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1.0 SUMMARY 

Experimental, theoretical and numerical investigations of quantum computation using photon-
based qubits were conducted to explore the Cluster State (or one-way) Quantum Computing 
paradigm. This report describes research on a unique type II SPDC source (Schioedtei) design 
that can generate up to six pairs of entangled photons per pass through the type II crystal 
assembly. This source is currently being used as the entangled photon source to create photon-
based qubit cluster states. Under this project we developed a new detector design architecture 
that turns the single photon detector into a number-resolving detector by means of a novel three 
dimensional architecture that utilizes spatial multiplexing. We have studied the CNOT gate, as 
an archetypical quantum linear optical gate, and found several interesting features in the both the 
ideal and the realistic case of implementation with imperfect (non-unit) fidelity.  We conducted a 
theoretical investigation of the limitations of quantum correlations imposed the physically 
imposed constraint of no-signaling (i.e. no faster than light communication). Finally, we 
developed a more efficient means to generate linear cluster states from which we designed a 
probabilistic cluster state generator (patent submitted). 

2.0 INTRODUCTION 

Under this AFRL/RI in-house project Cluster State Quantum Computation we continued research 
and development of a novel multi-qubit entangled photon source, begun under the AFRL/RI in-
house project “Quantum Information Science (QIS),” (AFRL-RI-RS-TR-2012-073), and 
conducted investigations into the measurement based cluster state quantum computation 
paradigm utilizing photon-based qubits. These investigations included: (i) the development and 
characterization of a new multipli-entangled photon source that increased the usable number of 
photon pairs by a factor of six over conventional entangled photon sources; (ii) design of multi-
layer superconducting number-resolving photon detector, (iii) a theoretical and experimental 
investigation into the requirements of imperfect (non-unit fidelity) two-qubit linear optical 
photonic gates; (iv) a theoretical investigation of entanglement and nonlocality addressing the 
issue of why nature does not take advantage of the algebraically allowed maximum correlations 
amongst collections of qubits, and (v) a theoretical investigation into the a 2.25X more efficient 
means to generate linear cluster states. This latter investigation led to a patent for probabilistic 
cluster state generator, also discussed in this report. In addition, this report discusses upgrades to 
our in-house AFRL/RI Quantum Computing Laboratory under the current project and our thrust 
to transition our development of quantum gates/circuits in bulk optics to an on chip integrated 
waveguide implementation.  

Cluster State Quantum Computation Background 
In the standard quantum circuit model (QCM) paradigm, quantum computations are executed by 
successive unitary operations acting upon an initial quantum state composed of many qubits. 
These unitary operators create entanglement amongst the qubits through quantum interference. 
Entanglement is uniquely non-classical property of quantum mechanical systems in which the 
correlations between sub-systems can be stronger than that allowed by classical (conventional) 
computing systems. Recently a new alternative paradigm for quantum computation has emerged 
called one-way quantum computation (OWQC) [Ruassendorf01]. In the one-way quantum 
computer, information is processed by sequences of single-qubit measurements. These 
measurements are performed on a universal resource state—the 2D-cluster state—which does 
not depend on the algorithm to be implemented. The new approach to quantum computation goes 
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by the collective name measurement-based quantum computation (MBQC) [Briegel09]. The 
appeal of MQC is that deterministic quantum computation is possible based on (i) the 
preparation of an initial entangled cluster state followed by (ii) a temporally ordered pattern of 
single qubit measurements and feed-forward operations which depend on the outcome of the 
previously measured qubits [Raussendorf01]. Our interests in OWQC is in the utilization of 
photon-based cluster states as gates and circuits for quantum computation (see [Vallone08], and 
references therein).  It has been claimed that the use of cluster states can substantially reduce the 
resource overhead in the standard QCM to photon-based quantum computation. 

In the OWQC approach a quantum computation proceeds as follows:  (i) a classical input is 
provided which specifies the data and the program; (ii) a 2D-cluster state of sufficiently large 
size is prepared. The cluster state serves as the resource for the computation; (iii) a sequence of 
adaptive one-qubit measurements is implemented on certain qubits in the cluster. In each step of 
the computation the measurement bases depend on the specific program under execution and on 
the outcomes of previous measurements. A simple classical computer is used to compute which 
measurement directions have to be chosen in every step; (iv) after the measurements the state of 
the system has the product form out

   , where α indexes the collection of measurement 

outcomes of the different branches of the computation. The states out
  in all branches are equal 

to the desired output state up to a local (Pauli) operation. The measured qubits are in a product 
state  which also depends on the measurement outcomes. The OWQC is computationally 

universal, i.e. even though the results of the measurements in every step of the computation are 
random, any quantum computation can deterministically be realized. Notice that the temporal 
ordering of the measurements plays an important role and has been formalized as a feed-forward 
procedure [Raussendorf01]. 

In realistic physical systems decoherence tends to make quantum systems behave more 
classically. One could therefore expect that decoherence would threaten any computational 
advantage possessed by a quantum computer. However, the effects of decoherence can be 
counteracted by quantum error correction [Shor96]. In fact, arbitrarily large quantum 
computations can be performed with arbitrary accuracy provided the error level of the 
elementary components of the quantum computer is below a certain threshold. This important 
result is called the threshold theorem of quantum computation [Aliferis06]. 

Fault-tolerant schemes for OWQC using photons have recently been developed [Dawson06, 
Varnava06]. The dominant sources of error in this setting are photon loss and gate inaccuracies. 
The constraint of short-range interaction and arrangement of qubits in a 2D lattice—a 
characteristic feature of the initial one-way quantum computer—is not relevant for photons. In 
[Dawson06] both photon loss and gate inaccuracies were taken into account yielding a trade-off 
curve between the two respective thresholds.  Fault-tolerant optical computation is possible for a 
gate error rate of 10-4 and photon loss rate of 3x10-3. In [Varnava06] the stability against the main 
error source of photon loss was discussed. With non-unit efficiencies ηS and ηD of photon 
creation and detection being the only imperfections, the very high threshold of ηSηD > 2/3 was 
established. Further, encoding a collection of physical qubits within the 2D cluster state offers a 
means of topological error protection for the logical qubit. Topologically protected quantum 
gates are performed by measuring some regions of qubits in the Z-basis, which effectively 
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removes the qubits from the state. The remaining cluster, whose qubits are measured in the X- 
and X ±Y -basis, thereby attains a non-trivial topology in which fault-tolerant quantum gates can 
be encoded. A topological method of fault-tolerance for OWQC can then be achieved 
[Raussendorf07].  

Experimental Research: 
Photons are particularly desirable for quantum information processing tasks since they are 
relatively free from environmental decoherence. Hence, they are also essential for any long 
distance conveyance of quantum information, and do not require cryogenic cooling. Entangled 
photon sources with the highest mode quality are based on spontaneous parametric down 
conversion (SPDC).  This is a process where laser pump photons are converted into ‘signal’ and 
‘idler’ entangled pairs in nonlinear (NL) crystals. SPDC in nonlinear crystals has provided the 
optical sources for groundbreaking foundational and applications work in quantum optics (QO) 
for the last two decades [O’Brien07].  

SPDC is an inherently inefficient process, and work based on it is generally limited by the net 
signal level or the number of photons that can be entangled in given applications. Photon yield is 
related to laser power, which cannot be increased beyond the level where higher order NL 
contributions (multi-photon events) yield errors in quantum processing applications. This point 
has now been reached in applications that require independent sources of entangled qubits. The 
work begun under the in-house Quantum Information Science project focused on (i) developing 
a 6-qubit capable photon-based quantum information testbed and (ii) initial development of new 
sources of entangled photons that greatly increase process efficiency, without increasing laser 
power, in a regime where high detection quantum efficiency is available - a highly desirable goal 
not previously accomplished in the scientific community to date. This latter direction of research 
was continued and expanded upon in the current in-house project Cluster State Quantum 
Computing. 

Number resolving photon counting at the single photon level, i.e. distinguishing 1, 2 or 3 photons 
is an important experimental ability. While experiments can be performed without number 
resolving detectors such as the APD we are currently using, a significant number of interesting 
experiments requires the number resolving ability.  Therefore we considered a known single 
photon detector (click or no-click) and have developed a new detector design architecture that 
turns the single photon detector into a number-resolving detector.  This is done through spatial 
multiplexing. The architecture we have developed allows for higher density of detection 
elements and larger number of detector elements then the current state of the art.  This leads to 
faster repetition times and most importantly superior number resolution.   

Theory/Numerical Research: 
The creation of single photons is most often performed by non-linear processes such as SPDC, 
however to create cluster states from these resource photons requires linear optics, such as the 
CNOT or CZ gates.  Numerous implementation methods have been suggested for these gates in 
theory, however in practice any implementation will be imperfect.  Therefore it is important to be 
able to characterize and optimize imperfect, i.e. fidelity less than 1, linear optical gates and state 
transformations. We have studied the CNOT gate, as an archetypical linear optical gate and 
found several interesting features in the both the ideal case and the realistic case of imperfect 
fidelity.  In particular we find that the success rate can be increased as the fidelity decreases. 
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This trade off in fidelity for success opens several interesting possibilities in the field of linear 
optics.  We also found that the CNOT gate has a high degree of symmetry that simplifies its 
physical implementation in both cases and proposed a practical experiment to test our theories. 
Such studies can and have been carried over to other gates and state transformation with relative 
ease. 

The ultimate goal of MBQC is to execute quantum algorithm with speedup over their 
corresponding counterpart classical algorithms. Under this project we began an investigation of 
Grover’s search algorithm (on an unsorted list of elements) in the MBQC paradigm and its 
comparison/contrast with the usual QCM approach. Grover’s search algorithm (GSA) serves as 
an important prototypical benchmark for many numerical simulation efforts of quantum 
algorithms [Grover97, Walther05].  Our preliminary results (which are currently being written up 
for journal submission) indicate that the MBQC implementation of Grover’s algorithm is faster 
than even Grover’s quantum algorithm (with its quadratic speedup over a brute force search). 

In brief, Grover’s oracle based unstructured search algorithm is often stated as “given a phone 
number in a directory, find the associated name.” More formally, the problem can be stated as 
“given as input a unitary black box Uf for computing an unknown function f:{0,1}n →{0,1}find 
x=x0 an element of {0,1}n such that f(x0) =1, (and zero otherwise).”  The crucial role of the 
externally supplied oracle Uf (whose inner workings are unknown to the user) is to change the 
sign of the solution 0x , while leaving all other states unaltered. Thus, Uf depends on the desired 

solution x0. Under the previous in-house QIS project, we developed/simulated an amplitude 
amplification algorithm in which the user encodes the directory (e.g. names and telephone 
numbers) into an entangled database state, which at a later time can be queried on one supplied 
component entry (e.g. a given phone number t0) to find the other associated unknown component 
(e.g. name x0). For N=2n names x with N associated phone numbers t , performing amplitude 

amplification on a subspace of size N of the total space of size N2 produces the desired state 
0 0x t in √N steps. 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1. Multipli-entangled photons from a spontaneous parametric down-conversion source 

Photon based quantum computation, with single or entangled photons, is a heavily researched 
area.  This is in part due to many desirable properties of photons such as (i) room temperature 
operation, (ii) immunity from the environment and (iii) superior mode quality. Spontaneous 
parametric down conversion has proven to be the most reliable method of generating entangled 
photon pairs. Type I sources spontaneously convert one linearly polarized parent photon into two 
daughters, each having an orthogonal polarization to the parent. The spontaneous nature of 
parametric down conversion produces a ring pattern where each diametric photon pair shares the 
same parent photon. Because the type I process produces two photons of the same polarization 
which are path entangled. That is, detecting a photon (signal) in path A implies that its sister 
(idler) can be found in the diametrically opposite spot [Dragoman01]. This implies that in the 
polarization basis a mixed state |2ۧܪ|1ۧܪ or |ܸۧ1|ܸۧ2 will be produced. Many experiments that 
require photon pairs, but not entangled pairs, use the output of a type I crystal as input to a more 
sophisticated experiment. Type I crystals are inherently birefringent, but the walk-off associated 
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with these crystals is mitigated by the fact that the down converted photons are the same 
polarization; the delays that the signal and idler photons experience are the same. Type I sources 
have been used for many years in harmonic generation (SHG, THG) systems as frequency 
converters.  

Kwiat first described a feasible source for SPDC -generated entangled pairs using type I β-BBO 
[Kwiat99] (beta-Barium borate, BaB2O4). This consisted of a stacked pair of type I crystals 
rotated 90° relative to each other (Figure 1). This allows for the generation of two orthogonally 
polarized cones that overlap in space. Each crystal can only be excited by a certain linear 
polarization. The stack must be pumped by a beam made up of components that excite each 
crystal equally. That is, if the stack consists of an optic axis that is vertical in the first crystal, and 
horizontal in the second, the pump beam polarization must be oriented at 45°. The resulting 
superposition state is |2ۧܪ|1ۧܪ ± eiθ	|ܸۧ1|ܸۧ2. It is important to note that there is a temporal delay 
associated with the down converted states due to the crystal’s birefringence. Compensation 
depends on the wave packet of the pump photon.  

Figure 1. Kwiat’s type I pair. Each crystal will spontaneously down convert a linearly polarized 
photon pair orthogonal to its pump photon. When specifically oriented, these down converted 
rings can overlap and create a polarization entangled pair.  

Type II sources [Kwiat95] down convert a linearly polarized parent photon into two orthogonally 
polarized daughters making them particularly interesting because the crystal is birefringent. One 
daughter photon will walk off faster than the other and lead to a noticeable spatial separation, and 
thus two intersecting cones (Figure 2). The walk off of type II crystals limits the length of the 
crystal because the extraordinary index of refraction will quickly bend light out of the crystal. 
Indistinguishable photons are produced in the intersections of the two cones. These two points 
form a superposition state of polarization (|2ܸۧ|1ۧܪ ± eiθ	|ܸۧ1|2ۧܪ) and have been exhaustively 
studied and used as inputs to more complex photonic systems. Figure 3 shows the evolution of 
the rings of entangled photons produced from SPDC crystals under type I and II phase matching 
conditions. 
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Figure 2. Standard type II down conversion. A linear pump beam spontaneously down converts 
to two photons, one of which has the same polarization as the pump. The other is orthogonal. The 
familiar double ring pattern is a product of the crystal’s birefringence.  

.

Figure 3: Imaging of the down-converted light for three different configurations. First row: type-I 
SPDC as a function of the tilt of one crystal. Second row: type-I SPDC rings of different 
diameters as a function of the polarization of the pump beam (horizontal on the left and vertical 
on the right). Third row: type-II SPDC rings as a function of the tilt of the crystal. All cases 
involve the CW pump laser beam. 

In a similar fashion to Kwiat’s type I stack, Bitton et al. [Bitton01] described a type II stack 
comprised of two crystals rotated 180° relative to each other (Figure 4). This allows the linear 
pump scheme to remain unchanged and yields one set of rings from either crystal. The set of 
rings entirely overlap each other and thus can yield an entangled photon pair of the same state as 
standard type II. Addressing the compensation is a necessary requirement with any birefringent 
crystals. A standard type II stacked configuration allows for greater pair production and more 
useable detection area. In this source as well as a type I stack, the fundamental size of the 
collection apertures become the limiting factor in the number of entangled pairs that can be 
collected. 
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Figure 4. Type II crystal assembly as described by [Bittion01]. The second crystal is rotated 180° 
relative to the first, resulting in two overlapping sets of cones with orthogonal polarization. 

U’ren et al. [U’ren06] described a type II crystal assembly (Figure 5a) that is designed for group 
velocity matching (GVM) of the pump and signal/idler wave packets, thereby removing any 
spectral distinguishability of the down converted photons. The assembly consists of a successive 
stack of nonlinear crystals (β-BBO, BiBO (Bismuth Borate, BiB3O6)) separated by a thin layer of 
compensating crystal (calcite (CaCO3), α-BBO). This aims to slowly compensate different 
components (pump and down converted wave packets) such that by the end of the stack there is 
no spectral walk off. The need to spectrally filter post down conversion is mitigated by the 
symmetry of their joint spectral function (Figure 5b). Removing this requirement typically 
increases the useable count rate and overall efficiency.  

Figure 5. (a) Type II custom assembly showing alternating layers of β-BBO (red) and calcite 
(blue). (b) Joint spectral function of down converted wavepacket. This implies a maximally 
separable state. 

Type I and II crystals are still governed by their spontaneous nature, and this becomes 
problematic when large numbers of entangled photons are required. In a typical configuration for 
the generation of greater than four photons a cascaded apparatus is used. For this setup either 
multiple crystals are used in succession, or multiple passes through a single crystal (Figure 6). 
This implies an overall increase in footprint size. Hyper-entanglement has been considered to 
mitigate the spontaneous nature of down conversion by adding entanglement various degrees of 
freedom, not just polarization [Ceccarelli09]. While this is effective it adds to the expense of 
larger physical hardware requirements and more complicated analysis processes.  

νs

νi 

a b
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Figure 6. Cascaded and multi-pass crystal configurations for the generation of cluster states 
[Lu07]. 

In recent years there has been a paradigm shift in quantum computation with the need to migrate 
toward schemes that require only single qubit measurements. One-way quantum computation 
(cluster state) has facilitated this shift. Cluster state computation allows a predetermined 
sequence of single qubit measurements to determine the algorithm being evaluated [Walther05]. 
This protocol requires a highly entangled cluster state [Raussendorf01] generated from a 
resource of qubits. Such a cluster state can be constructed by preparing each of the qubits into a 
state, | ൅ۧ = భ

√మ
(|0ۧ +|1ۧ), and applying controlled-phase gates to link the required qubits. 

Computation proceeds with a sequence of single qubit measurements whose results will 
classically feedforward to control the basis required for future measurements [Nielson05]. 
Cluster state computation allows for a practical resource reduction in qubits and hardware 
compared to other quantum computing methods. That being said, the fundamental requirement 
for larger numbers of qubits still exists.  The source we have developed produces larger qubits 
numbers than that of a typical type II SPDC source. 

SPDC custom crystal assembly 

Our custom two-crystal assembly (designated as “Schioedtei” henceforth) design consists of a 
pair of type II non-collinear phase-matched SPDC crystals cut for degenerate down-conversion 
whose optic axes are rotated orthogonal with respect to one another. The pair of crystals is 
optically contacted with one another and a dual band (405/810 nm) anti-reflection coating 
applied to the two exterior faces of the assembly. Any type II material can be used to create an 
equivalent device.  Our particular version that will be discussed here was constructed from two 
8x8x2 mm type II beta-Barium borate (β-BBO, BaB2O4) crystals phase matched (at angles of 
theta = 41.9°, phi = 30°) for 810 nm spontaneous parametric down-conversion. 

Exciting Schioedtei with an incident 45° polarized pump beam produces one pair of rings from 
each of the type II crystals. Each pair of rings is orthogonal to the other resulting in 12 
intersection points (or simply “points”) where indistinguishable photons are produced.  Referring 
to Figure 7, the indicated points marked 5, 6 (Bell pair #1 from crystal #1) and 7, 8 (Bell pair #2 

from crystal #2) are the typical Bell states,	|߰ۧ5,6(7,8) = 
ଵ

√ଶ
 The .((7,8)5,6ۧܪܸ|௜ఝ݁ ± (7,8)5,6ܸۧܪ|) 
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Figure 7. Type-II SPDC Schioedtei source. See text for discussion of the intersection points of 
the overlapping rings. 

points indicated by 1, 2, 3, 4 are the product of two bell states, |߰ۧ1,2,3,4 = 
ଵ

ଶ
 ± 1,4ܸۧܪ|) 

݁ି௜ఝ|ܸ1,4ۧܪ) (|2,3ܸۧܪ ± ݁ି௜ఝ|ܸ2,3ۧܪ), produced from photons from both crystal 1 and 2 
concurrently.  Points 9, 11 and 10, 12 are |ܸܸۧ9,11 and |10,12ۧܪܪ states produced from photons 
from crystal 1 and 2 concurrently.  Further analysis and experimental results of Schioedtei are 
covered in section 4.1. 

3.2 A multi-layer three dimensional superconducting nanowire photon detector 

Construction of photon-counting devices with high counting efficiency, high number resolution 
and short reset times, is highly desirable for a wide array of applications, such as quantum key 
distribution [Xu08], quantum communication [O’Brein09], quantum computing [Knill01], 
[Uskov10], [Knill02] among others [Hadfield09], [Smith11]. Here we describe and perform 
some simple analysis of a proposed detector design that uses multiple short sections of 
superconducting nanowires to construct a new superconducting nanowire single photon detector 
(SNSPD). We refer to these short sections of nanowire as pixels and arrange them in a two 
dimensional grid in analogy with a standard CCD camera. We will discuss the potential 
advantages in such a system and the difficulties of the design.  

When an incident photon strikes a Niobium nitride (NbN) nanowire, or other superconducting 
material such as NbTiN or a-WxSi1-x developed recently at NIST, it creates a resistive hot spot 
[Nam11]. This hot spot causes the current in the superconductor to deflect around the spot, thus 
increasing the current density in the wire. This increased current density leads to an increase in 
the temperature of a small section of the wire. If the nanowire is held just below the critical 
current for superconduction, then the increase in heat will break the superconducting condition 
and the resistance of the wire will spike upward for a short time. This resistance spike creates a 
measurable current in the external resistance load and a photon is counted. 
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Present superconducting nanowire systems, such as NbN, have reasonably good counting 
efficiency [Dauler10], [Marsili11], by which we mean the probability of an incident photon 
being detected is over 25%. However, a significant problem exists with the number resolution, 
relaxation time and fill factors [Gurevich87], [Dauler10], [Marsili11]. A detector consisting of a 
single wire can be made to cover a significant detection area by creating a meander. Usually this 
means folding the nanowire back and forth across the desired area of approximately 10µm x 
10µm [Dauler10], [Marsili11]. This however is not a number resolving detector. All that the 
detector can feel is the loss of the superconducting condition somewhere in the nanowire. Should 
two photons strike the wire simultaneously in two different locations the current drop is very 
similar. One suggested solution to this lack of number resolving capability is to increase the 
number of wires in the meander. This has been done experimentally by Dauler et al.[Dauler10]. 
While this approach improves on the single wire meander it still consists of long wires each of 
which occupies a significant portion of the active detection area (i.e. each nanowire in a 4-
nanowire meander takes approximately 25% of the active area). In order to have a high 
probability of correctly detecting n number of photons one would need significantly more than n 
wires. 

We proposed a detector design using short sections of wire, which we will refer to as pixels, that 
are arranged in a 2D grid to create the detection area. Such a design would use a large number of 
pixels thus giving high number resolution and the small size of the pixels gives short relaxation 
times. We call this configuration a multi-layer superconducting number-resolving photon 
detector. A significant problem with creating a two dimensional array of nanowire pixels is the 
question of how to attach the leads to each pixel, as the leads are of a similar size as the pixels 
themselves. One could simply move the pixels farther and farther apart to fit in all the necessary 
connections but this is impractical as the space between pixels does not detect photons and the 
device’s overall efficiency would decrease below useful levels. Ideally the pixels will be packed 
as closely as possible, while still avoiding cross talk. This will maximize the so called fill factor, 
the ratio of the photon sensitive area to the non-sensitive area within the “active” area of the 
detector. We therefore propose moving away from the two dimensional approaches used to date  

Figure 8. A single superconducting nanowire “pixel” bridge. 
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and instead suggest a multilayer, three dimensional architecture. We therefore proposed moving 
away from the two dimensional approaches used to date and instead suggest a multi-layer, three 
dimensional architecture. In this scheme the non-superconducting leads are allowed to pass 
under the active detector pixels. To create this effect we shape the pixels like small bridges as 
seen in Figure 8. This shape was chosen because of its relatively simple design and in order to 
maximize the fill factor. 

This creates a 3 layer design, with the bottom layer containing the leads, an insulating middle 
layer, and the active detection layer on top. We now show a bird’s eye view (plan view) of the 
final device with all three layers aligned on top of each other, Figure 9. The black arrows show 
the movement of the current throughout the device.  

Figure 9. Plan view of final device with all three layers aligned on top of each other. 

The current enters the detector in the bottom layer (red) through the shared input lead (center of 
figure). Current then moves up through the middle layer connections, called “posts" (green), to 
the top/detection layer. Once in the top layer it moves along the surface of the bridge (purple). 
This is the area in which an incident photon will form a resistance blockage. The current then 
moves back down to the bottom layer and is channeled out of the device by the output leads 
(red). Note that the leads (red) pass under the pixel bridges, between the posts and that the 
input/output leads are all on the same layer. The external detection electronics would then be 
similar industry standards.  As a final aside each pixel can be wired as a completely independent 
circuit, but the number of leads will increase and counting simultaneous events between elements 
can become difficult. 

3.3 Theory/experimental requirements of imperfect two-qubit linear optical photonic gates 
Knill, Laflamme, and Milburn (KLM) significantly advanced the prospect of single-photon 
quantum computing in their seminal paper [Knill01], in which they overcame the need for 
nonlinear interactions by using the inherent nonlinearity of photon measurements. In this 
scheme, the computational system is combined with ancillary modes, and the gate operation is 
performed on the enlarged state space. The ancilla modes are measured with photon-number-
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resolving detectors, such as those described above leaving the computational modes undisturbed 
and in the desired output state provided the measurement is successful. In our previous work 
[Uskov10, Uskov09, Smith11], we have shown that a combination of analytical and numerical 
techniques may be used to design optimal linear optical transformations implementing two- and 
three-qubit entangling gates. Here we show results for non-ideal gates and suggest an experiment 
to test them.  

The probabilistic nature of quantum measurement implies a trade-off between the success rate of 
the operation (the probability of obtaining the desired measurement outcome for the ancillary 
modes) and the fidelity (the overlap between the actual and desired states of the computational 
system when the ancilla measurement is successful). Previously, solutions were obtained that 
have the maximum possible ancilla measurement success probability given the constraint of 
perfect fidelity for a specified transformation [Uskov10, Uskov09]. In practical implementations, 
however, the goal of perfect fidelity may not always be desirable or even attainable. We have 
therefore generalized our previous techniques to the case of imperfect fidelity, and investigated 
the above-mentioned trade-off between the fidelity and success of the linear optical 
transformations. It was found that for sufficiently small deviations from perfect fidelity, a single 
optimization parameter determines the relationship between fidelity and optimal success rate 
[Smith11]. 

The input state to the experiment |Ψcomp>x|Ψancilla> is a product of the computational state 
containing Mc photons in Nc modes, and an ancilla state containing Ma photons in Na modes. 
The Nc computational modes are those on which the actual gate is intended to act. Assuming 
dual-rail encoding, each qubit is represented by one and only one photon in two computational 
modes, so we have Mc = Nc=2. The ancilla state may in general be separable, entangled, or an 
ebit state carrying spatially distributed entanglement [Wilde09], though here we propose using 
only a product state of single-photon and zero-photon ancillas, which are relatively simple to 
produce in an experimental setting. 

The linear optical device transforms the creation operator ܽ௜
ሺ௜௡ሻற

 associated with each input mode

i to a sum of creation operators ∑௝ ௜ܷ,௝ ௝ܽ
ሺ௢௨௧ሻற.  Here U, which contains all physical properties of

the device, is an N x N matrix, where N = Nc + Na is the total number of modes. The total input 
state may be written as a superposition of Fock states |ߖ ൐ൌ |݊ଵ, ݊ଵଶ, … , ݊ே ൐, where ni is the 
occupation number of the i-th input mode, and ∑݊௜ ൌ ௖ܯ ൅ܯ௔ ൌ  is the total number of ܯ
photons. The input state is transformed as 

௢௨௧ߖ| ൐	ൌ ௢௨௧ߖ|ߗ ൐ൌ ∏ ଵ

ඥ௡೔!
ே
௜ୀଵ ቀ∑ ௜ܷ,௝

ே
௝ୀ௜ ௝ܽ

ሺ௢௨௧ሻறቁ
௡೔

. (1) 

We note that Ω is a multivariate polynomial of degree M in the elements ௜ܷ,௝. Once the 
transformation is complete, a measurement is applied to the Na ancillary modes. In the case of a 
number-resolving photon-counting measurement,ߖۦ௠௘௔௦௨௥௘ௗ| ൌ ൻܭே೎ାଵ, ,ே೎ାଶܭ … ,  ே|, where Kiܭ
is the number of photons measured in the i-th mode of the ancilla. The resulting transformation 
of the computational state is a contraction quantum map หߖ௜௡

௖௢௠௣ൿ ൌ ௜௡ߖหܣ
௖௢௠௣ൿ/ฮߖ|ܣ௜௡

௖௢௠௣ൿฮ
[Kraus83], where A = A(U) is defined by, 



Approved for Public Release; Distribution Unlimited. 
13 

௜௡ߖหܣ
௖௢௠௣ൿ ൌ ൻܭே೎ାଵ, ,ே೎ାଶܭ … , .௜௡ൿߖหߗேหܭ (2) 

The linear operator A, which maps computational input states to computational output states, 
contains all the information of relevance to the transformation. We define the fidelity as the 
probability that the desired target gate ATar has been faithfully implemented on the computational 
modes given a successful measurement of the ancilla modes: 

ሻܣሺܨ ൌ
หܶݎሺܣற்ܣ௔௥ሻห

ଶ

2ெ೎ܶݎሺܣறܣሻ
, (3) 

since Tr (ATar†ATar)=2M
c for a properly normalized target gate. As we are interested in deviations 

from perfect fidelity, we define 1= ߜ-F as our main parameter [Smith11]. 

We define the success rate of the ancilla measurement to be given by an average over all 
computational input states, 

ܵሺܣሻ ൌ
௔௥ሻ்ܣறܣሺݎܶ
2ெ೎‖ܷ‖ଶெ

, (4) 

for general complex U. Note that U need not be unitary, as any matrix can be made unitary via 
the unitary dilation technique by adding vacuum modes [Knill02, uskov09]. We also note that 
the Hilbert-Schmidt norm ۧܣ|ܣۦ ൌ  ሻ/2ெ೎ , used in our definition of S, is bounded aboveܣறܣሺ	ݎܶ
by the square of the operator norm,  ‖ܣ‖ଶ ൌ ሺ‖ܣ‖௠௔௫ሻଶ ൌ ௜௡ߖ൫ൻݔܽܯ

௖௢௠௣ห்ܣ௔௥றܣหߖ௜௡
௖௢௠௣ൿ൯ and

below by ሺ‖ܣ‖௠௜௡ሻଶ ൌ ௜௡ߖ൫ൻ݊݅ܯ
௖௢௠௣ห்ܣ௔௥றܣหߖ௜௡

௖௢௠௣ൿ൯ where the maximum and minimum are
taken over the set of properly normalized input states. In the limit F ⟶1, ‖ܣ‖௠௔௫/‖ܣ‖௠௜௡⟶1, 
and all definitions of the success rate coincide. 

3.4 Nonlocality, entanglement witnesses and supra-correlations 
While entanglement is believed to underlie the power of quantum computation and 
communication, it is not generally well understood for multipartite systems. Recently, it has been 
appreciated that there exists proper no-signaling probability distributions derivable from 
operators that do not represent valid quantum states.  Such systems exhibit supra-correlations 
that are stronger than allowed by quantum mechanics, but less than the algebraically allowed 
maximum in Bell-inequalities (in the bipartite case). Some of these probability distributions are 
derivable from an entanglement witness W, which is a non-positive Hermitian operator 
constructed such that its expectation value with a separable quantum state (positive density 
matrix) ρsep is non-negative (so that Tr[W ρ]< 0 indicates entanglement in quantum state ρ). In 
the bipartite case, it is known that by a modification of the local no-signaling measurements by 
spacelike separated parties A and B, the supra-correlations exhibited by any W can be modeled as 
derivable from a physically realizable quantum state ρ. However, this result does not generalize 
to the n-partite case for n>2. Supra-correlations can also be exhibited in 2- and 3-qubit systems 
by explicitly constructing “states” O (not necessarily positive quantum states) that exhibit PR 
correlations for a fixed, but arbitrary number, of measurements available to each party. In this 
area of research we examined the structure of “states” that exhibit supra-correlations. In addition, 
we examined the affect upon the distribution of the correlations amongst the parties involved 
when constraints of positivity and purity are imposed. We investigated circumstances in which 
such “states” do and do not represent valid quantum states. 
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Physics imposes limits on the correlations that can be observed by distant (i.e. spacelike 
separated) parties.  In particular, special relativity (SR) implies the principle of no-signaling 
(NS), that is correlations cannot lead to any sort of instantaneous communication between 
spacelike separated observers.  Quantum correlations may be stronger than classical, and their 
violation of Bell inequalities (BI) [Bell64] suggest that quantum mechanics (QM) cannot be 
regarded as a local realism theory. Tsirelson [Tsirelson80] showed that there is an upper bound 
to the violation of BI, which implies that the amount of non-locality allowed by QM is limited. 
Popescu and Rohrlich (PR) showed [Popescu94] that there exists a broad class of no-signaling 
theories which allow stronger-than-quantum or supra-quantum correlations. PR developed a 
valid joint probability distribution whose violation of the BI lie above those of physical quantum 
correlations and below the allowed algebraic maximum of the BI (the latter are called PR-
Boxes). Thus, the principle of NS imposed by SR does not single out QM from these other post-
quantum NS theories [Masanes06] (PQNS). 

These PQNS have much in common with QM such as no-cloning, information-disturbance 
tradeoffs, security for key distribution, and others. Recently, van Dam [van Dam05] showed that 
PR-Boxes make communication complexity trivial, which is not the case within QM. Other 
researchers have shown that PQNS theories would lead to implausible simplification of 
distributed computational tasks (see [Pawlowski09] and references therein). It is now widely 
believed that theories in which communication/computational complexity is trivial are very 
unlikely to exist. It is therefore important to understand the structure of the PQNS and ultimately 
to find physical and informational principles that rule them out. In this area of research we took 
steps in that direction by investigating the structure of PR correlations by forming operators 
which reproduce these PR probability distributions. We investigated circumstances in which they 
do and do not represent valid quantum states. 

Bell Inequalities (BI) 

Nonlocality is expressed by means of violations Bell inequalities1 (BI) which set upper bounds 
for classical correlations arising from local-realistic theories. For bipartite systems, the most well 
know BI is the Clauser-Horne-Shimony-Holt (CHSH) inequality7 defined as follows. Consider a 
bipartite system A B, Alice and Bob, each possessing measurement directions A,B =A and C,D 
=B taking measurement values  a,b,c,d ={± 1}. We define the correlation E(AC) between A=A 
and C=B as 

, { 1}

( ) ( , | , )

( , | , ) ( , | , ) ( , | , ) ( , | , )

a c

E AC AC a c P a c A C

P A C P A C P A C P A C

 

 

           


(5)

In (5), we define P(a,c|A,C) as the joint probability that given the (inputs) measurement 
directions A for Alice and C for Bob, Alice obtains the (outputs) measurement result a and Bob 
obtains the value b, subject to the normalization condition 

, { 1}
( , | , ) 1, , .

a c
P a c A C A C

 
   Finally, 

we define the following CHSH correlation parameter S by 

( ) ( ) ( ) ( ).S E AC E BC E BD E AD    (6)
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S has been cleverly constructed as the expectation value of the quantity Arg≡A(C-D) + B(C+D).  
If A,B,C,D are classical random variables taking values ± 1 then it can be readily seen that if (i) 
C=D, then |Arg| = |B(2C)| = 2 and if (ii) C=-D, |Arg| = |A(2D)| = 2. Thus, for classical correlation 
we have the CHSH inequality 

CHSH inequality:  | ( ) ( ) ( ) ( ) | 2ClS E AC E BC E BD E AD S      (7)

(where the subscript “Cl” denotes “classical”).  For a large class of measurement directions (but 
not all), quantum states can violate the CHSH inequality (i.e. |S|>2) up to a maximum value 
shown by Tsirelson [Tsirelson80] to be SQ = 2√2.  Here, a quantum state is defined as a positive 
(i.e. non-negative eigenvalues) Hermitian matrix with unit trace denoted by the symbol ρ. The 
archetypical example is the singlet (Bell) state  

   singlet 2 01 10 2       (8)

with measurement directions in the x-y plane: ˆ ˆ ˆ ˆ ˆ ˆ, , ( ) 2 , ( ) 2A x B y C x y D x y      that saturates 
the Tsirelson bound with S= -SQ = -2√2. This is a manifestation of the stronger than classical 
correlations that can be exhibited by quantum states. (Note: quantum states with measurement 
directions such that the CHSH inequality is satisfied, i.e. S≤2, are not distinguishable from 
classical states by the correlation parameter S). 

It is instructive to note that the CHSH inequality in (7) can be derived [Schumacher91] as a 
statement of a classical quadrilateral inequality for the correlation metric 

( ) 1 ( ) ( , | , ) ( , | , ) 0.AC E AC P A C P A C          Substituting this expression into (7) yields 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2AC BC BD AD S E AC E BC E BD E AD              (see Figure 10). Thus, the  

Figure 10. CHSH inequality derived as a violation of the classical quadrilateral inequality. 

violation of the CHSH inequality by quantum states can be interpreted as a violation of the 
classical quadrilateral inequality which, for certian measurement directions, yields the distance 
Δ(AD) via the direct path A-D to be smaller than the sum of the distances around the indirect 
path A-C-B-D. 

Returning to the CHSH inequality (7), one notes that it is bounded by the algebraic maximum |S| 
≤ SAM=4. This follows from the fact that the correlations E are bounded by |E|≤1. This latter 
result can be inferred by writing E = P++ + P-- - (P+- + P-+) = 2(P++ + P--)-1 = 1-2(P+- + P-+), 
where = P++ + P-- + P+- + P-+ =1 has been used. Using the fact that 0≤ P++ + P-- ≤1 and 0≤ P+- 
+ P-+ ≤1 in the previous two expressions for E, yields the desired bound |E|≤1. Therefore, if the 
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first three correlations in (7) take the value ±1 and the last correlation takes the value 1 , we 
obtain S=±4. The implication of this observation is that the regime 2√2 ≤ S ≤ 4 represents supra-
correlations that are stronger than quantum, yet are unphysical by Tsirelson’s bound, i.e. cannot 
be realized by any physical quantum state. The salient question to study is what ‘natural’ 
principles determine the exclusion of such supra-correlations. As a first hypothesis, one might 
surmise that the principle of no-signaling from special relativity (i.e. that information cannot be 
instantaneously broadcast between spacelike separated observers) might exclude supra-
correlations. Surprisingly, this is not the case. In 1994, Popescu and Rohrlich (PR) [Popescu94] 
were able to construct a valid joint probability distribution between a pair of spacelike separated 
observers that (i) satisfies the non-signaling principle, and (ii) yields the algebraic maximum 
correlations allowed by the CHSH inequality. Here the adjective ‘valid’ implies that the joint 
probability distribution, and all its derived marginal probability distributions, obtain values 
between 0 and 1, and satisfy the appropriated normalization requirements (i.e. the joint and all 
marginal probability distributions summed over all outcomes for any measurement settings 
yields unity).  These correlations are now called PR correlations, which we describe in the next 
section. 

No Signaling (NS) Theories and PR Correlations 
We wish to consider correlations between n spacelike separated parties (observers) A1,…,An, who 
can perform m possible measurements x1,…,xn (xi={0,1,…,m-1), with r possible outcomes 
a1,…,an (ai={0,1,…,r-1)  The observed correlations will be described by the joint probability 
distribution 1 2 1( , , , | , , )n nP a a a x x  giving the probability that the parties obtain the measurement 
values (outputs) a1,…,an when their local measurement apparatuses (inputs) are set to x1,…,xn. 
The joint probability distribution is constrained only by the conditions 

1 2 10 ( , , , | , , ) 1n nP a a a x x    and the normalization condition 
1, ,

1 2 1( , , , | , , ) 1
n

n na a
P a a a x x 



  for 

all measurement settings x1,…,xn. 

Imposing the no-signaling (NS) constraint, i.e. adherence to the requirement from special 
relativity that spacelike separated measurements should not influence each other due to the finite 
speed of light (communication), requires that the marginal probability distributions satisfy the 
additional condition 

1

1 2 1 1 1 1 2 1
, , {0,1}

No Signaling: ( , , , | , , ) ( , , | , , ) ( , , , | , , ).
k n

k n n n k k
a a

P a a a x x P a a x x P a a a x x
 

 


      (9) 

Here, the first equality in (9) formally defines the marginal probability distribution describing the 
measurement outcomes of the first k parties, when the last n-k outcomes are un-observed and 
hence summed over. Note, this marginal probability distribution 1 2 1( , , , | , , )k nP a a a x x  formally 
depends on all n measurement settings. The last equality in (9) imposes the NS constraint 
requiring that the marginal probability depends only upon the k measurement settings of the 
parties participating in the joint measurement (and not on the remaining n-k measurement setting 
of the unobserved outcomes).  

As first pointed out by Pospescu and Rohrlich [Popescu94], the NS constraint (9) by itself does 
not single out classical and quantum theories, i.e. |S| ≤ SQ. PR proposed the following joint 
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probability distribution for two parties (Alice and Bob) with two measurement settings (inputs) 
x,y ={0,1}, and two measurement outcomes (outputs) a,b ={0,1} given by 

1/ 2 if 
PR Box: ( , | , ) .

0 otherwise

a b x y
P a b x y

  
 


(10)

By considering all possible inputs and outputs, it is straightforward to show that PR correlations 
of (10) satisfy all the requirements for a NS theory as follows: normalization (total probability)  

, {0,1}

0, 1,

0, 1,

( , | , )

(0,0 | , ) (1,1| , ) (0,1| , ) (1,0 | , ) ,

0 1
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a b

x y x y

x y x y

P a b x y
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x y

 

 



 

 

   

   
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 

 



 

 (11)

and the NS constraint 
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       
 

       
         
 
 



 

, ( , i.e. ( | ) 1/ 2 indep of , ).a x Isotropic P a x a x 

(12)

With the PR Box define above in (10) we can compute correlations as 

0, 1,

( , | , ) (0,0 | , ) (1,1| , ) (0,1| , ) (1,0 | , ) ,

0 1
(1/ 2 1/ 2) (1/ 2 1/ 2) ,

1 if 0, i.e.( , ) {(0,0), (0,1), (1,0)},  

1 if 1, i.e.( , ) (1,1),

x y x y

E a b x y P x y P x y P x y P x y

a b a b

x y x y

x y x y

  

   

   
   

   
    

 

 (13)

where we have used 
, { 1}

( , | , ) , ( , | , ),
a b

E a b x y a b P a b x y
  

   where 1 2 ( 1 2 )a a b b      associates the 

measurement values ( ) { 1, 1}a b     with the measurement value labels (bits) ( ) {0,1},a b 
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respectively. Therefore, in Figure 10, assigning Alice’s measurement directions A,B =A the bit 
labels xA=1 and xB=0, and Bob’s measurement directions C,D =B the bit labels yC=0 and yD=1, 
and using (6) yields the algebraic maximum SM=4 of the CHSH inequality, as illustrated in 
Figure 11. 

Figure 11. PR Box with joint probability distribution achieving the algebraic maximum 
SM=4 of the CHSH inequality. 

Since  SM=4>SQ=2√2, no quantum (i.e. physically realizable) state can reproduce the above PR 
probability (10). However, the following “state” [Acin10] O     

       with 

(1 2) 2   and Bell states ( 00 11 ) 2 ,    yields the PR probability (10) through the usual 

trace rule ( , | , ) [ ]x y
PR a bP a b x y Tr O M M  with 2 1{ , } { , }A Bx x

a aM M   and{ , }C Dx x
b bM M 1 2{( ) 2 ,  

1 2( ) 2}  , where 
{1,2 ,3}{ }i i  are the usual Pauli matrices. Note that the form of the joint 

measurement between Alice and Bob written as a pure tensor product of local observables
,x y

a bM M ensures the locality of the spacelike separated measurements, which cannot increase 
entanglement between the parties. (A measurement involving the sum of pure tensor products, 
such as x y x y

a b a bM M M M    which might possibly create entanglement, would involve non-local 
measurements between the parties, which could only be physically realized if the parties were 
brought together).  The important point is that O does not represent a physical quantum state 
since it is non-positive, i.e. it possesses the negative eigenvalue (1 2) 2   . Henceforth, we 
shall refer to non-positive, unit trace Hermitian operators O capable of producing NS probability 
distributions as “states,” and reserve the specific term “quantum state” or “q-state” for the 
physically realizable positive, unit trace Hermitian operators denoted as ρ≥0, (i.e. density 
matrix). 

Following Acin et al. [Acin10] we desired to investigate all sets of n-party spacelike correlations 
in terms of local quantum observables (measurements) 1

1non-sig
n

n

xx
a aM M M   that ensure NS. 

These correlations can be written in the form 

1

11 1( , , | , , ) [ ].n

n

xx
O O n n a aP P a a x x Tr O M M      (14)
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Without loss of generality, we can take the local measurement operators x x
a a x

M a a   to be 

the projection operators onto “spin-component” a in the “direction” x. Requiring that proper 
probabilities be derived from all local quantum measurements imposes the condition that O be 
positive on all product states. This implies that O=W is an entanglement witness (EW, see 
[Guhne09])  with the property , , , , 0.W       Here some definition are helpful. A q-state 

is separable (contains only classical correlations) if it is of the form 1 2 NAA Asep
i i i ii

p       

where each 1A
i is a local density matrix and 1.ii

p  (If a q-state is not separable, it is entangled). 

Each local density matrix has a (non-unique) ensemble decomposition kA k k k
i ij ij ijj

p   where 

1.k
i jj

p   The requirement that W is positive on all product states , , , , 0W      ensures 

that [ ] 0sepTr W  from the form of ρsep. A q-state ρ such that [ ] 0Tr W  is then entangled (since it 

is not separable), and W is said to “witness” (or exhibit) the entanglement of ρ. Note that W is in 
general a non-positive Hermitian operator. In the context of (10), we now consider O→W as a 
state (not necessarily a q-state) from which to derive NS correlations through the joint 
probability distributions 

1

11 1( , , | , , ) [ ] 0.n

n

xx
W N n a aP P a a x x Tr W M M       (15)

The correlations (15) are termed Gleason correlations by Acin et al. [Acin10].  

The subtle distinction between (14) and (15) is that the latter produces positive probabilities for 
all local NS measurements, while the former may produce non-negative probabilities on only a 
subset of NS measurements. This distinction is important since it has been shown [Guhne09, 
Barnum10] that for bipartite systems n=2, any Gleason correlation 

1 2

1 21 2 1 2( , | , ) [ ] 0x x
a aP a a x x Tr W M M   can be converted to a probability distribution derived from a q-

state 
PB PB PB    with modified measurements 1 2 1 2( , | , )P a a x x 1 2

1 2
[ ]x x

a aTr W M M 

1 2

1 2
[ ] 0.

PB

x x
a aTr M M    Here PB is any pure bipartite state (not necessarily maximally 

entangled).  The proof relies on the explicit use of the Choi-Jamiolkowski isomorphism (CJI) 
[Guhne09, Barnum10, Vedral97] which allows any bipartite (n=2) witness W to be written as 

( 2) ( )( ),
PB

nW I 
  where  is a positive trace preserving map. In the above, 2 2

2 2

*( )x x
a aM M 

where Λ* is the adjoint of the map Λ, i.e. *Tr[A ( )]=Tr[ ( ) ].B A B   The proof then follows directly 

as 

*

( , | , ) [ ] [( )( ) ]

= [ ( )( ) ] [ ( ) ] [ )],

BP

BP BP BP

x y x y
W a b a b

x y x y x y
a b a b a b

P a b x y Tr W M M Tr I M M

Tr M M I Tr M M Tr M M



  


  

    

     
 (16) 

where the second equality uses the CJI, the third equality uses the cyclic property of the trace, 
the fourth inequality utilizes I  acting to the left on the tensor product measurements x y

a bM M

thereby introducing the adjoint  Λ* operation and the modified local measurement operation
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2 2

2 2

*( )x x
a aM M  in the last equality.  Acin et al. [Acin10] point out that the CJI decomposition 
( 2) ( )( )

PB

NW I 
  in general fails for n>2 (which they demonstrate by a specific example). 

Thus, the Gleason correlations (15) are strictly larger (|S| >SQ) than quantum correlations for n>2 
(and equivalent only for n≤2). The state O     

       used in the example of PR 

correlations in the discussion after Figure 11 is not an EW since it can produce negative 
probabilities for measurements other than those considered (it would be an EW if it produced 
positive probabilities for all measurement choices). Acin et al. [Acin10] classify the distributions 

1 1( , , | , , )n nP a a x x  as (i) No-Signaling if and only if P can be written in the form of (14), (ii) 

Quantum whenever O is positive (O≥0), and (iii) Local if and only if O corresponds to a 
separable quantum state. In the following, we investigate the NS correlations of (10) and the 
conditions for which they become either Gleason, or Quantum correlations. 

3.5 Efficient Cluster State Generation 
 
Entangled quantum states of light are in great demand in quantum technology today. Photonic 
quantum information processing, and metrology are all based on exploiting special properties of 
non-classical multipath entangled states. Due to their high robustness against decoherence, and 
relatively simple manipulation techniques, photons are often exploited as the primary carriers of 
quantum information. A generally accepted encoding scheme using photons is dual rail encoding, 

in which logical qubit states   and   are  encoded in two-mode Fock states 1,0  and 0,1 , 

respectively. In experimental photon implementations, these two modes are commonly 
associated with horizontal and vertical polarizations. An attractive feature of such an encoding is 
that single-qubit SU(2) operations can be performed by the standard techniques of linear optics, 
using practically lossless beam splitters and phase shifters. However, when it comes to 
entangling photon-encoded qubits, a problem immediately arises: the absence of a photon-photon 
interaction for coupling the photons. 

Optical Kerr nonlinearity can effectively couple photons through their interaction with a 
dispersive medium. However due to the low photon numbers involved in typical quantum-
information processing tasks, such nonlinearity is extremely weak and is of little practical use. 

Alternatively, an effective photon-photon interaction may be produced using ancilla modes and 
projective measurements. A quantum state generator can then be realized utilizing only linear-
optical elements (beam splitters and phase shifters) in combination with photon counters, at the 
expense of the process becoming probabilistic. The revolutionary discovery by Knill, Laflamme, 
and Milburn (KLM) [Knill01], launched the field of linear optical quantum information 
processing, was that such a device is capable of transforming an initially separable state into 
entangled state. Since the transformation depends on the success of the measurement, the 
transformation has a probabilistic nature. 
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The paradigm of quantum computation is based on peculiar laws of quantum mechanics which 
potentially allow manipulation and processing of information at exponentially faster rates as 
compared to classical computers. There exist at least two distinct schemes of implementing 
quantum computation. Historically the first scheme is based on the sequential application of a 
number of logical gates to elementary carriers of quantum information (qubits).The second 
scheme, discovered in 2001 by Hans  Briegel and Robert Raussendorf [Raussenforf01], does not 
have a classical counterpart: it exploits the purely quantum phenomenon of wave function 
collapse under a measurement. A computation is performed by inducing non-unitary dynamics in 
a carefully prepared quantum state of multiple mutually entangled qubits by applying a sequence 
of measurements according to a desired computational algorithm. Such quantum states are called 
cluster states or, more generally, quantum graph states.  

Since the cluster state paradigm offers better possibilities for error correction this scheme became 
the leading candidate for the physical realization of quantum information processing. From a 
physical point of view, photon based implementations of cluster states, where information is 
encoded in wave functions of single photons, has important advantages compared to other 
technologies. 

Optical transformation by postselection in coincidence basis 

The quantum measurement-assisted linear optical quantum computer was originally envisioned 
as a network of linear optical elements (for example in the original KLM scheme), where the 
controlled sign (C-phase or, equivalently, CZ) gate is constructed as a combination of two 
nonlinear sign (NS) gates. This approach was effective as a “proof of principle” for linear optical 
entangling transformations. However, for the technical purpose of building a functional 
microchip-based device, one does not need to partition the transformation into blocks. Instead, 
the device may be considered as an “integrated light circuit” which performs one large operation 
and one needs to make use of theoretical tools to optimize the fidelity, success, and robustness of 
the device for a given set of resources available in the form of ancilla photons.  

First we shortly describe the general scheme of liner-optical transformation. 
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Figure 12. A general measurement-assisted transformation using a linear optical 
interferometer [VanMeter07]. The “computational” input state  in  is usually a 
separable state of two or more dual-rail encoded qubits. The ancilla state usually is 
assumed to be a separable state. 

 

The core of the linear optical device is the transformation, 

† †

1

N

i ij j
j

a a


 U       (17) 

of the photon creation operators from the input to the output state. Here N  is the total number of 
optical modes, and U  is a unitary N N  matrix, which contains all physical properties of the 
linear optical device. The induced state transformation   is a high-dimensional unitary 
representation of the matrixU . Its action is given by the following algebraic operation on the 

input state  ( ) ( )intotal input ancilla   , 

 
†

( ) ( ) †

1 1

1
0 0

! !

i
i

nnN N
total output total input i

ij j
ji ii i

a
a

n n
 

 

 
    

 
    U    (18) 

The map between operators U  is a group homomorphism, i.e. if 1 1U  and 2 2U  

then 1 2 2 1 U  U . 

Next, a Von-Neumann measurement in the Fock basis is performed on a subspace of the final 

state ( )total output  and only one measurement outcome is accepted as a successful implementation 

of the transformation. If the measurement involves only the set of ancilla modes, then 

mathematically this operation is equivalent to projecting the ( )total output  state onto a predefined 

Fock state in the ancilla modes ( )
1, 2,...

mesurement
m m Nk k k   . 
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   ( ) ( ) ( )
1, 2, ... .

c c

comp comp comp
out N N N input inputk k k      A    (19) 

Here A  is a contraction Kraus linear operator [Kraus83] acting on the input computational state 

denoted above as ( )in  In the literature transformation (19) is called a measurement-assisted 

transformation or a Stochastic Local Operations and Classical Communication (the classical 
communication part is important only for schemes utilizing feed-forward technique to boost the 
success probability).  

A special type of measurement-assisted transformation is achieved by merging computational 
and ancilla modes in the general scheme described above. For these transformations, photons in 
the computational modes are playing two roles at the same time: i) carriers of quantum 
information ii) generators of measurement-induced optical nonlinearities. In other words we get

( ) ( )in total input  . 

 
Figure 13. State transformation where photo-detection is used to detect the presence of a photon 
in either one of two modes of a dual-rail pair. Since this type of measurement does not induce a 
complete collapse of the wave function it will not destroy quantum information encoded in 
computational dual-rail subspaces including any form of multiqubit entanglement. 

 

To introduce a proper mathematical description of such schemes we first need to discuss the 

notion of dual-rail encoding. Contrary to single-rail encoding, when qubit logical states 0  and 

1  are encoded in vacuum and one-photon states correspondingly, in dual-rail encoding logical 

states 0  and 1  are represented by horizontal H  and vertical V  polarizations of one spatial 

mode. From the mathematical point of view horizontal and vertical modes are equivalent to any 
two orthogonal (spatial) modes since linear optical transformations of photon creation operators 
of input modes can be equally implemented for polarization rotations and transformations 
between modes. Therefore dual-rail encoding in general involves two abstract photonic modes 
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and the qubit Hilbert space is simply the single-photon eigenspace of the photon number operator
† †
1 1 2 2N̂ a a a a  . Denoting as ,

n
H V  the states with horizontal and vertical polarization in the n-th 

spatial mode can be written in the multiqubit space as
1

( , )
N

n
n

span H V


 . Now instead of a 

projection on the ancilla state, as in equation (19), the Von-Neumann measurement is represented 

by the projection operator on the computational basis    
1

ˆ
N

comp

n n n n
n

H H V V


 P , and 

equation (19) takes the form, 

 ( ) ( ) ( )ˆ compout in in   P  A .     (20) 

In principle, the operation (20) implies the application of a quantum non-demolition (QND)-type 
device which detects the presence of a photon in two modes without disturbing its quantum state. 
However, such a requirement can be eliminated in the cluster model of quantum computation 
when the read-out operation is nothing else but a multiqubit measurement in the basis of qubit 
product states. Such elimination imposes certain restrictions on the possibility of concatenating 
linear optical transformations, defined by equation (1), which we will discuss in detail elsewhere. 

Describing the quantitative properties of transformations (20) we first clarify a common 
misconception concerning “transformations” and “gates’. The latter is always a unitary operator 
while the former in general is not (more mathematical details can be found in texts on semi-
groups). A special class of transformations (19) or (20) generating matrices A  such that 

† ˆ,s I s RA A =  are called “operational unitary”. The parameter s in this relation is simply the 

success probability of the transformation. Transformations of this type can simulate a unitary 
gate, such as the CNOT gate, for example. There is a significant body of work dedicated to the 
optimization of such transformations. However in the present paper the focus of our study is on 
how such transformations act on specific states, i.e. we are interested only in the action of such 
transformations on a special input state which is taken to be either a product of single-qubit states 
or a product of Bell states. 

Fidelity and success probability of optical measurement-assisted transformation of a 
quantum state 

We introduce two important characteristics of state transformation which determine the 

usefulness of a transformation for generating a desired (or target) state ( )tar . 

The first characteristic of the state transformation quantifies how close the “out-state” ( )out  is 

to the target state ( )tar , is called the fidelity of the transformation. Fidelity is defined in terms 

of the standard Fubini-Study distance 
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  ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( , ) cosout tar out tar tar out out out tar tar            (21) 

Here ( )tar  is the state given by equation (20). For numerical computations it is expedient to 

accept the following non-singular parameter as the measure of fidelity: two states have zero 
distance   if parameter  

    
2 2( ) ( ) ( ) ( ) cos 1out tar out outf       U   (22) 

is equal to one. If the measurement results in a desired outcome the transformation will produce 

a “collapsed” normalized state ( ) ( ) ( ) ( )ˆ out out out out     and the condition of unit fidelity (

1f  ) guarantees that ( ) ( )ˆ out i tare   (i.e. the target and out-state differ only by a global 

phase). 

Technically the most important characteristic of a measurement-assisted transformation is the 
value of the success probability of the transformation. While for the gate optimization problem 
success probability is usually introduced as the Hilbert-Schmidt norm of the operator A :

†( ) / cs Tr D AA , where cD  is the dimensionality of the Hilbert space, the success probability of 

the state transformation can be defined simply as a normalization matrix element 

 ( ) ( ) ( ) † ( ) ( ) ( )ˆ( ) compout out in in in ins         P U A A .   (23) 

The goal of the current study is to find the linear optical matrix U  which provides the largest 
possible success probability ( )s U  with perfect fidelity ( ( ) 1)f U  for generating linear cluster 

states from single-qubit product states or two-qubit Bell states. Mathematically, both ( )s U and 

( )f U  are real-valued functions on the compact SU(N) manifold of unitary operators U  and the 

problem of finding a global maximum of ( )s U  while keeping perfect fidelity belongs to the 

category of restricted optimization problems. The numerical implementation of the optimization 
problem in the present study is similar to technique developed for gate optimization, where 
technical details of the optimization code are described. The main feature of the numerical 
optimization routine which is important for the present paper is that global optimization is 
pursued by implementing multiple cycles of local optimization with varying starting points and 
then plotting and analyzing the data for local maxima in the increasing order of success rate. 
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4.0 RESULTS AND DISCUSSION 

4.1 Multipli-entangled photons from a spontaneous parametric down-conversion source 

Experimental analysis and testing apparatuses for Schioedtei are very similar to that for any 
SPDC source.  With the more complex ring pattern generated though there are modifications one 
must do to the standard detection scheme.  The experimental configuration for Schioedtei is 
shown in Figure 14.  The testbed consists of a violet (405 nm) femtosecond pulsed pump source 
(Millenia PRO 15sJ > Tsunami 3960-15HP > Inspire Blue FM) with an average power of ~1.4 
W, ~100 femtosecond pulses and a repetition rate of 80 MHz. The 405 nm pulses first pass 
through a ~12.5 mm quartz pre-compensator and a half-wave plate set to 22.5° to rotate the input 
linear polarization to the required 45° for equal excitation of the crystals before entering 
Schioedtei. Proper alignment of the crystal was accomplished with live images from a cooled 
CCD camera (Princeton Instruments Pixis 1024BR). The photons were collected in free space 
collimators located 1.5 meters behind Schioedtei. This distance is the minimum amount required 
to obtain the useable spatial separation required for detector access to the middle blue diamond 
of intersection points (5, 6, 7, and 8).  The post-compensating crystals, inserted in the down-
converted photon paths, are 8x8x1 mm type II phase matched β-BBO (at angles of θ = 41.9° and 
φ = 30°) as Schioedtei’s orientation is non-collinear and there is no interaction between the pump 
and the compensators.  These compensators could not be used for compensation of a collinear 
configuration as they were phase matched for SPDC at 810 nm when exposed to a 405 nm 
excitation beam.  Photon collection was accomplished via fiber coupled collimators immediately 

 

Figure 14. Experimental testbed to analyze the Schioedtei source. 

followed by 2 nm bandpass filters.  The output of the bandpass filter was routed directly into 
fiber-coupled single photon counting avalanche photodiodes (APDs) (Perkin Elmer SPCM-
AQ4C). Coincidence detection was accomplished by a four channel coincidence counting 
module (CCM) [Branning11].  
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Figure 15. False color CCD images of custom crystal assembly (1 sec exposure). A,B are the 
type II non-collinear outputs from each individual crystal. C is the combined output from the 
crystal stack. 

A trio of false color CCD camera images of Schioedtei output is shown in Figure 15.  The twelve 
overlap regions are clearly visible and the spatial symmetry of the output should be clearly noted.  
The orientation of the crystal assembly gives an approximate Gaussian profile on spots 5,6,7,8 
and a slightly elongated profile for spots 1,2,3,4,9,10,11,12. The alignment image in Figure 16 is 
utilized for aligning the proper orientation of the rings while a back propagated beam shown in 
Figure 16 aligns the collimators to the intersection points. 

 

Figure 16. Alignment image of the Schioedtei crystal stack. 

As stated, Schioedtei was constructed from β-BBO though any type II material can be used.  
Materials such as BiBO (Bismuth Borate, BiB3O6) have been shown to have a higher photon 
generation rate than β-BBO [Rangarajan09] and this will be the next step for Schioedtei. 
Secondly, increasing the useable photon count rate in Schioedtei can be accomplished by 
factoring the GVM phase matching constraint [U’Ren06] into the crystal construction. A GVM-
matched configuration [Fanto10] is possible by alternating reduced thickness Schioedtei and α-
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BBO layers. α-BBO can be used as a compensator since there is no second order nonlinear effect 
in α-BBO crystal due to the centric symmetry in its crystal structure. Such a GVM source would 
provide the same up to six spatially separate entangled pairs as Schioedtei, while alleviating the 
need for spectral filtering of the photons. An increase in useable signal rates of 10x over a typical 
type II source is realizable with GVM matching.      

Schioedtei source uses and applications 

Another applicable area of extreme interest is in the generation of photon-based cluster states.  
Cluster states play a central role in the measurement-based one-way quantum computation 
approach [Walther05, Raussendorf01]. In this scheme, the entanglement resource is provided in 
advance through an initial, highly entangled multi-qubit cluster state and is consumed during the 
quantum computation by means of single-particle projective measurements. The feedforward 
nature of the one-way computation scheme renders the quantum computation deterministic, and 
removes much of the massive overhead that arises from the error encoding used in the standard 
quantum circuit computation model [O’Brien07].  Figure 17 illustrates a scheme for utilizing the 
output of Schioedtei to generate a four photon cluster state, |4ۧܥ [Schmid07].  This particular 
example employs the spots 1,2,3,4 and requires insertion of two half-wave plates, a SWAP gate 
and a controlled-phase (CPhase) gate.  This scheme could be expanded to include the other eight 
spots to generate even larger cluster states.   Such experiments are currently being explored in-
house. 

More complex cluster states can be constructed from Schioedtei with additional hardware. This 
includes, but is not limited to, the construction of box cluster states [Prevedel07, Walther05].  In 
fact Schioedtei is capable of producing two 4 qubit box states simultaneously by using 8 of the 
spots; 1,2,3,4 and 5,6,7,8.  As the states Schioedtei outputs at these 2 sets of spots are different, 

 

 = 4ۧܥ|
ଵ

ଶ
 (1,2,3,4ܸܸܸܸۧ| - 1,2,3,4ۧܪܪܸܸ| + 1,2,3,4ܸܸۧܪܪ| + 1,2,3,4ۧܪܪܪܪ|) 

Figure 17. Experimental setup for 4-qubit cluster state generation utilizing Schioedtei. 

slightly different preparation methods are required for the two boxes, as shown in Figure 18. 
After the preparation is complete the two box states are completely equivalent.  With additional 
preparation and resource photons these states can be used as the building blocks of larger states 
such as the 6 qubit butterfly network [Ma10, Soeda10].    
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|߰ۧBOX = Swap2,3 H1H2H3H4 CZ2,4 Swap2,4 X3X4|߰ۧ1,2,3,4 

|߰ۧBOX = Swap6,7 H5H6H7H8  CZ6,8|߰ۧ5,6,7,8 

Figure 18. Experimental construction of a 4-qubit box cluster state utilizing Schioedtei. 

An advantage of the Schioedtei configuration is the diversity of states that it is capable of 
generating.  Schioedtei allows for the direct generation of the (unnormalized) state |ܸۧܪ ± 
݁௜ఝ|ܸۧܪ along with the generation of the state |ۧܪܪ ± ݁௜ఝ|ܸܸۧ with the addition of a half-wave 
plate.  In addition, separable states such as |ܸۧܪ ± ݁௜ఝ|ܸܸۧ or |ܸۧܪ ± ݁௜ఝ|ۧܪܪ can also be 
directly generated with clever combinations of the twelve output intersections and proper 
compensation. 

4.2 A path towards experimental generation of a linear cluster states (5 Figs: 19-23) 
A successful detection of two pairs of entangled photons is reported along with several 
implemented updates to the experimental quantum information science test bed. First, a new 
photon collection system was created and installed in order to create a smaller footprint, move 
collimators closer to the source, and reduce the number of variables involved in finding the 
optimum collimator location to collect entangled photons.  The final configuration is depicted in 
figure 19. The photon collection apparatus constructed is easily adapted for type I or II down 
conversion rings or Schioedtei rings.  The four mirrors with a smaller footprint than the 
collimators and post compensators were put as close together as possible such that they would 
reflect 4 points on a circle into the collimators as shown.  The mirrors redirected the light on a 
plane perpendicular to the pump laser, and angled the reflections to be parallel in pairs, removing 
the angular dependence that resulted from the cone shape of the source photons.  With the light 
spatially separated by the mirrors the collimators were able to be placed closer to the source.  
Additionally the measurement devices were much easier to place, access, and manipulate.  This 
improved the level of control, reducing loss and uncertainty. 
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Figure 19. Entangled photon collection and measurement system. 

In order to increase count rates (i.e. brightness of the source) and reduce compensation issues the 
SPDC crystal was switched to the α-BiBO type I crystal as used by Rangarajan [Rangarajan09] 
and a continuous wave laser. A CrystaLaser DL-405-025-SO, 405nm laser was used with a 
coherence length of >50m.  Two independent and orthogonal pairs of photons were checked for 
their quality of entanglement. The measurement wave plates and PBS were placed before the 
collimators as shown in figure 19 ensuring photons entering the collimators had already been 
measured in free space. The state from the type I crystal should be|Ψേۧ ൌ 1/√2ሺ|ۧܪܪ േ |ܸܸۧሻ.  
Table 1 shows the basis of the 16 measurements made along with the best data collected for the 
two different pairs; one labeled A’A the other B’B.  The letter and its respective prime are used 
to indicate photon 1 or 2 being measured. Figure 20 shows the resulting real part of the density 
matrix. 
 
Having successfully demonstrated that the two Bell pairs being produced with our collection 
system were of sufficient quality, the next step was to create a four cubit cluster state.  This is 
accomplished by taking one photon from each Bell pair and entangling them with a controlled 
phase (CPhase) gate, as discussed in the previous section (4.1). 
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Table 1. Quantum tomography measurements, waveplate positions and measured concurrence. 

Meas.  
Basis 

/2 
(°) 

/4 
(°)

/2 
(°)

/4 
(°)

A’A 
Concurrence

B’B 
Concurrence

H
1
 H

2
 0 0 0 0 94 129 

H
1
 V

2
 0 0 45 0 4 8 

V
1
 V

2
 45 0 45 0 96 118 

V
1
 H

2
 45 0 0 0 5 4 

R
1
 H

2
 22.5 90 0 0 51 67 

R
1
 V

2
 22.5 90 45 0 49 57 

D
1
 V

2
 22.5 45 45 0 37 24 

D
1
 H

2
 22.5 45 0 0 65 75 

D
1
 R

2
 22.5 45 22.5 90 17 110 

D
1
 D

2
 22.5 45 22.5 45 106 111 

R
1
 D

2
 22.5 90 22.5 45 28 103 

H
1
 D

2
 0 0 22.5 45 35 48 

V
1
 D

2
 45 0 22.5 45 72 75 

V
1
 L

2
 45 0 22.5 0 45 43 

H
1
 L

2
 0 0 22.5 0 47 86 

R
1
 L

2
 22.5 90 22.5 0 109 105 

 

 
 

Figure 20. Density matrix of both measured pairs of photons. 
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In order to do this, measurements must be taken after collection and propagation through the 
CPhase gate, so the measurement system was removed from in front of the collimators.  The post 
compensators remained in their original location.  The fibers from two of the collimators (one 
from each Bell pair) were sent through a fiber polarization controller and then through the 
CPhase gate shown in figure 21.  The photons travel through the CPhase gate in free space then 
propagate through the tomography measurement before being recollected with collimators into 
multi-mode fiber.  The multimode fiber routes the photons through a 10nm band pass filter to the 
detectors to remove extraneous light. 

 
 

Figure 21. Controlled Phase gate system. 

The other two photons from their respective Bell pairs are sent through polarization maintaining 
fiber, so as to match optical path length, and then in free space through a tomography 
measurement shown in Figure 22.  The 10nm band pass filters precede the collimators in free 
space, and then the photons arrive at the detectors via multi-mode fiber.   
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Figure 22. Free space polarization control and measurement system. 

There are inherent optical losses associated with the initial free space CPhase gate configuration.  
To overcome these losses two hour detector integration times were required to collect a 
significant number of measured photons for each of the sixteen measurements.  After which a 
tomography was performed on the output of the CPhase gate and it was apparent that the 
polarizations had degraded in the single mode fiber.   Since the single mode fiber was not 
polarization maintaining, polarization rotation occurred due to changes in length and 
birefringence due to thermal/environmental fluctuations.   The polarization controllers showed 
the same fluctuations as the single mode fiber, and thus did not give us enough degrees of 
freedom to compensate for the changes. These tests showed us the necessary changes needed to 
improve control of the polarization.  PM fibers were installed to ensure the state was not 
disturbed.  Additionally a polarization control set in free space was put in all four paths to correct 
for any residual polarization changes in the fiber.  This arrangement greatly reduced the 
temperature dependence of the polarization; see Figure 22. 
 
To increase the longevity of the newly revamped system an acrylic box was fabricated to create a 
separate environment around the crystal.  This is because the BiBO and BBO crystals are very 
hygroscopic and when water gets into the crystal it becomes opaque and unusable.  A continuous 
dry-air pump was installed to maintain the lowest possible humidity in the box.  Additionally the 
polarization control and measurement wave plate systems create a lot of loss due to reflections at 
the multiple interfaces.  We designed and ordered factory aligned and self-contained systems for 
each of these stages.  These arrived pre-coupled to polarization maintaining single mode fibers.  
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When implemented these will reduce losses and speed the preparation process for any physical 
system needed.  The construction of these components is pictured in Figure 23. 

 

Figure 23. Professionally assembled polarization controller and measurement systems 

4.3 A multi-layer three dimensional superconducting nanowire photon detector 

General amplitude amplification 

We now take a closer look at the minimum three layers needed to create the device, shown in 
Figure 24. The bottom layer 24a, consists of non-superconducting leads (red) placed on an  

 
Figure 24. A plain view of the three layers in the multilayer design. 

 
insulating substrate (gray), such as R-plane sapphire, MgO or Si. Note that there is no complete 
circuit on this level, so the current will be forced to move up to the next level. The optimal 
minimal spacing will depend on the insulating ability of the substrate to prevent leakage and  
cross talk, mainly between the input and output channels but also with the superconducting 
nanowires passing above. Over the bottom layer will be a second layer of deposited substrate 
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24b. This layer will then have vias, i.e. holes (green), which pass completely through it (gray) at 
predetermined locations so as to hit the input/output leads in the bottom layer. These vias are 
filled with superconducting material (in practice it may be advantageous to use non-
superconducting material here, if the pixels are long enough to avoid the latching condition) thus 
completing the middle layer of the device. Alignment will be a very important, but not 
insurmountable issue, as these structures are on the scale of approximately 100nm in width and 
current alignment techniques can achieve results on the order of 1 nm [Anderson04]. Finally the 
detection layer Figure 24c, will be deposited on top of the middle layer. Alignment of the 
superconducting bridges with the vertical “posts” in the middle layer will be important for the 
overall detection efficiency [Kerman07]. 
 
The device will have significantly higher number resolution, while maintaining a useful 
detection area. It has several parameters which can control the reset time to avoid latching while 
still minimizing the rest time. An array of pixels of arbitrary number, size and shape is possible. 
Most of the detector will remain active after a single photon is absorbed as opposed to small 
number or single meander detectors which are effectively blinded by a single photon. The active 
area of the detector can be tuned by changing the number or the shapes of the pixels. These 
advantages are compelling theoretical evidence for the construction and testing of multi-layer 
superconducting number-resolving photon detectors. 

 
Figure 25. A toy model of a working multi-layer SNSPD.  For clarity only the super-cooled part 
of the chip is shown.  The dark green substrate and red leads are similar to the grey substrate and 
red leads in Figure 24a.   The blue vertical posts are shown in a semi-transparent middle layer 
similar to Figure 24b for clarity.  The blue superconducting pixels on the surface are similar to 
Figure 24c. The development of this design has resulted in two patents filled by the AFRL JAG 
officer with the U.S. patent office. 

 
4.4 Laboratory upgrade and ongoing research in integrated waveguide quantum circuits 
The Quantum Information Science Laboratory originally located in lab 18 in Bldg. 104 was 
relocated to a larger facility in Bldg. 3 Suite I5.  The transition to the new facility allowed for the 
addition of 2 more optical tables, multiple work benches and equipment storage cabinets.  The 
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facility is partitioned in two separate work areas defined by laser curtains allowing separate 
experiments to be conducted concurrently with lasers of class 4 or lower. During this period the 
Ti:Sapphire laser was upgraded from a femtosecond 1.5 W system to a femto/picosecond 3.5-4 
W system. Additionally installed were both femtosecond and picosecond second harmonic 
generation units (SHG) were added to the system to generate powers greater than 1 W in the 
blue/violet regime. These additions completed the upgrade to the entangled photon generation 
testbed. 

Further effort has been placed to reduce the footprint size of quantum gates/circuits built from 
bulk optical components. This added research focuses on the use of integrated optical 
waveguides to construct the quantum gates/circuits.  The direction of the research exploits two 
arenas:(i) world class domestic researchers at Rome Research Site and WPAFB along with 
universities such as Columbia, MIT and RIT and (ii) and world class international researchers 
through EOARD at universities such as Bristol, Oxford and Vienna. Expanding the ongoing 
research in optical waveguides was a necessary step and made possible in-house with the 
acquisition of an optical wafer probe station.  The probe station along with multiple table top 
probe stations will be utilized for the testing and integration of quantum photonic integrated 
circuits (QPIC). The entangled photons generated by the existing generation testbed are routed 
into the QPICs to validate the chips functionality. The acquisition of a second Ti:Sapphire laser 
and optical parametric oscillator (OPO) expanded the testbeds available wavelength range from 
the original span of 600-1000 nm to a span of 340-2500 nm. The OPO greatly increases the 
diversity of materials that the QPICs can be constructed from.  The upgraded components have 
arrived and the full testbed is under construction.   

 
4.5 Probabilistic cluster state generator (patent) 
Traditional generation of a cluster state consists of an optical table several meters on each side.  
On this table is a high power laser system such as a pulsed Ti:Sapphire laser. The pump beam is 
incident on a nonlinear material such as BBO, BiBO or PPKTP etc.  The photons from the pump 
then have a small change to undergo Spontaneous Nonlinear Parametric Down Conversion 
(SPDC) to create an entangled pair of photons, called signal and idler photons. Alternative means 
of photon generation are equally valid such as four wave mixing (FWM). To create larger linear 
cluster states the pump passes through multiple nonlinear materials (a cascade configuration) or 
is reflected back onto the original material (a multi-pass configuration). These methods can 
create multiple simultaneous independent pairs of qubits. To create one large cluster state the 
pairs are sent through (i.e. acted on by) an entangling operation. Normally the 2 qubit controlled 
phase gate also called the CZ gate is used. The simplest and most efficient means of 
implementing the general CZ gate requires 3 bulk optical asymmetric beamsplitters in a specific 
alignment. These operations are effectively performed in parallel with each qubit entering and 
exiting in its own mode. Once all the entangling operations are successfully completed the 
cluster state is fully constructed and an algorithm can be implemented as a sequence of single 
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qubit rotations and measurements on each qubit in a predetermined sequence. Thus linear cluster 
states are created from qubits in parallel modes rather than from sequential qubits in a single 
mode. This is mainly due to the spontaneous nature of single photon sources.  It is impossible to 
predict the time between two subsequent spontaneous events. 

We build upon the periodic photons source of Mower and Englund (WO2013009946 A1) to 
create entanglement between sequential separable qubits delivered in a single mode and create a 
linear cluster state of sequential qubits which is output in a single mode. Such a device is of 
interest in and of itself for quantum computing. Other applications include but are not limited to 
Measurement Based Quantum Computing (MBQC) implementation of the Deutch–Joza 
algorithm on a four qubit chain, arbitrary single qubit rotations on a four qubit chain, quantum 
key distribution, quantum information, quantum metrology, and quantum lithography among 
others. 

OBJECTS AND SUMMARY OF THE INVENTION 

Briefly stated, the present invention, figure 26, the Sequential Entangler or S.E., proposes to 
combine optical Integrated Waveguides (IW) with a periodic photon input to create linear cluster 
states in a single mode. 

 

Figure 26. Sequential entangler. 
 

We create the entanglement of sequential qubits by using a unique “loop back” architecture that 
delays one photon for one period T of the sequence thus allowing for two photons to be acted on 
by a standard entangling element. In our case we will use the simple polarization encoded CZ 
gate of Crespi et. al (W02012150568A1). One photon (now entangled so which cannot be 
determined) is then released and the second is looped back to coincide with the arrival of the 
next photon and so on. This will probabilistically produce a linear cluster state. We say 
probabilistically as the CZ gate succeeds only 1 time in 9. Thus the longer a desired cluster state 
is the less likely it is to be created in any one attempt. This is a result of the entangling operation 
and not the S.E. per say as no photonic entangling operation can be performed with unit success. 
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The S.E. will create a cluster state numerically identical to the industry standard parallel method 
but arranges the qubits as a periodic sequence (with a constant period T) in a single optical mode.  
Any two qubit entangling operation can be used in place of the CZ however such gates may 
produce different cluster states.  

A significant improvement on cluster state generation is possible with on demand photon 
sources. Such a source emits a single photon or pair of photons at a specified time, eliminating 
the need for probabilistic photon generation. No such device currently exists in the state of the 
art. As an approximation to an on demand source the “photon gun” was proposed by Mower 
Englund (WO2013009946 A1). This device remains probabilistic but has a relatively high 
probability of producing a single photon at a predetermined time and is in fact intended to be 
periodic. In other words it will with relatively high probability emit a single photon after every 
time T. The photon gun creates pairs of photons via probabilistic means from time 0 to T-1 and 
then detects (and thus destroys) the presence of one of those photons to herald the presence of 
the remaining photon. This heralded photon is then delayed in a variable circuit until time T. The 
device is nearly periodic because the probability of at least one pair being generated before time 
T-1 is close to 1. Thus the photon gun sacrifices repetition rate in order to maximize the photon 
production probability. Our device can be trivially modified to incorporate a fully on demand 
source should one become available. Modifications to the device may either decrease the 
complexity or increase the functionality.  Moving the delay line from the first path to the bottom 
path can create a symmetric device and also reduce the long integrated waveguides which can 
reduce loss, as shown in figure 27.  

 

Figure 27. Symmetric sequential entangler. 

A second modification is to increase the number of delays as shown in figure 28.  The 
incorporation of the additional switchable delay allows entangling photons in a two dimensional 
cluster state as opposed to just a linear chain.  
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Figure 28. Two dimensional cluster state generator. 

Importantly, one advantage of on demand, or probabilistically close to on demand, photon 
sources is the ability to avoid having to create an arbitrarily large initial cluster state for MBQC 
as first envisioned by Breigel and Raussendorf. Rather it is possible to create a continuously 
flowing cluster state in which new qubits are periodically created and added to the current cluster 
state by entanglement while at the same time other qubits are removed from the cluster state by 
projective measurements. If the entanglement occurs on one side of the cluster, the measurement 
occurs on the opposite side and the rate of adding photons is the same as the rate of removing 
photons, then the cluster state can be said to “flow” across the device. We create such a flowing 
cluster state by creating photons and entanglement on one side of our integrated waveguide chip 
measuring the photons on the other side, in an alternate formulation of our device. 

Briefly stated, the present invention proposes to combine multiple “photon guns” with tunable 
integrated waveguide (IW) circuitry and entangling operations to create a periodic probabilistic 
2D photonic cluster state,  with the additional feature of having independent control (on/off) of 
each of the entangling operations (i.e. internal interconnections). Given that the number of modes 
is large enough, the cluster states created by this device will be able to perform universal 
computations. In addition, the control of the internal interconnections allows for the construction 
of arbitrarily shaped and interconnected cluster states as well as multiple (smaller) cluster states 
from a single device. These controls will be simple electrical inputs and can be switched at high 
speed.  The resulting device attempts to produce a desired cluster state after every time TCS. We 
call this device a Periodic Cluster State Generator (PCSG), as shown in Figure 29. 
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Figure 29. Probabilistic cluster state generator. 

A preferred embodiment of the present invention (PCSG) consists of a monolithic Integrated 
Waveguide (IW) chip consisting of two fundamental operations, photon generation and 
controllable entanglement. To produce the cluster state at high speeds while minimizing the 
waveguide length the waveguide chip must be capable of rapid switching. Electro-optical 
materials such as Lithium Niobate (LiNbO3), as opposed to slower thermal switching materials, 
are preferred. We note the device will work in materials with slow switching but will have longer 
delay lines and may need to be larger itself to compensate. The waveguides fabricated within the 
waveguide chip must be polarization maintaining (PM) waveguides as we will encode the qubits 
in the photons polarization. 

Our preferred implementation generates photons on the principle of FWM as has been 
demonstrated in waveguides previously. Our device consists of two input modes. One for each of 
the two “waves” needed to pump the device. These modes are incident on an integrated two by N 
splitter based on evanescent coupling, where N is the number of guns in the device. This number, 
N, has no theoretical upper bound. This element separates the pumps evenly into the n modes in 
which the 4 wave mixing takes place. Such a device simplifies the problem of maintaining 
synchronization between modes that is difficult if each mode is individually pumped. The 
photons created will have orthogonal polarizations which can be set to horizontal and vertical. In 
order to increase the count rate for this probabilistic process we create large equal length 
meanders in each wave guide that increase the interaction time. We note that any device or 
method that creates photon pairs could be used with trivial modifications to the circuit design. 

In our preferred embodiment the photons in the waveguides are then incident on hyper-spectral 
filters which block the propagation of both pumps. The position of the spectral filtering is not 
critical to the design and can be performed anywhere in the circuit after the FWM has occurred 
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including at the end of the circuit. To use non-degenerate FWM this filter would be replaced with 
a standard wave division multiplexer (WDM) which dumps the pump wavelengths into a mode 
that exits the IW chip or is bulk terminated in the chip, while allowing the signal and idler 
photons to propagate. Any such device that separates the pump photons from the desired photons 
is equally valid to this invention. 

In our preferred embodiment the signal and idler photons travel along another section of 
waveguide of arbitrary size and shape and are incident on a Multi-Mode Interferometer  (MMI)  
This MMI acts as a polarization beam splitter and separates the horizontal and vertical photons 
into two separate modes (any device that accomplishes this goal is equally valid in our device).  
One photon (which polarization is used is not relevant) is detected and therefore destroyed. This 
is done in order to herald the existence of the second photon in the propagating mode.  The type 
of device used to detect the present of this photon is not relevant to the device in question and 
can be performed either on the IW or off chip. Our preferred embodiment of the PSCG will use 
integrated single photon detectors such as but not limited to superconducting nanowire single 
photon detectors or transition edge sensors. Such detectors can be fabricated directly into the IW 
itself but require <10K (kelvin) temperatures to operate. Thus integrating the detector requires 
super cooling the entire chip. As the efficiency of this detector is critical to the devices operation 
the most efficient available detector is desired. We note that the device can be designed to 
operate with low efficiency detectors and a given pump rate by increasing the number of delay 
segments (defined bellow) at the cost of reducing the repetition rate. As the previous section the 
PCSG creates photons with known orthogonal polarizations and as all waveguides are 
polarization maintaining it is a trivial process to rotate the propagating photons to the H+V, or 
the |+> state (ignoring normalization) by industry standard devices. This can be done at any point 
prior to the entangling operations. 

The photon generation method and heralding detection method of the PCSG is relatively 
arbitrary in that the PCSG can be trivially modified to accommodate different designs.  
Regardless of the photon generation and detection method the next step of the “photon gun” is 
critical. See Mower and Englund (WO2013009946 A1). Each pump pulse has a non-unitary (i.e. 
less than perfect) chance to create a photon pair and the detectors have a less than perfect chance 
of detecting one of these photons. Thus each pulse will not create a photon, in even the most 
ideal case. Different techniques can be used to improve these probabilities but cannot be made 
perfect with the current state of the art technology. Thus the “photon gun” is not periodic but 
probabilistic. The PCSG is also probabilistic as it generates photons with period T and success 
probability approaching one. The critical time bucket T consists of N time bins t such that each 
bin is synchronized with one and only one pulse from the pump (T=Mt). The number of time 
bins required M is determined such that with very high probability at least one photon pair is 
produced and heralded in each time bucket T. This is dependent on a large number of factors but 
can be determined by standard methods. 



Approved for Public Release; Distribution Unlimited. 
42 

 

   The heralded but undetected photon, now in the |+> state, is then delayed in variable delay 
lines until it is emitted at time T or T+1. This is achieved through a series of identical delay lines 
which the heralded photon can be diverted into by rapidly tunable MMIs. The switches that 
control the photon path and therefor the delay time are controlled by off chip electronics. This 
device records the detection time of the heralded photon and compares it to the clock time. Thus 
the off chip electronics can determine in which time bin tp the photon pair was generated and the 
needed delay time (T-tp). Then the electronic device sets the output ports for the tunable MMIs 
(i.e. switch directions) to implement the required delay. In the preferred embodiment this is done 
with industry standard electro optical control. While this calculation and reconfiguring is taking 
place the photon is stored in an arbitrarily shaped waveguide. The length of this first delay, Delay 
A, is determined by the maximum time required to herald and successfully reconfigure the 
device and in general will not be the same (most likely longer) then the time bin delay lines.  
These steps happen simultaneously in each parallel mode. The result of the first section of the 
PCSG is a periodic (in time) sequence of synchronized arrays of N photons. In other words this 
first section of PCSG creates an un-entangled flowing grid of photons of size N and arbitrary 
length. The probabilistic nature of the PCSG means there will be some holes in the grid where no 
photon was successfully produced or a photon was lost. We note that the photon gun section of 
the PCSG could be trivially replaced with an array of non-probabilistic on demand single photon 
sources. Such sources could be periodically triggered to release a known photon state and 
reproduce the output of the photon guns described above without changing the scope or spirit of 
this invention. 

The photons are then guided to the second part of the PCSG that performs the controllable 
entanglement on the photon grid. In our preferred embodiment these two sections are both on the 
same monolith IW chip. But fabrication may be simpler if the device is fabricated on two (or 
more) chips. The monolithic WG chip has the advantage of compactness, stability and no losses 
due to coupling chips into and out of fibers.   

The second section of the Monolithic IW chip in our preferred implementation creates the 
horizontal entanglement between sequential qubits. This is an application of the Sequential 
Entangler of Smith and Fanto, and in fact requires an array of Sequential Entanglers. In our 
preferred implementation the tunable MMI at the end of the “photon gun” serves a double 
purpose. In addition to assisting in controlling the delay time it also transfers the output photons 
to one of two modes. In our preferred implementation the MMI begins by putting the first photon 
in the “upper” mode. By which we mean that the incident photon exits the MMI in the “upper” 
mode in relation to the figures bellow. The device can be trivially modified to use either output.  
Any device that is capable of deterministically switching the output mode of a photon is a viable 
alternative which doesn’t affect the function, scope or spirit of the device. The first photon, 
arriving in each parallel mode after time T, is then delayed in a waveguide delay line, Delay B, 
for exactly one period of time T. The MMI is then switched to the “lower” mode before the 
arrival of the second photon at time 2T by an off chip electric circuit. The maximum repetition 
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rate of the PCSG is thus limited by the minimum switching time of the MMIs or any 
reconfigurable device that replaces it. 

The two separate |+> state photons, one in the “upper” mode and one in the “lower” mode, are 
then each incident on another MMI. One output mode of each of this pair of MMIs feeds into the 
entangling operation. The other leg of each MMI is routed around the entangling operation in a 
“bypass” mode. The length of the bypass mode is designed such that it is the same as that in the 
entangling operation. The routing operation is implemented in the same manner as previous 
MMIs and is controlled by off chip electronics. In our preferred implementation the entangling 
operation is the integrated waveguide CZ gate of Crespi et. al (W02012150568A1). The gate 
consists of several static evanescent couplers. The current state of the art of entangling operations 
has many implementations of this gate and numerous other gates. Any of these gates may be 
used to create trivial variations of the PCSG for custom purposes. The CZ gate has a success 
probability of 1/9 per instance. Therefore long chains are increasingly unlikely to be successfully 
created. Thus a high repetition rate is desirable, such that many attempts can be made in a short 
time. Also any improvement in the success rate of the entangling gate is desirable and represents 
a trivial alteration to the PCSG that doesn’t change the function, scope or spirit of the invention.   

The modes from the entangling operation are then merged with the “by pass” modes by 
additional MMIs. One photon is allowed to propagate while the other is “looped back” into the 
device to such that it can be entangled with the next photon in the sequence. Rapid switching 
gives the capability to “add” or “remove” horizontal entanglement in between any sequential 
qubits in a cluster state. 

The third photon produced in each mode reaches the sequential entangler while one photon from 
the first pair is stored in a delay line, Delay C. The length of this delay line is such that these two 
photons will be synchronized upon reaching the paired MMIs before the CZ gate. The third and 
all subsequent photons are routed into the “down” path. Which photon is “looped back” after the 
CZ gate cannot be determined due to the nature of entanglement. Therefore either mode may be 
fabricated with the “loop back” feature or equivalently either formulation of the Sequential 
Entangler. 

The photons then exit the parallel set of sequential entanglers in the PCSG and enter the final 
section of the device. This section implements the vertical entangling gates between 
synchronized qubits in different modes. This section consists of a cascade of industry standard 
entangling operations. In our preferred implementation these entangling operations are again the 
CZ gate of Crespi et. al (W02012150568A1). Similar to the last section any entangling operation 
can be trivially used in place of any or all of the CZ gates for custom purposes. The CZ gates are 
placed such that each mode interacts with its neighbors, this condition can be relaxed or altered 
for specific purposes without materially changing the invention. The photons are incident on 
MMIs which, similar to above, have one output routed to the CZ gate and one output routed to a 
“bypass” line. The MMI are controlled by off chip electronics and rapid switching, i.e. the rapid 
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switching rate allows for controlling the placement of vertical entanglement between specific 
qubits (i.e photons). Delay lines may be used to maintain synchronization of all modes. 

Combining the effect of the controllable MMIs allows for any size and shape cluster state to be 
created, within the following limits. The square shape of the grid remains (i.e.), the maximum 
size of the grid N is set by the fabrication of the device and in our preferred embodiment only 
nearest neighbor interactions are used. Any arbitrary number and shape of nearest neighbor 
connections are then possible by preforming rapid switching of the various paired MMIs which 
control the bypass lines around each individual entangling operation. If all of the CZ operations 
are used the resulting output (in theory) would be and arbitrarily long flowing grid of entangled 
qubits, N rows tall. In practice the probabilistic nature of the PCSG means that attempting to 
make larger and larger cluster states and states with more entangling interactions becomes 
increasingly unlikely. This is also true of any state of the art device and implementation. The 
high repetition rate possible with the monolithic IW PCSG device proposed here allows for 
many, many attempts to be made in comparatively short time frames (i.e. a high repetition rate) 
with excellent stability and limited coupling losses. Thus relatively large and complicated cluster 
states can be made with the PCSG that would be impractical with other setups. 

An alternate formulation of the PCSG for the purpose of MBQC is provided below. Here rather 
than outputting the cluster state from the chip addition hardware is fabricated such that quantum 
enhanced computation can be performed. Such an alternate formulation can be considered a 
quantum computer on a single chip. The size of the computation is limited only by the number of 
output modes the device is fabricated with. A two dimensional square nearest neighbor cluster 
state has been shown to be a universal resource for MBQC thus we can say our quantum 
computer is universal. We note that arbitrarily large calculations will require arbitrarily long 
cluster states and due to the non-deterministic generation of cluster states in the PCSG such 
arbitrarily large cluster states will take an arbitrarily long time to successfully generate. 

We also note that in our preferred implementation the off chip electronics are broken into three 
devices each serving its own purpose. “Off chip electronics 1” detects/heralds the presence of 
photons and reconfigures the delay line circuit. “Off chip electronics 2” controls the placement of 
the entanglement in the cluster state. “Off chip electronics 3” for our alternate formulation 
implements the MBQC algorithm of single qubit rotations and detection events. These three 
operations can be combined into a single classical device without altering the details of their 
operation. Indeed combining the off chip electronic into a single circuit will make 
synchronization simpler and allow for further scalability.  

4.6 Theory/experimental requirements of imperfect two-qubit linear optical photonic gates 
The optimization method we have developed maximizes the success probability S for a given 
target transformation ATar, for given ancilla resources, and for a given fidelity level F≤1. This is 
mathematically equivalent to unconstrained maximization of the function S+F/߳ in the space of 
all matrices U, where 1/߳ is a Lagrange multiplier. Here ߳⟶0+ corresponds to maximizing the 
success probability while requiring perfect fidelity (F = 1). As ߳ is increased, the maximum of S 



Approved for Public Release; Distribution Unlimited. 
45 

 

+ F/߳ yields linear optics transformations that maximize the success S as a function of the fidelity 
F. Given one transformation U that (locally or globally) maximizes success S for a given fidelity 
F, ߳ may be continuously varied to obtain a one-parameter family of optimal transformations, 
tracing out a curve in success-fidelity space. Note that in general the members of these families 
need not be all unitary, however for some gates of interest, including the CZ gate, all members of 
the family are unitary. Figure 20 shows optimal results for the CZ gate. Here each point 
corresponds to a unique unitary mode transformation U. As previously reported we find an 
interesting feature of these unitary matrices. The optimal solution with fidelity F = 1 was found 
by Knill to have a surprising form [Knill02], which we have dubbed the “Knill Form" 
[Uskov09], where one mode of each qubit is non-interacting, e.g., in the CZ case U acts as the 
identity on modes 1 and 3 (or equivalently 1&4, 2&3, or 2&4). This form has been found to hold 
for the CZ gate and for the TS Toffoli Sign gate (CNOT and Toffoli respectively are equivalent 
to these up to local rotations). 
 
We now propose an experiment that will test the results shown in Figure 30. Reck et al. [Reck94] 
have shown that any discrete N x N unitary transformation U can be implemented as a multi-port 
device consisting only of variable transmittance beamsplitters and phase shifters [Reck94]. Their 
method is a decomposition in which each unitary matrix element below the diagonal is 
transformed into zero by a 2 x 2 rotation matrix embedded in an N x N matrix which is otherwise 
equal to the identity. For example, the 2 x2 rotation acting on modes N and N-1, which 
eliminates the element UN,N-1, takes the form TN,N-1shown in Figure 30. 
 

 ேܶ,ேିଵ ൌ ቌ
1
⋮
0

⋯
⋱
…

⋯
݁௜థ sinሺ߱ሻ
݁௜థsinሺ߱ሻ

0
݁௜థsinሺ߱ሻ
݁௜థsinሺ߱ሻ

ቍ  

 
Figure 30. Rotation matrix for modes N -1 and N. 

 
The method is recursive and requires one iteration for each pair of modes. Finally, we obtain 
ܷሺܰሻ ேܶ,ேିଵ ேܶ,ேିଶ … ଶܶ,ଵܦ ൌ  where D is a diagonal matrix of phases. The desired ܫ
transformation U is then decomposable as ܷሺܰሻ ൌ ଵିܦ

ଶܶ,ଵ
ିଵ

ଷܶ,ଵ
ିଵ … ேܶ,ேିଵ

ିଵ . Physically, each NxN 
transformation ௜ܶ,௝

ିଵ is implemented as a variable transmittance beamsplitter with a phase plate on 
one input mode, while D-1 corresponds physically to a phase shift on each output mode 
[Reck94]. Thus a generic two-qubit operation, which needs at least N = 7 modes (Nc = 4 
computational modes and Na = 3 ancillas) requires a minimum of 21 beamsplitters and 28 phase 
shifters. A controlled unitary gate (N = Nc+Na = 4+2 = 6) requires at least 15 beamsplitters and 
21 phase shifters. If unitary dilation is required (as is often the case) the number of optical 
elements increases rapidly. However our experiment does not require unitary dilation and 
furthermore as noted by Reck et al., if an element of the unitary matrix is already zero, then no 
transformation is required. The element is skipped. 
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Figure 31. Improved success rates for compromised ߜ. 

 
Here we return to the “Knill Form," where in the case of CZ we find that nine of the elements 
below the diagonal are already zero. Therefore the unitary transform can be implemented with 
only six beamsplitters and 10 phase shifters. We can perform this decomposition for each data 
point in Figure 31, and find the rotation angles ωi,j and phases ϕi,j in each case. Surprisingly we 
find numerically that all of the phase shifts, ϕi,j , are constant along the entire length of the curve 
in Figure 31. Therefore only the six beamsplitter rotation angles ωi,j  out of a total of 36 possible 
variables need to be modified to vary , making the experiment much more physically realizable. 
To be specific, the transformation only requires beamsplitters acting on the following mode 
pairs: (i; j) = (6; 5); (6; 4); (6; 2); (5; 4); (5; 2); (4; 2). Figure 32 shows that the six beamsplitter 
rotation angles change smoothly with ߜ. Implementing such rotations and constant phase shifters 
will recreate the unitary matrices from Figure 31.  
 
This system lends itself to being implemented with 2x2 Mach-Zehnder interferometers (MZI) in 
place of standard beamsplitters. The transmittance (Figure 32) of the MZI is controlled 
dynamically by adjusting the phase difference, without having to alter the physical system. These 
interferometers have already been put on optical chips by Thompson et al. [Sohma94] among 
others. Indeed, significantly larger electro-optical matrix switches have been proposed and built 
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Figure 32. Beamspliter transmissivity 

 
for broadband optical communication networks [Sohma94, Drever83]. Figure 33 shows a multi-
port device that mixes seven input/output modes (thin lines) using 2x2 variable transmittance 
beamsplitters (rectangles), each of which has a phase shifter on one of its input modes (ellipses). 
An additional phase shifter is placed on each device output mode. The thick line is a simple 
mirror. J. L. O'Brien recently proposed a similar 7x7 single-chip MZI-based device made from 
lithium niobate waveguides [Sohma94]. The intended purpose of this chip was to be able to 
perform any two-qubit unitary operation, i.e. any transformation in SU(4). However, such a 
device would also be capable of performing the experiment described above. 
 

 

 

Figure 33. General multiport device schematic. 
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4.7 Nonlocality, entanglement witnesses and supra-correlations 

No Signaling (NS) Correlations: 2-Qubits  

Following Acin et al. [Acin10] we define an n-partite probability distribution 1 1( , , | , , )n nP a a x x 

as being NS if and only if there exists local quantum measurements i

i

x
aM and a Hermitian operator 

O of unit trace such that (14) holds. It is important to note that O need not produce positive 
probabilities for other measurements outside this set. Acin et al. [Acin10] give a prescription for 
the formal construction of O given the set of measurements i

i

x
aM . In the following we present an 

explicit construction for O for the case of n=2 qubits (r=2 outputs, i.e. a,b = {0,1}) and arbitrary 
number m of measurement inputs (x,y = {0,1,…,m-1}). Later, we extend this to the case of n=3 
for qubits. 
 
As stated in Section 3.4, without loss of generality we can take the local Hermitian measurement 
operators to be the projection operators onto “spin-component” a in the “direction” x, 

.x x
a a x

M a a    For each x, the completeness of the measurement operators give 1

0

r x
a r ra

M I





where r rI I  is the r r identity matrix. This allows us to write the a=r-1 measurement operator 

as 2

1 0
.

rx x
a r r r aa

M I M


   
   One defines the (tilde) Hermitian matrices x

aM dual to x
aM through the 

inner product , ,[ ] .x x
a a x x a aTr M M  

    For the bipartite case n=2, with in general m measurement 

settings with r measurement outcomes, one has 
 

 
2 1 2 1 2 1

, 0 , 0 0 0 0

( , | , ) ( | ) ( | ) ,
r m r m r m

x y x y
a b a b

a b x y a x b y

O P a b x y M M P a x M I P b y I M I I
     

    

                  (24) 

where I is the tilde matrix dual to the r r identity matrix I, with the additional orthogonality 

conditions defined by [ ] [ ] 1,Tr I I Tr I   [ ] 0,x
aTr M I  and [ ] [ ] 0.x x

a aTr I M Tr M 
     The conditions  

 
 

Figure 34. PR Box shared between Alice and Bob. 
 

ensure that O is Hermitian, Tr[O]=1 and probabilities are given by the trace formulas 
( , | , ) [ ]x y

a bP a b x y Tr OM M  , ( | ) [ ]x
aP a x Tr O M I  and ( | )P b y   [ ]y

bTr O I M . This is illustrated in 
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Figure 34 where Alice and Bob share PR correlations by means of, what are termed in the 
literature, a pair of PR boxes (or NS {non-signaling} boxes). 

In the following we specialize to the case of qubits (r=2, a,b = {0,1}) with arbitrary number m of 
measurement inputs (x,y = {0,1,…,m-1}) . In this case the measurement operators 0

x
aM  are given 

as projection operators for “spin-up” along the directions xx m
 on the Bloch sphere. The 0

x
aM 

are just density matrices on the Bloch sphere written as 

 0 0 0 1 2 ( ), (sin cos ,sin cos , cos )

1,  (density matrix on Bloch Sphere),

x
a x x x x x x x xx

x

M I m m m

m

          



  

  (25) 

where 1 2 3( , , )   
 is the vector of single qubit Pauli matrices. Although not required for the 

case of qubits, the projection onto “spin-down” along x is given by

1 01 1 1 2( ) ,x x
a x ax

M I m I M      
  with I the 2 2 identity matrix. Equation (17) now simplifies 

to the form 

 
1 1 1

0 0 0 0
, 0 0 0

( 0, 0 | , ) ( 0 | ) ( 0 | ) .
m m m

x y x y

x y x y

O P a b x y M M P a x M I P b y I M I I
  

  

                     (26) 

We simplify the notation by defining  0, ; 0, , 1x
aI M x m    1 0 1 0 1,{ } { , , , }iM I M M M M        

{ 1, 0}{ }iM      (a set of m+1 linear independent matrices) with duals  { 1, 0} 1 0 1{ } , ,jM M I M M          

satisfying the trace orthogonality conditions ,Tr[ ]= ,M M     and similarly for 

 0 { 1, 0},{ } { }.y
j jI M N    We therefore write (26) as 

 
1 1 1

0,0 0, ,0
,

, 0 0 0

,
m m m

i j i j i i j j
i j i j

O P M N P M I P I N I I
  

 

  

                  (27) 

using the abbreviations 0,0
, ( 0, 0 | , )i jP P a b x i y j     , 0, ( 0 | )iP P a x i    and ,0 ( 0 | ).jP P b y j   

For the measurement matrices 1 2 2 0,  and 1 2( ), 1,i i iM I I M I m m       
   the dual matrices are 

given explicitly by 1 ,0
1 2( ) 1 2( ),  and where , 1,i i i i j i j ii

M I I m I m M m m m m    
                      

    

with the orthogonality relations [ ] 1, [ ] 0, [ ] 0,and [ ] .j i i j ijTr I Tr M Tr M I Tr M M        Using the 

relationship [ ] [ ] [ ]Tr X Y Tr X Tr Y   it is straightforward to verify that Tr[O]=1 and, for example, 
0,0
, [ ]i j i jP Tr O M N  which picks out the term i jM N   in (20). Other probabilities are obtained for 

example as 0,1
, [ ( )] [ ] [ ]i j i j i i jP Tr O M I N Tr O M I Tr O M N       0, 0,0

,i i jP P  0, 0,0
, ,{0,1}

b
i j i jb

P P


 
0,1
, ( 0, 1| , ).i jP P a b x i y j       Substituting the explicit expressions for the dual matrices into (27) 

yields the general expression for O in terms of products of Pauli matrices 
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1
0,0 0, ,0
,

, 0

1 1
0, ,0

0 0

1
(4 2( ) 1) ( ) ( )

4

(2 1) ( ) (2 1) ( )

[

].

m

i j i j i j
i j

m m

i i j j
i j

O P P P m n

P m I P I n I I

 

 


 



 
 

 

      

         



 

   

 

   

 

 (28) 

Specializing to the PR correlations in (10) given by ( , | , )P a b x i y j  , mod 21 / 2 a b i j  

0,0
, 0, mod 21/ 2i j i jP    with marginals 0, ,0 1/ 2 , ,i jP P i j    yields the expression for the NSPR operator 

 
2 2 1 2 2 1

0,1,2, 0,1,2, 0,1,2, 0,1,2,

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

4
where , , , .

[ ],PR e e e o o e o o

e i o i e j o j
i i j j

O m n m n m n m n I I

m m m m n n n n

       

 
   

                 

      
   

               

       
       

       

(29) 

In (29) the subscripts {e,o} denote {even,odd}for the summation over even and odd dual 
measurement vectors. Note that in (29) the “single-σ” terms i I  and 

jI   (representing 

measurements by Alice or Bob alone, respectively) have dropped out since the marginal 
distributions P(a|x)=P(b|y)=1/2 are independent of a,b,x,y. This leaves only the solely two-party 
correlation terms

i j  and the maximally mixed term ( ) 4.I I  For the bipartite case n=2 often 

considered in the literature for two qubits, each with two measurement directions 0 1{ , }x m m
  for 

Alice and 0 1{ , }y n n
  for Bob (i.e. a,b,x,y = {0,1}) we obtain the simplified form 

 0 0 0 1 1 0 1 1

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

4
[ ].PRO m n m n m n m n I I                         

               

       
(30) 

Using the procedure for calculating probabilities discussed after equation (30), the following 
probabilities can be computed from  

 

0 1 0 1 0 1 0 1 0 1

0 0 0 0 0

1 1 1 1 1

( 0, 0 | , ), ( 1, 1| , ), ( 0, 1| , ), ( 1, 0 | ,

1 2 1 2 1 2 1 2 0 0 0 0 1 1
, , , ,

1 2 0 1 2 0 0 1 2 0 1 2 1 1

i j i j i j iP a b x m y n P a b m n P a b m n P a b m n

n n n n n n n n n n

m m m m m

m m m m m

         

         
                  

       

         

    

    

), ( , )

0, 1,

1 2 1 2for ( , ) {(0,0),(0,1),(1,0)}, for ( , ) {(1,1)}.

j i jE m n

a b a b

P Px y x y

   

    

  (31) 

Here, the correlations in (31) are computed as (see (5)) 

 , {0,1}( , ) ( 0, 0 | , ) ( 1, 1| , ) ( 0, 1| , ) ( 1, 0 | , ),i j i j i j i j i ji jE m n P a b x m y n P a b m n P a b m n P a b m n              
         

(32) 

with corresponding S parameter (see (5)) 

 0 0 0 1 1 0 1 1( , ) ( , ) ( , ) ( , ) 4 ,AMS E m n E m n E m n E m n S     
       

   (33) 
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achieving the algebraic maximum value 4.AMS   

For the case of two qubits with m=3 measurement vectors 0 1 3{ , , }x m m m
   for Alice and 0 1 2{ , , }y n n n

  

for Bob (i.e. a,b = {0,1}, with x,y = {0,1,2}) we obtain from (22) the probabilities and 
correlations 

 

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 0 0 0 0

1 1 1 1 1
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i j i j i j i j i jP a b x m y n P a b m n P a b m n P a b m n E m n

a b a b

P Px y e e e o o e x y o o

         

   

   


 
 
  

 

         
(34) 

In (27) e = {0,2} denotes even indices of the measurement directions while o = {1} denotes odd 
indices. We achieve the algebraic maximum for the S parameter, generalizing (33)  defined as  

 0( , ) ( , ) ( , ) ( , ) 4 .e e e o e o o AMS E m n E m n E m n E m n S     
       

 (35) 

Note that the dimension of the measurement vectors
im
 is set by the dimension 2 1D d  of the 

Hilbert space of the observer, which simply states that any ( 1) ( 1)D D   matrix can be written in 

term of the ( 1) ( 1)D D   identity matrix and the D generators of su(d). For qubits, D=3 and the 

three generators of su(2) are the usual Pauli matrices .  For a given set of m measurement 3-
vectors { }im

 (vectors in the Bloch sphere, | | 1im 
 ) one needs to solve for the correspond dual 

measurement vectors { }jm



satisfying 

, .i j i jm m  
 


We write these equations as the matrix equation 

3 3m m m m  M M I  where the ith row (i = {0,1,…,m-1}) of  (the known coefficient matrix) 3mM is ,im


and the jth column of (unknowns) 3 mM is .jm



By linear algebra, there exists a right inverse of 

3mM via 1( )T T
Right Inv

M M MM  (if 1( )T M M exists) if the columns of 3mM span mR , which can only 

occur for m≤D=3. The systems of equations is under-determined and there exists at least one 
solution (typically and infinite number due to undetermined free parameters). This is the 
situation for probabilities and correlations shown in (31) and (34) for the case m=2 and m=3 
measurement vectors, respectively.  For the m>D=3, there exists at most one, unique solution (if 
any). This is the least squares (LS) solution using the pseudo-inverse 3mM  given by 

1( )T T
LS

M M M M (if 1( )T M M exits). In general, the LS solution has non-zero residual errors given 

by 3 (3 )= ,m LS m m m  Err M M I  corresponding to joint probabilities that may be negative for some 

measurements but still satisfy the (total probability) normalization condition 

,
( , | , ) 1, , .

a b
P a b x y x y   Nonetheless, it is instructive to perform numerical searches in the case 

of m>3 of random measurement vectors to seek solutions which yield all joint probabilities in the 
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range 0≤P(a,b|x,y)≤1, for all pairs of measurement vectors ,i jm n
  for Alice and Bob that still yield 

supra-correlations, i.e. 0 < S-SQ ≤ 4-2√2 = 1.172. 

For the case m=4, a particular solution is shown in (36) that yields S-SQ = 0.102 (for brevity, we 
only show ( 0, 0 | , )i jP a b x m y n   

  and the correlations ( , )).i jE m n
   In general, the even/odd structure of 

the correlations ( , )i jE m n
   
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

  
   

 (36) 

exhibited in the cases m≤3 ((31) and (34)) is destroyed, yet they still produce supra-correlations 
S-SQ ≥0. For each value of m in Figure 35 (left) we searched 105 random trials of the 
measurement vectors 

, {0,1, , 1}{ , }i j i j mm n  

  and plot the value of S-SQ for the first solution encountered 

in which (i) we find proper joint probability distributions 0 ( , | , ) 1i jP a b x m y n   
  for all 

measurement vectors, and (ii) which produce supra-correlations, S-SQ ≥0. In Figure 35 (middle), 
we plot the minimum 

 

     
 
Figure 35.  Numerical simulations for m={2,3,4,…,12}measurement vectors.  

 
eigenvalue λmin of the matrix O in (29). The negative value of λmin indicates that O is not realized 
by a proper quantum state (i.e. a positive, Hermitian operator, ρ≥0). The rightmost plot in Figure 
35 is the iteration number at which the first set of measurement vectors was found which 
produced supra-correlations. For the values of 13 ≤ m ≤ 20 numerically explored, no supra-
correlations solutions were found within 105 trials (the plot indicates that it becomes 
exponentially hard to find such a solution). 
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No Signaling (NS) Correlations: 3-Qubits  

The bipartite results of the previous section for n=2-qubits are straightforwardly extended to the 
tripartite case of n=3-qubits with similar implications.  Here the generalization of the bipartite 
CHSH nonlocality parameter S is given by the Svetlichny [Svetlichny87] inequality (SI) relating 
correlations E(a,b,c|x,y,c) between three spacelike separated parties A, B, C 
 

 
( , , | 0,0,0) ( , , | 0,1,0) ( , , |1,0,0) ( , , |1,1,0)

( , , | 0,0,1) ( , , | 0,1,1) ( , , |1,0,1) ( , , |1,1,1).

S E a b c E a b c E a b c E a b c

E a b c E a b c E a b c E a b c

   
   

 (37) 

The SI has the bounds (i) 4CS S  for classical correlations, (ii) 4 2QS S  for quantum 

correlations, with (iii) the algebraic upper bound given by 8,AMS S  achieved when the 

correlations in (37)  take the values E=1 if they are preceded by a plus sign, and E=-1 if they are 
preceded by a minus sign. The generalization of the PR correlations of (37) is given by 
[Xiang11] 
 

 
1/ 4 if 

TPR Box: ( , , | , , ) ,
0 otherwise

a b c x y y z x z
P a b c x y z

       
 


 (38) 

often referred to as a tripartite PR (TPR) box. The marginal distributions of (31) are again 
isotropic and satisfy the NS constraint, i.e. P(a,b|x,y,z) = P(a,b|x,y)=1/4 for all a,b,x,y,z and 
P(a,|x,y)=P(a|x)=1/2 for all a,x,y, and similarly for all other marginal probability distributions. 

For the case of n=3 qubits (r=2 output measurement values) a,b,c ={0,1), with m possible 
measurement vectors for each observer,  x,y,z ={0,1,…,m-1) we again find that only the highest 
(three party) correlations term and the maximally mixed term are non-zero in the expression for 
OTPR 

 

 

 

1
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(39) 

The regular, even/odd (mod 2) structure of OTPR in (39) reflects the non-zero structure of the TRP 
probabilities in (31), and can be seen as an additional single qubit generalization of OPR in (29). 
That is, the 2-qubit term in the first curly brackets in (39) 
{( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}e e e o o e o om n m n m n m n                     
               

       
tensor-producted with the 

remaining “even” qubit term ( )er  


, is precisely two-party correlation term that appears in OPR 

in (22). Similarly, the term in the second curly bracket in (39) {( ) ( ) ( ) ( )o o o em n m n         
       

   
 

( ) ( ) ( ) ( )}e o e em n m n          
       

   
tensor-producted with the remaining “odd” qubit term ( )or  



(with the accompanying minus sign) is just the bit flip (e↔o) of the previous two-party 
correlation term. Again, we can achieve the algebraic maximum SAM=8 when each party has (for 
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the case of qubits) at most m=3 measurement vectors (for exactly the same linear algebraic 
reason for the n=2 bipartite case). Further, as in the bipartite case, we can find particular NS 
supra-correlation solutions 0<S-SQ≤4-2√2 for m>3, but which become increasingly hard to find 
the larger the value of m.  

4.8 Efficient Cluster State Generation 
To date most of experimental research on cluster state generation involves spontaneous 
parametric down-conversion (SPDC) for producing entangled photon pairs (consequently 
existing schemes are limited to completely stochastic non-heralded generation of cluster states). 
Cluster state generation is achieved by applying a standard optical CZ gate, with the success rate 
of 1/9. The gate requires two additional vacuum ports i.e. the general scheme in Fig 2 will 
include two auxiliary vacuum ports. It has been demonstrated by finding direct analytic solution 
of a set of algebraic equation for transition amplitudes of basis states of two-qubit Hilbert space 
that the maximal success probability of optical CZ gate is equal to 1/9.  

C4, C6 and C8 linear cluster state generation from Bell states 

Since the complexity of the problem grows exponentially with the number of qubits involved in 
the transformation [Kok07], the problem of optimal generation of cluster states cannot be solved 
analytically even for the problem of generation of C4 state. Therefore we resort to numerical 
methods developed in. From the point of view of quantum control theory the problem of cluster 
state generation is the problem of state control rather than control of a quantum transformation 
acting in a Hilbert space. Therefore full CZ gates may not be the optimal way to generate a 
cluster state from a specific initial state. This phenomenon has been already confirmed for 
transformations involving concatenation of several CNOT gates and this idea is being exploited 
in the present work.  

In our studies the input state for generating C4, C6 and C8 linear clusters was taken to be a tensor 

product of two, three and four Bell states correspondingly  
4 1,2 3,4

in      , 

 
6 1,2 3,4 5,6

in        ,  
8 1,2 3,4 5,6 7,8

in          ,where 

 
,

2
n m n mn m

H H V V   . We note that Bell State   can be morphed into a 

canonical C2 cluster state  2 ,
2

n m n m n m n m n m
C H H H V V H V V     by a 

deterministic local unitary transformation acting on polarization modes  † † †
, , , 2H m H m V ma a a   , 

 † † †
, , , 2V m H m V ma a a   . The target states are taken to be a canonical cluster states generated by 

applying an abstract two-qubit entangling CZ gate between neighboring qubits prepared in a so-
called "plus" states   2H V    .  

Our numerical results show excellent convergence to a global maximum (see Figure 36a, b 
below). In principle, linear optical transformation may be extended to a broader class of non-
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unitary matricesU .  The subsequent implementation of such a matrix in the form of a linear 
optical device requires dilation of a non-unitary matrix to a unitary matrix by adding extra 
modes, called vacuum modes (i.e. modes carrying zero input photons as shown in see Fig. 13). 
Our search in the space of non-unitary matrices shows that solutions with success probability 
larger than 0.16 are automatically unitary.   

 
Figure 36 Numerical results for generation of C4 cluster state from a pair of two Bell 
states. (left) ratio of smallest to largest singular value of transformation matrix, (right) 
success probability. 

Figure 36 (left) shows the ratio of the smallest singular value of a transformation matrix to the 
largest singular value. If the ratio is equal to 1 then all singular values are equal to one and the 
matrix is unitary. These results are obtained for generation of C4 cluster state from a pair of two 
Bell states. Figure 36 (right) shows the success probability for generation of linear C4 cluster 
state from a pair of Bell states: a sample of 40 optimization cycles reordered by increasing 
success probability (overall we accumulated statistics for more than 2000 cycles confirming that 
s=1/4 is the global maximum). The result in Figure 36 (right) immediately demonstrates that the 
standard scheme of cluster state generation using a destructive CZ gate to fuse two photonic Bell 
states is not optimal. The success probability can be improved by a factor of 9/4 by modifying 
the linear optical part of the experimental setup.  

Our next results for C6 and C8 are shown in Figure 37 (left) and Figure 37 (right).  
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Figure 37. Success probability for C6 (left) and C8 (right) cluster state generation from three Bell 
states. The maximum probability is (left) s=(1/4)2, (right) s=(1/4)3. 

Figure 37 (left) shows the results of the optimization of the C6 cluster state generation from three 
Bell states. The y-axis shows the value of success probability. The maximal success probability 
s=(1/4)2. Figure 37 (right) shows the results of the optimization of the C8 cluster state generation 
from three Bell state pairs of photonic qubits. The y-axis shows the value of success probability. 

The maximal success probability is numerically close to  3
1 4s  . 

We observe that the maximal success probability for the C6 cluster state is numerically very close 

to 20.0625 1 4 .  Since the numerical complexity of multiphoton optimization problem grows 

super-exponentially with the number of photons we were able to find only a few local maxima 
for the C8 cluster state generation problem. However the general trend of numerical results for 
the set of C4, C6 and C8 states indicates that the maximal success probability for generation of a 
Cn linear cluster state (here n indicates the number of qubits in a cluster) from 2n  photonic Bell 

states depends on the number of additional fusion links / 2 1m n   as 1 4m . For the C4 cluster 

state this number is 1, for the C6 cluster state m=2 and for the C8 cluster state m=3. Due to the 
increasing numerical complexity of global optimization and we were not able to verify this result 
for cluster states larger than C8. However, our results demonstrate that the computational 
advantage of the optimal scheme grows exponentially fast with the size of the cluster state. For 
the C4 cluster state generation we obtain a factor of 9/4 improvement compared with the 

traditional scheme; for the C6 cluster state this factor is  3
9 4 5 ; and for the C8 cluster state the 

improvement factor is  3
9 4 11 . Based upon these results we expect that for higher-dimensional 

states the advantage of the optimal scheme will continue to grow as a power of 9 4 . 
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C4, C6 and C8 cluster state generation from product states 

In this section we describe the numerical results of fidelity-constrained optimization of success 
probability by presenting the data on optimization of success probability for cluster state 
generation from product states. In contrast with the previous section the initial state does not 
contain any “pre-loaded” entanglement as in Bell states and one expects that success probability 
of generating a cluster state, where entanglement permeates the whole cluster, will be reduced. 
Surprisingly this common-sense reasoning turns out to be incorrect. Our results can be concisely 
formulated as follows: the success probability of generating a Cn cluster state from n-photon 
product states is only a factor of 2 smaller than maximal success probability of generating a Cn 
cluster state from 2n  -tuple of Bell states.  

 

Figure 38. Success probability for C4 (left) and C6 (right) cluster state generation from product 
states. The maximum probability is (left) s=(1/2)3, (right) s=(1/2)5. 

Figure38 (left) shows the results of the optimization of the |C4> cluster state generation from a 
product state. The y-axis shows the value of success probability minus its maximal value of 1/8. 
Figure 38 (right) shows the results of the optimization of the |C6> cluster state generation from a 
product state. The y-axis shows the value of success probability minus its maximal value of 1/32. 

Unfortunately the structure of optimal solutions encoded in the linear optical matrix U  is too 
complicated to allow simple analysis of the underlying mechanisms of this phenomenon for 
general solutions. However power-law dependence of the success rate of optimal fusion 
transformations strongly suggests that in the process of fusing a Bell state to a Cn cluster the 
entanglement of the Bell state dos not help to increase the success probability of the operation. In 
other words, we expect that sequential fusion of two unentangled single-photon states to Cn 
cluster state, resulting in Cm cluster state with 2m n  , can be implemented with the same 
efficiency as fusion of a Bell state to Cn  cluster state.  
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Table 2. Results of success probability of cluster state generation (with combined results for C3 and C5) 

 C2 C3 C4 C5 C6 C7 C8 

From Bell Pairs 
(optimal) 

1 n/a 1/4 n/a 1/16 n/a 1/64 

From n-qubit 
Product state 
(optimal) 

1/2 1/4 1/8 1/16 1/32 1/64 1/128 

Fusion by CZ 
gate from product 
state 

1/9 1/81 1/729 1/6561 1/59049 1/531441 1/478296
9 

Fusion by CZ 
gate from Bell 
pairs 

n/a n/a 1/9 n/a 1/81 n/a 1/729 

 

We performed numerical analysis of the problem of photonic cluster-state generation in 
application to quantum optics. Our method performs a search for the most efficient scheme of 
cluster state generation from either a combination of untangled photons or a set of pairs of 
entangled photons. 

The optimization tasks we performed are of critical importance for photonic quantum 
computation since the only photon-photon entangling operations currently implementable with 
high repetition rate and fidelity are measurement-assisted stochastic quantum transformations. 
Our results demonstrate that standard methods of cluster state generation using standard 
probabilistic linear optical CZ (C-phase) gate is far from optimal. Performing numerical 
optimization we established that there exists a scheme of cluster state generation which boosts 
the success rate of generation by more than an order of magnitude even for a small eight-qubit 
cluster state. The advantage of this scheme in comparison with traditional schemes grows 
exponentially fast with the size of a cluster.  

Finding the simplest possible realization of the scheme with the fewest number of optical 
elements requires further analytical and numerical analysis for which we some preliminary 
details below. Further details can be found in [Uskov13, Uskov14]. 

Towards an explanation of the numerical results 
To explain the observed dependence of fusion success probability on the number (and structure) 
of qubit states we first introduce a generic fusion gate by relaxing the standard CZ gate. Formally 
the CZ gate is a linear operator acting in 2-qubit 4C  Hilbert space as specified by equation (5). It 
preserves the Hermitian scalar product and as such belongs to the  4U  group. Let us first fix the 
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notation for qubits encoded in photon polarization states: as mentioned above we will assume 
that qubit logical states 0  and 1  are conventionally encoded in horizontal H  and vertical V  

polarization states of a photon correspondingly. Linear combinations of these states are denoted 

as  1

2
H V    .  

Consider first a fusion of a nC  cluster with a single qubit:  

n n+11
C C

n
 


           (40) 

In the above equation we assume for simplicity that (n+1) th qubit is prepared in the    state. 

The fusion transformation (40) does not have to be implemented via a unitary transformation: it 
can be any general SLOCC transformation. Now notice that when “fusing” a single qubit with n-
qubit cluster one strictly speaking does not work with operators acting in two-qubit 4C  space. 
Since the state of an extra (n+1) th qubit is always fixed, all operators are in fact acting on the 

2
inC subspace of 4C  spanned by states 

1n n
V  


and

1n n
H  


, mapping this subspace onto the 

full 4C  space. Such operators do not form a Lie group; instead they belong to the so-called 

Stiefel space  4
2V C  [Porteous95]. If the action of an operator from  4

2V C  on 
2

1 1
{ , }in n nn n

Span H V  

 
C  is identical to the action of a CZ gate on 2

inC   then such an 

operator will fuse an additional qubit to any nC  cluster forming a larger n+1C  cluster state. Let us 

denote such an operator as VCZ  to distinguish it from the CZ  gate itself. This operator must 

satisfy two equations determining its action in 2
inC  
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 
1 11 1

1 11 1

1
,

2
1

.
2

V n n n n n nn n

V n n n n n nn n

CZ H CZ H H H H V
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 

 

 
  

 
  

  

  
   (41) 

In the context of photonic entangling gates conditioned on coincidence multimode photon 
detection one should further relax the requirement on the fusion operation by adding a scaling 
factor   and introducing extra terms in equations (41) 

 

 
1 11

1 11

1
,

2
1

.
2

LO II
v Hn n n n nn

LO II
v Vn n n n nn

CZ H H H H V

CZ V V H V V

 

 


 


 

   

   
         (42) 

To distinguish an abstract CZ operator satisfying equations (41) from a linear optical 
transformation (42) we use the notation LO

vCZ . Additional terms in equations (42), denoted as 

,
II
H V , are states from a space complimentary (orthogonal) to the space of the dual-rail 
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encoding. These functions are normalized as 2
1II II II II

H H V V          and if all 

measurement operations on photonic cluster qubits are successful these states vanish. Probability 

of such a scenario according to the Born rule is equal to 2 . While operators satisfying equations 

(41) cannot be implemented by linear optics and require non-linear photon-photon coupling 
(such as cross-Kerr non-linearity), those operators satisfying equations (42) may be implemented 
by linear optics and photo-counting measurement operations. 

 

Figure 39. Fusing a single qubit to a nC  cluster. 

The first theoretical scheme of a linear-optical LOCZ  gate in the coincidence basis was described 
by Ralph et al. [Ralph02] and implemented experimentally using specially engineered 
Polarization Beam Splitters (PBS) [Langford05, Kiesel05a, Kiesel05b, Okamoto05]. This gate 
satisfies a set of four equations  

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 1
, ,

3 3
1 1

, .
3 3

LO II LO II
HH HV

LO II LO II
VH VV

CZ H H H H CZ H V H V

CZ V H V H CZ V V V V

     

      
       (43) 

If a transformation satisfies the set of equations (43), then it also will be a solution for the set of 
equations (42). An important relevant observation: the class of solutions for the set of equations 
(42) is larger than the class of solutions for equations (43). Formally, all these classes can be 
viewed as affine varieties [VanMeter07]. 

The LOCZ  solution suggested in [Ralph02, Hoffmann02] provided success probability 2
1 9  . It 

was demonstrated recently [Kieling10, Lemr11] by finding the direct algebraic solution for the 
matrix of linear optical transformations that this is the maximal possible success probability for a 

LOCZ  gate and it cannot be improved by modifying the optical scheme. This fact makes such a 
gate frustratingly inefficient when applied multiple times to produce high-dimensional clusters. 
Therefore in practice larger photonic cluster states are generated by fusing photonic Bell states 
produced by SPDC [Walther05, Yao12] (see also references in the review paper [Pan12]). For 
example, the production of a C4 cluster out of four independent qubits will require three 
applications of a LOCZ  gate with resulting success probability of 3(1 9)  while generation of the same 

C4 state out of two photonic Bell pairs requires only one application of the LOCZ  gate with the 
resulting success probability of (1 9) . This approach follows a common wisdom based on an 
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expectation that entanglement contained in the initial photonic Bell pairs will help to increase the 
rate of production of cluster states. One counterintuitive conclusions of our work is that this type 
of reasoning is actually wrong: if one is using the optimal scheme of cluster generation the rate 
of production of cluster states does not increase when more entanglement resources are invested 
in the preparation of the initial state.  A set of purely separable photonic qubits provides the same 
success probability as Bell states. So, a natural belief that SPDC producing polarization 
entangled photons will help to generate cluster states in linear optical approach seems to be 
incorrect. 

An additional resource which we are using here is exploiting the fact that the class of LO
vCZ  

transformations is larger than canonical LOCZ .  While LOCZ  cannot be made more efficient then
2

1 9  , we can make LO

vCZ  as efficient as 2
1 / 2  . Yet, there is a price to pay:  LO

vCZ  will work 

only for fusing a separate qubit to a cluster state (any cluster state) because it exploits the fact 
that a qubit to be fused to a cluster is prepared in a specific state, which for simplicity, we 

assume to be a “plus” state  
1

1

2n
H V 


  .  

Adding qubit to the end of the linear cluster state 
The following calculation demonstrates how the mapping given by the two equations in (41) is 
unique. Working through this calculation also illuminates the role of the entanglement of the 
linear cluster state forcing the uniqueness of the mapping. 

Goal: we seek a state transformation that maps n n+11
C Cin outn

 


    . 
 

 
Figure 40: Fusion of a single qubit to the end of an n-qubit linear cluster state. 

 
Let us note that we can write the n-qubit linear cluster state as 

11 2

1,
n 1C 1 2 ( 1) ( 1) , ,n n

n

i ii in
ni i

i i   
  where each index {0,1} { , }.ki H V   

 
Let us expand the input state n 1

Cin n



  on qubits n and n+1 as  

 

 

11 2

1,

2 1 11 2

1, 1

n n+1 1 n+1

1 1 n n+1 n n+1

C 1 2 ( 1) ( 1) , ,

1 2 ( 1) ( 1) , , ( 0 ( 1) 1 ).

n n

n

n n n

n

i ii in
in ni i

i i ii in
ni i

i i

i i

 

  




     

      








 

 
       (44) 
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Note: in the last line of (44) rightmost parentheses, the n, n+1 qubit term 1
n n+1( 1) 1ni   contains 

the phase information from the 1,n nCZ   link between qubits n-1 and n. (Note: 
1 1 1( 0) ( 1)( 1) 1 and ( 1) ( 1)n n n n ni i i i i         ). It turns out this will force the uniqueness of the mapping 

given in (41). 
 
Now let us similarly expand the output state n+1Cout  on qubits n, n+1 (combining four terms 

into two): 
 

 

1 11 2

1,

2 1 11 2

1, 1

1
n+1 1 1

1 1 n n+1 n n+1

C 1 2 ( 1) ( 1) ( 1) , , ,

1 2 ( 1) ( 1) , , ( 0 ( 1) 1 ).

n n n n

n

n n n

n

i i i ii in
out n ni i

i i ii in
ni i

i i i

i i

  

  








    

      








 

 
                      (45) 

Comparing the terms in the rightmost (…) in (44) and (45) we see that the mapping ,1
LO
vCZ needs 

to map 
 

                             1 1
,1 n n+1 n n+1 n n+1 n n+1( 0 ( 1) 1 ) 0 ( 1) 1 .n ni iLO

vCZ                                         (46) 

The simplest, most direct mapping is given by (41) in the paper: 
 

,1 n n+1 n n+1

,1 n n+1 n n+1

( ) 0 0

( ) 1 1 ,

LO
v

LO
v

i CZ

ii CZ

  

  
           (47) 

 

in which the phase factor 1( 1) ni  appearing on both sides of (ii) in (47) cancels. Equation (47) then 
represents a 2-qubit transformation on qubits n, n+1. 
 
Alternatively, from (46) we could (perversely) consider the (cross-term) mapping 
 

1

1

,1 n n+1 n n+1 n n+1 n n+1

1 1

,1 n n+1 n n+1 n n+1 n n+1

( ) 0 ( 1) 1 1 ; 1

( 0); ( 1);

( ) 1 ( 1) 0 0 ; 0 .

n

n

iLO
v

n n

iLO
v

i CZ

i i

ii CZ





 

         

 

         

                        (48) 

This form of the transformation depends on the value of 1ni  , so at minimum it would have to be 
implemented as a 3-qubit gate, with qubit n-1 acting as further control qubit. It could not be 
realized as a 2-qubit transformation. 

 
The salient point of the above calculations is that the phases resulting from the CZ linkages of 
the qubit in question (here n) to neighboring qubits (here n-1) play a crucial role in determining 
the uniqueness of the mapping on the Stiefel space. The generalization of these results to 2D 
cluster states is currently under investigation. 
 
 
Adding a qubit to the middle of the linear cluster state 
Here we want to develop the Stiefel space equations on 3-qubits for adding a single qubit k to the 
middle of an n-qubit cluster state where 1 ,k n   i.e. n n+1C C .in outk

      We know this 

can be accomplished with three CZ gates (with probability (1/9)3) as 
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, 1 1, 1, 1n+1 nC C
k k k k k kout j i i j i i k

CZ CZ CZ
   

   where 
1, 1k ki iCZ
 

breaks the existing link between qubits k-1 

and k +1, and 
, 1 1,k k k kj i i jCZ CZ

 
establishes the new links between qubits k -1 and k, and k and k +1. 

We would like to do better than the standard (1/9)3 success probability. 
 

 
Figure 41: Fusion of a single qubit to the middle of an n-qubit linear cluster state. 

 

Let label the n-qubit cluster state as 1 1 11 2

1, 1, 1 1
n 1 1 1 1C 1 2 ( 1) ( 1) ( 1) , , , , ,k k n n
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  

with indixe ki  absent.  
 
After expanding on qubits k-1, k, k+1, we have  
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where, for convenience we have define
3 2 2 3 11 2

1 2, 2 1 1 2 2 1( 1) ( 1) ( 1) ( 1) , , , , ,k k k k n n
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              . 

 
Similarly, we now expand the output state n+1Cout  on qubits k-1, k, k+1, as 
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 (50) 

 
Comparing the terms in the right most parentheses in (49) and (50) we are led to the mapping 
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                                          IN                                         OUT
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                 (51) 

The most important points about (51) are that (a) the phases drop out from both sides of the 
mapping yielding 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

                   IN                     OUT

( ) 0 0 0 0 ,

(ii) 0 1 0 1 ,

(iii) 1 0 1 0 ,

(iv) 1 1 1 1 ,

k k k k k k

k k k k k k

k k k k k k

k k k k k k

i    
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   

   

  

  

  

   

                        (52) 

Independent of the CZ phase linkages of qubit k-1 to k -2 and qubit k +1 to k +2, and (b) we have 
4 equations in (52) as opposed to 32 8  equations for a full 3-qubit unitary, transforming the 
eight 3-qubit basis states consisting of the union of 

( ) 8
4 1 1 1 1 1 1 1 1V ( ) { 0 0 , 0 1 , 1 0 , 1 1 }k k k k k k k k k k k k


           C and 
( ) 8
4 1 1 1 1 1 1 1 1V ( ) { 0 0 , 0 1 , 1 0 , 1 1 }.k k k k k k k k k k k k


           C  
 
Though it has not been proven yet,  we suspect that we would get some improvement over the 
standard (1/9)3 success probability utilizing three CZ gates. Additional research has been 
submitted for publication to Physical Review Letters [Uskov13b]. 

5.0 CONCLUSIONS 

Multipli-entangled photons from a spontaneous parametric down-conversion source  
This report describes research on the Schioedtei source, a unique type II SPDC source design for 
which additional in-depth information can be obtained through our previously published papers 
[Fanto11, Peters12].  Schioedtei generates up to six pairs of entangled photons per pass through 
the type II crystal assembly.  This configuration surpasses the typical single entangled pair 
generated per pass found in standard type II SPDC sources. Concurrently Schioedtei generates a 
variety of states atypical of being produced from a single photon source.  Useable photon 
generation rates (two and four photon) have been observed, thus showing its feasibility as a 
direct generation source of entangled photons for quantum optics/entanglement experiments.  
The six pairs of photons produced are directly applicable to the generation of linear, box, 
butterfly and a multitude of other cluster states.  The utility of the Schioedtei source is (i) its 
reduced experimental footprint compared to standard multi-crystal/multi-pass experiments; (ii) it 
generates a variety of entangled/separable states; (iii) generated states are amenable towards 
cluster state generation. Furthermore, the generated photons from Schioedtei are the input states 
for our bulk optical gates and QPICs.   
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A path toward experimental generation of a linear cluster state 
We successfully measured two entangled pairs of photons using the new mirror based collection 
system.  We were able to improve the environmental controls for the crystal, and the polarization 
stabilization of transported photons, both critical components of the experimental test bed.  
Continuing to ensure the polarization of the photons is maintained when transporting photons is 
critical to future experiments.  These accomplishments will allow for the creation of a linear four 
cubit cluster state and then a box cluster state.  Those two states are the fundamental necessary 
building blocks to perform universal one-way quantum computing. 

A multi-layer three dimensional superconducting nanowire photon detector  
The multilayer superconducting number-resolving photon detector represents a significant 
improvement on current single layer meander devices. The device will have significantly higher 
number resolution, while maintaining a useful detection area. It has several parameters which 
can control the reset time to avoid latching while still minimizing the rest time. An array of 
pixels of arbitrary number, size and shape is possible. The active area of the detector can be 
tuned by changing the number or the shapes of the pixels. The fill factor of the detector should 
be at least equal to that of current nanowire meanders and given the potential reduction of the 
current crowding effect significantly higher. As a final note we will point out that the multi-layer 
superconducting number-resolving photon detector can also give a rough spatial distribution of 
the incident photons. These advantages are compelling evidence for the construction and testing 
of multi-layer superconducting number-resolving photon detectors. 
 
Probabilistic cluster state generator patent 
Single and entangled photons utilized for cluster state generation are difficult to generate in large 
quantities.  This is due to the lack of availability of on deand single and entangled photon 
sources.  Therefor taking advantage of the photons that are produced is critical.  Any path 
towards the generation of an on-demand or periodic source of single or entangled photons is of 
tremendous benefit.  The sequential entangler allows for the generation of cluster states in an 
efficient manner from a spontaneous photon source.  Employing entangling gates which use the 
photons generated via spontaneous parametric downconversion as an input, the circuit generates 
the cluster state in a periodic manner. The further advancement beyond the one-dimensional 
cluster state is to generate 2-dimensional cluster states with interchangeable degrees of 
connections.  The second set of patents address these technology issues and are able to generate 
the entangled photons pairs on chip as well.  This is the next and necessary step towards periodic 
n-dimensional cluster state generation. 
 
Theory/experimental requirements of imperfect two-qubit linear optical photonic gates 
We have shown the theoretical basis and interest for this experiment. At this time it is the only 
apparent means of experimentally confirming the numerical data presented above, which 
quantifies the trade-off between fidelity and success, for the CZ or CNOT gate. The experimental 
setup may naturally be extended to explore the behavior of other quantum gates of interest. The 
components needed for the execution of the experiment are well within the means of many 
experimental groups. The main stumbling block is the expense of purchasing number-resolving 
detectors. However, any group already possessing these detectors should be able to implement 
this scheme with relative ease. 
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Nonlocality, entanglement witnesses and supra-correlations  
In this area of research we have examined the structure of supra-correlations that are stronger 
than quantum and hence not realizable by a physical (positive) quantum state ρ≥0. The supra-
correlations are intriguing because they arise from valid probability distributions, first put forth 
by Popescu and Rohrlich (PR), that satisfy the no-signaling principle of special relativity as well 
as all the usual normalization condition on the joint and marginal distributions. Thus, the fact that 
nature is not able to realize these supra-correlations points to hidden structure underlying how 
quantum correlations can be distributed amongst spacelike separated parties. Our work has 
examined the structure and distribution of PR correlations in 2- and 3-qubit systems by explicitly 
constructing “states” (not necessarily positive quantum states) that exhibit supra-correlations for 
a fixed, but arbitrary number, of measurements available to each party. We have shown that the 
PR correlations involve only solely n-party correlations amongst the n observers. We have 
extended this study to include n-party correlations that capture the essential features of the PR 
correlations and do not rely on predetermined measurements between the n participants. 
Additionally, by constructing constraints based on the positivity and purity of an arbitrary n-qubit 
state we have shown the “unreasonableness” of the PR correlations in that they encode more 
correlations than are physically allowed by nature [see details in Alsing12].  In future work we 
will couple this approach of studying how correlations are distributed amongst the n parties to 
the study of quantum entanglement. The study of entanglement [Horodecki09] is an important, 
but difficult field, only well understood for the case of two qubits (both pure and mixed), and to a 
lesser degree, for pure 3-qubit systems. A fruitful area to investigate next are pure 3-qubit 
systems, where a generalized (though non-unique) Schmidt decomposition holds [Acin00]. We 
purport that an examination of the distribution of correlations, bounded by physically imposed 
constraints on e.g. positivity and purity, coupled with the description of entanglement in terms of 
the tangle, as initiated in this work, can shed further light on the classification of pure tripartite 
systems. 
 
Efficient cluster state generation (theory) 
In this area of the research we have shown numerically [Uskov13a], that linear cluster states can 
be made (9/4)=2.25X more efficiently than by conventional quantum state projection methods. 
We have also made considerable progress [Uskov13b] in our analytic understanding of how this 
increase in success probability for linear cluster state generation arises. The essential idea is that 
to append addition qubits to a linear cluster state in order to make a larger linear cluster state, 

n n+m1
C C .in outn n m

 
 

      the intial qubits are in well-defined a priori state, namely 

1n n m 
  where  0 1 2   . Thus, the desired transformation (possibly non-untiary) is 

only required to take the particular state n 1
C

n n m 
  to n+mC . A unitary transformation 

would have additionally map all the other 2 1m  states orthogonal to n 1
C

n n m 
   to 2 1m 

respective states that are orthogonal to n+mC  and to each other. Not requiring this additional 

burden is the essential reason for the speedup that we have found. For the case discussed here of 

n n+11
C Cin outn

 


     one sees that in (47) that only half the number conditions that 

would require the transformation to be unitary are necessary. Though the resulting transformation 
need not necessarily be unitary, we have found analytically [Uskov13b] unitary instantiations of 
a transformation that gives a success probability of ¼ (vs the conventional 1/9). Ongoing and 
future research will explore experimental realization of linear cluster state generation with 
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success probability of ¼ and expand of the theory form linear to two dimension (grid) cluster 
state generation. 
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7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

2D:  2 Dimensional 

3D:  3 Dimensional 

α-BBO:  Alpha barium borate 

AFRL:  Air Force Research laboratory  

APD:  Avalanche photodiode 

a-WxSi1-x: Amorphous Tungsten Silicon 

ß-BBO:  Beta barium borate 

BiBO:  Bismuth borate 

BI:   Bell Inequality 

CCD:  Charged coupled device 

CCM:   Coincidence counting module 

CHSH:  Clauser-Horne-Shimony-Holt 

CJI:  Choi-Jamiolkowski isomorphism 

CNOT:  Controlled NOT (gate) 

CW:  Continuous wave 

CZ:  Controlled Z (gate) 

fs: femtosecond 

FWM:  Four wave mixing 

GVM:  Group velocity matching 

HP:  High power 

IW:  Integrated Waveguides 

JAG:  Judge Advocate General 

LiNbO3 : Lithium Niobate 

LS:  Least squares 

MBQC: Measurement based quantum computing 

MgO:  Magnesium Oxide 
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MHz:  megahertz 

mm:  millimeter 

NbN:   Niobium Nitride 

NbTiN:           Niobium Titanium Nitride 

NIST:  National Institute for Standards and Technology 

nm:  nanometer  

NS:  No-signaling 

OPO:   Optical Parametric Oscillator 

PCSG:  Probabilistic Cluster State Generator 

PM:  Polarization Maintaining 

PPKTP: Potassium Titanyl Phosphate 

PQNS:  Post Quantum No-signaling 

PR:   Popescu-Rohrlich 

QM:  Quantum Mechanics 

QIS:  Quantum Information Science 

QPIC:  Quantum Photonic Integrated Circuit 

S.E.:   Sequential Entangler 

SHG:  Second harmonic generation 

Si:   Silicon 

Si-APD:  Silicon avalanche photodiode 

SI:  Svetlichny Inequality 

SNSPD: Superconducting Nanowire Single Photon Detector 

SPCM:  Single photon counting module 

SPDC:  Spontaneous parametric downconversion 

SR:   Special Relativity 

THG:  Third harmonic generation 

TPR:  Tripartite Popescu-Rohrlich 
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UV:  Ultraviolet 




