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Distributed Matrix Completion:

Applications to Cooperative Positioning in Noisy Environments

Andrea Montanari∗

December 5, 2013

Outline

Below is an outline summary of the main scientific results that have been funded within this project:

1. Distributed algorithms for positioning and low-rank approximation.

Publications [KMO11, MO10].

2. Positioning via convex optimization.

Publications [JM11, JM13c].

3. Approximate message passing algorithms.

Publications [DMM11, BM11, BLM12, DJM13, DGM13, JM12].

4. Finding highly connected/atypical subnetworks.

Publications [DM13].

5. Assessing uncertainty in high dimensional statistics.

Publications [JM13b, JM13a].

The main collaborators in this research have been Mohsen Bayati (Stanford University), Yash
Deshpande (graduate student, Stanford University), David Donoho (Stanford University), Morteza
Ibrahimi (graduate student, Stanford University), Adel Javanmard (graduate student, Stanford Uni-
versity). Satish Korada (postdoc, Stanford University). The work of Deshpande, Ibrahimi, Javan-
mard, Korada was partially supported through this grant.

All publications are available through on leading journals/conference proceedings. Publications
under review are made available online through arxiv and through the PI’s webpage. The next
sections provide pointers to the main results.

Distributed algorithms for positioning and low-rank approximation

The basic question in matrix completion is to infer a large low-rank matrix from a small subset of
its entries. Positioning refers to the task of inferring the locations of n points from a subset of their

∗Department of Electrical Engineering and Department of Statistics, Stanford University
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Figure 1: Success probability of OPTSPACE POSITIONING as a function of the measurement range
r0, for various network sizes: n nodes are placed uniformly in the unit square [1, 1]2. On the right,
r0 is divided by the connectivity scale r(n) =

√
(log n)/n. The vertical line marks the onset of

connectivity.

distance. It turns out that positioning can be viewed as a matrix completion problem, although of
a peculiar type. The paper [MO10] develops an algorithm for positioning using ideas from matrix
completion, cf. Fig. 1. A distributed implementation is also demonstrated.

Many algorithms that compute positions of the nodes of a wireless network on the basis of
pairwise distance measurements require a few leading eigenvectors of the distances matrix. One
example is MDS-MAP. While eigenvector calculation is a standard topic in numerical linear algebra, it
becomes challenging under severe communication or computation constraints, or in absence of central
scheduling.The paper [KMO11] investigates the possibility of computing the leading eigenvectors of a
large data matrix through gossip algorithms. A new algorithm is proposed that amounts to iteratively
multiplying a vector by independent random sparsification of the original matrix and averaging
the resulting normalized vectors. This can be viewed as a generalization of gossip algorithms for
consensus. The algorithms outperform state-of-the-art methods in a communication-limited scenario.

Positioning via convex optimization

In presence of noise, maximum likelihood localization is a hard non-convex optimization problem.
The papers [JM11, JM13c]. propose a reconstruction algorithm based on semidefinite programming.
This is the first algorithm of this type for which tight performance guarantees have been proved.
For a random geometric graph model and uniformly bounded noise, these papers establish a precise
characterization of the algorithm’s performance. In particular, in the noiseless case, there exists
a connectivity radius r0 beyond which the algorithm reconstructs the exact positions (up to rigid
transformations). In the presence of noise, the papers establish upper and lower bounds on the
reconstruction error that match up to a factor that depends only on the dimension d, and the
average degree of the nodes in the graph.

2



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

δ

 

 

Scheme II I (empirical)

δ`1
(ε)

Scheme II (empirical)

δ̃(ε)

Scheme I (empirical)

δ = ε 0 100 200 300 400 500 600 700 800
0

0.01

0.02

0.03

0.04

0.05

0.06

a

 

 

t=5
t=50
t=100
t=150
t=200
t=250
t=300
t=350
t=400

Figure 2: Left: phase transitions for several compressed sensing schemes. Scheme I: Standard com-
pressed sensing with dense partial Fourier matrices and convex optimization-based reconstruction.
Scheme II: dense partial Fourier matrices and Bayes-optimal AMP reconstruction. Scheme III: ‘spa-
tially coupled’ partial Gabor matrices and Bayes-optimal AMP reconstruction. Right: Evolution of
the mean square reconstruction error across the signal, as AMP iteration proceeds.

Approximate message passing algorithms

Approximate message passing (AMP) algorithms were developed in [DMM09] as a way to solve
certain compressed sensing reconstruction problems. The basic idea is to define a graphical model
that is associated with the problem of interest, and to apply methods for approximate inference in
graphical models, and in particular message passing algorithms inspired by belief propagation. Often
the resulting graph is dense which is at odds to the standard wisdom suggesting that this class of
algorithms is most effective on sparse graphs.

It was soon realized that the same approach can be applied to a host of other statistical estimation
problems (see [Mon12] for a brief overview and next section for a specific example). Further, the
theory developed in [DMM09, DMM11, BM11, BLM12] provides a sharp asymptotic analysis of such
algorithms. This analysis shows that AMP is extremely effective on some classes of dense graphs
and, furthermore, dense graphs bring along special simplifications that can reduce the computational
complexity with respect to sparse cases.

Compressed sensing with ‘spatially coupled’ sensing matrices provides a spectacular application
of this approach. The papers [DJM13, JM12] show that such a scheme can effectively solve the
reconstruction problem with undersampling rates close to the fraction of non-zero coordinates. For
sparse signals, i.e., sequences of dimension n and k(n) non-zero entries, this implies reconstruction
from k(n) + o(n) measurements. For ‘discrete’ signals, i.e., signals whose coordinates take a fixed
finite set of values, this implies reconstruction from o(n) measurements. The result is robust with
respect to noise and does apply to non-random signal.

This phase transition phenomenon survives for ‘spatially coupled’ matrices with considerable
amount of structure. In particular, the paper [JM12] studies the problem of reconstructing signals
that ase sparse in Fourier domain, from subsampled Gabor transform. The results are illustrated in
Fig. 2.
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Finding highly connected/atypical subnetworks

Numerous modern data sets have network structure, i.e. the dataset consists of observations on
pairwise relationships among a set of n objects. A recurring computational problem in this context
is the one of identifying a small subset of ‘atypical observations against a noisy background. The
motivation can be –for instance– to find a tightly connected small community in a large social
network.

The paper [DM13] develops a new type of algorithm and analysis for this problem. In particular,
the new algorithm improves over the best methods for nding a hidden clique in an otherwise random
graph, a special problem that attracted substantial interest within theoretical computer science.

The new algorithm is based on a different philosophy with respect to previous approaches to the
same problem. It aims at estimating the hidden set by computing, for each vertex in the network,
the posterior probability that it belongs to the hidden set, given the observed data.

This is, in general, an intractable problem. We therefore consider a message passing algorithm
derived from belief propagation, a heuristic machine learning method for approximating posterior
probabilities in graphical models. We develop a rigorous analysis of this algorithm that is asymptot-
ically exact as N →∞, and prove that indeed the algorithm converges to the correct set of vertices
if

λ|S| ≥
√

N

e
(1 + ε) . (1)

Here S is the hidden set, with size |S|, λ quantifies the difference between connections within and
without the subnetwork, and finally ε is an arbitrary positive number.

Assessing uncertainty in high dimensional statistics

Fitting high-dimensional statistical models often requires the use of non-linear parameter estimation
procedures. As a consequence, it is generally impossible to obtain an exact characterization of
the probability distribution of the parameter estimates. This in turn implies that it is extremely
challenging to quantify the uncertainty associated with a certain parameter estimate. Concretely, no
commonly accepted procedure exists for computing classical measures of uncertainty and statistical
significance as confidence intervals or p-values.

The papers [JM13b, JM13a] consider a broad class regression problems, and propose an efficient
algorithm for constructing confidence intervals and p-values. The resulting confidence intervals have
nearly optimal size. When testing for the null hypothesis that a certain parameter is vanishing, the
new method has nearly optimal power.

The new approach is based on constructing a ‘de-biased’ version of regularized M-estimators.
The new construction improves over recent work in the field in that it does not assume a special
structure on the design matrix.
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