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Executive Summary 

Army decisions regarding the safe and efficient employment of armed forces and equipment are 

impacted by the atmosphere. Advanced knowledge of atmospheric conditions can empower 

decision makers to increase mission effectiveness and reduce potential exposure to dangerous 

scenarios. The U.S. Army Research Laboratory (ARL) has been developing a tool to glean this 

advanced weather intelligence notification, called, the Weather Running Estimate – Nowcast 

(WRE-N) or Nowcast Model. Assessing and improving the “Nowcast” Model’s ability to 

support battlefield applications is one of ARL’s long term goals. Identifying methods for 

executing the high-resolution model assessments, and for finding high-resolution datasets, from 

which to calibrate the Nowcast Model, is nontrivial. This report documents an investigation into 

model verification tools, techniques, and applications relevant to assessing WRE-N.  

Traditional statistical tools are useful for assessing repeatable patterns generated by lower 

resolution weather models, especially with the aid of largely populated data resources. This 

report reviews some of the standard statistical methods. However, weather conditions rarely 

repeat themselves exactly; data resources are often sparse; and high-resolution weather models 

being verified must rely on inexact equations, which are subject to spatial and temporal errors. 

Consequently, the traditional assessment methods have limited usefulness, forcing the 

assessment process to utilize nontraditional tools.   

The Model Evaluation Tool (MET) package developed by the National Center for Atmospheric 

Research (NCAR), contains both traditional and nontraditional statistical evaluation tools. ARL’s 

Model Assessment Project has been conducting an investigation into the applicability of the 

MET package for ARL’s model Validation and Verification (V&V) mission. In particular, they 

have been looking into the Method for Object-Based Diagnostic Evaluation tool or “MODE,” as 

a resource for performing spatial verification of numerical weather prediction (NWP) model 

forecasts. This tool has the potential for accommodating the possible temporal and spatial 

mismatches that often occur in high resolution weather forecasting.   

MODE compares meteorological features or “objects” defined from the forecast and observed 

fields for the same valid time on the basis of measureable attributes. It then quantifies the 

differences between corresponding objects as a measure of forecast error. The five-step process 

is described within the report. The statistical tool was originally designed for precipitation 

analyses. ARL’s applications, however, required using MODE on continuous variable 

applications.   

Investigating the potential of this tool began by first determining if the software installation was 

valid. This task was assessed by running a “Perfect” case. That is, the observation and forecast 

data fields were identical. The results of the “Perfect” case confirmed that the software was 
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performing correctly. The task also was a catalyst for developing a technique that can extract 

data slices or intervals from continuous variable fields. Section 3 provides an overview of this 

technique and a detailed review of the “perfect case” results. 

Running a “real world” case followed. The NWP model used was WRE-N. WRE-N is tailored to 

address Army scale horizontal spatial resolutions of 1–3 km. This model was run over three 

nested grids (9, 3, and 1 km), with the 1-km inner nested grid data being the focus of the “real 

world” study. Observation data from an independent gridded analysis over the same footprint 

was weighed against the forecast data.   

To assist with the “real world” case analysis, observational time series data from a 

meteorological suite located near the center of the area of interest were reviewed. Distinguished 

atmospheric characteristics were flagged for study. While several meteorological variables were 

reviewed, this report presents only a sample of the results; namely, the temperature field at 2 m 

above ground level (AGL). The “real world” case forecast time selected was 20 Z or 1400 LT. 

Winds were strong, steady and westerly; implying a well mixed environment. The temperature 

slice extracted was: 301.00–303.00 K. 

MODE results found eight simple objects in the forecast field and two in the observation field. 

There were 16 matching pairs, with five pairs identified as having a 70% and greater interest 

level. Total interest is a calculated sum based on user-defined, weighted-object attributes. The 

70% interest threshold is also user-selected. The simple objects were all merged into one cluster 

for the MODE analysis. The forecast area grid squares qualifying as a clustered object, were 

about 25% of the area qualifying in the observation field. Based on user preferences (default 

settings), the Median Maximum Interest (MMI) for the Forecast was 80.42% and the 

Observation was 82.73%. The combined MMI (interest) was 80.42%. A visualization of the 

objects and the larger cluster are in appendix C. 

The numerical results between the Perfect and “real world” case were very similar. However, 

using the visualization, the importance of the area represented in the statistics comes into focus. 

Additional case studies need to be examined, before the tool can be fully optimized by the model 

assessment process. Exercising the numerous options in the lengthy configuration file will open 

up new understandings of both the tool and the V&V results. With a mastering of the MODE 

terms and process, this nontraditional tool has the potential to significantly strengthen ARL’s 

NWP model assessment process. 
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1. Background   

The atmosphere impacts various Army decisions regarding the safe and efficient employment of 

armed forces and equipment. Advanced knowledge of atmospheric conditions can empower 

decision makers to increase mission effectiveness and reduce potential exposure to dangerous 

scenarios. The U.S. Army Research Laboratory (ARL) has been developing a tool to glean this 

advanced weather intelligence notification, called, the Weather Running Estimate – Nowcast 

(WRE-N) or Nowcast Model.  

The numerical weather prediction (NWP) forecast model WRE-N is specifically configured for 

Army applications, but the strengths and weaknesses are not yet well understood. Gaining 

knowledge of the high-resolution WRE-N accuracy and uncertainty can improve the value of the 

Nowcast Model and its decision aid applications. Consequently, ARL has been researching the 

traditional and pioneering tools needed to accomplish high-resolution model verification.  

1.1 Goals 

The long term goal of this research is to assess and improve the “Nowcast” Model’s ability to 

support battlefield applications such as the “My Weather Impact Decision Aid” (MyWIDA). 

Since the quality of decisions is a function of the forecast input, assessing the “Nowcast” model 

was the first major milestone for this objective. The nontrivial task of identifying the method(s) 

for executing the assessment defined the initial target. 

This report documents the investigation of model verification tools, techniques, and applications 

relevant to assessing WRE-N. The content focus is on the nontraditional tool called, Method for 

Object-Based Diagnostic Evaluation (MODE), and its use to assess the accuracy and uncertainty 

of the WRE-N using available gridded observation data as ground truth. 

1.2 The Challenges  

Progress toward generating quantitative accuracy assessments of high-resolution modeling 

systems, such as WRE-N, is only in its preliminary stages. The two major challenges are finding 

an appropriate statistical method and a correctly scaled observation data resource.  

1.2.1 Finding an Informative Statistical Method 

Background research confirmed that traditional statistical analyses were limited to grid-to-point 

techniques from which single point-forecasts were extracted at point-observational data 

locations. The forecast error was calculated from the difference between the forecast value and 

the observed value. Expanding the statistical tools to include “object” comparisons, a comparison 

tool for two-dimensional (2-D) model and observation “objects” was available. The tool was 

MODE.  However, MODE had not been applied at the Army-scale. Instead, MODE was 
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developed for application to spatial precipitation forecasts. For this initial use, Stage II or Stage 

IV radar analyses of accumulated precipitation data were used for the gridded observation 

datasets (National Center for Atmospheric Research, 2013).   

To support Army interests, MODE had to be applied to forecast scalar fields such as surface 

temperature, moisture, and wind at Army-relevant scales of 1–3-km resolution. This decision 

resulted in generating additional challenges related to the methodology for defining “objects,” 

which are suitable for the computation of MODE diagnostics. Fortunately, collaboration with 

MET developers resulted in some general “thumb rules” on the characteristics of “objects” 

defined from scalar fields of continuous meteorological variables.  

As case study data were generated, the procedures for running MODE required modifications in 

order to successfully define such “objects” in the limited Army domain sizes. Further MET 

developers collaboration was required to achieve these modifications. 

1.2.2 Finding a High-Resolution Observational Dataset 

The data challenge encountered was the extremely limited availability of meteorological 

observation datasets for conducting model evaluations at very high resolutions.  

Using the MODE tool required the availability of gridded observation ground truth datasets. The 

only datasets readily available were from the National Oceanic and Atmospheric Association 

(NOAA)/National Centers for Environmental Prediction (NCEP) Real-Time Mesoscale Analysis 

(RTMA) product (De Pondeca et al., 2011). The RTMA product served as the gridded 

observation dataset. For this work, the RTMA product, generated at a horizontal grid spacing of 

2.5 km, was used. 

Since the RTMA product was on a grid of 2.5-km spacing, this presented a problem because the 

horizontal resolution of the WRE-N forecast grid was 1 km. MODE required that the forecast 

and the observations grids be identical. In order to resolve this issue, the forecast grid was 

remapped to a 2.5-km grid spacing, to match that of the observation grid.  

1.3 Evaluating Forecast Models 

The decision to utilize MODE came after investigating both the standard and pioneering 

verification tools. In the following subsections, a summary of the standard weather statistical 

verification terms and techniques is provided. Section 1.3.3 will capture specific verification 

methods, followed by, an introduction to the nontraditional object-based diagnostic evaluation 

tool—MODE, in section 1.3.4. 

1.3.1 Weather Verification Terminology and General Approaches 

A weather forecast model predicts the future state of the atmosphere. To verify this future state, 

observations of what actually transpired (truth), or some good estimate, need to be assembled. 
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The “truth” could be either qualitative (does it look right?) or quantitative (how accurate is it?). 

Results from such evaluations help to monitor, improve and/or compare forecast quality. 

There are many types of forecasts and verification methods. David Stephenson suggested a 

forecast classification scheme, which is summarized in table 1 (Types of…, 2009). The forecast 

types suggested were Forecast Nature, Space-Time Domain, and Forecast Specificity. The 

verification methods included visual, dichotomous, multi-category, continuous, probabilistic, 

spatial, and ensemble approaches. The “Forecast Specificity” type was most applicable to 

forecasts used in the current investigation. 

Table 1. David Stephenson’s forecast classification scheme (Types of…, 2009). 

Forecast Type Verification Method Example 

Forecast Nature:   

Deterministic 

(nonprobabilistic) 

Visual, dichotomous, multi-category, 

continuous, spatial 

Quantitative precipitation 

forecast 

Probabilistic Visual, probabilistic, ensemble Precipitation probability 

Qualitative Visual, dichotomous, multi-category 5-day outlook 

Space-Time domain:   

Time series 
Visual, dichotomous, multi-category, 

continuous, probabilistic 

Daily max wind speed 

forecast 

Spatial Distribution 

Visual, dichotomous, multi-category, 

continuous, probabilistic, 

spatial, ensemble 

Rainfall chart 

Pooled Space & Time 
Dichotomous, multi-category, 

continuous, probabilistic, ensemble 

Monthly average global temp 

anomaly 

Forecast Specificity:   

Dichotomous (yes/no) 
Visual, dichotomous, probabilistic, 

spatial, ensemble 
Fog occurrences 

Multi-Category 
Visual, multi-category, continuous, 

probabilistic, spatial, ensemble 

Cold, normal, warm 

conditions 

Continuous 
Visual, continuous, probabilistic, 

spatial, ensemble 
Maximum temperature 

Object-, or event-oriented 

Visual, dichotomous, multi-category, 

continuous, probabilistic, spatial, 

ensemble 

Cyclone motion and intensity 

 

Weather forecast results are generally interpreted in terms of their “goodness.” Allan Murphy 

(1993) defined three types of forecast “goodness:” 

• Consistency, which is the degree to which the forecast corresponds to the forecaster’s best 

judgment about the situation; 

• Quality, which is the degree to which the forecast corresponds to “truth”; and 

• Value, which is the degree to which the forecast helps a decision maker to realize some 

benefit. 
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A forecast can have a high quality if it predicted the conditions that were observed, but be of 

little value. An example of this scenario is a forecast for clear skies over the Sahara Desert 

during the dry season. 

Defining “truth” for a forecast verification task is generally done by using observational data. 

Knowing the “exact” truth can be nontrivial, since there are many uncertainties associated with 

atmospheric measurements. To present a detailed account of potential observational data error 

sources is beyond the scope of this report. Therefore, we will make the large presumption that 

the observation data errors are much smaller than the expected error in the forecast, allowing 

them to be ignored. 

Verification results tend to be more trustworthy when there is a high quantity and quality of 

ground truth data. The need to estimate one’s confidence in the results using error bars occurs 

when a rare event transpires having only a small sample size, a dataset has a lot of variability, or 

one is investigating forecast product comparisons. A well-recognized method for establishing 

limits to the verification results is the confidence interval, which sets the upper and lower 

limits—or error bars—on the metric value, using parametric assumptions about the metric 

variability. 

1.3.2 Basic Statistics Calculations 

Basic statistical tools used in verification methods include: averages, standard deviations, mean 

absolute errors, bias, root mean squared error, etc. Most of these parameters are well presented in 

a standard college text, so they will not be reviewed here (Wilks, 2006; Panofsky and Brier, 

1976; Jolliffe and Stephenson, 2012). 

1.3.3 Specific Verification Methods 

Standard distributions-oriented verification methods utilize approaches and plots such as 

histograms, box plots, scatter plots, etc. The oldest and most efficient verification method is the 

“eyeball” verification or “face” validation. This technique places the forecast and observation 

data side-by-side, allowing the knowledgeable reviewer to visually inspect for patterns and 

trends, and judge whether or not they appear reasonable. This approach is useful when there are 

only a few forecasts and quantitative verification statistics are not needed. 

The Dichotomous (yes/no) forecast verification technique is another common approach. This 

method begins with a contingency table (see table 2). The table summarizes the frequency of 

“yes” and “no” forecasts, along with actually observed events. The joint distribution within the 

table consists of: 

• Hits – the forecasted event occurred; 

• Misses – the event was not forecasted, but did occur; 

• False alarm – the event was forecasted, but did not occur; and, 
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• Correct negative – the event forecasted to not occur, did not occur. 

The “marginal distribution” on the lower and right sides of the table shows the total numbers of 

observed and forecasted occurrences (Total Observed/Forecast Yes) and non-occurrences (Total 

Observed/Forecast No).  

Table 2. Dichotomous contingency table (Panofsky and Brier, 1976). 

  OBSERVED OBSERVED  

  YES NO  

FORECAST YES Hits False alarms 
Total  

 Forecast Yes 

FORECAST NO Misses Correct negatives 
Total  

Forecast No 

  
Total   

Observed Yes 

Total   

Observed No 
Grand total 

 

From this contingency table, one can calculate the accuracy, bias, probability of detection, false 

alarm ratio, success ratio and threat score, etc. For definitions of these statistical skill scores, see 

Panofsky and Brier (1976). 

When there are multiple categories in the weather data (e.g., bracketed temperatures, winds, or 

aerosol sizes), a simple approach is to use a forecast-observation histogram. The side-by-side 

frequency of forecast and observed categories shows how well the distributions of forecast and 

observations categories correspond. Distribution location, spread and skewness between forecast 

and observed results can be gleaned, while information on the forecast/observation 

correspondence is not always evident. 

Another basic method is a multi-category contingency table. Table 3 is similar to the 

dichotomous contingency table in that it is still framed by observed and forecast data. However, 

the core of the table indicates the frequency of forecast and observations that fall into various 

predefined category bins. 

Table 3. Multi-category contingency table (Panofsky and Brier, 1976). The “F” is forecast and “O” 

is observed. 

  OBSERVED OBSERVED OBSERVED OBSERVED  

 (i, j) 1 2 3 ...k  

FORECAST 1 n(F1, O1) n(F1, O2) n(F1, O3) n(F1, Ok) Total N(F1) 

FORECAST 2 n(F2, O1) n(F2, O2) n(F2, O3) n(F2, Ok) Total N(F2) 

FORECAST 3 n(F3, O1) n(F3, O2) n(F3, O3) n(F3, Ok) Total N(F3) 

FORECAST …k n(Fk, O1) n(Fk, O2) n(Fk, O3) n(Fk, Ok) Total N(Fk) 

  
Total 

N(O1) 

Total 

N(O2) 
Total N(O3) Total N(Ok) Grand Total, N 
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For a perfect forecast, nonzero scores would follow the diagonal, with all other entries being 

zero. These off-diagonal entries describe the specific nature of the forecast errors. Marginal 

distributions (table right and bottom) show the categorical totals for the forecast distribution 

when compared to the observations. Two statistical parameters that can be calculated from a 

multi-category data set are Accuracy and the Heidke Skill Score. For more information on these, 

see NCAR (2013). This table makes reducing results into a single number difficult; however, 

diagnosing forecast errors is easier. 

For continuous variable forecasts, verification tools include: a scatter plot of observed and 

forecasted data, box plots, the calculation of mean error (bias), mean absolute error, root mean 

square error, mean squared error, linear error in probability space, correlation coefficient, 

anomaly correlation, etc. 

For calculating the probability of an event occurring, statistical tools include: the reliability 

diagram, Brier score, Brier skill score, relative operating characteristic, ranked probability score, 

ranked probability skill score, etc. 

The above methods represent the generally accepted standard approaches to verification 

statistics. The scientific or diagnostic verification methods that investigate the detailed nature of 

forecast errors tend to go beyond the distribution-oriented approaches and plots. These 

“nontraditional” verification methods focus on the spatial and temporal aspects of the forecast. 

Examples of these approaches include: neighborhood methods, scale separation methods, and 

spatial multi-event contingency tables. 

Object-oriented methods, which focus on spatial aspects of the forecast are also on the 

pioneering edge of novel, informative approaches and will be the focus of the remainder of this 

technical report. 

1.3.4 Object-Based Statistics 

Object-based diagnostic evaluations answer the question, How similar are the forecast objects to 

the observed objects according to a variety of descriptive criteria? (Brown et al., 2004). They 

also have applications in the image processing discipline, when there is a need to condense a 

large amount of spatial information into a more manageable size (Jolliffe and Stephenson, 2012). 

The process includes identifying objects in both the forecast and observation fields of interest. 

Then, various characteristics of the forecast and observation object pairs are extracted, and a 

comparison of these objects is run. Outputs from such tools include attributes of single matched 

and unmatched shapes, clustered object attributes, and user-specified attributes—such as gaps 

between storms. Object traits can also be compared quantitatively across many cases. This multi-

case approach enables investigation into systematic errors and the documentation of performance 

variability under different situations.  

In the next section, the object-based diagnostic tool MODE will be described. Evaluating the 

MODE verification method was a focus in the WRE-N assessment investigation. 
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2. MODE   

The “standard” statistical verification tools used in this study have come from the MET package, 

which was developed at the National Center for Atmospheric Research (NCAR), through a grant 

from the United States Air Force Weather Agency (AFWA). NCAR is sponsored by the United 

States National Science Foundation (NSF). MET is an evolving software package that began in 

2008. The tools are geared for use by the NWP community, especially users and developers of 

the Weather Research and Forecasting (WRF) model—to assist them in assessing and evaluating 

model performance. These tools include the 2-D MET Point-Stat, MET Grid-Stat, and MODE. 

Note:  MODE also has an unpublished potential for a third dimension that can be either “time” or 

a “vertical” orientation.  

As part of the WRE-N assessment, the analyses of point-forecasts were accomplished by 

applying the MET subcomponent called “Point-Stat” to produce comparisons of WRF forecasts 

at specific points in a grid against known observations, generating statistical analyses of the 

differences. Point-Stat was run for a number of case-studies at the high-end of the Army-scale  

(1- and 3-km grid resolution), and is now configured to operate at the lower-end (as fine as 500 

m resolution) assuming a representative observational dataset is available and data quality is 

controlled. Reports documenting the use of—and results from—cases using this tool include 

(Raby et al., 2012) and (Raby et al., 2011). 

A lesson learned from the traditional, 2-D grid-to-point verification effort was that while the 

statistics from grid-to-point comparisons were helpful, assessing model performance in terms of 

spatial objects might better reveal the true skill of high-resolution forecasts. The V&V 

community already recognizes that when applying the traditional V&V techniques to high-

resolution forecasts, the results often show that the errors of lower resolution forecasts are 

smaller than those of higher resolution forecasts. This outcome occurs because it is difficult to 

exactly match a forecast and observation at the same location. One cause is that the feature being 

forecasted may be present, but offset from the observed feature in either time or space. Another 

potential reason concerns how well the point observations represent the true value of the variable 

at a given location. A third cause can be a combination of both issues. This “double penalty” 

especially arises when the observations show that the observed feature was “missed” due to a 

nonforecast at a given location, while at the same time the forecasted feature present at another 

location generated a “false alarm” due to nonoccurrence of the feature. For this reason, various 

nontraditional techniques were developed, allowing a better skill assessment of high-resolution 

forecasts. These techniques, called spatial techniques, are categorized into two different types. 

One category, called “Neighborhood” relaxes the requirement for an exact match between the 

forecast and observation, through the use of a neighborhood around the forecast or observation, 

which influences the value at that point before error statistics are calculated. The other type is the 
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object-oriented—or features-based—technique, which involves a comparison of features 

common to the forecast and the observations (Ebert, 2008). For this study, the object-oriented 

type was used. The MET contains tools, which can perform both types of spatial verification. For 

this study, the results from the object-oriented method MODE were used.  

2.1 Precipitation Analysis – the Original MODE Application 

When MODE was developed by the Verification Group at the NCAR Research Applications 

Laboratory, the tool was designed to provide users an object-oriented spatial verification 

technique assessment for high-resolution forecasts. The original MODE application was to 

enable spatial verification of 2-D “objects” rendered from areas of precipitation as generated 

from both gridded meteorological observation datasets and from the model forecast grids. The 

two objects (a forecast and observation object) were then compared spatially (distance between 

their centroids, measures of shape-similarity, etc.) to quantitatively assess the accuracy of the 

model (National Center for Atmospheric Research, 2013). Recent work by Davis et al. (2009), of 

NCAR describes the use of MODE for evaluating 1-hour (h) rainfall accumulation forecasts. 

2.2 Pioneering a Continuous Variable MODE Application 

In this research, MODE was investigated for assessing meteorological objects rendered from 

gridded fields of continuous variables at the 1–3-km grid scale. This approach had not been used 

extensively and, although MODE was designed to allow this approach, it was discovered that 

there were situations where the diagnostic results used for characterizing such objects were 

erroneous. In addition, the object definition logic artificially limited the numbers of objects for 

evaluation.  

Exploring the multiple functions and many potential configurations of MODE was the focus of 

the initial investigation. A subsequent goal will be to implement this tool in a model assessment, 

such as, verifying the accuracy of the WRE-N with Four-Dimensional Data Assimilation 

(FDDA) nudging, against available observation data. Our thesis is that applications of traditional 

and nontraditional techniques will provide a more complete assessment of the high-resolution 

WRE-N/FDDA. Our long term goal is to develop a more robust package of consolidated tools 

and techniques to support the future high-resolution “Nowcast” modeling requirements and 

developments. 

In the next section, the MODE process is detailed. 

2.3 An Overview of the MODE Process  

MODE compares any two fields containing data from which objects may be defined. The two 

fields for this investigation were a gridded analysis of observations and a forecast grid. An 

“object” refers to regions of interest. The MODE process has five steps: 

1. Define or resolve the objects. 
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2. Define the object attributes, such as the area, centroids, axis angle, and intensity. 

3. Compute attributes differences. Examples of attribute differences include an area ratio, 

centroid distance, angle difference, and intensity ratios between the observation and the 

forecast objects. 

4. Use fuzzy logic to compute the total interest values for each object pair, based on the user-

defined weights. Interest quantifies how closely the forecast object matches the observed 

object. Match objects across fields and merge objects within the same field, based on the 

computed interest values. 

5. Summarize the characteristics (output statistics) for the single objects, the object pairs, and 

the matched/merged objects. 

The following summarizes the process, as documented in the MET Version 4.1 User’s Guide 

(National Center for Atmospheric Research, 2013). 

2.3.1 Resolve Objects  

The process for resolving objects in a raw data field is called “convolution thresholding.” This 

process is done in three steps, and is demonstrated graphically in figure 1: 

Step 1: Define the convolved field (C). The Convolved Field is the sum of the filter function 

times the raw field data. 

 C(x, y) = u,v(u, v) * f(x-u, y-v) (1) 

where 

(x,y) and (u,v) are gridded coordinates, 

the filter function  is a simple circular filter with radius = R and height = H. R and H are related 

by the requirement that the integral of  over the grid is unity:  R
2
H = 1; and  

the radius is the only modifiable parameter of the convolution process. 

 

Step 2: Create a mask field, M by thresholding. 

 M(x,y) = 1, if C(x,y) >= T (2) 

 M(x,y) = 0 

otherwise, objects are the connected regions where M = 1.  

 

Step 3: Restore the raw data to object interiors to obtain the object field F. 
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 F(x,y) = M(x,y)  * f(x,y) (3) 

 

Note: R (radius of influence) and T (threshold) control the entire process of resolving objects in 

the raw data field. 

 

 

Figure1. Example of MODE objects identification process  

on a precipitation field (NCAR, 2013). 

2.3.2 Define Object Attributes 

Object attributes are defined for single objects and object pairs. The attribute of “AREA” 

includes the number of grid squares that an object occupies. The “FIRST ORDER MOMENTS” 

(Sx and Sy) are defined as follows: 

Given (x,y) = 1 for points (x,y) inside object, and (x,y) = 0 outside object; then,  

 

 Sx = x,y x(x,y)  (4) 

 

 Sy = x,y y(x,y) (5) 
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The “CENTROID” is a “kind of geometric center of an object” (National Center for 

Atmospheric Research, 2013).  This feature can be calculated from the first moments. Centroid 

provides a single location to a large object. An “AXIS ANGLE ()” gives the object an 

orientation and “tilt,” and is calculated from second order moments.  

The “ASPECT RATIO” is defined by putting a rectangle around an object; aligning a rectangle’s 

axis angle to the object’s axis angle; and calculating the ratio of rectangle width to length. While 

the rectangle fit to the object may not be the smallest rectangle, the Aspect Ratio is calculated as 

the width of the rectangle divided by the length. 

The “COMPLEXITY” is derived by comparing the object area to the area of its convex hull. 

2.3.3 Compute Attribute Differences 

Attribute differences come from comparing object pairs. The “CENTROID DIFFERENCE” is 

defined as the vector difference between the centroids of two objects. The “ANGLE 

DIFFERENCE” is the difference between the object pair axis angles. The “UNION AREA” 

assesses the total area that is in either one (or both) of the two objects. The “INTERSECTION 

AREA” is the area that is inside both objects simultaneously. And finally, the “SYMMETRIC 

DIFFERENCE” is the area inside at least one object, but not inside both. 

2.3.4 Use Fuzzy Logic to Assess Total Interest Values 

The total interest values for each object pair is determined by using fuzzy logic, based on the 

user-defined weights. When grouping objects together into a single field, this is called 

“merging.” Grouping objects together from different fields (typically the forecast and observed 

fields) is called “matching.”  

Four MAPS are generated in this step: 

1. INTEREST MAPS (Ij): Individual attributes are converted into interest values, ranging 

from zero (no interest) to one (high interest). 

2. CONFIDENCE MAPS (Cj): Confidence Maps reflect how certain MODE developers are 

in the calculated attribute value. Cj ranges from zero (no confidence) to one (high 

confidence). This calculated value is a function of the entire attribute vector. The MODE 

confidence maps are generally all set to a constant value of one. The exception is the axis 

angle map, which uses a value of one to show low confidence and values “far from one” to 

indicate high confidence.  

3. SCALAR WEIGHTS (Wj): Scalar Weights represent empirical judgment regarding the 

relative importance of the various attributes.  

4. TOTAL INTEREST (T): All ingredients are collected into a single number T. T is 

thresholded and object pairs that have total interest values above the threshold are merged 

(if they are in the same field) or matched (if they are in different fields). 
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2.3.5 Statistical Summaries  

MODE has four output files: Two ASCII files, a NetCDF file, and a PostScript file. One of the 

ASCII files contains contingency table statistics. This file ends in “_cts.txt”. The object and 

object-comparison data are in the ASCII object statistics file, which ends in “_obj.txt”. The 

NetCDF object file contains the raw and cluster object indices and boundary polylines for the 

simple objects. This file ends in “_obj.nc”. Note that the ASCII files can be read by a diversity of 

software packages for post-processing analysis work. NetCDF files can be viewed by using the 

UNIX utility “ncdump”. 

The PostScript file, which ends in “.ps”, contains five pages: page one summarizes the MODE 

dataset application. The next two pages show the forecast and observation raw and object fields. 

The fourth page overlays the forecast and observation object fields. The final page contains pair-

wise differences for the matched clusters of objects (see the appendices B and C for examples). 

The results from the case studies described in the following sections were obtained from the 

Postscript file output only. 

3. Case Studies for Assessing MODE 

The high-resolution Case Study designed to investigate the possibility of using the MODE tool 

for WRE-N verification was defined over the southern Rio Grande and Tularosa Valleys in New 

Mexico (NM). The WRE-N forecast run used a three-resolution, nested grid design (9, 3, 1 km) 

centered on White Sands Missile Range (WSMR), NM. For this Case Study, only the data from 

the high-resolution, innermost domain were used. Figure 2 shows the footprint of the three 

domains. The footprint of the innermost, high-resolution, 127 × 127 × 57, data resource is shown 

in figure 3. 
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Figure 2. A WRE-N three-resolution, nested-grid configuration was 

used for the MODE case study. 

 

 

Figure 3. The 2013 April 23 Case Study, specifically focused on 

Domain 3 (1-km resolution grid), which was centered 

over the southern Rio Grande and Tularosa Valleys in 

New Mexico. 

3.1 Input Data for the Assessment  

To better grasp the general atmospheric conditions and trends for the Case Study date, point 

measurements were taken from a location near the center of the inner domain. The sampled 

variables included: Pressure (10.2-m AGL), Temperatures (10.7-, 12-, and 15.7-m AGL), 
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Relative Humidity (12-m AGL), Wind Speed (16-m AGL) and Direction (16-m AGL), and 

Insolation (12-m AGL). Figure 4 presents the results in a local midnight-to-midnight time series. 

 

 

Figure 4. The 2013 April 23 time-series data for pressure, temperatures, relative humidity,  

wind speed/direction, and insolation were sampled near the center of the Case  

Study – WRF inner domain. 

3.1.1 Observations    

The observations used for the MODE Forecast-Observation Comparison Case Study were hourly 

2.5-km resolution RTMA products. These products contained analyses of air temperature and 

dew point temperature at 2-m AGL, as well as wind speed, wind direction, U-wind component, 

and V-wind component at 10-m AGL. The data were downloaded from the NOAA Operational 

Model Archive and Distribution System (NOMADS). The RTMA product was generated using a 

2-D variational method to assimilate point weather observations and satellite-derived 

measurements (National Weather Service, 2013). The products were downloaded using the 

NOMADS General Regularly-Distributed Information in Binary Form (GRIB) filter, which 

cropped the data to the WRE-N Domain 3 area centered over WSMR, NM. The files were in 

GRIB2 format and were converted to GRIB1 format prior to their use in the case study data 

generation. For this Case Study, the analyses of 2-m AGL temperature and 10-m AGL wind 

speed were used. 

3.1.2 WRE-N Forecasts  

The forecast variables used for the MODE Forecast-Observation Comparison Case Study came 

from postprocessed, hourly gridded forecast GRIB1 formatted output files, produced by the 

WRE-N model. The Case Study domain for the simulations was Domain 3, centered over 

WSMR, NM. The horizontal grid spacing of the model output was 1 km. Because of the 

mismatch of this grid with that of the RTMA product (2.5 km), the forecast grid had to be 

remapped to the 2.5-km grid of the RTMA data. This remapping was accomplished using the 

COPYGB utility, which was developed by the NOAA Environmental Modeling Center. 
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COPYGB performs a horizontal data interpolation to place it on the desired grid, to match the 

RTMA product (Developmental Testbed Center, 2013). Having a common grid for the 

observation and forecast datasets was a prerequisite for using the MET grid-to-grid spatial 

verification tool MODE. 

3.2 MODE Software Execution Check 

Before applying MODE as an evaluation tool, we needed to verify the successful software 

installation and to explore the method for identifying objects in the context of continuous 

variable fields.  

Initial trial cases exposed two significant issues, which will be highlighted here and elaborated 

on in section 4. First, there was a misinterpretation of boundary data. The MODE program 

default labeled the border values as zero, while the statistical algorithms subsequently interpreted 

these zero values as “real” data. Working with the MET developers this error was fixed.  

The second issue involved defining objects by extracting a subset interval within the range of the 

continuous data values. MODE was developed to define objects using inequality statements to 

determine a threshold value above or below which objects were defined. For continuous variable 

fields, this excludes the possibility of defining limited ranges or intervals of values that fall 

within some subset of the full range. Working with the MET developers, a technique was 

developed to define a very narrow range of the gridded data for consideration. With these two 

significant problems managed, the next step was to verify the software installation. This task was 

completed using a “perfect case.” 

3.3 Calibrating MODE With a “Perfect Case”  

By definition, a “perfect case” would require that all objects be consistent between the 

observation and forecast data. Consequently, the “perfect case” used the same RTMA gridded 

observation data for the “observation-truth” and the “forecast” inputs. The variable field used 

was Temperature at 2 m AGL. The input consisted of hourly data for 2013 April 23, from local 

midnight to the subsequent midnight. For convenience, the coincident Universal Time 

Coordinated (UTC) and local Mountain Time (LT) references for both forecast and observed 

data are collated in table 4. Local Time was used, to more easily interpret potential local forcing 

effects associated with the diurnal cycles, in the results. 
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Table 4. Reference dates/times for case study observations and forecasts. 

Observations   Forecasts  

Date 

(yymmdd) 

Time 

(UTC) 

 Date 

(yymmdd) 

Time 

(LT) 

130423 0600z = 130423 0000 LT 

130423 0700z = 130423 0100 LT 

130423 0800z = 130423 0200 LT 

130423 0900z = 130423 0300 LT 

130423 1000z = 130423 0400 LT 

130423 1100z = 130423 0500 LT 

130423 1200z = 130423 0600 LT 

130423 1300z = 130423 0700 LT 

130423 1400z = 130423 0800 LT 

130423 1500z = 130423 0900 LT 

130423 1600z = 130423 1000 LT 

130423 1700z = 130423 1100 LT 

130423 1800z = 130423 1200 LT 

130423 1900z = 130423 1300 LT 

130423 2000z = 130423 1400 LT 

130423 2100z = 130423 1500 LT 

130423 2200z = 130423 1600 LT 

130423 2300z = 130423 1700 LT 

130423 0000z = 130423 1800 LT 

130423 0100z = 130423 1900 LT 

130423 0200z = 130423 2000 LT 

130423 0300z = 130423 2100 LT 

130423 0400z = 130423 2200 LT 

130423 0500z = 130423 2300 LT 

130423 0600z = 130423 2400 LT 
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3.3.1 Perfect Case – MODE Configuration 

MODE specifications were defined in the MODE Configuration file. A sample of the MODE 

configuration file used for this case study is in appendix A. Starting with a MET tutorial 

configuration, the only changes made to the specifications included changing the administrative 

input and adjusting the three parameters, which permit one to extract a subset of the continuous 

variable field to define objects. 

The administrative input changes included various file and variable nomenclature. For example, 

the user-defined model was called “WREN” and the output-prefix (output file) name was given 

as “m3o3WRENwsmrTMP2m_ge301p00_le303p00_PERFECT_”. The latter lengthy reference 

stands for “Model resolution 3 (1 km), Model domain 3 (innermost), WREN model, WSMR 

case, temperature data from 2 m, data extracted between greater than 301.00 K and less than 

303.00 K, for the perfect case analysis”. Other administrative input included defining (1) the 

MET “Version” as “V4.1”, and (2) grid-res = 2.5 in (grid resolution equals 2.5 km). The field 

name was changed to “TMP” and “Z2” for temperature at level 2-m AGL. 

To extract a subset of the continuous variable field for object definition, three attributes were 

adjusted: 

1. Raw Thresh: The fcst_raw_thresh and obs_raw_thresh variables were used to threshold 

the raw fields. The default threshold set the raw fields greater than or equal to zero (so the 

data selected were all inclusive). For the continuous fields, this value was set to less than or 

equal to a user-selected number that represented the upper limit of a bracketed variable 

range. 

2. Conv Radius: The fcst_conv_radius and obs_conv_radius variables defined the radius of 

the circular convolution applied to smooth the raw fields. The radii are specified in terms of 

grid units (see section 2.3). For the perfect cases, the convolution step was skipped by 

setting conv_radius to zero, thus, enabling a bracketing of variable magnitudes. 

3. Conv Thresh: The fcst_conv_thresh and obs_conv_thresh variables specified the 

threshold values to be applied to the convolved field to define objects. The default defined 

objects using a convolution threshold of 5.0. For continuous fields, this value was set to 

greater than or equal to a user-selected number that represented the lower limit of a 

bracketed variable range. 

After some experimentation, MODE was ready to generate some instructional output for review. 

3.3.2 Six “Perfect Case” Samples 

The “perfect case” was subdivided into eight subcases: Seven cases based on the default color 

assignment categories of the all inclusive “Perfect” Case output and one “Sample Case,” which 

was a realigned subset of the red color case. Table 5 summarizes the settings of the three key 

attributes described above. Appendix B shows a sample of the perfect case results.  
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Table 5. Settings for the seven primary subdivisions of the “perfect case” and a representative 

“sample case.” 

Subcase Conv_thresh 

T(low) 

(K) 

Raw_thresh 

T(High) 

(K) 

Conv_radius 

0=Skip Step 

Gray >=290.22 <=292.60 0 

Blue >=292.60 <=295.66 0 

Green >=295.66 <=298.37 0 

Yellow >=298.37 <=299.73 0 

Orange >=299.73 <=300.41 0 

Red >=300.41 <=303.13 0 

Sample Case >=301.00 <=303.00 0 

Pink >=303.13 <=304.00 0 

 

3.3.3 “Perfect Case” Results 

The following description highlights the Perfect “Sample” Case results by examining the seven-

page post-script (p-s) output, which is a summary of the feature-based approach used in the 

verification. Note: The results described do not include those provided in the other three MODE 

output files.. 

For the Perfect “Sample Case”, the summary table on the left side at the bottom of page 1 (see 

figure 5 and appendix B) lists the settings for the forecast and observation datasets in columns. 

The field names and model description are captured in the first seven rows. The default model 

reference used was “WREN,” even though for this case, the observations were used in place of 

the model data. The field was described as temperature (TMP) at 2-m AGL, in units of K. The 

initial time was 2013 April 23, 2000 UTC. The forecast validation time was the same. 
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Figure 5. Post-Script File results summary from the Perfect Sample Case. 

The Object Fuzzy Engine Attribute Weights included the next eight listed variables, which were 

used to calculate the Total Interest Value. These weights were left in their default settings and 

are listed in table 6. Note that these weights were not required to sum to any particular value. 

Rather, they are normalized by the sum of the weights, before they were used to compute the 

Total Interest Value. 

Table 6. Perfect case fuzzy engine attribute weights for calculating total Interest value. 

Variable 1/Variable 2 Variable 1 Weight Variable 2 Weight 

Centroid/boundary 2.00 4.00 

Convex hull/angle 0.00 1.00 

Area/intersection area 1.00 2.00 

Complexity/intensity 0.00 0.00 

Total interest thresh 0.70 0.70 
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The second column-set on this summary page (right side) are variables that define the objects. 

Starting at the top of the list, the mask variable deals with how missing data in the raw model and 

observation fields will be treated. The three mask options included Missing, Grid, and Polyline. 

The “Missing Mask” function takes a flagged missing data point, locates the corresponding grid 

point and removes this point from processing. The “Grid Mask” uses a predefined NCEP grid 

with which to mask the raw forecast and observation fields. The “Polyline” mask variable is the 

filename that defines a verification masking region. The masking regions can be specified by 

either a lat/lon polygon or using a gridded data file, such as the NetCDF output of the Gen-Poly-

Mask tool. For the case study, the Missing Data mask was utilized (Personal Communications, 

Tara Jensen e-mail, November 7, 2013) 

Raw Thresh, Conv Radius, and Conv Thresh were described earlier in section 3.3.1. 

The Area Thresh specifies the area threshold values to be applied to the defined objects in units 

of grid squares. For this case, the area thresh variable was set to retain all objects (a default 

setting). 

Inten Thresh specifies how the intensity values within the object are sorted. The maximum value 

is computed, and the intensity percentile is set to 100. Any objects with an intensity percentile 

that do not meet the user-selected inten thresh are discarded. The default setting was used in this 

case study, which was greater than or equal to zero. 

Merge Thresh is used to define larger objects for use in merging the original objects. The 

thresholds are chosen to define larger objects that fully contain the original defined objects. Any 

two original objects contained within the same larger object are merged. For this case, the default 

setting of “greater than or equal to 1.25” was used. 

Merging refers to grouping together objects in a single field. Matching refers to grouping objects 

together from different fields. The merging type includes four options:   

1. “none” – no merging should be applied. 

2. “thresh” – double thresholding merging technique should be applied. 

3.  “engine” – objects are merged by comparing objects to themselves using a fuzzy engine 

approach. 

4. “both” – both thresh and engine techniques are used to merge objects. 

For this case, the default double thresholding merging technique was applied on both the forecast 

and observation data. 

The Matching variable also has four options: 

1. “none” – no matching should be applied between fields. 

2. “merge_both” – additional merging is allowed in both fields. 
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3. “merge_fcst” – additional merging is allowed only in the forecast field. 

4. “no_merge” – no additional merging is allowed in either field. That is, each object will 

match at most one object in the other field. 

For this case, the default of merging (“match/merge”) was allowed in both fields.  

The Simple/Merge (M)/Unmerged (U) tallies the total object number, those objects that were 

merged, and those objects that were unmerged. For this case, the total number of objects was 

two; two objects were merged, and none were unmerged. 

The area of the objects (Area) covered 580 grid-spaces for this case. All 580 were merged with 

zero unmerged. 

A cluster object is any set of one or more objects in one field that match a set of one or more 

objects in another field. A single simple forecast object that matches a single simple observation 

object is also considered to be a cluster object (National Center for Atmospheric Research, 

2013). For this case, one cluster was identified in both the forecast and observation fields. 

The Median Maximum Interest (MMI) was calculated to be 1.0000 for both the Forecast and 

Observation fields, as well as, the two fields added together. 

A list of the object-pairs by Total Interest Level is listed on the right side (upper) of the summary 

page. The highest interest is 1.0000. The dashed line was defined by the user-selected Total 

Interest Thresh, which was listed under the Object Attribute Weights section (lower left). The 

pairs above the dashed line are considered interesting enough for further processing.  

In the “Perfect Sample Case,” there was no surprise that the two objects identified exceeded the 

70% Total Threshold. Each of these objects was identified numerically (1 and 2) in the bottom 

forecast and observation graphical displays. The middle graphic showed the 1 cluster. The 

Matching color across the two fields (forecast and observation) indicated matching objects. The 

black perimeter outline indicated the use of merging. These features concurred with the perfect 

case’s “Matching” setting of “match/merge.” 

On page 1 of the p-s output, the top graphic showed the raw data values for both Forecast and 

Observation. The identical nature of the forecast and observation plots confirmed the perfection 

of the Case being studied. 

The subsequent pages of this summary document enlarge the material presented on the first page. 

For example, on page 2 (see figure B-2), the Forecast raw data were graphically displayed on the 

top, with a color key legend on the right. The graphical display of the forecasted merged and 

matched objects was on the bottom of the page. 

Page 3 of the p-s output (see figure B-3) followed the same pattern only with the Observation 

data. Since a perfect case was used, there was no difference between page 2 and 3. 
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Page 4 of the p-s output (see figure B-4) top-diagram provided a graphical display of the forecast 

objects in color and the observation objects outlined in black. The bottom diagram reverses the 

pattern, placing the observation objects in color and forecast objects in a black outline. 

The cluster object information was displayed and tabulated on page 5 of the p-s output (see 

figure B-5). Since the case was perfect, the centroid distance and angle differences were zero 

grid units and degrees, respectively. The forecast and observation areas (in pixels), intersection 

area (in grid squares) and union area (in grid squares) were also identical magnitudes. 

Consequently, the symmetric differences of the objects were zero. 

The “FCST” (forecast) and “OBS” (observation) intensity percentile variable corresponds to the 

intensity ratio weight variable. In the table, both the 50% (int50)—or median value—and 90% 

(int90) were listed. The only cluster cited had 580 grid-spaces. Since the same data were used for 

forecast and observations, the two 50% thresholds (median) were 301.66 K. The two 90% 

intensities were calculated as 302.56 K. Total interest was 1.0000 for all clusters. 

The last two pages of the p-s summary (see figures B-6 and B-7) showed the Threshold Merging 

for the forecast and observation data. The perfect case scenario generated identical images. As 

expected, the intended threshold map on the bottom covered just the red color range used in the 

composite image at the top. These diagrams confirmed that the intended variable range was 

selected in this analysis. 

The perfect case results confirmed that the MODE software had been installed and was operating 

correctly. The next step was to exercise MODE on a “real world” model forecast with 

observations. 

3.4 A “Real World” Sample Case 

The date for the “real world” case was April 23, 2013 (same as the “perfect case”).  The MODE 

configuration file began with the MET tutorial (default) configuration file. The only changes 

made to the specifications included changing the administrative input and  adjusting the three 

parameters, which permitted one to extract a subset of the continuous variable field to define 

objects. This was necessitated by the input of “real world” forecast data. 

The administrative changes included defining the forecast model as the WREN Model (this time 

for real). The forecast versus observation fields examined included Temperature (2 m), Dewpoint 

(2 m), Wind (10 m), and U-grid (10 m). For this report, only the Temperature results at 2-m AGL 

will be discussed.   

The three parameters changed to extract only the “sample case” data from the “real world” 

resources were Conv_thresh, Raw_thresh, and Conv_radius. The values chosen were to focus 

specifically on the subcase consisting of temperature values that were assigned a red color. The 

values used are listed in table 7. 
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Table 7. Object definition for the real world “sample case” data. 

“Red” Subcase Conv_thresh 

T(low) 

(K) 

Raw_thresh 

T(High) 

(K) 

Conv_radius 

0=Skip Step 

Sample Case >=301.00 <=303.00 0 (gs) 

 

The p-s file summary confirmed the above changes (see figure 6 and appendix C) and 

documented the “real world” case specifications. Such specifications included: The initial 

forecast date and time of April 23, 2013, 0600 Z. The forecast valid time was 2000 Z. The initial 

and valid observation data were from April 23, 2013, 2000 Z. The 2000 Z, or 1400 LT, time 

period was selected, after reviewing the time series explained in section 3.1 and several of the 

April 23rd Model-Observation results. The clarity of contrast with the perfect case was one of 

the primary purposes for choosing this time period. 

 

Figure 6. Post-script file results summary from the “real world” case. 

The weights used to calculate the total interest, were aligned with the “perfect case” (see table 6: 

the perfect case; figure 6: “real world” case p-s file). The “real world” variables were also the 

same as the “perfect” case. 
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From the p-s output, the “real world” results identified eight forecast objects and two observed 

objects. Eight forecast objects were merged, and zero were unmerged. The two observation 

objects were merged and zero unmerged. The total forecast area reported consisted of 135 grid-

squares, with 135 merged and zero unmerged. The observation results covered a much larger 

area with 580 grid-squares; 580 observed data grid-squares were merged and zero unmerged. 

One cluster was reported for both the forecast and observation resources. The MMI was about 

equal at 0.8042 (fcst) and 0.8273 (obs). The combined MMI from the set of all interest values 

from the forecast and observed objects was 0.8042. 

The Total Interest Thresh designated five Forecast/Observation pairs that had an interest above 

the 70% threshold. The other 11 pairs fell below this threshold line.   

The forecast and observation results showed that both extracted fields were clustered together 

into single objects. The close proximity and geometric shape of these objects and their pixels 

were shown on the “Forecast Objects with Observation Outlines” and “Observation Objects with 

Forecast Outlines” plots of the postscript file (see figure C-4). 

Reviewing the Cluster Object information (p-s output, page 5, figure C-5), the cluster pair was 

described as having a centroid distance separation of 9.93 grid-squares. The angle difference was 

25.60°. The forecast object area consisted of about 25% of the grid-squares of the observation 

object area. The area that was intercepted was 72 grid-squares—or about 11% of the total area 

being considered (union is 643 grid-squares). The symmetric difference was 571, indicating there 

was limited common attributes between the objects. 

The median point for the forecast (301.16 K) was a tiny bit cooler than the observation median 

(601.66 K). The 90% intensity threshold for the forecast and observation fields was 1.15 K, with 

the forecasting showing a cooler threshold. The total interest for this cluster was 0.8979—or 

about 10% less than a Perfect fit. 

4. Lessons Learned 

4.1 Improving Model and Product Assessment Efficiency  

In 2011, the Model and Product Assessment Project Group developed and published a process to 

automate the use of the MET. A set of scripts facilitated running the grid-to-point verification 

code, as well as the process for verifying a gridded forecast field against point ground truth 

observations. In preparing for the MODE assessment, a need arose for a more efficient execution 

of the MET statistical analyses. Consequently, a script was designed to automate the three Grid-

Stat processes into a single action. This script also expanded the automating function to include 

the WRF forecast data grid remapping process, and replaced the previous manually-intensive and 

error-prone process. Being more specific, the new script automatically converted the 1.0-km 
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resolution WRF data to a 2.5-km grid space, converted the 2.5-km resolution RTMA gridded 

observation to GRIB1 format, set up the directories for the Grid-Stat package, executed the Grid-

Stat, and cleaned up the extra files. After the script was successfully tested on the April 23, 2013, 

06Z case, all 24 individual hours of the April case study were processed, requiring only about an 

hour (versus a couple hours) interval of time to process. A copy of these updated scripts is found 

in appendices D-G. 

Executing MODE followed the Grid-Stat assessment. In a second efficiency improvement, the 

ability to execute multiple MODE runs without exiting the script was developed. With this script, 

one could more easily process hourly data for multiple variables. Samples of the scripts 

developed are in appendix D–G. 

4.2 MODE Data Preparation – A Boundary Problem   

A systematic boundary error was discovered in an early version of the MODE software. As a 

default, MODE labeled border values as zero then let the statistical algorithms interpret these 

zero values as “real” data. For the MODE-developer’s principle application to precipitation 

assessment, this design worked well. However, for continuous variables that cross the zero point 

(i.e., u-component, v-component), the statistical interpretation produced inaccurate results. 

MODE experts acknowledged the shortfall, explaining that a code correction would be included 

with their next MET/MODE release. In the meantime, NCAR suggested changing the default 

raw-thresh value in the MODE configuration file from “>= 0.0”, to “>= –9999”. The technique 

was implemented, producing boundary error-free results. 

4.3 MODE Data Preparation − Bracketing Data (Thresholding Values) for Finding 

Objects 

The default MODE configuration for describing objects was to define them as a variable >= X, 

or = Y. For precipitation, using the two extremes worked well. With a continuous variable field, 

however, having the ability to create objects by the bracketing of variable magnitudes in some 

specified interval within the previous two extremes would provide more useful objects for 

evaluation. The method developed to do this task had three parts: the first two parts established a 

lower and upper limit. The lower limit was defined by setting the conv_thresh to “>= xxx.x”. 

The upper limit was set by defining raw_thresh as “<= yyy.y”. The third part for bracketing the 

variable was to skip the convolution step, meaning conv_radius was set to zero. The conv_radius 

defines the circular convolution radius applied to smooth the raw fields (Developmental Testbed 

Center, 2011). The radii are specified in grid units. Because the overall variable range for the 

domain is so narrow, there is a risk of losing the object if any raw field smoothing were applied. 

Thus, this action is skipped. 
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5. Summary and Final Comments  

Army decisions regarding the safe and efficient employment of armed forces and equipment are 

impacted by the atmosphere. Advanced knowledge of atmospheric conditions can empower 

decision makers to increase mission effectiveness and reduce potential exposure to dangerous 

scenarios. The ARL has been developing a tool to glean this advanced weather intelligence 

notification, called, the WRE-N or Nowcast Model. Assessing and improving the “Nowcast” 

Model’s ability to support battlefield applications is one of ARL’s long term goals. Identifying 

methods for executing the high-resolution model assessments, and for finding high-resolution 

observational datasets to evaluate the Nowcast Model, is nontrivial. This report documents an 

investigation into model verification tools, techniques, and applications relevant to assessing the 

WRE-N.  

Traditional statistical tools are useful for assessing low-resolution forecast output, especially 

with the aid of largely populated data resources. Some of the standard statistical methods and 

tools were discussed in the first chapter. Weather conditions, however, rarely repeat themselves 

exactly; data are often sparse; and weather models being verified must rely on inexact equations 

when applied on high-resolution grids. Consequently, the traditional assessment methods can be 

incomplete for characterizing temporal and spatial errors, forcing the assessment process to 

utilize nontraditional tools.   

The MET package developed by NCAR, contains both traditional and nontraditional statistical 

evaluation tools. ARL’s Model Assessment Project has been conducting an investigation into the 

applicability of the MET package for ARL’s model V&V mission. In particular, they have been 

looking into the Method for Object-Based Diagnostic Evaluation tool or “MODE,” as a resource 

for performing spatial verification of NWP model forecasts. This tool has the potential for 

quantifying the possible temporal and spatial displacement errors that often occur in high-

resolution weather forecasting.   

MODE compares meteorological features or “objects” defined from the forecast and observed 

fields for the same valid time on the basis of measureable attributes. It then quantifies the 

differences between corresponding objects as a measure of forecast error.   

Being more specific, MODE consists of five foundational steps: 

1. Define or resolve objects within a forecast and an observation field. Objects are user-

defined features within given data fields. 

2. Define object attributes, such as the area, centroids, axis angle, and intensity. 
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3. Compute attribute differences. Examples of attribute differences include an area ratio, 

centroid distance, angle difference, and intensity ratios between the observation and the 

forecast objects. 

4. Use fuzzy logic to compute the total interest values for each object pair, based on the user-

defined weights. Match objects across fields and merge objects within the same field, based 

on the computed interest values. 

5. Summarize the characteristics (output statistics) for the single objects, the object pairs, and 

the matched/merged objects. 

The statistical tool was originally designed for precipitation analyses. ARL’s applications, 

however, require using MODE on continuous variable fields.   

Investigating the potential of this tool required first determining if the software installation was 

valid. This task was assessed by running a “Perfect” case. That is, the observation and forecast 

data fields were identical. The results of the “Perfect” case confirmed that the software was 

performing correctly. The task also was a catalyst for developing a technique that can extract 

data slices from the range of the continuous variable resources. Section 3 provides an overview 

of this technique and a detailed review of the “perfect case” results. 

Running a “real world” case was the next step. The NWP model used was WRE-N (a.k.a. 

“Nowcast” Model). WRE-N is tailored to address Army-scale horizontal spatial resolutions of  

1–3 km. This model was run over three nested grids (9, 3, and 1 km), with the 1-km inner nested 

grid data as the focus of the “real world” study. Observation data from an independent gridded 

analysis over the same footprint was weighed against the forecast data.   

To assist with the analysis, observational time-series data from a meteorological suite located 

near the center of the area of interest was reviewed. Significant atmospheric characteristics were 

flagged for study. While several meteorological variables were reviewed, this report presents a 

sample of the results; namely, the temperature field at 2-m AGL. The “real world” case forecast 

time selected was 20 Z, or 1400 LT. Winds were strong, steady and westerly; implying a well 

mixed environment. The temperature interval that was extracted was 301.00–303.00 K. 

MODE results found eight simple objects in the forecast field and two in the observation field. 

There were 16 matching pairs, with five pairs identified as having a 70% and greater interest 

level. The simple objects were all merged into one cluster for the MODE analysis. The forecast 

area grid squares qualifying as a clustered object, were about 25% of the area qualifying in the 

observation field. Based on user preferences (default settings), the MMI for the forecast was 

80.42% and the Observation was 82.73%. The combined MMI (interest) was 80.42%. A 

visualization of the objects and the larger cluster are in appendix C. 

The numerical results between the Perfect and “real world” case were very similar. However, 

using the visualization, the importance of the area represented in the statistics comes into focus. 
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Additional case studies need to be examined before the tool can be fully optimized by the model 

assessment process. Exercising the numerous options in the lengthy configuration file will open 

up new understandings of both the tool and the V&V results. Examination of the data contained 

in the other three MODE output files will provide additional results that will contribute to a more 

complete assessment. With a mastering of the MODE terms and process, this nontraditional tool 

has the potential to significantly strengthen ARL’s NWP model assessment process. 
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Appendix A. Example of a MODE Configuration File 

The following MODE configuration file example defines numerous parameters needed to run 

MODE and specify the type and format of  the MODE output. As a minimum, user changes 

employed for testing include the fcst/obs field name (TMP), the fcst/obs field height in meters 

(Z2), the three parameters needed to extract a slice of the data (conv_thresh, raw-thresh, 

conv_thresh), and the raw-thresh string, which can be used to distinguish one output from 

another. 

 

////////////////////////////////////////////////////////////////////////// 

// 

// Filename:  WrfModeConfig_m3o3_rtma_WSMR_template 

// Last Rev: 130607, jr/gv/yr 

// 

// Location: carson:MET_MODE 

// 

// PURPOSE: Sets up how MODE is to be run and specifies the type and   

//format of the output. 

// 

// NOTE:  User inserts the following changes 

// varname  fcst/obs field name. 

// varheight  fcst/obs field height in meters. 

// ctnumLOW  conv_thresh (lowest var threshold) 

// ctnumHI   raw_thresh  (highest var threshold) 

// LOWct    conv_thresh string for output. 

// HIct    raw_thresh string for output. 

//               conv_radius from 1 to 3. 

// 

// MODE configuration file for testing is MET V4.1. 

// 

// MODE configuration file for testing was MET V4.0. 

// 

// Generated/modified by JRaby on 11/27/12 

// To upgrade from METV3.1 to METV4.0 for use with RTMA gridded  

// observations and WRE-N/FDDA, AFWA WRF forecasts in LA basin domains. 

//  

// Modified on 03/06/2013 (JRaby), to update for use in LA domain 3 

//(m3o3)  

// which requires the filename change to replace m202 with m3o3 and  

// removal of ref to v40test and DPG. Also changes were needed to change  

// the paths from METV3.1 to METV4.0 color tables. 

// 

// For additional information, see the MET_BASE/data/config/README file. 

// 

////////////////////////////////////////////////////////////////////////// 

 

 

 

                                                      
This appendix appears in its original form, without editorial change. 
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// 

// Output model name to be written 

// 

model = "WREN"; 

 

////////////////////////////////////////////////////////////////////////// 

 

// 

// Approximate grid resolution (km) 

// 

grid_res = 2.5; 

 

////////////////////////////////////////////////////////////////////////// 

 

// 

// Forecast and observation fields to be verified 

// 

fcst = { 

   field = { 

      name  = "varname"; 

      level = "varheight"; 

   }; 

    

// raw_thresh        = >=0.0;   - original line, used with the variable 

extreme ranges. 

// raw_thresh        = >=-9999; - gets rid of false boundary data, when 

conv_thresh <=xx. 

// raw_thresh        = <=296.0; - set values > 296.0 to zero (defines 

upper limit). 

 

// conv_radius       = 1;  - used, when variable extreme ranges (max/min 

only) employed. 

// conv_radius                     For example:  include all temperatures 

> 290 K only. 

// conv_radius       = 0;  - skips convolution step; used when bracketing 

variable ranges. 

 

 

// If find no objects, conv_thresh can be varied to better fit obs and 

fcst data. 

// conv_thresh       = >=5.0;   - original setting, used with variable 

extreme ranges. 

// conv_thresh       = >=295.0; - defines objects >= 295.0K (defines lower 

limit). 

 

   raw_thresh        = ctnumHI; 

   conv_radius       = crnum;  

   conv_thresh       = ctnumLOW; 

 

   vld_thresh        = 0.5; 

   area_thresh       = >=0.0; 

   inten_perc_value  = 100; 

   inten_perc_thresh = >=0.0; 

   merge_thresh      = >=1.25; 

   merge_flag        = THRESH; 

}; 
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obs = fcst; 

 

////////////////////////////////////////////////////////////////////////// 

 

// 

// Handle missing data 

// 

mask_missing_flag = BOTH; 

 

// 

// Match objects between the forecast and observation fields 

// 

match_flag = MERGE_BOTH; 

 

// 

// Maximum centroid distance for objects to be compared 

// 

max_centroid_dist = 125.0/grid_res; 

 

////////////////////////////////////////////////////////////////////////// 

 

// 

// Verification masking regions 

// 

mask = { 

   grid      = ""; 

   grid_flag = NONE; // Apply to NONE, FCST, OBS, or BOTH 

   poly      = ""; 

   poly_flag = NONE; // Apply to NONE, FCST, OBS, or BOTH 

}; 

 

////////////////////////////////////////////////////////////////////////// 

 

// 

// Fuzzy engine weights 

// 

weight = { 

   centroid_dist    = 2.0; 

   boundary_dist    = 4.0; 

   convex_hull_dist = 0.0; 

   angle_diff       = 1.0; 

   area_ratio       = 1.0; 

   int_area_ratio   = 2.0; 

   complexity_ratio = 0.0; 

   inten_perc_ratio = 0.0; 

   inten_perc_value = 50; 

} 

 

////////////////////////////////////////////////////////////////////////// 

 

// 

// Fuzzy engine interest functions 

// 

interest_function = { 

 

   centroid_dist = ( 
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      (            0.0, 1.0 ) 

      (  10.0/grid_res, 1.0 ) 

      ( 100.0/grid_res, 0.0 ) 

   ); 

 

   boundary_dist = ( 

      (            0.0, 1.0 ) 

      ( 60.0/grid_res, 0.0 ) 

   ); 

 

   convex_hull_dist = ( 

      (            0.0, 1.0 ) 

      ( 60.0/grid_res, 0.0 ) 

   ); 

 

   angle_diff = ( 

      (  0.0, 1.0 ) 

      ( 30.0, 1.0 ) 

      ( 90.0, 0.0 ) 

   ); 

 

   corner   = 0.8; 

   ratio_if = ( 

      (    0.0, 0.0 ) 

      ( corner, 1.0 ) 

      (    1.0, 1.0 ) 

   ); 

 

   area_ratio = ratio_if; 

 

   int_area_ratio = ( 

      ( 0.00, 0.00 ) 

      ( 0.10, 0.50 ) 

      ( 0.25, 1.00 ) 

      ( 1.00, 1.00 ) 

   ); 

 

   complexity_ratio = ratio_if; 

 

   inten_perc_ratio = ratio_if; 

} 

 

////////////////////////////////////////////////////////////////////////// 

 

// 

// Total interest threshold for determining matches 

// 

total_interest_thresh = 0.7; 

 

// 

// Interest threshold for printing output pair information 

// 

print_interest_thresh = 0.0; 

 

////////////////////////////////////////////////////////////////////////// 
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// 

// Plotting information 

// 

met_data_dir = "/home/rflaniga/opt/MET/MET_4.0_patch/data"; 

 

fcst_raw_plot = { 

   color_table      = 

"/home/rflaniga/opt/MET/MET_4.0_patch/data/colortables/met_default.ctable"

; 

   plot_min         = 0.0; 

   plot_max         = 0.0; 

   colorbar_spacing = 1; 

}; 

 

obs_raw_plot = { 

   color_table      = 

"/home/rflaniga/opt/MET/MET_4.0_patch/data/colortables/met_default.ctable"

; 

   plot_min         = 0.0; 

   plot_max         = 0.0; 

   colorbar_spacing = 1; 

}; 

 

object_plot = { 

   color_table      = 

"/home/rflaniga/opt/MET/MET_4.0_patch/data/colortables/mode_obj.ctable"; 

}; 

 

// 

// Number of grid boxes to fill with bad data values along the edge of the 

field 

// to avoid edge effects. 

// 

zero_border_size = 1; 

 

// 

// Boolean for plotting on the region of valid data within the domain 

// 

plot_valid_flag = FALSE; 

 

// 

// Plot polyline edges using great circle arcs instead of straight lines 

// 

plot_gcarc_flag = FALSE; 

 

////////////////////////////////////////////////////////////////////////// 

 

// 

// NetCDF matched pairs, PostScript, and contingency table output files 

// 

ps_plot_flag    = TRUE; 

nc_pairs_flag   = TRUE; 

ct_stats_flag   = TRUE; 

 

////////////////////////////////////////////////////////////////////////// 
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output_prefix  = "m3o3WRENwsmrvarnamehtstringm_LOWct_HIct_"; 

// version        = "V4.0";  Old version 

 

version        = "V4.1"; 

 

////////////////////////////////////////////////////////////////////////// 
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Appendix B. “Perfect” Case Post-Script File Output 

The “Perfect” Case uses the same observation data file, as the “forecast” data file. The following 

example of a “Perfect” Case used observation data from April 23, 2013. These data were 

initiated and valid at 2000 UTC (1400 LT). The output consists of seven figures—B-1 through 

B-7. 

 

Figure B-1. “Perfect” Case Summary page, as described in section 3.3.3. 
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Figure B-2. The “Perfect” Case Forecast raw data are graphically displayed on the top, with 

a color key legend on the right. The graphical display of the “Perfect” Case 

forecasted merged and matched objects is on the bottom of the page. 

IMODE: TMP at Z2 vs TMP at Z2 
Foreca~t 
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Figure B-3. The “Perfect” Case Observation data are graphically displayed on the top,  

with a color key legend on the right. The graphical display of the observed merged and 

matched objects is on the bottom of the page. Since a “perfect case” was used, there is no 

difference between figures B-2 and B-3. 
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Figure B-4. Top-diagram provides a graphical display of the “Perfect” Case forecast  

objects in color and the observation objects outlined in black.  The bottom diagram 

reverses the pattern, placing the “Perfect” Case observation objects in color and 

“Perfect” Case forecast objects in a black outline. 



 

41 

 

Figure B-5. The “Perfect” Case cluster object information is displayed and tabulated. Since the case was 

perfect, the centroid distance and angle differences are zero grid units and degrees, respectively. 

The forecast and observation areas (in pixels), intersection area (in grid squares) and union area 

(in grid squares) are also identical magnitudes. Consequently, the symmetric differences of the 

objects are zero. The FCST and OBS intensity percentile variable corresponds to the intensity 

ratio weight variable. Total interest is 1.0000 for all clusters. 
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Figure B-6. The “Perfect” Case forecast Threshold Merging data are shown.  
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Figure B-7. The “perfect case” Observation Threshold Merging data are shown. The  

“perfect case” scenario generates identical merged images (bottom plot) for figures 

B-6 and B-7.  
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Appendix C. “Real World” Case Post-Script File Output 

The “real world” case uses forecast and observation data resources for April 23, 2013. These 

data were initiated at 0600 UTC and valid at 2000 UTC (1400 LT). The output consists of seven 

figures—C-1 through C-7. 

 

Figure C-1. The “real world” case summary page, as described in section 3.4. 
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Figure C-2. The “real world” case rorecast raw data are graphically displayed on the top,  

with a color key legend on the right. The graphical display of the forecasted merged  

and matched objects is on the bottom of the page. 

MODE: TMP at Z2 vs TMP at Z2 
Forecast 

-
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Figure C-3. The “real world” case observation data are graphically displayed on the top,  

with a color key legend on the right. The graphical display of the observed merged and 

matched objects is on the bottom of the page.   

MODE: TMP at Z2 vs TMP at Z2 
Observation 
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Figure C-4. Top-diagram provides a graphical display of the “real world” case forecast  

objects in color and the observation objects outlined in black. The bottom  

diagram reverses the pattern, placing the observation objects in color and  

forecast objects in a black outline. 

Forecast with Observation Outlines 



 

49 

 

Figure C-5. The “real world” case cluster object information is displayed and tabulated.   
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Figure C-6. The “real world” case forecast Threshold Merging data are shown.  

Forecast: Threshold Merging 

-
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Figure C-7. The “real world” case observation Threshold Merging data are shown.  
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Appendix D. MET and MODE Scripts_multi 

s_multi is a top level start script that runs WRF Initiation, Point-Stat, Grid-Stat and MODE. The 

script is menu-driven and takes the user selection as a keyboard entry. The code is designed to 

facilitate multiple runs of the top-level start script (such as for a 24 1-h periods).  The script calls 

other scripts, which are listed in the commentary. 

# Filename:  s_multi 

# Last Rev:  130517, gv/jr 

# 

# Location: carson 

# 

# PURPOSE: Top Level start script which  

#         Runs scripts for various assessment processes including WRF 

# Initialization, Point-Stat, Grid-Stat, MODE. 

#        Does multiple runs of s (as in 24 hr cycle can be run). 

# 

# Author: Brown/Raby 

# Script Calls:  

#   WRF_Main, Create_Passner_Directories,  

#   run_prepBUFR, run_MADIS, run_MADIS_Archive,  

#   ascii2netcdf,  

#   run_Point_Stat,run_Stat_Analysis,run_ExtractStatAnalysis,  

#   Set_up_GridStat, run_Grid_Stat, File_cleanup,  

#   run_MODE,  

#   copy_harold, copy_carson. 

# 

 

clear 

 

echo "                                                                     

" 

echo "                 MODEL ASSESSMENT" 

echo "                                                                     

" 

echo "Enter number of task"                          

echo "   1 Run WRF Initialization" 

echo "   2 Create Passner Directories" 

echo "   3 Copy WRF Initialization files from carson to harold" 

echo "   4 Copy Post Processed WRF Ouput Files from harold to carson" 

echo "   5 Convert prepBUFR Data to netcdf format (metar, synoptic and 

upper air)" 

echo " " 

echo "   6 Download MADIS Current Data (mesonet data)" 

echo "   7 Download MADIS Archived Data (archived mesonet data)" 

echo "   8 Convert MADIS ASCII data to netcdf" 

echo " " 
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echo "   9 Run Point-Stat" 

echo "  10 Run Stat-Analysis" 

echo "  11 Run Stat-Analysis data extraction" 

echo "  12 GridStat: Set up data, run Grid-Stat and clean up files" 

echo "  13 Disabled - Run Grid-Stat" 

echo "  14 Disabled - Cleanup files after Grid-Stat" 

echo "  15 Run MODE" 

echo "  16 Edit Scripts" 

echo "  17 Quit"       

echo "  " 

echo "  " 

echo "  " 

echo "  " 

echo "  " 

read response 

case  $response in  # Start of case 

(1) 

echo "  " 

echo "  " 

echo "Running WRF_Main" 

echo "  " 

echo "  " 

WRF_Main 

;; 

 

(2) 

echo "  " 

echo "  " 

echo "Creating Directories for Passner WRF runs for all Settings on 

Carson" 

echo "  " 

echo "  "  

Create_Passner_Directories 

;; 

 

(3) 

echo "  " 

echo "  " 

echo "Copy WRF initialization files from carson to harold" 

echo "  " 

echo "  "  

copy_harold 

;; 

 

(4) 

echo "  " 

echo "  " 

echo "Copy post-processed WRF output files from harold to carson" 

echo "  " 

echo "  "  

copy_carson 

;; 

(5) 

echo "  " 
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echo "  " 

echo "Converting prepBUFR Data containing metar, synoptic and upper air" 

echo "  " 

echo "  " 

run_prepBUFR 

;; 

 

(6) 

echo "  " 

echo "  " 

echo "Downloading MADIS Current Data containing mesonet data" 

echo "  " 

echo "  " 

run_MADIS 

;; 

 

(7) 

echo "  " 

echo "  " 

echo "Downloading MADIS Archived Data containing mesonet data" 

echo "  " 

echo "  " 

run_MADIS_Archive 

;; 

 

(8) 

echo "  " 

echo "  " 

echo "Converting MADIS ASCII data to netcdf" 

echo "  " 

echo "  " 

ascii2netcdf 

;; 

 

(9) 

echo "  " 

echo "  " 

echo "Running Point-Stat" 

echo "  " 

echo " " 

run_Point_Stat 

;; 

 

(10) 

echo "  " 

echo "  " 

echo "Running Stat-Analysis" 

echo "  " 

echo "  " 

run_Stat_Analysis 

;; 

 

(11) 

echo "  " 
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echo "  " 

echo "Running Stat-Analysis data extraction" 

echo "  " 

echo "  " 

run_ExtractStatAnalysis 

;; 

 

(12) 

echo "  " 

echo "  " 

echo "GridStat_multi: Set up data, run Grid-Stat and clean up files" 

echo "  " 

echo "  " 

 

clear 

 

#  GS-STEP 0: Required input - Start Date and Time(s).  

#  Enter Start Date of WRF run 

echo "  " 

echo "  " 

echo "Enter Start_Date (YYYYmmdd) of the completed WRF run" 

read Start_Date 

 

echo $Start_Date 

echo " " 

 

echo "Enter 2-digit, zulu, observation hour (HH) for remapping" 

read oHH 

 

echo "Enter 2-digit, forecast validation hour (hh) for remapping" 

read fhh 

 

# GS-STEP 1: Convert WRF data to 2.5 km, and setup directories/files 

cd ~/Scripts/GridStat_1Script 

Set_up_GridStat_multi $Start_Date $oHH $fhh 

 

# GS-STEP 2: Run Grid Stat 

cd ~/Scripts/GridStat_1Script 

run_Grid_Stat_multi $Start_Date  

 

# GS-STEP 3: Clean up Grid Stat processing files 

~/Scripts/GridStat_1Script/File_cleanup_multi $Start_Date $oHH 

echo "  " 

;; 

 

(13) 

echo "  " 

echo "  " 

echo "Running Grid-Stat - disabled" 

echo "  " 

echo "  " 

run_Grid_Stat 

;; 
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(14) 

echo "  " 

echo "  " 

echo "Running File cleanup after Grid-Stat-disabled" 

echo "  " 

echo "  " 

File_cleanup 

;; 

 

(15) 

echo "  " 

echo "  " 

echo "Running MODE" 

echo "  " 

echo "  " 

run_MODE_2 

;; 

 

(16) 

cd Scripts 

clear 

ls 

echo "Enter the name of script to edit" 

read response2 

vi $response2 

;; 

 

(17) exit 0 

;; 

 

esac  # end of case ------------------------------------------ 
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Appendix E. MET and MODE Script run_MODE_2 

run_MODE_2 script hardwires two functions: one for the standard analysis case (forecast versus 

observations) and one for a “Perfect” Case (observations versus observations). When executed, 

the user selects either the standard analysis case or the “Perfect” Case function. The script is 

embedded in and called by s_multi. 

 

# Filename: run_MODE_2 

# Last Rev: 130618, jr/yr/gv 

# 

# Location: carson:/Scripts 

# 

# PURPOSE: Control script which sets up the MET MODE tool to ingest the   

#  post processed WRF output and RTMA gridded observations. 

#          Two options: Standard(fcst vs obs)& Perfect cases (obs vs obs) 

#          Options are hardwired. 

#------------------------------------------------------------------------ 

cd ~gvaucher/MET_MODE 

echo "Enter the Start Date of the post processed WRF data" 

read Start_Date 

echo " " 

echo "Start_Date Entered:" $Start_Date 

echo " " 

echo "Enter the WRF/RTMA forecast hour, followed by letter Z [##Z]" 

read Hour 

echo " " 

echo "Forecast hour Entered:" $Hour 

echo " " 

 

#echo "Running MODE for m1o1" 

#run_MODE_m1o1.sh ${Start_Date}  

 

# For Standard Cases (fcst vs obs) use this script: 

echo "Running MODE for m3o3, Standard Cases..." 

echo "  " 

run_MODE_m3o3_2.sh ${Start_Date} ${Hour} 

 

# For Perfect Cases (obs vs obs) use this script 

# echo "Running MODE for m3o3, Perfect Case (obs vs obs)..." 

# echo "  " 

# run_MODE_m3o3_2_Perfect.sh ${Start_Date} ${Hour} 

 

echo " " 

echo "run_MODE Complete." 

echo " " 
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Appendix F. MET and MODE Script run_MODE_m303_2.sh 

run_MODE_m303_2.sh runs MET_MODE on post-processed 1-km resolution WRF forecast 

data that have been remapped to a 2.5-km grid over domain 3, using 2.5-km RTMA product as 

the gridded observations dataset. Note: The script’s initiating command requires a start_date and 

hour. The script is embedded in and called by run_MODE_2. 

# Filename: run_MODE_m3o3_2.sh 

# Last Rev: 130610, gv/jr/yr 

# 

# Location: carson:/MET_MODE 

# 

# PURPOSE: Sets up and runs MET MODE on post-processed 1km res WRF 

#  forecast data which has been remapped to a 2.5 km grid over WSMR 

#  domain 3 and a 2.5 km RTMA product as the gridded observations 

#  dataset. 

# 

# Support files needed to execute this script: 

#   WrfModeConfig_m3o3_rtma_WSMR_template 

# 

# Output includes a configuration file with the variable acronym at the 

# end: 

#   WrfModeConfig_m3o3_rtma_WSMR_TMP 

#   WrfModeConfig_m3o3_rtma_WSMR_DPT 

#   WrfModeConfig_m3o3_rtma_WSMR_WIND 

#   WrfModeConfig_m3o3_rtma_WSMR_UGRD 

# 

# MODE results are in:  /home/gvaucher/MET_MODE/results_m3o3  

# 

# Script called by:  s_multi (select #15-Run MODE) 

# 

# Script OUTLINE: 

#   1.  User Input: Select variable. 

#   2.  Define variable name and variable height. 

#       Script converts variable thresholds to strings for output file 

name. 

#   3a. User enter object boundary definition. 

#   3b. Script and User Define object boundaries. 

#   4. Convert MODE configuration template into user-defined config file. 

#   5. Run MODE using the user-defined specifications. 

# 

# ================================ 

# 

Start_Date=$1 

Hour=$2 

mkdir -p ./results_m3o3/${Start_Date} 

clear 
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echo "Running MODE..." 

echo "   " 

echo "   " 

echo "   " 

 

#  *********************** 

#   1.  User Input: Select variable. 

#  *********************** 

 

# This runs MODE on 2.5 km, WRF forecast & 2.5 km RTMA obs for testing. 

 

echo "Enter number of task" 

echo "   1 Temperature          (2m AGL)" 

echo "   2 Dewpoint Temperature (2m AGL)" 

echo "   3 Wind                 (10m AGL)" 

echo "   4 U-component          (10m AGL)" 

echo "   9 Exit" 

echo "  " 

echo "  " 

 

read response1 

 

#  *********************** 

#   2.  Define variable name and variable height. 

#  *********************** 

 

case $response1 in # Start of case 

(1)  

#  Code for TMP. 

varname="TMP" 

varheight="Z2" 

htstring="2" 

 

;; 

 

(2) 

#  Code for Dewpoint - DPT 

varname="DPT" 

varheight="Z2" 

htstring="2" 

;; 

 

(3) 

#  Code for WIND 

varname="WIND" 

varheight="Z10" 

htstring="10" 

;; 

 

(4)  

#  Code for UGRD (u-component) 

varname="UGRD" 

varheight="Z10" 

htstring="10" 
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;; 

 

(9)  

#  Exit the Code 

echo "  " 

echo "Exiting MODE."  

echo "  " 

exit 0 

;; 

 

esac  #end of case 

 

#  *********************** 

#   3a.  User enter object boundary definition. 

#  *********************** 

 

echo "  " 

echo "Define object boundaries:" 

echo "   a. Define UPPER and LOWER variable boundaries." 

echo "   b. Define boundary as all magnitudes GREATER THAN or EQUAL TO XX" 

echo "   c. Define boundary as all magnitudes LESS THAN or EQUAL TO XX" 

echo "   z. Exit" 

echo "  " 

 

read response2 

 

echo "  " 

#  *********************** 

#   3b. Script and User Define object boundaries. 

#  *********************** 

 

case $response2 in # Start of case 

(a) 

#  Define UPPER and LOWER variable boundaries. 

 

# a.1 raw_thresh - Define UPPER limit value. 

#     ctnumHI is "raw_thresh" in template. 

#     Sets values > raw_thresh to zero. 

# 

echo "Enter object's HIGHEST boundary variable value (xxx.x) in kelvin or 

m/s." 

echo "  " 

echo "      This raw_thresh entry will be converted to:  <=xxx.x " 

 

read ctnumHI 

echo "  " 

 

# Converts Highest Value to a string reference for the output file. 

HIct=${ctnumHI/./p} 

HIct="le"${HIct} 

 

ctnumHI="<="${ctnumHI} 

 

# a.2 conv_thresh - Define LOWER limit value. 
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#     ctnumLOW is "conv_thresh" in template. 

#     Defines objects >= xxx.x 

#     conv_thresh is set by user. 

# 

 

echo "  " 

echo "Enter object's LOWEST boundary value (xxx.x) in kelvin or m/s." 

echo "  " 

echo "      This conv_thresh entry will be converted to: >=xxx.x " 

 

read ctnumLOW 

echo "  " 

 

# Converts Lowest Value to a string reference for the output file. 

LOWct=${ctnumLOW/./p} 

LOWct="ge"${LOWct} 

 

ctnumLOW=">="${ctnumLOW} 

 

# a.3 conv_radius 

#     crnum is "conv_radius" in template. 

#     Define conv_radius as 0 (skips convolution step, since 

#            raw_thresh introduced zeros).   

#            For max/min extremes, conv-radius is 1 grid unit. 

 

crnum=0 

 

# if [ $ctnumLOW = $ctnumHI ]  

#    then 

#    crnum=1 

# fi 

;; 

 

(b) 

# Define boundary as all magnitudes GREATER THAN or EQUAL TO XX. 

 

# b.1 raw_thresh - Define UPPER limit value. 

#     ctnumHI is "raw_thresh" in template. 

#     raw-thresh is set to >=-9999; to avoid false boundary data. 

#     UPPER value is infinity. 

 

ctnumHI=">=-9999" 

HIct="9999" 

 

# b.2 conv_thresh - Define LOWER limit Value. 

#     ctnumLOW is "conv_thresh" in template. 

#     Defines objects >= xxx.x 

#     conv_thresh is set by user. 

 

#  Define LOWER value. 

echo "  " 

echo "Enter object's LOWEST boundary value (xxx.x) in kelvin or m/s." 

echo "  " 

echo "      This conv_thresh entry will be converted to: >=xxx.x " 
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read ctnumLOW 

echo "  " 

 

# Converts Lowest Value to a string reference for the output file. 

LOWct=${ctnumLOW/./p} 

LOWct="ge"${LOWct} 

 

ctnumLOW=">="${ctnumLOW} 

 

# b.3 conv_radius 

#     crnum is "conv_radius" in template. 

#     conv_radius is set to 0, which skips the smoothing step. 

#     conv_radius set to 1 smooths data by 1 grid unit. 

crnum=0 

;; 

 

(c) 

# Define boundary as all magnitudes LESS THAN or EQUAL TO XX. 

 

# c.1 raw_thresh - Define LOWER limit value. 

#     ctnumHI is "raw_thresh" in template. 

#     raw-thresh is set to >=-9999; to avoid false boundary data. 

#     LOWEST value is infinity. 

# 

ctnumHI=">=-9999" 

HIct="9999" 

 

# c.2 conv_thresh - Define HIGHEST limit value. 

#     ctnumLOW is "conv_thresh" in template. 

#     Defines objects <= xxx.x 

#     conv_thresh is set by user. 

# 

#  Define HIGHEST value. 

echo "  " 

echo "Enter object's HIGHEST boundary value (xxx.x) in kelvin or m/s." 

echo "  " 

echo "      This conv_thresh entry will be converted to: <=xxx.x " 

 

read ctnumLOW 

echo "  " 

 

# Converts this highest Value to a string reference for output file. 

LOWct=${ctnumLOW/./p} 

LOWct="le"${LOWct} 

 

ctnumLOW="<="${ctnumLOW} 

 

# c.3 conv_radius 

#     crnum is "conv_radius" in template. 

#     conv_radius is set to 0, which skips the smoothing step. 

#     conv_radius set to 1 smooths data by 1 grid unit. 

 

crnum=0 
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;; 

 

(z)  

#  Exit the Code 

echo "  " 

echo "Exiting MODE."  

echo "  " 

exit 0 

;; 

 

esac  #end of case 

 

echo "raw_thresh  [aka ctnumHI]  = "$ctnumHI"  " 

echo "conv_radius [aka crnum]    = "$crnum"  " 

echo "conv_thresh [aka ctnumLOW] = "$ctnumLOW"  " 

echo "  " 

echo "LOWct = "$LOWct"  " 

echo "HIct  = "$HIct"  " 

echo "  " 

 

#  *********************** 

#   4. Convert MODE configuration template into user-defined config file.  

#         (Old file is deleted.) 

#  *********************** 

# 

 

echo "Removing old WrfModeConfig_m3o3_rtma_WSMR_${varname} file.  Is this 

ok?" 

read YN 

 

if [ $YN = "n" ]  

   then 

   echo "Exiting script. (At least in theory...)" 

   exit 0 

fi 

 

rm ~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname} 

 

cp ~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_template 

~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname} 

 

sed 

s/varname/${varname}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}>

~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1 

sed 

s/varheight/${varheight}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varna

me}1>~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname} 

 

sed 

s/ctnumLOW/${ctnumLOW}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname

}>~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1 

sed 

s/ctnumHI/${ctnumHI}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1

>~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname} 
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sed 

s/LOWct/${LOWct}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}>~/ME

T_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1 

sed 

s/HIct/${HIct}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1>~/MET

_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname} 

 

sed 

s/crnum/${crnum}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}>~/ME

T_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1 

sed 

s/htstring/${htstring}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname

}1>~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname} 

 

rm ~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1 

 

ls -al WrfModeConfig_m3o3_rtma_WSMR_${varname}* 

 

# exit 

 

#  *********************** 

#   5. Run MODE using the user-defined specifications. 

#  *********************** 

# 

mode ../MET_WRFpostprd/${Start_Date}/wrf_2p5km_${Hour}.grb1 

../MET_obs/RTMA/${Start_Date}/rtma_2p5km_${Hour}.grb1 

./WrfModeConfig_m3o3_rtma_WSMR_${varname}  -outdir 

./results_m3o3/${Start_Date} -log ./logs/test -v 2 

 

#  Run completed! 

echo "  " 

echo "<run_MODE_m3o3_2.sh> Complete."  

echo "  " 

 

exit 
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Appendix G. MET and MODE Script run_MODE_m303_2_Perfect.sh 

run_MODE_m303_2_Perfect.sh runs MET_MODE on two identical observations datasets. Thus, 

ensuring a “perfect” case. Note: The script’s initiating command requires a start_date and hour. 

The script is embedded in and called by run_MODE_2. 

 

# Filename: run_MODE_m3o3_2_Perfect.sh 

# Last Rev: 130613, gv/jr/yr 

# 

# Location: carson:/MET_MODE 

# 

# PURPOSE: Sets up and runs MET MODE on post-processed 1km res WRF 

#  forecast data which has been remapped to a 2.5 km grid over WSMR 

#  domain 3 and a 2.5 km RTMA product as the gridded observations 

#  dataset. 

# 

# Support files needed to execute this script: 

#   WrfModeConfig_m3o3_rtma_WSMR_template 

# 

# Output includes a configuration file with the variable acronym at the 

# end: 

#   WrfModeConfig_m3o3_rtma_WSMR_TMP 

#   WrfModeConfig_m3o3_rtma_WSMR_DPT 

#   WrfModeConfig_m3o3_rtma_WSMR_WIND 

#   WrfModeConfig_m3o3_rtma_WSMR_UGRD 

# 

# MODE results are in:  /home/gvaucher/MET_MODE/results_m3o3  

# 

# Script called by:  s_multi (select #15-Run MODE) 

# 

# Script OUTLINE: 

#   1.  User Input: Select variable. 

#   2.  Define variable name and variable height. 

#       Script converts variable thresholds to strings for output file 

name. 

#   3a. User enter object boundary definition. 

#   3b. Script and User Define object boundaries. 

#   4. Convert MODE configuration template into user-defined config file. 

#   5. Run MODE using the user-defined specifications. 

# 

# ================================ 

# 

Start_Date=$1 

Hour=$2 

 

#  Default is to not run the Perfect (obs vs obs) case.  P=0 

#  Perfect case is P=1 
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P=0 

 

mkdir -p ./results_m3o3/${Start_Date} 

clear 

 

echo "Running MODE..." 

echo "   " 

echo "   " 

echo "   " 

 

#  *********************** 

#   1.  User Input: Select variable. 

#  *********************** 

 

# This runs MODE on 2.5 km, WRF forecast & 2.5 km RTMA obs for testing. 

 

echo "Enter number of task" 

echo "   1 Temperature          (2m AGL)" 

echo "   2 Dewpoint Temperature (2m AGL)" 

echo "   3 Wind                 (10m AGL)" 

echo "   4 U-component          (10m AGL)" 

echo "   9 Exit" 

echo "  " 

echo "  " 

 

read response1 

 

#  *********************** 

#   2.  Define variable name and variable height. 

#  *********************** 

 

case $response1 in # Start of case 

(1)  

#  Code for TMP. 

varname="TMP" 

varheight="Z2" 

htstring="2" 

 

;; 

 

(2) 

#  Code for Dewpoint - DPT 

varname="DPT" 

varheight="Z2" 

htstring="2" 

;; 

 

(3) 

#  Code for WIND 

varname="WIND" 

varheight="Z10" 

htstring="10" 

;; 
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(4)  

#  Code for UGRD (u-component) 

varname="UGRD" 

varheight="Z10" 

htstring="10" 

;; 

 

(9)  

#  Exit the Code 

echo "  " 

echo "Exiting MODE."  

echo "  " 

exit 0 

;; 

 

esac  #end of case 

 

#  *********************** 

#   3a.  User enter object boundary definition. 

#  *********************** 

 

echo "  " 

echo "Define object boundaries:" 

echo "   a. Define UPPER and LOWER variable boundaries." 

echo "   b. Define boundary as all magnitudes GREATER THAN or EQUAL TO XX" 

echo "   c. Define boundary as all magnitudes LESS THAN or EQUAL TO XX" 

echo "   z. Exit" 

echo "  " 

 

read response2 

 

echo "  " 

#  *********************** 

#   3b. Script and User Define object boundaries. 

#  *********************** 

 

case $response2 in # Start of case 

(a) 

#  Define UPPER and LOWER variable boundaries. 

 

# a.1 raw_thresh - Define UPPER limit value. 

#     ctnumHI is "raw_thresh" in template. 

#     Sets values > raw_thresh to zero. 

# 

echo "Enter object's HIGHEST boundary variable value (xxx.x) in kelvin or 

m/s." 

echo "  " 

echo "      This raw_thresh entry will be converted to:  <=xxx.x " 

 

read ctnumHI 

echo "  " 

 

# Converts Highest Value to a string reference for the output file. 

HIct=${ctnumHI/./p} 
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HIct="le"${HIct} 

 

ctnumHI="<="${ctnumHI} 

 

# a.2 conv_thresh - Define LOWER limit value. 

#     ctnumLOW is "conv_thresh" in template. 

#     Defines objects >= xxx.x 

#     conv_thresh is set by user. 

# 

 

echo "  " 

echo "Enter object's LOWEST boundary value (xxx.x) in kelvin or m/s." 

echo "  " 

echo "      This conv_thresh entry will be converted to: >=xxx.x " 

 

read ctnumLOW 

echo "  " 

 

# Converts Lowest Value to a string reference for the output file. 

LOWct=${ctnumLOW/./p} 

LOWct="ge"${LOWct} 

 

ctnumLOW=">="${ctnumLOW} 

 

# a.3 conv_radius 

#     crnum is "conv_radius" in template. 

#     Define conv_radius as 0 (skips convolution step, since 

#            raw_thresh introduced zeros).   

#            For max/min extremes, conv-radius is 1 grid unit. 

 

crnum=0 

 

# if [ $ctnumLOW = $ctnumHI ]  

#    then 

#    crnum=1 

# fi 

;; 

 

(b) 

# Define boundary as all magnitudes GREATER THAN or EQUAL TO XX. 

 

# b.1 raw_thresh - Define UPPER limit value. 

#     ctnumHI is "raw_thresh" in template. 

#     raw-thresh is set to >=-9999; to avoid false boundary data. 

#     UPPER value is infinity. 

 

ctnumHI=">=-9999" 

HIct="9999" 

 

# b.2 conv_thresh - Define LOWER limit Value. 

#     ctnumLOW is "conv_thresh" in template. 

#     Defines objects >= xxx.x 

#     conv_thresh is set by user. 
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#  Define LOWER value. 

echo "  " 

echo "Enter object's LOWEST boundary value (xxx.x) in kelvin or m/s." 

echo "  " 

echo "      This conv_thresh entry will be converted to: >=xxx.x " 

 

read ctnumLOW 

echo "  " 

 

# Converts Lowest Value to a string reference for the output file. 

LOWct=${ctnumLOW/./p} 

LOWct="ge"${LOWct} 

 

ctnumLOW=">="${ctnumLOW} 

 

# b.3 conv_radius 

#     crnum is "conv_radius" in template. 

#     conv_radius is set to 0, which skips the smoothing step. 

#     conv_radius set to 1 smooths data by 1 grid unit. 

crnum=0 

;; 

 

(c) 

# Define boundary as all magnitudes LESS THAN or EQUAL TO XX. 

 

# c.1 raw_thresh - Define LOWER limit value. 

#     ctnumHI is "raw_thresh" in template. 

#     raw-thresh is set to >=-9999; to avoid false boundary data. 

#     LOWEST value is infinity. 

# 

ctnumHI=">=-9999" 

HIct="9999" 

 

# c.2 conv_thresh - Define HIGHEST limit value. 

#     ctnumLOW is "conv_thresh" in template. 

#     Defines objects <= xxx.x 

#     conv_thresh is set by user. 

# 

#  Define HIGHEST value. 

echo "  " 

echo "Enter object's HIGHEST boundary value (xxx.x) in kelvin or m/s." 

echo "  " 

echo "      This conv_thresh entry will be converted to: <=xxx.x " 

 

read ctnumLOW 

echo "  " 

 

# Converts this highest Value to a string reference for output file. 

LOWct=${ctnumLOW/./p} 

LOWct="le"${LOWct} 

 

ctnumLOW="<="${ctnumLOW} 

 

# c.3 conv_radius 
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#     crnum is "conv_radius" in template. 

#     conv_radius is set to 0, which skips the smoothing step. 

#     conv_radius set to 1 smooths data by 1 grid unit. 

 

crnum=0 

;; 

 

(z)  

#  Exit the Code 

echo "  " 

echo "Exiting MODE."  

echo "  " 

exit 0 

;; 

 

esac  #end of case 

 

clear  

echo "  " 

echo "Run a PERFECT case? [y/n]" 

echo "  " 

echo "    [PERFECT case is obs vs same obs data.]" 

echo "  " 

 

read YN 

 

if [ $YN = "y" ]  

   then 

   HIct=${HIct}"_PERFECT" 

   P=1 

fi 

 

echo "raw_thresh  [aka ctnumHI]  = "$ctnumHI"  " 

echo "conv_radius [aka crnum]    = "$crnum"  " 

echo "conv_thresh [aka ctnumLOW] = "$ctnumLOW"  " 

echo "  " 

echo "LOWct = "$LOWct"  " 

echo "HIct  = "$HIct"  " 

echo "  " 

 

#  *********************** 

#   4. Convert MODE configuration template into user-defined config file.  

#         (Old file is deleted.) 

#  *********************** 

# 

 

echo "Removing old WrfModeConfig_m3o3_rtma_WSMR_${varname} file.  Is this 

ok?" 

read YN 

 

if [ $YN = "n" ]  

   then 

   echo "Exiting script. (At least in theory...)" 

   exit 0 
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fi 

 

rm ~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname} 

 

cp ~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_template 

~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname} 

 

sed 

s/varname/${varname}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}>

~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1 

sed 

s/varheight/${varheight}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varna

me}1>~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname} 

 

sed 

s/ctnumLOW/${ctnumLOW}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname

}>~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1 

sed 

s/ctnumHI/${ctnumHI}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1

>~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname} 

 

sed 

s/LOWct/${LOWct}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}>~/ME

T_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1 

sed 

s/HIct/${HIct}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1>~/MET

_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname} 

 

sed 

s/crnum/${crnum}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}>~/ME

T_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1 

sed 

s/htstring/${htstring}/g<~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname

}1>~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname} 

 

rm ~/MET_MODE/WrfModeConfig_m3o3_rtma_WSMR_${varname}1 

 

ls -al WrfModeConfig_m3o3_rtma_WSMR_${varname}* 

 

# exit 

 

#  *********************** 

#   5. Run MODE using the user-defined specifications. 

#  *********************** 

# 

 

if [ $P = "1" ]  

   then 

 

   mode ../MET_obs/RTMA/${Start_Date}/rtma_2p5km_${Hour}.grb1 

../MET_obs/RTMA/${Start_Date}/rtma_2p5km_${Hour}.grb1 

./WrfModeConfig_m3o3_rtma_WSMR_${varname}  -outdir 

./results_m3o3/${Start_Date} -log ./logs/test -v 2 
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   echo "  " 

   echo "PERFECT case (obs vs obs) run completed.  Exiting script." 

   echo "  " 

   echo "  " 

 

   exit 0 

fi 

 

mode ../MET_WRFpostprd/${Start_Date}/wrf_2p5km_${Hour}.grb1 

../MET_obs/RTMA/${Start_Date}/rtma_2p5km_${Hour}.grb1 

./WrfModeConfig_m3o3_rtma_WSMR_${varname}  -outdir 

./results_m3o3/${Start_Date} -log ./logs/test -v 2 

 

#  Run completed! 

echo "  " 

echo "<run_MODE_m3o3_2.sh> Complete."  

echo "  " 

 

exit 
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List of Symbols, Abbreviations, and Acronyms  

2-D two-dimensional 

AFWA U. S. Air Force Weather Agency 

AGL above ground level 

ARL U.S. Army Research Laboratory 

ASCII American Standard Code for Information Interchange 

FCST Forecast(s) 

FDDA Four Dimensional Data Assimilation 

GRIB General Regularly-Distributed Information in Binary Form 

MET Model Evaluation Tools 

MMI Median Maximum Interest 

MODE Method for Object-Based Diagnostic Evaluation 

MyWIDA My Weather Impacts Decision Aid 

NCAR National Center for Atmospheric Research 

NCEP National Centers for Environmental Prediction 

NM New Mexico 

NOAA National Oceanic and Atmospheric Administration 

NOMADS NOAA Operational Model Archive and Distribution System 

NSF National Science Foundation 

NWP numerical weather prediction 

OBS Observation(s) 

RTMA Real-Time Mesoscale Analysis 

UTC Coordinated Universal Time 

V&V Validation and Verification 

WRE-N Weather Running Estimate – Nowcast 
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WRF Weather Research and Forecasting 

WRF-ARW Weather Research and Forecasting-Advanced Research Weather  

Research and Forecasting 

WSMR White Sands Missile Range 
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