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Computer simulations are used to analyze mechanical and electronic-transport properties
and their degradation in stochastic porous fibrous materials. Such materials are currently
being used for electrochemical substrates in advanced battery technologies such as the
nickel/metal-hydride and lithium-ion technologies. It is found that due a structural damage,
material mechanical and electron-transport properties degrade during loading at a
progressively higher rate leading ultimately to a complete loss of the material ability to
support mechanical load or to conduct electrical current. A statistical sensitivity analysis is
also developed which could be used in the design and fabrication of stochastic porous
fibrous materials in order to ensure that a desired minimum level of the failure strength is
attained at a sufficiently high probability. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Stochastic non-woven fibrous materials represent an
important class of materials which are used as electro-
chemical substrates in advanced electrical battery tech-
nologies such as the nickels/metal-hydride (Ni/MH)
and the lithium-ion (Li-ion) batteries. To achieve a high
level of the mass-based energy density, the advanced
battery technologies demand the use of low-density
materials. Consequently, the electrochemical substrates
are made of porous materials in which the volume frac-
tion of the conductive material can be as low as 3%.
The electrical conductivity of such highly-porous ma-
terials displays a typical percolation behavior. That is,
when the constituent fibers form a continuous network,
a high-conductivity path is created through the material
imparting to it high electrical conductivity. Conversely,
the absence of a such “percolated” network is asso-
ciated with a negligible electrical conductivity of the
porous fibrous materials.

Even when the porous fibrous materials are used for
electrochemical substrates and thus are not required to
carry mechanical loads during service, their mechan-
ical properties are very critical since they may con-
trol the performance and the life cycle of the batteries.
That is, electrochemical cycling (charging/discharging)
gives rise to thermo-mechanical fatigue and, in turn,
can lead to local material damage (primarily due to the
failure of fiber/fiber bonds). This initially gives rise to

∗Author to whom all correspondence should be addressed.

a gradual reduction in electrical conductivity, and can
eventually lead to a complete loss of network connec-
tivity and thus, to a loss of the required level of elec-
trical conductivity. Thus, a better understanding of the
micromechanics of fiber/fiber bond failure and of the
associated degradation of electrical conductivity is very
critical for the development of new electrochemical ma-
terials with enhanced electrical performance, superior
degradation resistance and prolonged life cycle.

Micromechanics of the porous fibrous materials has
been the subject of substantial research over the last
three decades. In general, one can broadly divide the
previous work on porous fibrous materials into four
main categories: (a) continuum models based on the use
of a unit cell [1]; (b) micro-mechanical models based
on the use of average microstructural properties of the
porous fibrous material [2]; (c) purely numerical mod-
els which utilize various network generation methods,
and seek a continuum description of the porous fibrous
material [3–5]; and (d) purely statistical models in
which the progress of local failure is tracked in fibrous
materials consisting of a regular arrangement of the
fibers with statistically assigned material properties [6].

Recently, Sastry and co-workers [7–18] in series of
paper introduced a new approach for analyzing the
stochastic porous fibrous materials. The key feature of
the approach developed by Sastry and co-workers [7–
18] can be summarized as follows: (a) a statistics-based
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network generation technique is used to capture the
stochastic nature of the microstructure of the material;
(b) rigidity of the fiber/fiber bonds is accounted for by
assigning to the bonding (junction) points a torsional
stiffness or thought the use of compliant zones adja-
cent to the junction points; (c) specific morphology-
based material damage mechanisms consistent with the
ones observed in the battery-substrate materials are im-
plemented into the numerical model; and (d) aging of
the substrate material is also considered by account-
ing for the changes in strength and/or stiffness of the
fiber/fiber bonds resulting from dissolution and subse-
quent electro-redeposition of the conductive material.

In the present work, the computer simulation ap-
proach proposed by Sastry and co-works [7–18] has
been combined with a statistical sensitivity analysis to
address the issue of the design of stochastic porous fi-
brous materials which are optimized relative to obtain-
ing a suitable combination of low density, high conduc-
tivity and low failure probability.

The organization of the paper is as follows: Details
of the computer simulation procedure used to generate
the microstructure and to determine mechanical and
electrical responses of the stochastic porous fibrous
materials are presented in Section 2. The main results
obtained in the present work as well as the develop-
ment of a statistical sensitivity analysis for the fail-
ure strength of stochastic porous fibrous materials are
presented and discussed in Section 3. The key conclu-
sions resulted from the present study are summarized in
Section 4.

2. Computational procedure
2.1. Generation of the network
Two dimensional stochastic fiber networks used in the
simulations of mechanical and electrical responses of
the point-bonded fiber networks encountered in porous
fibrous materials used as battery electrochemical sub-
strates are generated using the procedure described
below:

(a) First, the probability distribution functions (and
their parameters) are selected for the key microstructure
variables: fiber volume fraction, fiber orientation, fiber
length, fiber center-point coordinates, and fiber length-
to-diameter aspect ratio;

(b) Using the selected probability distribution func-
tions, fibers are placed in a (square-shaped) unit cell, as
shown schematically in Fig. 1a. The importance of the
size of the unit cell used is discussed later;

(c) The intersection (bonding) points between the
fibers are next determined and are treated as torsional
junctions with a statistically assigned values of the tor-
sional stiffness;

(d) Periodic boundary conditions are next applied
by wrapping back into the unit cell the fiber segments
which are located outside the cell boundaries, Fig. 1b. In
other words, fiber segments exiting the cell across one
boundary are allowed to reenter the same cell across
the boundary which is parallel to the original bound-
ary. This procedure prevents spurious edge effects from
affecting the analysis and does not alter the selected

Figure 1 (a) Original network consisting of 15 randomly-oriented fibers
of a uniform length equal to the unit cell edge length; (b) the corre-
sponding network after the application of periodic boundary conditions;
(c) and (d) the final (reduced) fiber networks obtained after (horizontal
x-direction and verticaly-direction, respectively) non-load bearing fiber
segments are removed.

value of a volume fraction of the fibers. Application
of the boundary conditions, on the other hand, may re-
duce the average spacing between the junction points
(i.e. the average segment length) and this phenomenon
is examined more closely in the next section;

(e) Next, the fiber segments which do not carry a me-
chanical/electrical load in a particular (x or y) principal
direction are removed. Such segments may belong to
closed-loop network substructures which do not span
the cell boundaries and also may include the “dead-
end” segments. As shown in Fig. 1c–d, the final (re-
duced) fiber network depends on the loading direction.

Networks generated using the procedure described
above have the following general features: (a) dif-
ferent realizations of the network associated with a
fixed volume (or mass) fraction of the conducting
phase contain generally different final (reduced) vol-
ume/mass fractions of the same phase; (b) while the
network microstructures obtained are generally quite
complex, they are largely non-triangulated and, hence,
statically indeterminate; and (c) each network realiza-
tion possesses unique conductivity and the statistical
distribution of segment lengths. For example, the sta-
tistical parameters for the stochastic fibrous material
displayed in Fig. 1c can be summarized as: fiber length-
to-diameter aspect ratio, l/d = 100, (uniform) fiber
length normalized by the unit cell length = 1, original
fiber volume fraction (more precisely fiber area frac-
tion within the present two dimensional analysis), f f

= 11.78%, reduced volume fraction, f r
f = 7.57%, num-

ber of fiber/fiber bonding points = 64, average segment
length normalized by the cell edge length = 0.083, and
standard deviation of the normalized segment length =
0.071.
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Figure 2 Frequency distribution plot for the fiber segment length nor-
malized by the unit cell edge length for the network displayed in Fig. 1c.

It should be noted that the average segments length
plays a critical role in the mechanical response of the
stochastic fibrous materials analyzed in the present
work. A segment-length frequency plot for the fiber
network displayed in Fig. 1c is given in Fig. 2. This
plot does not differ significantly for different realiza-
tion of the network corresponding to a fixed value of
the original volume fraction and a fixed value of the
fiber aspect ratio. Conversely, significant variations oc-
cur when the original volume fraction and/or the as-
pect ratio are changed. Specifically, the frequency plots
shifts forward the lower values of the segment lengths
when the original fiber volume fraction and/or the fiber
aspect ratio are increased. It should be noted that for
a fixed unit cell edge length, an increase in the fiber
aspect ratio, at a constant fiber diameter, is equivalent
to an increase in the fiber (staple) length.

It should be also noted that the size of the simula-
tion region (the unit cell) relative to the microstructural
material scale could have a significant effect on the
computed mechanical response of the stochastic fibrous
materials. Specifically, if the unit cell is too small, the
effective stiffness may be overestimated since the load
would be born disproportionally by continuous indi-
vidual fibers rather than by more compliant assemblies
of fibers. However, this effect is somewhat mitigated
by the use of periodic boundary conditions which tend
to increase the number of fiber/fiber intersections and
thus reduces the probability for individual fibers span-
ning the unit cell in the loading direction.

2.2. Beam assumptions
It is well established that the Euler-Bernoulli beam the-
ory provides an excellent description of beams with
a length-to-diameter aspect ratio greater than 5–10.
However, some of the fiber segments in representa-
tive stochastic fibrous microstructures such as the ones
displayed in Fig. 1a–b, have the aspect ratio signifi-
cantly smaller than 5. Under such circumstances, the
use of the Timoshenko beam theory is recommended
to properly account for the deformation due to trans-

verse shear. This, in turn, helps prevent overestima-
tion of the beam stiffness which generally results when
the Euler-Bernoulli beam theory is used. However, the
stiffness of an array of beams connected with flexi-
ble bonds (the approach used in the present work to
model stochastic fibrous materials) has been found by
Sastry and co-workers [7–18] not to be significantly
affected by the choice of the beam theory. Sastry and
co-workers [7–18] observed that the low-aspect-ratio
segments (the ones in which the effect of transverse
shear is most pronounced) are generally clustered and
essentially function as rigid interconnect for the rest
of the network composed of larger-aspect-ratio com-
pliant fibers. It is, hence, readily understood why im-
provements in modeling the stresses at a beam length
scale have a relatively weak effect on the mechanical
response of stochastic fibrous material at the unit-cell
length scale. Taking into consideration these findings
of Sastry and co-worker [7–18], the computationally
less-demanding Euler-Bernoulli beam theory is used in
all the calculations carried out in the present work.

2.3. Failure criteria and network
damage mechanism

In an assembly of connected segments such as the one
used to represent stochastic fibrous materials, maxi-
mum stresses unavoidably occur at the segment junc-
tion (bonding) points. Following Sastry and co-workers
[7–18], a maximum-stress failure criterion is utilized in
the present work to model the progression of material
damage during mechanical loading. As demonstrated
in Fig. 3a–c, within such a damage mechanism, one
can envision two extreme levels of damage tolerance
by the porous fibrous material. A schematic of the un-
damaged fiber network is displayed in Fig. 3a in which
segment 2 at the junction point B is assumed to be sub-
ject to a largest combined stress (defined as a square
root of the sum of the squared normal stress and the
maximum shear stress). When such a combined stress

Figure 3 A schematic of two possible damage mechanisms in the porous
fibrous materials; (a) undamaged network structure; (b) segment-failure
based mechanism and (c) bonding-point-failure based mechanism.
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in segment 2 at the junction point B exceeds the failure
stress, one can either fail (i.e. remove) only segment
2, Fig. 3b, or (more conservatively) eliminate all the
segments associated with node B. Simulations carried
out by Sastry and co-workers [7–18] showed that the
peak stress (can be treated as the failure strength of
stochastic porous materials) is not very sensitive to the
choice between these two damage mechanisms. While
the junction-point failure mechanism, Fig. 3c, is gener-
ally computationally less demanding, the segment fail-
ure mechanism, Fig. 3b, is used in the present work
since its implementation is much simpler.

2.4. Inter-fiber bonding
The mechanical response of the porous fibrous materi-
als considered in the present work is greatly affected by
the details of fiber/fiber bonding. These materials are
generally processed by sintering and, hence, fiber/fiber
junction points are normally not “perfect” in the sense
that the joined fibers do not completely intersect one
another. To quantify the extend of fiber/fiber intersec-
tions, Berhan and Sastry [7] introduced a so-called the
“degree-of-intersect” parameter. For fibers with equal
circular cross-sections, this parameter takes on a value
between 0.5 (corresponds to the case when the fibers
are just touching each other) to 1.0 (the case when the
two fibers completely intersect each other). A detailed
three-dimensional analysis of the mechanical response
of the imperfect fiber/fiber junction points carried out
by Berhan and Sastry [7] showed that torsional stiffness
of such joints increases substantially with an increase
in the magnitude of the degree-of-intersect parameter
and with an increase in the magnitude of the angle of
intersection between the fibers. In addition, it is found
that the maximum stress levels in the fibers at the junc-
tion points obtained using a more accurate three di-
mensional finite element analysis are somewhat higher
(by roughly a factor of 2) than their two-dimensional
counterparts (such as the ones obtained in the present
work).

In addition to the degree-of-intersect and intersect
angle, other parameters may effect torsional stiffness
of the fiber/fiber junction points. Among these is the
number of fiber segments eminating from a given junc-
tion point. In the present two-dimensional analysis in
which a maximum of two fibers are allowed to intersect
at a given junction point, one can distinguish only three
types of junctions, i.e. those with 2, 3, or 4 non-dead-end
fiber segments eminating from it. A schematic of these
three types of junction points is given in Fig. 4a–c, re-
spectively. Dead-end segments (i.e. the segments with
a free end) are denoted using a circle while non-dead-
end segments using a triangle in Fig. 4a–c. In should be
noted that torsional resistance of a fiber/fiber bonding
point is not only depended on the rigidity of the bond,
but also on the number of associated non-dead-end seg-
ments. To account for the fact that torsional rigidity of
a fiber/fiber bonding point increases with the number
of associated non-dead-end segments, the mean value
of the torsional stiffness is assumed to be proportional
to the number of associated non-dead-end segments re-
duced by one.

Figure 4 Three types of fiber/fiber bonds encountered in two-
dimensional simulations of the porous fibrous materials. Circles are used
to denote the dead-end segments while non-dead-end segments are de-
noted using triangles.

2.5. Finite element analysis of the
mechanical response

Once a realization of the network microstructure is gen-
erated using the procedure described in Section 2.1, and
torsional stiffness values are assigned to the fiber/fiber
junction points following the procedure described in
Section 2.4, a two-dimensional finite element analysis
is carried out to determine the mechanical response of
the material at hand in a given loading direction. The
analysis is carried out under displacement-controlled
boundary conditions within which the nodes on one of
the edges of the unit cell normal to the loading direction
are kept fixed while the nodes on the other edge (also
normal to the loading direction) are assigned a constant
displacement rate. The remaining nodes in the model
are not subject to any constraints. Fiber segments are
treated as one-dimensional Euler-Bernoulli-beam-type
finite elements.

All the calculations are carried out by interfac-
ing a general purpose mathematical/graphical package
Matlab [20] with a general purpose finite element pack-
age Femlab [21]. In this approach, Matlab is used as pre-
processing and post-processing modules while Femlab
is used as a numerical solver module.

Standard mesh sensitivity and model robustness anal-
yses were carried out following the procedure outlined
in our recent work [22]. The results of these analyses
validated that the model developed is mesh-insensitive
and robust but the results will not be presented here for
brevity.

2.6. Computation of electrical conductivity
Electrical conductivity of the stochastic porous fi-
brous materials is calculated using the SPICE 3 com-
puter program which was originally created and cur-
rently maintained at the Electrical Engineering and
Computer Science Department at the University of
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California at Berkeley [19]. SPICE 3 is a general-
purpose circuit simulation program for nonlinear dc,
nonlinear transient, and linear ac analyses. Circuits an-
alyzed may contain resistors, capacitors, inductors, mu-
tual inductors, independent voltage and current sources,
four types of dependent sources, lossless and lossy
transmission lines, switches, uniform distributed RC
lines, and the five most common semiconductor de-
vices: diodes, BJTs, JFETs, MESFETs, and MOSFETs.
The dc analysis portion of SPICE 3 used in the present
work determines the dc operating point of a circuit in
which inductors are shorted and capacitors opened. In
order to eliminate unnecessary computation, all dead-
end fiber segments as well as the segments intersecting
the edges of the unit cell which are parallel with the
direction of current flow are excluded during calcu-
lation of the electrical conductivity. A dc analysis is
automatically performed prior to a transient analysis to
determine the transient initial conditions, and prior to
an ac small-signal analysis to determine the linearized,
small-signal models for nonlinear devices. If requested,
the dc small-signal value of a transfer function (ratio of
output variable to input source), input resistance, and
output resistance is also computed as a part of the dc
solution. The dc analysis can also be used to generate dc
transfer curves: a specified independent voltage or cur-
rent source is stepped over a user-specified range and
the dc output variables are stored for each sequential
source value.

3. Results and discussion
3.1. Mechanical response and the progress

of material damage
The unit cell and materials parameters used during the
simulation of mechanical response which yielded the
results displayed in Fig. 5a are given in Table I [7–18].
A typical uni-axial stress vs. uni-axial strain curve ob-
tained during the simulations of mechanical response
of the stochastic porous fibrous materials is displayed

Figure 5 Evolution of a normalized electrical conductivity as a function
of the uni-axial strain in the nickel-fiber based porous material displayed
in Fig. 6a whose microstructural parameters are summarized in Table I.

TABLE I Microstructural and materials parameters for the nickel-
based porous fibrous material whose mechanical and electronic-transport
responses are displayed in Fig. 5 and the microstructure in Fig. 6

Mean Standard
Parameter Symbol Units value deviation

Unit cell edge width lcell m 3.0 × 10−3 0
Unit cell edge length lcell m 3.0 × 10−3 0
Nickel fiber diameter d m 3.0 × 10 −5 0
Nickel fiber length l f m 3.0 × 10−3 4.5 × 10−5

Nickel fiber volume fraction f f N/A 0.15 0
Nickel Young’s modulus E Pa 2.10 × 10 11 0
Nickel Poission’s ratio ν N/A 0.3 0
Nickel failure strength σ f Pa 5.4 × 108 0
Nickel electrical resistance ρ �m 1.0 × 10−7 0

in Fig. 5a. The stress is defined as a ratio of the ap-
plied load pre unit cell depth and the unit cell edge
length.

The results displayed in Fig. 5a show that initially
the uni-axial stress vs. uni-axial strain relation is nearly
linear. Small non-linearity observed is a result of the
failure of few highly stressed fiber segments. It should
be noted that only elastic deformations are considered
during modeling of the materials response since, due
to a relatively low stress levels at which failure of the
fiber segments occurs, the role of plasticity is deemed
insignificant.

As loading proceeds in Fig. 5a, non-linearity between
the stress and the strain increases and, occasionally, the
stress drops. These stress drops are associated with a
simultaneous failure of several fiber segments. At the
largest levels of the stress, stress increase due to the in-
cremental loading is roughly compensated by the struc-
tural material weakening due to the failure of an in-
creasing number of fiber segments. Once the rate of
structural weakening exceeds the rate of incremen-
tal loading, the stress level begins to drop dramati-
cally and, ultimately, the porous fibrous material com-
pletely looses the ability to support load (the axial stress
becomes zero).

The results displayed in Fig. 5a show that for the fiber
network realization at hand, the peak uni-axial stress is
σpeak ≈ 29 MPa and it occurs at a uni-axial-strain of
about 0.25%, while the material looses its load-carrying
capacity at a strain of approximately 0.5%.

The evolution of the fibrous material network during
loading in the (horizontal) x-direction is displayed in
Fig. 6a–d. The four networks shown in Fig. 6a–d cor-
respond, respectively, to the uni-axial stress/uni-axial
strain levels denoted as A–D in Fig. 5. It should be
noted that in order to improve clarity of the networks
displayed in Fig. 6a–d, failed fiber segments are not
displayed. In addition, a magnification factor of 10 is
applied to the horizontal component of the displace-
ment in Fig. 6b–d.

An evolution of the electrical conductance of the
porous fibrous material (Fig. 6a) during uni-axial load-
ing in the (horizontal) x-direction is displayed in Fig. 7.
The electrical conductance is normalized by that of
a single nickel fiber with a length equal to the unit
cell edge length and the diameter of 30 µm. The elec-
trical conductance of such a fiber is 0.7854 �−1. A
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Figure 6 Evolution of the fiber network during uni-axial loading in the horizontal x-direction. Failed fiber segments are not shown to enhance clarity
of the material damage. Networks (a)–(d) correspond to the uni-axial stress/uni-axial strain levels denoted as A–D in Fig. 5a.

Figure 7 Evolution of a normalized electrical conductivity as a function
of the uni-axial strain in the nickel-fiber based porous material displayed
in Fig. 6a whose microstructural parameters are summarized in Table I.

comparison of the results displayed in Figs 5 and 7 and
Fig. 6a–d shows that there is a direct correlation be-
tween the progress of the material damage, the materi-
als ability to support load (as measured by the uni-axial
stress) and the materials ability to transport electrical
charge (as measured by its electrical conductance).

3.2. Effect of the unit cell edge length
The mean fiber diameter and the mean fiber length-
to-diameter aspect ratio define the natural material mi-
crostructural length scale. When carrying out the com-

puter simulations of mechanical or physical responses
of the materials with an irregular stochastic microstruc-
ture, one of the key issues is to identify an optimum
size of the representative material element (a unit cell
in the present case). If such a material representative
element is chosen as too small, it will not realistically
represent the actual material response. This may be par-
ticularly pronounced in the present case since the use
of periodic boundary condition could give rise to an
un-physical increase in the number of fiber/fiber bond-
ing points. Also, in the limit of a very small size of
the representative material elements, material response
would be un-realistically dominated by individual fiber
segments spanning the material representative element
rather than by the assemblies of fiber segments. In the
other extreme, the selection of a unit cell which is
too large may increase the computation time so much
that one may be prevented from assessing the complete
statistics of the materials response (for stochastic ma-
terials such as the ones studied in the present work, the
knowledge of the average materials properties may not
be sufficient since such properties may be associated
with relatively broad distributions).

To identify an optimum size of the unit cell, computer
simulations of the mechanical response are carried out
for a stochastic fibrous material with a fixed fiber di-
ameter, fiber length and fiber volume fraction but for
various values of the unit-cell edge length. An example
of the results obtained is displayed in Fig. 8 in which
the peak uni-axial stress is plotted as a function of the
unit cell edge length. The error bars shown in Fig. 8 cor-
respond to the ± one standard deviation range of the
peak stress. The results displayed in Fig. 7 show that at
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Figure 8 A typical effect of the unit-cell edge length on the peak uni-
axial stress.

unit cell edge lengths in excess of approximately 5 mm,
the mean value of the peak stress is not very sensitive to
the choice of the unit cell edge length. In addition and
as expected, as the unit cell edge length increases the
standard deviation of the peak stress decrease since a
continuously large volume of the material is being sam-
pled. Following the findings resulted from the results
displayed in Fig. 8, all the subsequent simulations are
carried out using a unit-cell edge length of 5 mm.

3.3. Statistical analysis of the peak stress
Based on the results displayed in Fig. 5, it is clear that
a porous fibrous material continues to degrade at a pro-
gressively higher rate once the applied stress reaches the
peak stress of the material. Therefore, the peak stress
can be considered as the effective failure strength of
such materials and should be used as a key input param-
eter in the design of novel materials for electrochemical
substrates in advanced batteries.

The main parameters which affect the magnitude of
failure strength of the stochastic porous fibrous mate-
rials at hand are: fiber area fraction, f f , fiber length-
to-diameter aspect ratio, l f /d, and torsional stiffness
of fiber/fiber junction points, Ks . In addition, the mag-
nitude of failure strength is affected by the stochas-
tic nature of the network-like material microstructure.
Due to the stochastic nature of the materials at hand,
an analysis of its failure strength must ultimately an-
swer a question like: “For a given type of fibers (char-
acterized by the distributions of their diameter, aspect
ratio and material properties), and a given porous fi-
brous material manufacturing process (which controls
porous-material microstructure and the distribution of
fiber/fiber junction-point torsional stiffness), what is the
(nominal) volume fraction of the fiber phase needed to
ensure that the failure strength of the resulting porous
fibrous material is greater or equal to a target value with
a high probability (say 99%). In addition, the analysis
should provide a quantitative assessment of the sensi-
tivity of the failure strength to variations in the ma-

terials and microstructural parameters ( f f , l f /d, and
Ks). To answer such questions, a statistical approach
must be taken when analyzing the failure strength of
the stochastic porous fibrous materials. An overview of
a statistical sensitivity analysis and its application to
the failure strength in these materials is presented in
this section.

In general, the statistical sensitivity analysis deals
with the problem of assessing sensitivity of the output
of a mathematical model (used to represent a physi-
cal system) to variations in the model inputs (parame-
ters, variables and assumptions). As stated above, the
model output in the present work is the peak stress
while the most important model inputs are: fiber volume
fraction, fiber aspect ratio, fiber/fiber bond torsional
stiffness and fibrous-material microstructure network.
For simplicity, the model output will be denoted as y
while the model inputs constitute a k-dimensional vec-
tor x∼ = (x1, . . . , xk)T where superscript T is used for
denote a vector/matrix transpose.

Function y = f (x) (the peak stress) can be evaluated
using a numerical approach (the finite element method
in the present work), but generally, this function is not
known in a closed form. However, the computed val-
ues of this function, yi = f (x) (i = 1, n, where n
is the number of numerical evaluations) can be used
in conjunction with a statistical approach such as the
least-squares method to determine an approximate fit-
ting function f̂ (x) such that y = f̂ (x)+e = f (x) where
the error, e, is often found to be associated with a nor-
mal distribution and to be independent of the model
input, x.

Components of the model input, x, vary in accor-
dance with their respective (known) probability distri-
bution functions (typically an independent uniform or
a correlated normal distribution function). When inde-
pendent uniform distributions are used, the input pa-
rameters can be chosen so that they are uncorrelated at
a level of the parent probability distribution function,
p(x). However, to ensure that the same uncorrelation,
i.e. orthogonality is obtained at a level of the particular
Monte Carlo sample, the sampled vectors of uniform
variable ξi (i = 1, n) should be transformed into the
corresponding orthogonal sample vector x as:

xi = �̂1/2ξ i (1)

where �̂ is the sample correlation matrix.
When the model input is sampled from a correlated

multivariate normal distribution function with a covari-
ance matrix � and an expectation value η, a vector ξ of
independent standard normal variables with zero mean
and unit variance is first generated and then converted
into the corresponding correlated vector x as [22]:

x = η + �1/2ξ. (2)

In the present work, the three input parameters (fiber
volume fraction, fiber aspect ratio and fiber/fiber bond
torsional stiffness) are each assigned several (mean)
values in the respective ranges of interest and an uncor-
related normal distribution (with a fixed variance). The
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TABL E I I Microstructural and materials parameters for the nickel-
based porous fibrous material used in the statistical sensitivity analysis
of the failure stress in these materials. Materials parameters not defined
are assigned the values given in Table I

Mean Standard
Parameter Symbol Units values deviation

Fiber volume fraction f f N/A 0.05, 0.1, 0.15 0.01
Fiber aspect ratio l f /d N/A 50, 75, 100 10
Junction-point torsional Ks N.·m 0.0001 0.00002

stiffness

values of the model input distribution parameters used
are given in Table II.

Once the input parameters are orthogonalized using
the procedure described above, the numerical model
is solved for each of n Monte Carlo input samples
(n should be a large number to ensure a statistically
large sample) to yield y1 = f (x1), . . . , yn = f (xn).
A value of n = 100 is used in the present work for
each combination of the mean values of the three input
parameters.

Next, before the linear regression analysis is applied
to the computed yi values, a post-simulation input trans-
formation, u = u (x) is generally used to convert the
input parameters into the appropriate orthogonal poly-
nomials. In the present model, these polynomials are
selected to include the input parameters themselves,
their squares and two parameter products. A linear re-
gression analyses is then applied to the model output
as:

y =
∑

j

β j u j + e (3)

where j is the transformed input-parameter index and
β ’s the linear regression coefficients determined using
the standard least-squares methodology.

Next, when the components of the vector u are un-
correlated (as is the present case), uncertainty of the
model output (as measured by the variance σ 2

y ) can be
defined as:

σ 2
y =

∑

j

β2
j σ

2
u j

+ σ 2
e (4)

The same expression, Equation 4, can be used to
compute the sample variances, S2

y , S2
u j

and S2
e (while

using the same denominator 1/(n−1) during calculation
of these variances) again provided the input parameters
are uncorrelated.

Finally, a statistical sensitivity index, SI j , for the in-
put parameter u j can be defined as:

SI j = β2
j

S2
u j

S2
y

(5)

and can be used to quantify the sensitivity of the model
output to variations in this input parameter.

Application of the linear regression analysis to the
numerically computed failure strength data of 500 runs,

σ̂ f , yielded the following relationship:

σ̂ f = 36.04 f f − 96.78 · 10−4 l f

d
+ 6.817 · 104 Ks

+ 52.3 f 2
f + −14.86 · 10−7

(
l f

d

)2

− 93.57 · 106 K 2
s − 0.1565 f f

l f

d
+ 3098 f f Ks

+ 2.442
l f

d
Ks (6)

A correlation between the numerically-computed σ f

data their corresponding analytical counterparts σ̂ f is
given in Fig. 9a. It is seen that there is a very good cor-
relation between the two sets of failure strength data
with the correlation coefficient R2 = 99.17%. A fre-
quency plot for the failure-strength residuals (errors)
defined as a σ̂ f − σ f difference is displayed in Fig. 9b.
A probability density function plot for a normal dis-
tribution with the identical variance as the frequency
plot is also shown in Fig. 8b. It is seen that the residual
(error) distribution is nearly normal. This is confirmed

Figure 9 (a) A correlation between the fitted and numerically computed
values of the failure strength and (b) Probability-distribution (frequency)
plot for the failure strength residuals.
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quantitatively by computing the skewness, sk , and the
kurtosis, kk , for the frequency plot shown in Fig. 9b. The
values obtained, sk = 0.05 and kk = 3.09, are found to
be very near their normal distribution counterparts, sk

= 0.0 and kk = 3.0. This finding may be related to the
fact that the input data were sampled from a normal
distribution.

Values of the statistical sensitivity index SI j for the
nine for transformed input parameters computed using
Equations 4 and 5 show that the fiber/fiber junction-
point torsional-stiffness (SI3 = 0.4810) and the fiber
volume fraction (SI1 = 0.4117) have the largest effect
on the statistical variability of the failure strength. The
sum of the statistical sensitivity indices for the remain-
ing six transformed input parameters is 0.0848.

Now that an analytical function for the effects fiber
volume fraction, fiber length-to-diameter aspect ratio
and fiber/fiber junction-point torsional stiffness on the
failure strength and the associated error distribution
function are determined, one may proceed with an-
swering the original question regarding the fiber vol-
ume fraction needed to obtain a desired minimum level
of the failure strength with a specific probability in a
fibrous porous material with given mean values and
given variances for the fiber aspect ratio and the tor-
sional stiffness. For example, for a material consisting
of the nickel fibers with mean aspect ratio of 75 and
a mean value of the torsional stiffness of 1.0. × 10 −4

N · m, if the desired failure strength is say σ̂ f = 10 MPa
the use of these data and Equation 6 yields a mean value
of the required fiber volume fraction f f = 0.149. How-
ever, it should be noted that since the failure strength
at a given mean value of the three input parameters is
found to be associated with a normal distribution, the
computed fiber volume fraction f f = 0.149 ensures
that the required minimum failure strength σ̂ f = 10
MPa is obtained with a probability of only 50%. Since
electrochemical substrates are generally designed for a
small probability of failure, one needs to determine the
fiber volume fraction which will yield the same fail-
ure strength σ̂ f = X X MPa but at a high (say 99%)
probability. The probability of 99% corresponds to a
failure stress level which is 2.58 standard deviations
away from the mean failure strength. This means that
in order to obtain a failure strength of 10 MPa with a
probability of 99%, one needs to determine the volume
fraction which will yield a mean value of the failure
strength of 10 + 2.58 × 0.423 = 11.09 MPa, where
0.423 MPa corresponds to (computed) failure-strength
standard deviation. The use of Equation 6 now yields
the fiber volume fraction f f = 0.175.

To summarize, under the conditions of fixed standard
deviations of the input parameters (fiber volume frac-
tion, fiber length-to-diameter aspect ratio and fiber/fiber
junction-point torsional stiffness), it is found that the
failure strength can be represented using a linear com-
bination of the orthogonal linear and nonlinear poly-
nomials based on these input parameters. In addition,
the error between the accurate numerical and approxi-
mately analytical values of the failure strength is found
to be associated with a normal distribution. Under such
circumstance, one can approach the design of stochastic

porous fibrous materials on a statistical bases and pro-
vide a procedure for ensuring that the resulting material
will have a desired level of the probability of survival
(as measured to be the probability that the material will
possess a failure strength whose magnitude is greater
or equal to a desired level).

For the three input parameters considered in the
present work, it is assumed that their mean values and
standard deviations can be controlled within the ranges
indicated in Table II. Since the materials at hand are
generally processed using paper manufacturing tech-
nologies, control of the mean volume fraction within a
range of ±1% is deemed achievable. Likewise, a con-
trol of the fiber aspect-ratio distribution within ±10
(which translates into a control of the fiber length with
±3·10−4 m) is generally attainable through conven-
tional fiber sifting and screening processes. A control
of the torsional stiffness of fiber/fiber junction points is
most challenging and it is carried out through a strict
control of the sintering process parameters. At present,
no correlation has been established between the sin-
tering process parameters and the resulting distribu-
tion of the junction-point torsional stiffness. It must
be noted that establishment of such relationships in a
prerequisite for the full utilization of the material de-
sign methodology presented in the present work. This
is particularly the case considering the observed large
value of the statistical sensitivity index of the torsional
stiffness.

4. Conclusions
Based on the results obtained in the present work, the
following main conclusions can be drawn:

1. A two-dimensional finite element analysis can be
used to study the deformation behavior including the
progress of structural material damage due to the fail-
ure of bonded fiber segments in stochastic porous fi-
brous materials such as Ni-based mats used as electro-
chemical substrates in advanced nickel/metal-hydride
batteries.

2. The progress of the structural material damage
leads initially to a gradual and subsequently to a pre-
cipitous reduction in electrical conductivity in these
materials culminating in a total loss of electrical con-
ductivity when the damage causes a complete loss in
connectivity at the fibrous network.

3. Due to the stochastic character of materials mi-
crostructure and variability in materials properties, a
statistical approach is required when analyzing the fail-
ure strength in these materials. In other words, sim-
ilarly to ceramic materials, stochastic porous fibrous
materials are designed to possess, at a specified high
probability, a desired minimum level of the failure
strength.

Acknowledgements
The material presented in this paper is based on work
supported by the U.S. Army Grant Number DAAD19-
01-1-0661. The authors are indebted to Drs. Bonnie

5189



Gersten, Fred Stanton and William DeRosset of ARL
for the support and a continuing interest in the present
work.

References
1. R . E . M E R I D I T H and C. W. T O B I A S , “II Conduction in

Heterogeneous Systems,” Advances in Electrochemistry and Elec-
trochemical Engineering, Interscience, New York. (1962) p. 15.

2. J . W. S . H E A R L E , in “The Mechanics of Dense Fibre Assem-
blies,” The Mechanics of Flexible Fibre Assemblies, edited by J. W.
S. Hearle, J. J. Thwaites and J. Amichayal (Sijthoff and Noordholf,
New York, 1980) p. 51.

3. W. L U, L . A . C A R L S S O N and Y. A N D E R S O N , Tappi J. 78
(1995) 155.

4. W. L U and L . A. C A R L S S O N , ibid. 79 (1996) 203.
5. W. L U, L . A . C A R L S S O N and A. D E. R U V O , ibid. 79

(1996) 197.
6. W. A. C U R T I N , J. Mater. Res. 5 (1990) 1549.
7. L . B E R H A N and A. M. S A S T R Y , J. Comp. Mater. 37 (2003)

715.
8. C . W. W A N G, K. A. C O O K and A. M. S A S T R Y , J. Elec-

trochem. Soc. 150 (2003) A385.
9. Y . B . Y I and A. M. S A S T R Y , Phys. Rev. E 66 (2002) 1.

10. A . M. S A S T R Y, C . W. W A N G and L. B E R H A N , Key Engng.
Mater. Trans. Tech. Publ. 200 (2001) 229.

11. X . C H E N G, A. M. S A S T R Y and B. E . L A Y T O N, ASME
J. Engng. Mater. Techn. 123 (2001) 12.

12. C . W. W A N G, L . B E R H A N and A. M. S A S T R Y , ibid. 122
(2000) 450.

13. C . W. W A N G and A. M. S A S T R Y , ibid. 122 (2000) 460.
14. C . W. W A N G, X. C H E N G, A. M. S A S T R Y and S . B .

C H O I , ibid. 121 (1999) 503.
15. X . C H E N G, C. W. W A N G, A. M. S A S T R Y and S . B .

C H O I , ibid. 121 (1999) 514.
16. X . C H E N G and A. M. S A S T R Y, Mech. Mater. 31 (1999) 765.
17. A . M. S A S T R Y, S . B . C H O I and X. C H E N G , ASME J.

Engng. Mater. Techn. 120 (1998) 280.
18. A . M. S A S T R Y, X. C H E N G and C. W. W A N G , J. Therm.

Comp. Mater. 11 (1998) 288.
19. Spice 3, http://www.eecs.berkeley.edu/.
20. MATLAB, 6th Edition, “The Language of Technical Computing,”

The MathWorks Inc., 24 Prime Park Way, Natick, MA, 01760-1500,
2000.

21. www.comsol.com, FEMLAB 2.3a, COMSOL Inc., Burlington, MA
01803, 2003.

22. M. G R U J I C I C and K. M. C H I T T A J A L L U , Appl. Surf. Sci.
227 (2004) 56.

Received 23 January
and accepted 17 December 2004

5190


