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Abstract

Permeability of fabric preforms and its changes due to various modes of the fabric distortion or deformation as well due to fabric layers
shifting and compacting is one of the key factors controlling infiltration of the preforms with resin within the common polymer-matrix
composite liquid-molding fabrication processes. While direct measurements of the fabric permeability generally yield the most reliable
results, a large number of the fabric architectures used and numerous deformation and layers rearrangement modes necessitates the
development and the use of computational models for the prediction of preform permeability. One such model, the so-called lubrication
model, is adapted in the present work to study the effect of the mold walls, the compaction pressure, the fabric-tows shearing and the fabric
layers shifting on permeability of the preforms based on orthogonal balanced plain-weave fabrics. The model predictions are compared with
their respective experimental counterparts available in the literature and a reasonably good agreement is found between the corresponding
sets of results.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Over the last two decades, processing of high-performance
polymer-matrix composites via the use of modern resin-
injection technologies has made major advances and ex-
panded from its aerospace roots to military and diverse
civil applications. At the same time, processing science has
become an integral part of the composite-manufacturing
technology so that empiricism and semi-empiricism have
given way to greater use of computer modeling and sim-
ulations of the fabrication processes. Among the mod-
ern polymer-matrix composite manufacturing techniques,
liquid-molding processes such as resin transfer molding
(RTM), vacuum assisted resin transfer molding (VARTM)
and structural reaction injection molding (SRIM) have a
prominent place. A detailed review of the major liquid
molding processes can be found in the recent work of Lee
[1]. One common feature to all these composite fabrica-
tion processes is the use of low-pressure infiltration of the
porous fabric preforms with a viscous fluid (resin). Con-
formation of the fabric preforms to the ridges and recesses
in the mold and the applied pressure can induce significant
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distortions and deformations in the fabric as well as give
rise to shifting of the individual fabric layers and, in turn,
cause significant change in local permeability of the pre-
form. Since the infiltrating fluid follows the path of least
resistance, local changes in the fabric permeability can have
a great influence on the mold filling process influencing
the filling time, the filling completeness and the formation
of pores and dry spots. Hence, the knowledge of the effect
of various distortion, shearing and shifting modes on the
fabric permeability is a critical step toward better designs
and control of the liquid molding processes.

Permeability of a porous medium is one of the most im-
portant parameters controlling the flow of a fluid through
such medium. In simple terms, permeability can be defined
as a (tensorial) quantity which relates the local velocity vec-
tor of the fluid flow with the associated pressure gradient.
In polymer-matrix composite liquid-molding manufactur-
ing processes (e.g. in the RTM and the VARTM processes),
the porous medium consists of woven- or weaved-fabric
preforms placed in the mold and the fluid flow of in-
terest involves preform infiltration with resin. Complete
infiltration of the preform with resin is critical for obtain-
ing high-integrity, high-quality composite structures. The
knowledge of the preform permeability and its changes
due to fabric bending, shearing, compression, shifting, etc.
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Nomenclature

f fiber volume fraction
h fabric thickness (m)
K permeability tensor of the fabric (m2)
L length of the quarter unit cell (m)
p pressure (Pa)
r fiber radius (m)
s relative shift of the adjacent fabric layers (m)
u x-component of the resin velocity (m s−1)
U in-plane resin velocity magnitude (m s−1)
v y-component of the resin velocity (m s−1)
w z-component of the resin velocity (m s−1)
W transverse resin velocity magnitude (m s−1)

Greek symbols
η resin viscosity (N s m−2)
θ shear angle (◦)
φ relative dimensionless shift of the adjacent

fabric layers

Subscripts
bot quantity associated with the bottom surface

of the fabric
corr quantity corrected for the effect of shear on the

fiber volume fraction
low quantity associated with the lower mold

surface
0 quantity associated with un-sheared fabric

preform
top quantity associated with the top surface of the

fabric
upp quantity associated with the upper mold

surface
θ quantity associated with sheared fabric

preform

Superscripts
B quantity associated with the bottom channel
F quantity associated with the fabric
T quantity associated with the top channel

is crucial in the design of a composite fabrication process
(e.g. in the design of the tool plate, or for placement of the
resin injection ports). In general, the most accurate value
of permeability of a porous medium is obtained by direct
experimental measurements. However, the number of fab-
ric architectures can be quite large and fabric distortion
modes numerous making permeability determinations via
the purely experimental means not a very appealing alterna-
tive. In addition, sometimes the experimentally determined
permeability values reported by different researchers for the
apparently identical fabric architectures can differ signif-
icantly. Consequently, significant effort has been invested

Fig. 1. A schematic of (a) the top view and (b) the edge view of a
one-layer orthogonal plain-weave fabric preform.

over the past decade to develop computational tools which
can be used, in conjunction with experimental measure-
ments, to determine the preform permeability.

For the computational modeling approach to be successful
in predicting permeability of the fabric preforms, it must
include, in a correct way, both the actual architecture of
the fabric and the basic physics of the flow through it. A
schematic of the relatively simple orthogonal plain-weave
one-layer fabric architecture is shown inFig. 1. As seen in
Fig. 1, the fabric consists of orthogonal (warp and weft) fiber
yarns, which are woven together to form an interconnected
network. Each yarn, on the other hand, represents a bundle
of the individual fibers held together with thread. In addition,
the fabric involves a network of empty pores and channels.
When a fabric like the one shown inFig. 1is being infiltrated,
the resin flows mainly through the pores and the channels.
However, since the fabric tows are porous (pores and channel
on a finer length scale exist between the fibers in tows), the
resin also flows within the yarn. Thus when predicting the
effective permeability of a fabric, the computational model
must account for both components of the resin flow.

Prediction of the permeability of porous medium has been
the subject of intense research for at least last two decades.
Due to space limitations in this paper, it is not possible to dis-
cuss all the models proposed over this period of time. Nev-
ertheless, one can attempt to classify the models. One such
classification involves the following main types of models
for permeability prediction in the porous media: (a) the phe-
nomenological models based on the use of well established
physical concepts such as the capillary flow, e.g.[2,3], or the
lubrication flow, e.g.[4]. These models generally perform
well within isotropic porous media with a simple architec-
ture. (b) The numerical models which are based on numer-
ical solutions of the governing differential equations. These
models generally attempt to realistically represent the archi-
tecture of the fiber preform but, due to limitations in the
computer speed and the memory size, are ultimately forced
to the introduction of a number of major simplifications, e.g.
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[5,6]. (c) The models which are based on a balance of the
fabric architecture and the flow physics simplifications, en-
abling physically based predictions of the preform perme-
ability within reasonably realistic fabric architectures. One
of such models is the one proposed by Simacek and Advani
[7]. The model of Simacek and Advani[7] also includes the
effect of important factors such as: (a) the flow within the
fiber yarn; (b) nesting in multi-layer fabric; and (c) distor-
tion and deformation of the fabric. In the present work, the
S model of Simacek and Advani[7] is extended to include
the effect of shear of the fabric tows on the effective volume
fraction of fibers.

The organization of the paper is as follows: a brief
overview of the model proposed by Simacek and Advani
[7] and its modifications are presented inSection 2. The ap-
plication of their model to reveal the role of various fabric
distortion and layers compaction phenomena is presented
and discussed inSection 3. The main conclusions resulted
from the present work are summarized inSection 4.

2. Computational procedure

2.1. Fabric architecture

In this work, only (un-sheared and sheared) balanced
orthogonal plain-weave fabric is considered. Due to the
in-plane periodicity, the fabric architecture can be repre-
sented using a unit cell. The entire orthogonal plain-weave
fabric can then be obtained by repeating the unit cell in the
in-plane (x- and y-directions). A schematic of one quarter
of a plain-weave unit cell with the appropriate denotation
for the system dimensions are shown inFig. 2. In a typical
plain-weave fabric, the fabric thickness (h) to the quarter cell
in-plane dimension (L) ratio,h/L, is small (0.01–0.1), while
the tow cross-section is nearly elliptical in shape with a large

Fig. 2. Schematic of one quarter of the unit cell for a one-layer balanced orthogonal plain-weave fabric.

(width-to-height) aspect ratio (5 or larger). The geometry of
the tows within the cell can be described using various math-
ematical expressions, e.g.[8], for the top,ztop(x, y), and the
bottom,zbot(x, y), surfaces of the fabric, respectively. In the
present work, the following sinusoidal functions originally
proposed by Ito and Chou[9] are used:

ztop(x, y) = h

2

(
sin

2π

L
x + sin

2π

L
y

)
(1)

zbot(x, y) = −h

2

(
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2π

L
x + sin

2π

L
y

)
(2)

As pointed out earlier, fiber tows have typically a
near-elliptical cross-section and henceEqs. (1) and (2)only
approximate the actual tow cross-section shape. Neverthe-
less, they are used in the present work since they greatly
simplify permeability calculations in the distorted fabric
and are generally considered as a good approximation for
the actual tow cross-section shape.

A simple examination ofFig. 2 shows that within a
single-layer orthogonal plain-weave fabric unit cell, one
can identify three distinct domains:

• the top channel, region T:ztop < z < h/2;
• the fabric, region F:zbot < z < ztop;
• the bottom channel, region B:−h/2 < z < zbot.

Regions T and B contain only the resin, while region F
contains both the fiber tows and the resin. The resin flow
through a unit cell is analyzed in the present paper by first
considering the flow within the three regions separately and
then utilizing the matching boundary conditions which en-
sure continuity in the pressure and the velocity components
across the contact surfaces of the adjacent regions. The resin
is considered as a Newtonian (constant density) fluid. The
flows within the top and the bottom channels are assumed to
be of a creeping nature (i.e. the inertial effects are neglected)
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while the flow within the fabric is assumed to be governed
by the Darcy’s law (a velocity versus pressure gradient re-
lation which eliminates the need for use of the momentum
conservation equations).

2.2. Governing equations

2.2.1. Flow within the top and the bottom channels
Under typical fabric infiltration conditions, the resin flow

within the regions T and B can be considered as a creeping
flow in which inertial effects are negligibly small in compar-
ison to the viscous effects. Under such conditions, at con-
stant temperature, the resin flow can be described by the
Stokes equations as:

−∂p

∂x
+ η

(
2
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
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wherep is the pressure,u, v andw are respectively thex-,
y- and z-components of the resin velocity andη the resin
viscosity.

Following the procedure of Simacek and Advani[7],
which involves non-dimensionalization of the governing
equations, and the use of the conditions:h/L � 1 and
WL/Uh ≈ 1 (U andW are (mean) in-plane and transverse
resin velocity magnitudes, respectively),Eqs. (3)–(6)can
be simplified to yield:
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Eqs. (3′)-(6′) are generally referred to as “two-dimensional
lubrication-flow equations” in which the pressure variation
in the z-direction is negligibly small. However, in contrast
to the traditional lubrication models, the transverse velocity
w (the velocity in thez-direction) is generally not zero (or
constant) in the present case and, consequently, the last term
on the left hand side of the continuity equation,Eq. (6′),
does not vanish. Nevertheless, this term can be eliminated
by integratingEq. (6′) in thez-direction to yield:∫ zupp

zlow

(
∂u

∂x
+ ∂v

∂y

)
dz + w|zupp − w|zlow = 0 (7)

wherezupp(x, y) andzlow(x, y) are mathematical expressions
for the upper and the lower surfaces of the channels and the
associated transverse velocities,w|zupp andw|zlow , are given
by the appropriate boundary conditions discussed later.

2.2.2. Flow within the fiber tows
The resin flow through the fabric is described in the

present work using the Darcy’s law for an anisotropic porous
medium as:
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whereKxx, Kyy, Kzz, Kxy=Kyx, Kxz=Kzx, andKyz=Kzy are
the components of the symmetric tow permeability tensor.

Eqs. (8)–(11)can be simplified under the following as-
sumptions: (a)Kxx = Kyy = Kzz and (b)Kyz = Kzx =
0. The first assumption is not typically fully justified since
the longitudinal components of the permeability (Kxx and
Kyy) are generally larger (up to an order of magnitude) than
the transverse component (Kzz) of the permeability. How-
ever, this assumption greatly simplifies the computational
procedure and, for simple fabric geometries, it is found,
in the present work, that the results are different by only
1–2% relative to their more accurately determined counter-
parts corresponding toKxx/Kzz = Kyy/Kzz = 10. The sec-
ond assumption, on the other hand, is generally expected
to be valid for at least two reasons: (a) for the orthogonal
plain-weave architecture of the fabric, the material trans-
verse principal direction is expected to be essentially coin-
cident with the globalz-axis; and (b) the second assumption
is valid whenever the first assumption is valid. Again fol-
lowing the procedure of Simacek and Advani[7], which in-
volves non-dimensionalization of the governing equations,
and the use of the conditions:h/L � 1 andWL/Uh ≈ 1,
Eqs. (8)–(11)become:

u = 0 (8′)

v = 0 (9′)
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η
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∂w

∂z
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Eqs. (8′)-(11′) indicate that the only non-zero component
of the resin velocity within the fabric is the one in the
z-direction and that, at given values of the in-planex- and
y-coordinates, this component of the velocity does not vary
in thez-direction.
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2.3. Boundary conditions

The following boundary conditions are used for the resin
flow problem in the three regions:

• no slip (u = v = w = 0) at the mold walls,z = ±(h/2);
• at the fabric/channels contact surfaces,ztop andzbot, the

velocities and the pressure continuity are assumed, i.e.:

φ(in T)|ztop = φ(in F)|ztop (12)

φ(in B)|zbot = φ(in F)|zbot (13)

whereφ = p, u, v, or w.

It should also be noted that, as established in the previous
section,u(in F) = v(in F) = 0. In addition, the definition of
the (x andy) in-plane boundary conditions is deferred until
the final system of equations is derived (the next section).

2.4. The final system of equations

The resin velocities in the two channels can be obtained by
integrating twiceEqs. (12) and (13), and using the boundary
conditions given byEqs. (12) and (13)to determine the
integration constants. This procedure yields:

u = ∂p/∂x
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(
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2
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2
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in region B (15)

The subsequent equations can be simplified by introducing
the following expressions:hT(x, y) = h/2−ztop, hB(x, y) =
zbot − h/2, hF(x, y) = ztop − zbot, which denote the height
fields of the top channel and the bottom channels and the
thickness field of the fabric, respectively.

Substitution ofEqs. (14) and (15)into the integrated form
of the continuity equation,Eq. (7), for the two channels
yields:

wT|z=h/2 − wT|z=ztop

− 1
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∂y

)
= 0

(17)

where superscripts T and B are used to denote the quantities
pertaining to the top and the bottom channels.

The first two terms on the left hand side ofEqs. (16)
and (17)are defined by the boundary conditions discussed
earlier as:

wT|z=h/2 = 0 (18)

wT|z=ztop = Kzz(p
B − pT)

ηhF (19)

wB|z=−h/2 = 0 (20)

wB|z=zbot = Kzz(p
B − pT)

ηhF (21)

ConsequentlyEqs. (16) and (17)can be rewritten as
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ηhF
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Eqs. (22) and (23)represent the final system of equations
consisting of two coupled linear elliptic partial differential
equations with the pressurespT andpB as dependent vari-
ables. To solve these equations, boundary conditions along
the (x–y) in-plane boundaries of the unit cell must be pre-
scribed. For the un-sheared balanced plain-weave fabric ar-
chitecture in which the unit cell boundaries are the lines of
geometrical symmetry, a fixed pressure gradient can be en-
forced in one principal direction while requiring periodicity
in the pressure distribution in the direction normal to the
direction in which the pressure gradient is prescribed. This
type of boundary conditions is generally used since it en-
ables determination of the off-diagonal (Kxy, Kyz andKxz)
components of the effective preform permeability tensor. A
more detailed discussion of the in-plane boundary conditions
is given later in the context of the effect of fabric shearing
on the choice of in-plane boundary conditions.

The final system of partial differential equations,Eqs. (22)
and (23), contains the thickness fields:hT(x, y), hB(x, y)

andhF(x, y). These fields are defined in the present work
using the analytical expressions for the top and the bottom
surfaces of the fabric preform (Eqs. (1) and (2)). These ex-
pressions are generally considered as reasonably good ap-
proximations of the actual orthogonal plain-weave fabric ar-
chitecture with a near elliptical cross-section area. It should
be noted, however, that over-simplification of the fabric ar-
chitecture (e.g. using square or circularly shaped tows) may
lead to erroneous results and must be avoided. In general,
the thickness fields can be constructed using direct exper-
imental measurements such as quantitative metallographic
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analysis of consolidated and sectioned parts, e.g.[11], and
through the use of computerized image analysis of the fab-
ric surface, e.g.[12]. The second of these two methods is
quite appealing since the image conversion procedure can
be directly coupled with the solution scheme forEqs. (22)
and (23).

Due to complexity in thehT(x, y), hB(x, y) andhF(x, y)

functions,Eqs. (22) and (23), cannot be solved analytically.
However, finding the numerical solution toEqs. (22) and
(23) is relatively straightforward. In the present work, MAT-
LAB general-purpose mathematical package[10] and a fi-
nite difference method are used to solveEqs. (22) and (23).

OnceEqs. (22) and (23)are solved, the resulting pressure
fields can be used, in conjunction withEqs. (14) and (15), to
compute the corresponding in-plane velocity fields in the two
channels. Integration of these velocity fields over the side
boundaries of the quarter unit cell then enables determine of
the total resin flow rate,Q = [Qx, Qy], through the quarter
unit cell in the two principal direction. The components of
the effective in-plane preform permeability,Keff

xx , Keff
yy and

Keff
xy are then computed using the two-dimensional Darcy’s

law and the known imposed values of the pressure gradient.

2.5. Application of the model to the multi-layer fabric

The model developed thus far pertains to a single-layer
fabric preform. In typical RTM and VARTM processes,
the preforms may contain several fabric layers. In such
multi-layer preforms, nesting and compaction generally
have a significant effect and must be included when pre-
dicting preform permeability. Numerous experiments, e.g.
[13,14], confirmed that permeability varies with a number
of layers.

The single-layer model developed in the previous sec-
tion can be readily extended to a multi-layer preform. A
schematic of two types of two-layer plain-weave fabric pre-
forms is given inFig. 3(a) and (b). The two types are gen-
erally referred to as “in-phase” and “out-of-phase” fabric
architectures or laminates. In the case of ann-layer fabric
preform, if the channels are labeled using consecutive in-
tegers (with the bottom channel being denoted as channel
“1”), the analytical procedure for a single-layer fabric pre-
form used in the previous section yields (n + 1) coupled
elliptical partial differential equations withn + 1 unknown
pressuresp(1), p(2), . . . , p(n+1) as:

− Kzz

ηhF1
(p(2) − p(1)) − 1

6η
∇((h(1))3∇p(1)) = 0 (24)

Kzz

ηhFi−1
(p(i) − p(i+1)) − Kzz

ηhFi
(p(i+1) − p(i))

− 1

6η
∇((h(i))3∇p(i)) = 0, i = 2, 3, . . . , n (25)

Kzz

ηhFn
(p(n+1) − p(n)) − 1

6η
∇((h(n+1))∇p(n+1)) = 0 (26)

Fig. 3. x–z section of a quarter of the unit cell for (a) an in-phase and
(b) an out-of-phase two-layer orthogonal plain-weave fabric.

wherehFi (i = 1, . . . , n) denotes the thicknesses of theith
fabric layer (numbered starting from the bottom of the mold)
andh(i) (i = 1, . . . , n+1) are the heights of the inter-fabric
or tool/fabric resin channels (also numbered starting from
the bottom of the mold). The system of equations defined
by Eqs. (24)–(26)is solved using the same computational
procedure used for the one-layer fabric preform.

2.6. Shear-induced fiber volume fraction correction for
permeability

When the fabric is sheared in thex-direction, as shown
in Fig. 7(b), weft tows are rotated but remain stress free.
Consequently, the dimension of the fabric-preform unit cell
in the y-direction is altered causing a change in the effec-
tive fiber volume fraction in the unit cell. This change in the
fiber volume fraction can have a significant effect on pre-
form permeability at large shear angles and, hence, must be
taken into account. The procedure described below is used to
correct permeabilities in the sheared fabrics obtained using
the original model of Simacek and Advani[7] as reviewed
in Sections 2.4 and 2.5.
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Fig. 4. (a) Resin channels height and (b) fabric thickness fields in an un-sheared one-layer orthogonal plain-weave fabric preform.

To quantify the permeability correction described above,
the Kozeny-Carman relation, e.g.[20], for permeability of
the porous media with a fibrous architecture is used. Ac-
cording to this relation, permeability of such media is given
by:

K = r2(1 − f)3

cf2
(27)

where r and f are the fiber radius and the fiber vol-
ume fraction, respectively, whilec is a fibrous-medium
architecture-dependent constant.

When the fabric preform is sheared in thex-direction by
an angleθ, the fiber volume fraction in fabric tows changes
as:

fθ = f0

sin(90− θ)
(28)

where the angleθ is given in degrees and the subscripts 0
andθ are used to denote the value of a respective quantity in
the un-sheared fabric and in the fabric sheared by an angle
θ, respectively.

To account for a shear-induced change in the fiber volume
fraction, the permeability values for sheared fabric preforms
obtained using the models described inSections 2.4 and 2.5,
should be multiplied by the following correction factor:

Kcorr = f 2
0 (1 − fθ)

3

(1 − f0)3f 2
θ

(29)

3. Results and discussion

3.1. Un-sheared single-layer plain-weave fabric preforms

The model developed inSection 2.4is used in this section
to analyze the pressure distribution within the un-sheared
single-layer balanced orthogonal plain-weave quarter unit

cell. Due to the symmetry of the unit cell with respect to the
z = 0 plane, the pressure distributions within the top and
the bottom resin channels are identical and, hence, there is
no transverse flow of the resin through the fabric preform.
Also, as established inSection 2.4, there is no variation of
the pressure in thez-direction within the channels. The vari-
ation of the top- and bottom-channel heights and of the fab-
ric thickness in thex–y plane within a quarter unit cell, used
as input in the present analysis, are shown inFig. 4(a) and
(b), respectively. The variation of the pressure in thex–y
plane within the resin channels of a quarter unit cell for the
fixed pressure drop of 1.0× 105 in thex-direction is shown
in Fig. 5. The pressure distribution (or more precisely its

Fig. 5. Pressure distribution in thex–y plane within a resin channel in
the case of an un-sheared single-layer balanced orthogonal plain-weave
fabric preform.



M. Grujicic et al. / Materials Chemistry and Physics 86 (2004) 358–369 365

gradient) at a givenx–y location correlates inversely with the
local height of the resin channel in order to satisfy the con-
tinuity equation. It should be also noted that due to the sym-
metry of the fabric geometry with respect to the quarter unit
cell boundaries normal to they-direction, zero-flux (i.e. zero
pressure gradient) conditions are found in they-direction at
these boundaries.

3.2. Effect of the number of layers in un-sheared
plain-weave fabric preforms

The model developed inSection 2.5is used in the present
section to predict permeability of the balanced un-sheared
single- and multi-layer orthogonal plain-weave fabric archi-
tectures. In all the calculations carried out in this section, as
well as in the calculations carried out in the previous sec-
tion, the following unit cell parameter and one-layer fabric
thickness values are used:L1 = L2 = L = 0.01 m and
h = 0.001 m. Also the transverse permeability of the fiber
tows is set to a typical (fixed) value,Kzz = 1 × 10−10 m2.

To determine the effect of the number of fabric layers
on the effective permeability, the model developed in the
previous section is used for the cases of 1-, 2-, 3-, 5-, 10-
and 20-layer in-phase orthogonal balanced plain-weave fab-
ric preforms in the absence of layer nesting. The results
of this calculation are presented inFig. 6. These results
show that as the number of layers increases, the permeabil-
ity rises but at an ever decreasing rate so that in fabric pre-
forms with 10 or more layers, the effect of the number of
layers on permeability becomes insignificant. This finding
can be easily rationalized by recognizing that as the num-
ber of layers in the fabric increases, the effect of the bottom
and the top resin channels which are more restrictive to the
fluid flow (and thus reduce effective preform permeability)
decreases.

Number of Fabric Layers in the Preform
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Fig. 6. The effect of the number of fabric layers on the effective perme-
ability of an un-sheared balanced plain-weave fabric preform.

3.3. Effect of fabric shear on permeability

As pointed out earlier, when the fabric preform is forced
to conform to the ridges and recesses of a mold, it may
locally undergo shear deformation. Such deformation can
significantly affect local permeability of the preform. As
shown inFig. 7, when a balanced square-cell plain-weave
fabric is sheared, two important factors must be consid-
ered: (a) the unit cell size increases and to make the calcu-
lations of preform permeability manageable, the shear an-
gle α = tan−1(m/n) is generally allowed to take only the
values corresponding to relatively small integersm and n;
and (b) the boundaries of the unit cell, unlike the case of
the initial square-shape unit cell, are no longer the lines of
symmetry of the fabric structure. Consequently, the bound-
ary conditions imposed along the boundaries of the unit cell
have to be modified relative to those used in the case of the
un-sheared unit cell. For instance, if a fixed pressure drop
is applied in thex-direction, the symmetry conditions along
the unit cell boundaries normal to they-coordinate require
that zero pressure-gradient boundary conditions be applied
in the y-direction. In the case of a sheared fabric preform,
on the other hand, the unit cell boundaries normal to the
y-direction are not any longer the lines of symmetry of the
fabric architecture and, hence, only the periodic boundary
condition (the corresponding pressure values along the two

Fig. 7. Effect of fabric shearing on the size of the quarter unit cell (denoted
using heavy dashed lines) in balanced plain-weave fabric architectures:
(a) un-sheared fabric; (b) fabric sheared by an angleα = tan−1(1/3) in
the x-direction.
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Fig. 8. The effect of shear on permeability of a single-layer balanced
orthogonal plain-weave fabric preform.

unit-cell boundaries normal to they-direction are identical)
can be applied.

The effect of shear deformation (measured by the mag-
nitude of the shear angleα) on the effective permeabil-
ity of single-layer plain-weave fabric preforms is displayed
in Fig. 8. An example of the variation of the top- and
bottom-channel heights and of the fabric thickness in the
x–y plane within a quarter unit cell, used as input in the
present analysis, are shown inFigs. 9(a) and (b), respec-
tively. For comparison, the experimental values of preform
permeabilities obtained in Ref.[8] are also shown inFig. 8.
While the agreement between the corresponding computa-
tional and the experimental values is only fair, the effect of
shear deformation on preform permeability appears to be
quite well predicted by the model. In addition, the corre-
sponding computed values of the in-plane off-diagonal (Kxy

and Kyx) elements of the effective permeability are very
close as required by symmetry of the orthogonal plain-weave
fabric architecture.

Fig. 9. (a) Resin channels height and (b) fabric thickness fields in a one-layer orthogonal plain-weave fabric preform subjected to shear in thex-direction
by an angle ofα = tan−1(1/3).
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Fig. 10. A typical compaction-pressure vs. preform-thickness curve for a
plain-weave fabric architecture.

3.4. Effect of preform compaction on permeability

When the fabric is subjected to compression during mold
closing in the RTM process or during evacuation of the vac-
uum bag in the VARTM process, it undergoes a number of
changes such as: the cross-section of the fiber tow flattens,
the pores and gaps between the fibers inside tows as well as
between individual tows are reduced, the tows undergo elas-
tic deformation, inter-layers shifting (nesting), etc. A typical
compression-pressure versus preform thickness curve for a
woven fabric is depicted inFig. 10 [15]. The curve shown in
Fig. 10has three distinct parts: two linear and one nonlinear.
In the low-pressure linear and the nonlinear portions of the
pressure versus thickness curve, preform compaction is dom-
inated by a reduction of the pore and the gap sizes between
the fibers in tows. In the high-pressure linear region of the
pressure versus thickness curve, on the other hand, preform



M. Grujicic et al. / Materials Chemistry and Physics 86 (2004) 358–369 367

compaction involves mainly tow bending and nesting. Typ-
ical liquid molding processes such as RTM or VARTM in-
volve pressures which correspond to the high-pressure lin-
ear pressures versus thickness region. Hence, the effect of
fabric compaction on permeability of the fabric preform as-
sociated with the high-pressure linear compaction regime is
investigated in this section.

To quantify the effect of preform compaction (in the
high-pressure linear region) on permeability of the balanced
orthogonal plain-weave fabric, the beam-bending-based
micro-mechanical model developed in a series of papers by
Chen and Chou[16–18] is utilized in the present work. The
model of Chen and Chou[16–18] is based on a number of
well-justified assumptions such as: (a) the fabric is consid-
ered to extend indefinitely in thex–y plane and, hence, can
be represented using the unit cells such as the one shown
in Fig. 2; (b) tows in the fabric are treated as a transversely
isotropic solid material; (c) the fabric is subjected to the
compaction pressure only in the through-the-thickness di-
rection, and can freely adjust its shape in thex–y plane;
(d) since the compaction analyzed corresponds to the high-
pressure linear region, no voids or gaps are assumed to
exist between the fibers in tows or between the tows; (e)
during fabric compaction, the cross-section area of the
tows is assumed to remain unchanged but the shape of the
cross-section undergoes a change; and (f) as compaction
proceeds, the deformation of the tows leads to an increase
in the effective volume fraction of the fibers in the fabric
and, in the limit of complete compaction of the tows, the
volume fraction of the fibers in the fabric becomes equal to
that in the individual tows.

In order to derive a relationship between the reduction
in the fabric thickness, the effective volume fraction of the
fibers and various distributions and magnitudes of the ap-
plied compaction pressure, Chen and Chou[16–18]applied
a simple procedure from the solid mechanics beam theory.
Toward that end, the one-quarter unit cell shown inFig. 2 is
first simplified by replacing the two warp and the two weft
tows with four beams. Next based on the symmetry of the
simplified model, it is shown that the problem can be further
simplified using a single beam and the appropriate distribu-
tion of the applied and contacting pressures (Fig. 11). The
model of Chen and Chou[16–18] is utilized in the present
work to compute the effect of the compaction pressure on
the channel heights (hT(x, y) andhB(x, y)) and on the fabric
thickness,hF(x, y) fields. These fields are, in turn, used in
the lubrication model presented in theSection 2.4to quan-
tify the effect of fabric compaction on the effective perme-
ability of a one-layer orthogonal plain-weave fabric.

The effect of the compaction force applied to the upper
and the lower (rigid and flat) molds on the effective perme-
ability of a one-layer orthogonal plain-weave fabric is dis-
played inFig. 12. In these calculations, the Young’s modulus
is assigned a value of 22 GPa and a sinusoidal distribution of
the applied and the contacting pressures is assumed[18]. An
example of the variation of the top- and the bottom-channel

Fig. 11. A schematic of the pressure distribution on a curved beam used
in the calculation of permeability of un-sheared one-layer orthogonal
plain-weave fabrics.

heights and of the fabric thickness in thex–y plane within
a quarter unit cell, used as input in the present analysis, are
shown inFig. 13(a) and (b), respectively. For comparison,
the experimental results reported by Sozer et al.[19] are also
shown inFig. 12. It is seen that a reasonably good agree-
ment exists between the both the magnitude of the predicted
preform permeability and its change with the applied com-
paction force.

3.5. Effect of layer nesting

As mentioned earlier shifting of fabric layers followed
by their more compact packing (the phenomenon generally
referred to as layers “nesting”) can have a major effect on
the effective fiber density in the preform and, hence, on
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Fig. 12. Effect of compaction (represented by the magnitude of the
compaction force) on permeability of a one-layer un-sheared orthogonal
plain-weave fabric preform.
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Fig. 13. (a) Resin channels height and (b) fabric thickness fields in an un-sheared one-layer orthogonal plain-weave fabric preform subject to a total
compressive force of 10.3 N via rigid, flat upper and lower tool surfaces.

permeability of the preform. Nesting of the fabric layers can
particularly take place under high applied pressures which
are sufficient to overcome inter-tow friction. The thickness
reduction in balanced orthogonal plain-weave fabrics whose
geometry is represented byEqs. (1) and (2), due to layers
nesting, has been analyzed by Ito and Chou[9] who de-
rived the following relation for the fabric thickness reduction
caused by nesting:

�hnesting= h
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whereφx = (2π/L)sx andφy = (2π/L)sy are dimensionless
while sx and sy are the dimensional relative shifts of the
adjacent layers in thex- andy-directions, respectively.

Two non-nesting cases associated with zero nesting, re-
duction in the fabric thickness can be identified: (a)φx =
φy = 0 which corresponds to the iso-phase laminate case and
(b) φx = φy = ±(π/2) corresponding to the out-of-phase
laminate case.

The relations given inEq. (30) are used in the present
work to examine the effect of layers nesting on fabric per-
meability. While, in general, fabric compaction during the
high-pressure linear compaction stage can involve both elas-
tic distortions (tow bending) and layers nesting, the two
modes of fabric compaction are generally considered as de-
coupled and can be considered separately.

The effect of nesting (quantified by the magnitudes of the
dimensionless layer shifts in thex- and they-directions,φx

andφy, respectively) in a two-layer orthogonal plain-weave
fabric is shown inFig. 14. The values displayed pertain to the
ratio of fabric permeability at the given values ofφx andφy

and fabric permeability atφx = φy = 0. As expected, fabric
nesting gives rise to the reduction in fabric permeability.
Furthermore, for the case of a out-of-phase laminate fabric
(φx = φy = ±(π/2)), fabric permeability is only about 30%
of its value in the in-phase laminate fabric. This finding is
in excellent agreement with its experimentally counterpart
reported by Sozer et al.[19].

Fig. 14. The effect of nesting on the ratio of fabric permeability at
the given values of layer shifts in thex- and y-directions and fabric
permeability of an un-nested in-phase laminate fabric.
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4. Conclusions

Based on the results obtained in the present work, the
following main conclusions can be drawn:

1. Effective permeability of the orthogonal plain-weave
fabric preforms can be determined computationally
by combining a lubrication model for the resin flow
through tool-surface/fabric-tow and tow/tow channels
with the Darcy’s law for the resin flow through the
fabric tows.

2. The computational approach presented in this work en-
ables assessment of the contribution that various phe-
nomena such as the mold walls, fabric shearing, in-
terlayer shifting and restacking as well as fabric com-
paction due to the infiltration pressure make to orthog-
onal plain-weave fabric-preform permeability.

3. While no comprehensive set of experimental data is
available to fully test validity of the present model,
the agreement of the model predictions with selected
experimental results can be generally qualified as
reasonable.
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