer, the N₂O₄ molecule is known to have several inter-conversion structural conformers: NO₂ monomer, symmetric N₂O₄ dimer with D_{2h} symmetry, asymmetric ONONO₂ with cis- and trans-structures, and the van der Waals complex with C_{2v} symmetry.² Recently, Lai et al.³ theoretically studied the reaction of N₂H₄ with the N₂O₄ isomers and reported that the reaction of N₂H₄ with sym-N₂O₄ (D_{2h}), cis-ONONO₂ (C_s), and NO₂ has to overcome an activation barrier of 14.2, 10.6, and 7.6 kcal/mol, respectively. However, N₂H₄ can spontaneously react with trans-ONONO₂ (C_s) and cis-ONONO₂ (C₁) to produce HONO₂ + H₂NN(H)NO with a rate constant of 4 × 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹ at 250 K. The intermediate H₂NN(H)NO thus formed can rapidly fragment to produce the reactive radical N₂H₃ with a rate constant of 1 × 10⁷ s⁻¹ at 1000 K, which is fast enough to initiate the hypergolic chain

^{*}Email: ghanshyam.vaghjiani@us.af.mil

reactions of NO₂ and N₂O₄. Consequently, the kinetics of N₂H₃ with NO₂ is important for understanding the mechanism and the ignition process of the hydrazine and N₂O₄ system. However, the reaction is complicated by multiple radical-radical abstraction, addition and subsequent dissociation pathways. In this work, the reaction of N₂H₃ with NO₂ was studied by *ab initio* multi-reference second-order perturbation theory and quadratic configuration interactions and coupled-cluster theories. It was found that oxidation of the N₂H₃ radical by NO₂ occurs with submerged barriers with relatively large exothermicities. Consequently, the accuracy of the value of the theoretical rate coefficient computed for this reaction will greatly depend on the level of accuracy employed to describe the electron correlation effects for both the outer and multiple inner transition states.⁴ We have accurately characterized the potential energy surface for the NO₂ + N₂H₃ system and have established the most likely reaction mechanism. The technique of laser photolysis/fast flow-tube reactor coupled to a mass spectrometer is also being utilized to experimentally investigate the reaction kinetics of this system.

2. Theoretical and Computational Details

Due to electron repulsion between the electronegative oxygen and nitrogen atoms in this reaction system, the multi-reference character of the wavefunction is quite strong. Therefore, we have used multi-reference second-order perturbation theory (CASPT2) with Dunning's augmented correlation consistent basis set, aug-cc-pVDZ to optimize the geometries of the stationary points of the potential energy surface and to calculate the corresponding ro-vibrational frequencies. For the reactants (N₂H₃ and NO₂) and the products (NNH₂, cis-NH=NH, and trans-NH=NH), the larger basis set, augcc-pVTZ was applied, and all of the electrons were included in the active space. The geometries of the products (cis-HONO, trans-HONO, and HNO₂) were optimized at the CASPT2/aug-cc-pVDZ level, with all the electrons included in the active space. For the transition states, the active space was selected to describe adequately the bond breaking/making process of interest with reasonable computational efficiency. Specifically, for H-abstraction from N₂H₃ by NO₂ to form cis-HONO and the NNH₂ diradical, the transition state was optimized using an active space (6e,8o) consisting of σ bonding and anti-bonding pairs of the imidogen-H being abstracted, π bonding and anti-bonding pairs of the N–N bond, s orbital of the electron-deficient N atom on NNH₂, and σ bonding of the O– H bond being formed. For H-abstraction from N₂H₃ by NO₂ to form cis-HONO and trans-NH=NH, the transition state was optimized using an active space (6e,6o) consisting of σ and π bonding and anti-bonding pairs of N–O bond, p orbital of the O atom that is interacting with the H being abstracted and its corresponding virtual orbital. Furthermore, the (6e,8o) active space was used for optimization of the addition adducts and H-bonded complexes.

Higher-level stationary point energies were obtained from quadratic configuration interactions and coupled-cluster theories with single and double excitations, and correction for triple excitations. Specifically, the QCISD(T) and CCSD(T) calculations employed the correlation-consistent, polarized-valence, triplet- ξ (cc-pVTZ) and quadruple- ξ (cc-pVQZ) basis sets of Dunning.^{5,6} The energies were then extrapolated to the complete basis set (cc-pV ∞ Z) limit⁷ by the asymptotic form.^{8,9} Electronic structure calculations were performed using the MOLPRO¹⁰ quantum chemistry package.

3. Experimental Details

A halo-carbon wax coated Pyrex flow-tube reactor which was 100 cm long with internal diameter of 2.54 cm was used. N_2H_4 vapor and gaseous NO_2 were carried into the flow-tube using excess nitrogen gas. The N_2H_4 was photolyzed under optically thin conditions by sending a 193-nm laser beam along the axis of the flow-tube which had been fitted with appropriate quartz optical ports at both ends to produce N_2H_3 radicals under excess NO_2 conditions. The pressure of the flow-tube was typically held at ~ 2 Torr and the linear flow velocity of the gas mixture adjusted to attain plug-flow conditions that gave reaction lengths ranging from 40 to 70 msec. The reaction kinetics of the N_2H_3 radicals was followed in real-time by sampling the gas mixture through a small pin hole at the midpoint down the flow-tube axis using a skimmer that was attached to a differentially pumped chamber containing an electron impact ionization quadrupole mass spectrometer.

4. Results and Discussion

To our knowledge, experimental and/or theoretical studies on the kinetics of the reaction $NO_2 + N_2H_3$ has not been reported in the literature. Recently, Liu et al.¹¹ studied the gas-phase chemistry of the hypergolic system, monomethyl hydrazine (MMH) with NO₂/N₂O₄ at room temperature, and proposed that the oxidation of MMH by NO₂/N₂O₄ at atmospheric pressure occurs via two mechanisms: (1) sequential H-abstraction and HONO formation, and (2) reaction of MMH with asymmetric ONONO₂, leading to the formation of methyl nitrate. Furthermore, they reported that all of the intermediates observed experimentally could be successfully explained by the above mechanisms. Furthermore, Catoire et al.¹² suggested that the addition products CH₃N(NO₂)NH₂ and CH₃N(ONO)NH₂ are the major stable pre-ignition products which account for the formation of the white-yellow condensate.¹³ However, in the study of Liu et al.,¹¹ these species were not identified as the major early species and the only major product observed is methyldiazene, CH₃N=NH. This indicates that the direct H-abstraction reaction from the methylhydrazyl radical by NO₂ leading to the formation of CH₃N=NH might be a more dominant path compared to the radical-radical addition path followed by subsequent decomposition of addition products. Consequently, this would suggest that this might also be the case for the analog reaction between NO₂ and N₂H₃. In this work, the reaction pathways for both abstraction and addition in $NO_2 + N_2H_3$ were theoretically explored at the $CCSD(T)/cc-pV\infty Z//CASP2/aug-cc-pVDZ$ level.

(I). Direct H-abstraction Reactions

The ground state of NO₂ ($^{2}A_{1}$) has C_{2v} symmetry. For direct abstraction of hydrogen from N₂H₃, hydrogen bonding plays an important role in the transition state geometries. It was determined that direct abstraction occurs via four different transition states, all with negative barriers (see Figure 1), to form the following products:

$NO_2 + N_2H_3 \rightarrow trans-NH=NH + cis-HONO$	(R1)
\rightarrow NNH ₂ + cis-HONO	(R2)
\rightarrow NNH ₂ + trans-HONO	(R3)
$\rightarrow NNH_2 + HNO_2$	(R4)

DISTRIBUTION A: Approved for public release, distribution unlimited

CASPT2/aug-cc-pVDZ RCCSD(T)/CBS//CASPT2/aug-cc-pVDZ

Figure 1: Potential energy surface of $NO_2 + N_2H_3$ (abstraction) calculated at the RCCSD(T)/ccpV ∞ Z//CASPT2/aug-cc-pVDZ level. Energies are zero-point corrected and relative to that of entrance channel at 0 K.

The most exothermic abstraction channel is reaction (R1), which has a submerged barrier of -5.70kcal/mol via TSA1, forming an H-bonded product complex (PHBC1) with an energy of -39.57 kcal/mol. It then dissociates to the products trans-NH=NH and cis-HONO with an overall reaction energy of -34.55 kcal/mol. The abstraction of imidogen-H (R2) was found to have the lowest energy barrier of -12.88 kcal/mol via TSA2, which is due to electron donation from the N atom to the forming O—H bond. The reaction forms an H-bonded product complex (PHBC2) with an energy of -22.76 kcal/mol, which then dissociates to the products NNH₂ plus cis-HONO with an overall reaction energy of -10.94 kcal/mol. Reaction (R3) has an energy barrier of -3.17 kcal/mol via TSA3 and it forms an H-bonded product complex (PHBC3) with energy of -19.39 kcal/mol, which then dissociates to the products NNH₂ plus trans-HONO with overall reaction energy of -10.84 kcal/mol. The abstraction reaction by the less nucleophilic nitrogen of NO₂ was found to be almost thermalneutral, with energy of reaction of -2.73 kcal/mol. Even though the nitrogen is less nucleophilic than the oxygen in NO_2 , the H-abstraction by the nitrogen of NO_2 still has a negative energy barrier of -5.37 kcal/mol via TSA4 due to electron donation from the N atom to the forming N-H bond. The formed H-bonded product complex (PHBC4) from this channel has an energy of -14.15 kcal/mol. Overall, the four H-bonded product complexes are 5 to 12 kcal/mol more stable than the corresponding dissociation products, and it is noted that, at low and intermediate pressures, cis-HONO, trans-HONO, trans-NH=NH, and NNH₂ are the favorable products.

(II). N-N Addition Reactions

It was found that both the nitrogen and the oxygen of the NO₂ can be added to the N_2H_3 radical. For the case of nitrogen addition to the radical site in N_2H_3 (N-N addition), as shown in Figure 2, two adducts are formed, which are optical isomers with energy of -37.9 kcal/mol.

Figure 2: Potential Energy surface of $NO_2 + N_2H_3$ (addition) calculated at the RCCSD(T)/ccpV ∞ Z//CASPT2/aug-cc-pVDZ level. Energies are zero-point corrected and relative to that of entrance channel at 0 K.

In Figure 2, adduct Add1 is formed with the imidogen-H in the front of the pseudo N-N-N-O plane, and Add2 is formed with the imidogen-H in the back of the pseudo N-N-N-O plane. By intrinsic reaction coordinate (IRC) analysis, it was found that the two isomeric adducts are formed via one saddle point, TS1, which has a planar structure with an energy barrier of -11.73 kcal/mol. Furthermore, no pre-reactive H-bonded complex is formed before the saddle point due to the presence of the strong nucleophilic O atom in NO₂. It was also found that each of the optical isomer adducts, NH₂NHNO₂ have distinct transition states corresponding to intramolecular H-abstraction from the NH₂ group to form trans- and cis-NH=NH, and trans-HONO products. The Add1 adduct undergoes intramolecular H-abstraction via TS2 with an energy barrier of -9.38 kcal/mol to form trans-NH=NH + trans-HONO products, and it also undergoes an intramolecular H-abstraction via TS3 with an energy barrier of -2.02 kcal/mol to form cis-NH=NH + trans-HONO products. Similarly, the Add2 adduct undergoes intramolecular H-abstraction via TS4 with an energy barrier of

5

-4.51 kcal/mol to form cis-NH=NH + trans-HONO products, and it also undergoes intramolecular Habstraction via TS5 with an energy barrier of -4.90 kcal/mol to form trans-NH=NH + trans-HONO products. For the intramolecular abstraction of imidogen-H, both adducts share the same fourmember-ring transition state TS6 which has an energy barrier nearly identical to that of the entrance channel. This reaction channel forms NH₂NNO₂H as the intermediate with energy of -33.81 kcal/mol, which is stabilized by two internal H-bonds. The predominant channel in Figure 2 is the dissociation of Add1 via TS2, with an energy barrier of -9.38 kcal/mol, which forms trans-HONO + trans-NH=NH as the products.

For the case of oxygen addition to the N_2H_3 radical, two adducts $NH(ONO)NH_2$ and $NHNH_2(ONO)$ are formed, which undergo further decomposition reactions. The potential energy profiles for oxygen addition pathways are currently under investigation.

(III). Experimental Reaction Kinetics

Preliminary experimentations are currently underway to measure the rate of HONO production under pseudo-first-order conditions of $[N_2H_3]$ in $[NO_2]$.

5. Conclusions

The potential energy profile of the NO₂ + N₂H₃ reaction was investigated by *ab initio* multi-reference second-order perturbation theory and quadratic configuration interactions and coupled-cluster theories. For direct abstraction reactions, it was found that the most exothermic channel involves the formation of the trans-NH=NH plus cis-HONO products with reaction exothermicity of 34.55 kcal/mol. The abstraction of the imidogen-H of N₂H₃ has the lowest energy barrier of -12.88 kcal/mol, forming the NNH₂ plus trans-HONO products. For the addition of NO₂ to the N₂H₃ radical, it was found that the reaction proceeds via a complex mechanism. Specifically, both the nitrogen and the oxygen atoms of the NO₂ can add to the N₂H₃ radical. The N–N addition adducts were found to have an energy of -37.7 kcal/mol, which undergo further dissociation reactions by intramolecular H transfer. The predominant channel for the dissociation of the N–N addition adduct has an energy barrier of -9.5 kcal/mol, forming the trans-HONO plus trans-HONO plus trans-NH=NH products.

The major products of the reaction system are the trans- and cis- forms of HONO and NH=NH, and NNH₂. The negative energy barriers and large exothermicities of the reaction channels implicate significant importance in the early stages of hypergolic ignition of hydrazine and its derivatives.

Acknowledgements

The National Research Council is thanked for the Senior Research Associateship Award to H. Sun at the Air Force Research Laboratory, Edwards AFB under Contract No. FA9550-12-d-0001. This research was performed using resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

- (1) Schmidt, E. W. *Hydrazine and its derivatives: preparation, properties, applications* 2nd ed.; John Wiley & Sons, Inc., New York, **2001**.
- (2) Liu, W.-G.; Goddard, W. A. J. Am. Chem. Soc. 2012, 134, 12970-12978.
- (3) Lai, K.-Y.; Zhu, R.; Lin, M. C. Chem. Phys. Lett. 2012, 537, 33-37.
- (4) Greenwald, E. E.; North, S. W.; Georgievskii, Y.; Klippenstein, S. J. J. Phys. Chem. A 2005, 109, 6031-6044.
- (5) Dunning, T. H. J. Chem. Phys. **1989**, 90, 1007-1023.
- (6) Kendall, R. A.; Thom H. Dunning, J.; Harrison, R. J. J. Chem. Phys. **1992**, *96*, 6796-6806.
- (7) Martin, J. M. L.; Uzan, O. Chem. Phys. Lett. 1998, 282, 16-24.
- (8) Martin, J. M. L. Chem. Phys. Lett. **1996**, 259, 669-678.
- (9) Feller, D.; Dixon, D. A. J. Chem. Phys. 2001, 115, 3484-3495.
- (10) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. and others, MOLPRO, version 2010.1, a package of ab initio programs, see http://www.molpro.net.
- (11) Liu, W.-G.; Wang, S.; Dasgupta, S.; Thynell, S. T.; Goddard Iii, W. A.; Zybin, S.; Yetter, R. A. *Combust. Flame* **2013**, *160*, 970-981.
- (12) Catoire, L.; Chaumeix, N.; Paillard, C. J. Propul. Power 2004, 20, 87-92.
- (13) Catorie, L.; Chaumeix, N.; Pichon, S.; Paillard, C. J. Propul. Power 2006, 22, 120-126.