
A RAND NOTE

THE ROSIE LANGUAGE REFERENCE MANUAL

J. Fain, D. Gor1in, F. Hayes-Roth,
S. Rosenschein, H. Sowizra1, D. Haterman

December 1981

N-1647-AFPA

Prepared For The Defense Advanced Research Projects Agency

TI1 A ROSIE Report

Rand
SANTA MONICA, CA. 90406

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1981 2. REPORT TYPE

3. DATES COVERED
 00-00-1981 to 00-00-1981

4. TITLE AND SUBTITLE
The Rosia Langauage Reference Manual

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
RAND Corporation,1776 Main Street, PO Box 2138,Santa
Monica,CA,90407-2138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

158

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The research described in this report was sponsored by the
Defense Advanced Research Projects Agency under ARPA Order
No. 3460/3473, Contract No. MDA903-78-C-0029, Information
Processing Techniques.

The Rand Publications Series: The Report is the principal publication doc­
umenting and transmitting Rand's major research findings and final research
results. The Rand Note reports other outputs of sponsored research for
general distribution. Publications of The Rand Corporation do not neces­
sarily reflect the opinions or policies of the sponsors of Rand research.

Published by The Rand Corporation

A RAND NOTE

THE ROSIE LANGUAGE REFERENCE MANUAL

J. Fain, D. Gor1in, F. Hayes-Roth,
S. Rosenschein, H. Sowizra1, D. Waterman

December 1981

N-1647-ARPA

Prepared For The Defense Advanced Research Projects Agency

A ROSIE~eport

Rand
SANTA MONICA, CA. 90406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

-iii-

PREFACE

ROSIE (Rule-Oriented System for Implementing Expertise) is a computer
programming environment developed at The Rand Corporation under contract
MDA903-78-C-0029 from the Defense Advanced Research Projects Agency. ROSIE
has evolved from a succession of projects in artificial intelligence and
expert systems. The current version of ROSIE differs significantly from
all extant programming languages as well as from its own initial design
(described in Rand Note N-1158-1-ARPA, Design of a Rule-Oriented System for
Implementing Expertise, May 1979).

ROSIE has been implemented in INTERLISP and is currently supported on the
TOPS-20 operating system. Additional information about ROSIE can be found
in companion RAND Notes N-1648-ARPA, Rationale and Motivation for ROSIE,
November 1981, and N-1646-ARPA, Programming in ROSIE: An Introduction by
Means of Examples (forthcoming).

-v-

SUMMARY

ROSIE is a programming language and programming system for artificial
intelligence (AI) applications. The ROSIE language is a stylized version
of English. Our primary design goal for the language has been to achieve
exceptional program readability. A second goal has been to support the
development of significant applications. ROSIE provides a variety of
language and programming environment features aimed at this objective. The
language allows the programmer to describe complex relationships simply and
to manipulate them symbolically and deductively. In addition, it supports
network communications and patterned reading and writing to other systems.
It also provides for interactive, compiled, and interpreted computing, with
a variety of debugging and programming tools.

ROSIE encompasses many of the capabilities of conventional programming
languages. It is a general-purpose language offering a variety of typical
data types and control constructs found in most high-level languages,
together with a few found only in AI languages. Among the features we
include are rulesets that generate sets, predicates that test propositions,
propositional data types, and some limited forms of deduction.

Using ROSIE, an AI applications programmer can think concretely about the
problem domain and translate ideas into a program using substantially the
same vocabulary that arises in the English (non-computational) formulation
of the model. ROSIE's language will provide a naturalistic style for
describing even such mathematical abstractions as graphs, stacks, etc. For
example, a user can refer to "a stack whose top element is "

This manual consists of a technical discussion of the syntax and
semantics of the ROSIE language as well as an explanation of the ROSIE
environment as a whole.

-vii-

CONTENTS

PREFACE iii

SUMMARY ••.•..••••••••••••••••••.••••••••••••••••••..•••.•••••.••••• v

1. INTRODUCTION .. 1
1. 1. Overview . 1
1. 2. The ROSIE Environment 1
1. 3. Limitations .. 2
1.4. Notation ... 2
1. 5. How to Use this Manual . 3

2. PRIMITIVE STRUCTURES OF THE LANGUAGE 5
2.1. Overview ... 5
2. 2. Lexical Analysis ... 5

2. 2. 1. Tokens . 5
2.2.2. Comments ... 6

2.3. Primary Language Elements 6
2.3.1. Evaluation Names 6
2.3.2. Names .. 7
2.3.3. Strings .. 7
2.3.4. Numbers .. 8
2. 3. 5. Tuples . 9
2.3.6. Other Primary Language Elements 9

2. 4. Reserved Words . 10

3. STORING SENTENCES: THE DATABASE 11
3 .1. Overview .. 11
3.2. Relational Forms and Relation-names 12
3. 3. The IS A Relation 14
3.4. Negation and Truth Values 15
3.5. Global, Private, and Alternate Databases 16
3. 6. Class Elements . 17
3.7. Database Commands: Quick Reference 19

4. THE SYNTAX OF THE ROSIE SENTENCE 22
4. 1. Overview . 22
4.2. Descriptions .. 22

4.2.1. Simple Descriptions 24
4.2.2. Descriptions with Relative Clauses 24
4.2.3. Descriptions with Adjectives 25
4.2.4. Description Variables 26
4.2.5. Descriptions as Generators 28
4.2.6. Descriptions as Class Membership Tests 28
4.2.7. Descriptions and Modification 29
4.2.8. Anaphoric Descriptions 30

-viii-

4.3. Terms ... 31
4.3.1. Name Terms 31
4.3.2. String Terms 31
4.3.3. Number Terms 32
4. 3. 4. Tuples as Terms . 32
4. 3. 5. Variables as Terms . 32
4.3.6. Arithmetic Expressions as Terms 33
4. 3. 7. Other Types of Terms . 34
4.3.8. Psuedo-terms: Some, Every, Each of, One of 35

4. 4. Verb Phrases . 37
4.5. Relative Clause Forms 38
4.6. Primitive Sentences, Propositions, and Sentences 41

4.6.1. Primitive Sentences 41
4.6.2. Propositions 42
4.6.3. Comparative Sentences: <,>,=etc 43
4.6.4. Other Sentence Forms 44

4.7. Conditional Sentences 46
4.7.1. Conditions and Compound Conditions 46

4.8. Actions ... 48
4.8.1. Actionblocks, Commablocks, Colonblocks 48
4.8.2. Sentences and Modification 51

4. 9. Patterns .. 52
4. 9 .1. Subpatterns 53
4.9.2. Character Restrictions 54
4.9.3. Variable Binding 54
4.9.4. Pattern Matching 55

5. PROGRAMMING STRUCTURES . 56
5. 1. Overview . 56
5.2. Rules and Rule Variables 56
5. 3. Rule sets . 58
5. 4. Procedures . 58
5. 5. Generators . 59
5. 6. Predicates .. 60
5. 7. System-defined Rulesets 61
5.8. Private Relations in Rulesets 64
5.9. Passing Arguments to Rulesets 66
5.10. Order of Execution in Rulesets 67
5.11. Writing System Rulesets 67
5. 12. Input/Output . 69
5.13. Program Control Structures 70
5.14. Programming Actions: Quick Reference 70

6. STORING PROGRAMS: THE FILEPACKAGE 76
6. 1. Overview . 76
6. 2. Program Files ... 76
6.3. Ruleset Definitions and File Rules 77
6.4. Modifying and Using Program Files 80

-ix-

6.5. Compilation ... 80
6. 6. Filesegments . 80
6.7. File Commands: Quick Reference 81

7 . USER AIDS . 86
7. 1. Overview . 86
7. 2. Errors . 86
7. 3. User Support Actions . 90
7.4. ROSIE's Top level and User Interaction 90
7.5. ROSIE BNF ... 94

Appendix

A. GETTING STARTED WITH ROSIE 105

B. A ROSIE PRIMER . 120
B.1. Glossary ... 120
B. 2. The ROSIE Environment 126
B. 3. Basic Actions . 127

C. SYSTEM SUPPORT LIBRARY . 131

REFERENCES . 139

INDEX .. 141

-1- Introduction

1. INTRODUCTION

1.1. OVERVIEW

This document is a reference manual for users of the ROSIE programming
environment. Novice users are referred to Ref. 1 for examples.of ROSIE
code and to Ref. 2 for an overview of ROSIE design philosophy and
motivation.

The ROSIE language has evolved through many phases of design and
improvement. As in any language, some limitations in language flexibility
and expressiveness still exist and may cause some frustration. This release
implements a collection of design decisions complete enough to support the
development of a ROSIE user community.

1.2. THE ROSIE ENVIRONMENT

ROSIE attempts to provide a complete working environment for developers
of interactive knowledge-based systems. Because such systems are often
built around a collection of rules and heuristics for working within a
problem domain, ROSIE encourages the user to think in terms of English-like
rules and collections of rules, and provides an interactive environment
which supports that approach. This support is an integral part of the ROSIE
design philosophy.

ROSIE's English-like rule syntax not only allows users to embody
knowledge in a convenient and natural form, but improves interaction with
others involved in the knowledge acquisition process. A well-written ROSIE
program is accessible not only to the programmer, but to the domain experts
and others as well. Non-programmers can examine rulesets and suggest
modifications directly, become more involved in system development, and
ultimately express their knowledge in ROSIE rules. In addition, because
programs can easily be scanned and modified interactively, knowledge
development becomes practical in a conference or demonstration environment,
without the usual delay associated with program modification.

These benefits, however, are not automatic. Although readable ROSIE rules
are not hard to generate, it is just as easy to write cryptically as it is
to write clearly.

ROSIE Language Reference Manual -2-

1.3. LIMITATIONS

The purpose of this release is to provide a working version of the
language for experimentation and small system development. Many efficiency
issues have not been adequately considered, especially concerning space and
speed. Compilation of programs is essential due to severe storage
limitations on the DECsystem-20* and will greatly improve the speed of
running programs. Database access is relatively efficient, but database
size is somewhat restricted by the general shortage of available space.

Because we have emphasized language decisions, there is also a general
shortage of user conveniences, especially with regard to input/output and
data representation. System rulesets allow users to access INTERLISP
directly, which requires some knowledge of INTERLISP and a reference manual
for that language. Users requiring comprehensive language features should
anticipate this.

1.4. NOTATION

Examples in this document follow certain conventions for readability and
are always set apart from the text which explains them.

Boldface

Standard

Example:

Words in boldface are either reserved words or
keywords in the language.

Words in standard font are parameters, examples of
items supplied by the user.

Assert John does not like movies about horses.

In addition, the following conventions hold when syntactic constructs are
presented or discussed:

Boldface

Underline

*

Words in boldface are fixed parts of language constructs.

Underlined words are syntactic categories. They represent
legal constructs of that type.

Decsystem-20 is a trademark of Digital Equipment Corp., Maynard, Mass.

[,]

{l I J

Examples:

-3-

These characters (brackets) surround optional parts
of constructs.

Notation

These characters (vertical bars and braces) surround
a part of the construct which can appear zero or more
times in that position.

These characters (vertical bars and parentheses)
surround a set of alternatives, only one of which
can occur in that position. The options are separated
by vertical bars.

Send [to term] pattern
action {I and action I}
Open term to (I read I write append I)

Underscoring is used to highlight new concepts when they are introduced.

1.5. HOW TO USE THIS MANUAL

The ROSIE Reference Manual is designed to be of use to those at all
levels of expertise.

New users who are interested primarily in ROSIE as a language (i.e.,
apart from applications) should examine carefully Appendix A (A ROSIE
Primer) first, then concentrate on chapters 2, 3, 4, and 5. In addition,
the BNF of the grammar is given in section 7.5. The new user who is
oriented toward programming should study Appendixes A and B (Getting
Started with ROSIE) before tackling the remainder of the manual.

Users already familiar with ROSIE may have recourse to this manual for a
variety of reasons. Those who need a refresher on a particular topic are
directed to the Table of Contents or Index for the location of an in-depth
discussion of the subject. In general, index entries point toward the
location of the major portion of discussion for that topic. A user who
merely wants to check for the existence or correct syntax or semantics of a
particular action is directed toward one of the three quick references
(sections 3.7, 5.14, and 6.7). The BNF (section 7.5) is also a useful
source of information for the expert user.

The programmer who is in the debugging phase of a program may find help
in one of two locations. First, section 7.2 discusses ROSIE errors in
general. As an alternative, the user can turn to the section of the manual
discussing the general topic of which the error is an example (e.g., a

ROSIE Language Reference Manual -4-

syntax error in a relative clause might send you to section 4.5). In many
sections, the occurrence of the label "NOTE:" signals a warning about
semantics of the particular ROSIE construct that some find
counterintuitive.

A final note: In reading this manual cover to cover, the user may notice
a fair amount of redundancy; this is intentional. By repeating information
in a variety of locations we hope to make it easier for you to find what
you need when you need it. In the long run, repetition should facilitate
the use of this document as a reference manual.

-5-Primitive Structures of the Language

2. PRIMITIVE STRUCTURES OF THE LANGUAGE

2. 1 . OVERVIEW

This chapter introduces the basics of any high-level language: the
character set (2.2), the primitive data types (2.3), and the reserved words
(2.4).

2.2. LEXICAL ANALYSIS

Before the action embodied in a ROSIE sentence can be performed, the
English syntax must be parsed into an internal representation that can be
executed. The first step in this process is called lexical analysis and
involves separating the text into individual units called tokens.

2.2.1. Tokens
The example below shows a typical ROSIE sentence followed by the tokens

it contains in uppercase:

Assert <"3,4", 3.4, Dave's age> is a tuple of elements.
ASSERT < "3,4" , 3.4 , DAVE ' S AGE > IS A TUPLE OF ELEMENTS

Distinguishing one token from the next is done by using knowledge about
three types of characters:

(1) SEPARATOR CHARACTERS: spaces, tabs, and carriage returns.

(2) BREAK CHARACTERS: special characters that the lexical
analyzer recognizes as indicating the beginning or end
of a ROSIE construct. The break characters are

{}''""(),<> = ' .
(3) TERMINAL CHARACTERS: characters that indicate the end of

a rule (5.2). The terminal characters are

. ! ? :

Note that terminal characters must be followed by a carriage
return to be considered as terminal characters. Thus, the

ROSIE Language Reference Manual -6-

use of the "." in the number "3.4" above carries its normal
meaning. Note also that the ":" is a terminal character
only in the special case of ruleset headers (see chapter 6).

The string "3,4" in the example above was not broken apart even though
commas are break characters, because strings (which begin and end with
double quotes) are considered as one token by the parser. This allows
strings to contain any character at all, except the double quote character.
Actually, ROSIE programs can read and create strings which contain double
quotes using patterns (see section 4.9), but these strings will not parse
correctly when typed to the top level or when included in filepackage files
(see section 6.1).

2.2.2. Comments
Comments can appear anywhere in a program file. They are preceded by a

left square bracket "[" and terminated with a right square bracket "]".
Comments can also be nested to any depth, meaning that a comment within a
comment will parse correctly. Comments are simply discarded by the parser,
so they do not occupy storage when rulesets are loaded.

2.3. PRIMARY LANGUAGE ELEMENTS

Elements are the primitive data types in ROSIE. Rulesets (5.3) can be
written to accept elements as parameters and to generate a sequence of
elements on request. Elements can also be stored as variable values within
rules (5.2). Database entries (3.1) are relationships among elements that
can be manipulated by a number of actions.

There are a number of different element types available, each of which
represents a different kind of information. Together, they allow programs
to manipulate data in many forms.

2.3.1. Evaluation Names
Elements are usually created when terms are evaluated. When an element is

printed, the evaluation name (in uppercase) of the element is used. The
evaluation name is the string of characters representing an element. Every
element type has its own format for creating evaluation names so that the
evaluation name will resemble the form of the original term. For example,
the term

-7- Evaluation Names

<The general, 3 + 4, john's mother, john>

is the term commonly used to create tuple elements. The element this term
creates when evaluated might print as follows:

<GENERAL SMITH, 7, SARAH LEE, JOHN>

Thus, the evaluation names for the terms "The general", "3 + 4", and
"john's mother" are "GENERAL SMITH", "7", and "SARAH LEE" respectively. Not
all terms will appear to evaluate, however; the evaluation name for the
term "john" is simply "JOHN."

NOTE: Evaluation names always appear in the database in uppercase.

2.3.2. Names
Name elements represent literal names which can contain one or more

words. These elements print with spaces separating the individual words in
the name. Legal names cannot include words which can be interpreted as
numbers or strings.

Examples: John
Captain Kirk
Ship #3
Employee 566-96-9990A
Washington State University

Names are considered equivalent or equal only when their evaluation names
are the same.

2.3.3. Strings
String elements represent strings of any number of characters. They are

printed between double quotes. Characters in strings are not converted to
uppercase by the parser.

Examples: ""
"THIS IS A STRING"
"Please respond now:"
"566-96-9990A"

ROSIE Language Reference Manual -8-

Two strings are considered equivalent or equal when their evaluation
names are the same.

2.3.4. Numbers
Number elements represent numeric values. They can also include units or

labels associated with those values. The ROSIE arithmetic operators (+ - /
* **) and the comparison operators (= > >= < <= -=) and their English
equivalents (is equal to, is greater than, is greater than or equal to, is
less than, is less than or equal to, is not equal to) will handle and
combine units and labels correctly. They will also ensure that operations
and comparisons are sensible. For example, attempting to add 33 APPLES to
44 ORANGES will cause an error because the units do not match. Unlabeled
numbers, however, can be multiplied and divided by unit elements or label
elements; the result contains the correct units or label.

There are two types of number elements, called unit constants and label
constants.

The simplest kind of unit constant is just a numeric value, which can be
an integer, floating-point, or octal number with optional positive or
negative exponents.

Examples: 335
-25
4.603
3.2E10
45E-10
7742Q

(Integer)
(Negative integer)
(Floating-point)
(Floating-point with positive exponent)
(Floating-point with negative exponent)
(Octal)

Unit constants can also have units as in the following examples:

Examples: 33 Oranges
24 miles/hour
-4.7 feet/second**2
800 feet*pounds/seconds**2
200 metric tons/cubic feet
13.7 1/feet-1•7•2
13.2 feet-ld•-2

In general, units consist of a numerator and an optional denominator. As
seen above, the evaluation name of a unit element separates the numerator
from the denominator with the "/" character, precedes exponents by "''d'",
and separates units multiplied together with "'''" All units following the

-9- Numbers

first "/" are assumed to be part of the unit denominator, unless they have
negative exponents.

Label constants are numeric values wliich are preceded by one or more
labeling words. These are examples of label constants:

Examples: Probability . 33
Certainty 7
Ground Combat Division 13

Unit and label constants exist to give the user more flexibility in
representing numeric values and are supported by the built-in arithmetic
and comparison operators (see section 4.3.6).

Two numbers are equal if their numeric values are equivalent and both are
eith~r unit or label constants with equivalent units or labels.

2.3.5. Tuples
Tuple elements represent ordered lists of elements. The evaluation name

for a tuple element consists of a left angle bracket"<", followed by the
evaluation names of each element in the tuple separated by commas, and
terminated by a right angle bracket">".

Examples: <>
< 1' 2' 3>
<John, 33.5, "A string", <1, 2, 3>>

Two tuples are equal only if both tuples contain equal elements in
identical order.

2.3.6. Other Primary Language Elements
Another type of primitive data structure is the proposition. However,

because of its close relation to the primitive sentence, discussion of this
element type is deferred to section 4.6.2.

Similarly, class elements are considered primitive in ROSIE. They are
discussed in section 3.6 because of their close relation to the database.

ROSIE Language Reference Manual -10-

2 . 4. RESERVED WORDS

Reserved words are tokens which can only be used in specific syntactic
constructs. All break characters and terminal characters are reserved
words. These are the reserved words in ROSIE:

{ } '

about
among
behind
from
on
to
within

and
was
be

I () , <

above
around
below
in
onto
under
without

or
is

matched has

the
any

who

that
such

which

- = @ >

across
as
beside
inside
outside
until
toward

there
will

; + -
after
at
by
into
over
up
unless

not
did

greater less

new
one

whom

some

where

let assert deny

i'\ "~"' I :

against
because
during
near
since
while
per

a
does

equal

every

whose

? !

along
before
for
of
through
with

an
provably

otherwise

each

-11- Storing Sentences: The Database

3. STORING SENTENCES: THE DATABASE

3.1. OVERVIEW

A thorough understanding of Rosie's semantic constructs requires
knowledge of ROSIE's data storage mechanisms. The ROSIE programming
environment consists of a database and a number of rulesets (programs)
written to manipulate this database. ROSIE can store data via temporary
bindings or in a database. Temporary bindings store data produced within a
rule for use only within that rule (see 5.2). The database, on the other
hand, can store any data for any length of time. In order to write
reasonable ROSIE programs it is essential to have an intimate knowledge of
the database, its structure, its permissible relations, and its elemental
units.

The ROSIE database consists of two conceptually separate layers. The
first is the "physical" database. It contains the affirmed propositions,
i.e., those relationships that have been explicitly added to the database
through the assertion of a proposition or a sentence. The second is the
"virtual" database. The "virtual" database consists of those relationships
that can be computed, via reasoning algorithms, from other relationships in
the database. Relations in the virtual database are stored as relations in
the physical database among sets of elements rather than individual
elements. The element set is defined by a class element (see 3.6). A
relation whose object is a class element implicitly specifies a number of
virtual relations each of which relates an element from the set described
by the class element. These virtual relationships do not exist in the
database; instead they are computed each time they are needed.

ROSIE's "layered" database can be understood through a simple example.
Assume that the database contains the following sentences (the relation
shows how ROSIE represents the sentence internally):

Asserted Sentence

John is mortal
John is a minister
Fred is a man
Any man is mortal

Relation

is-mortal(John)
is-a-minister(John)
is-a-man(Fred)
is-mortal(any man)

All four of these relations are in the physical database. The
relationships "is-mortal(John)" and "is-a-minister(John)" state that the
element "John" satisfies "is-mortal" and "is-a-minister". The third

ROSIE Language Reference Manual -12-

relationship "is-a-man(Fred)" declares that the element "Fred" satisfies
"is-a-man." In a similar manner, the fourth relationship "is-mortal(Any
man)" implies that the element "any man" satisfies "is-mortal." Because of
this relationship, "any man" (a class element) will automatically insure
that every element in the database that satisfies "is-a-man" also satisfies
"is-mortal." Thus the relationship "is-mortal(Fred)" exists, but only in
the virtual database. Now, in order to deduce this virtual relationship,
ROSIE needs to compute the relation by performing a search over all
relevant relationships in the database. In general, a set of relationships
stored explicitly in the database requires more memory for their
representation than the same set of relationships stored virtually, while a
set of relationships stored virtually requires more computation for their
retrieval than the same set of relationships stored explicitly.

Relations cannot exist in a vacuum; they must refer to something. The
objects that ROSIE relationships reference are precisely those elements
discussed in section 2.3 and the class elements discussed in section 3.6.

The relational scheme of representation provides a tool for writing
readable and intuitive programs, but not all types of information are
easily represented with relationships. ROSIE is currently limited in its
ability to handle data which, for example, is best represented with
multi-dimensional arrays or random-access files. Programs which use such
data can resort to system rulesets when ROSIE constructs prove cumbersome.

3.2. RELATIONAL FORMS AND RELATION-NAMES

Relationships which can appear in the database are constructed from the
legal relational forms. These forms define the structure of all legal
relationships, which are built by filling in a form with a relation-name
and one or more elements. These are the relational forms:

Legal Relational Forms:

element (I waslwere l) [not] a[n] relation-name {l ~element l}
element Cl islamlare l) [not] a[n] relation-name {l ~element l}
element will [not] be a[n] relation-name {l ~element l}

element (l waslwere l) [not] relation-name {l ~element l}
element (l islamlare l) [not] relation-name {l ~element l}
element will [not] be relation-name {I ~element I}

element did [not relation-name {I ~element I}
element Cl doesldo I) [not] relation-name {l ~element l}

-13- Relational Forms and Relation-names

element will [not] relation-name {l ~element l}

element Cl waslwere l) [not] relation-name element {l ~element l}
element Cl islamlare l) [not] relation-name element {l ~element l}
element will [not] be relation-name element {l ~element l}

element did [not] relation-name element {l ~element l}
element (l doesldo l) [not] relation-name element {l prep element l}
element will [not] relation-name element {l ~element l}

Examples of legal relationships:

Mr Jones was a president during the crisis.
Mr Smith is a president in 1981.
Mr Lewis will be a president in 1985 for 1 year.

Mr Jones was corrupt before 1900.
Mr Smith is not corrupt.
Mr Lewis will be corrupt after elected.

Mr Jones did conspire.
Mr Smith does aspire to greatness.
Mr Lewis will not inspire for obvious reasons.

Mr Jones was prolonging taxes until November.
Mr Smith is planning miracles.
Mr Lewis will not be impeached easily.

Mr Jones did cause controversy in office.
Mr Smith is causing concern among liberals.
Mr Lewis will inspire fear among sane persons.

In the above examples, "president," "corrupt," "conspire," "aspire,"
"inspire," "prolonging," "planning," "impeached," "cause," "causing" and
"inspire" are all relation-names. They are not considered elements, but
rather are part of the relational forms that embed them. In section 5.3 we
explain how relation-names can be used to instruct database access
operations to invoke a ruleset for answers instead of interrogating the
global database.

NOTE: ROSIE
plural nouns.
"captain is."
make code more

does not "understand" the difference between singular and
ROSIE does not recognize "captains are" as the plural of
"Are," "am,""were," and "do" are available to the user to
English -like.

ROSIE Language Reference Manual -14-

3.3. THE IS A RELATION

The "element is a relation-name {I preposition element I}" form (along
with its negation) is perhaps the most important of the forms. The is a
relation defines class memberships. Thus, by asserting "John is a male," we
assert that John belongs to the class of males. This differs from "John is
male," which merely gives the name "John" the attribute "male."

Class relations are at the heart of the ROSIE database. The is a relation
supports the use of the and of the let action. In ROSIE, when you refer to
"the male" you are referring to an element that satisfies the is-a-male
relation. If no such element exists, reference to it produces an error. If
more than one such element is present in the database, one is chosen
arbitrarily. However, by saying "Let the male be John" you can rid the
database of all elements satisfying the is-a-male relation and install John
as the only such element. Thus, let and the can work in tandem to
guarantee the existence of a unique element satisfying some relation. The
use of the determiner a has an effect very different from that of the.
Referring to "a man" causes ROSIE to first check the database to see if any
element satisfying the is-a-man relation exists. If so, the one it finds
is the man it assumes reference is being made to. But if no element exists
in the class of men, ROSIE will create one and add a sentence like "MAN 111
is a man" to the database. Man fll will then be the man referred to in the
remainder of the rule.

Unlike the other relational forms, the is a relation is special because
it can be used not only when testing the database but also when generating
set members. The ROSIE rules in which this occurs are discussed in section
3.6.

One last remark about the exceptional nature of is a should be made.
When a prepositional phrase is present in an is a relation we can
distinguish between the relation itself and the effect of the relation on
testing and generation. If, for example, we used the sentence "John is a
man on Mars," the relation would be is-a-man-on. But the relation is
dyadic, i.e., has two arguments--John and Mars. Another way of thinking
about this is that while the relation is is-a-man-on, John belongs to the
class of men on Mars. If we know that "John is a man on Mars" and "Steve is
a man on Neptune" there need not be any confusion during testing. John
is-a-man-on and Steve is-a-man-on, but John is a member of the class of men
on Mars and Steve is a member of the class of men on Neptune. Thus, if we
say, "If there is a man on Mars, display that man," John would be
displayed. Similarly, if we are looking for a man on Neptune, Steve would
be displayed. In both cases the relation is is-a-man-on, but the element
following the preposition determines which person we meant by determining
the class. Since the preposition forms part of the relation, the anaphoric
reference is resolved in "display that man" without the need to reuse the
entire prepositional phrase.

-15- The IS A Relation

NOTE: When a prepositional phrase acts to modify a relation, ROSIE does
not assume the simpler relation also holds. Thus, "John is a man on Mars"
does not entail "John is a man."

3.4. NEGATION AND TRUTH VALUES

Databases are automatically kept consistent with regard to negation. The
negation of a relationship is defined as that relationship which is
identical except for the appearance or absence of the word not. So, for
example, "John is a man" and "John is not a man" cannot both appear in the
same database. When one is added (using assert, let, or other database
actions), the other is automatically discarded.

In ROSIE, the absence of a relationship does not imply that the negation
of that relationship is true. A three-valued logic has been adopted which
allows three states for a given relationship: provably true, provably
false, and undecided. The following ROSIE session illustrates this.

Sample session:

[ROSIE Sunday, February 1, 1981 4:33pm]

<1> Clear database.
<2> ?
[Global Database]

<3> If John is a man, display YES.
<4> If John is not a man, display NO.
<5> Assert John is a man.
<6> ?
[Global Database]

JOHN is a man.

<7> If John is a man, display YES.
YES
<8> If John is not a man, display NO.
<9> Assert John is not a man.
<10> ?
[Global Database

JOHN is not a man.

<11> If John is a man, display YES.
<12> If John is not a man, display NO.
NO
<13> Logout.

ROSIE Language Reference Manual -16-

NOTE: The statement that the database is kept consistent with respect to
negation should be qualified. ROSIE's ability to check for inconsistencies
is limited to immediately comparable relations and does not include
reasoning through and reconciling the implications of a set of database
sentences as in the following example:

Assert John does like any girl.
Assert John does not like Mary.
Assert each of Mary, Jane and Beth is a girl.

NOTE: Sentences of the form "element is not a description" (e.g., "John is
not a bad boy") are stored as negations of the components (i.e., "John is
not a boy" and "John is not bad").

3.5. GLOBAL, PRIVATE, AND ALTERNATE DATABASES

ROSIE programs usually manipulate relationships in databases as their
primitive units of information. There is one database called the global
database which usually contains the main body of information required by a
program. All rulesets can interrogate and modify the global database.

In addition, each ruleset invocation allocates a "private database." The
relations asserted into a private database are discarded at a ruleset's
termination, and so are useful for storing temporary relationships that
will not be needed outside of the ruleset. Section 5.8 explains this more
fully.

Finally, ROSIE permits you to create alternate databases. These
databases act just like the global database but segregate information from
one another and from the global database. To create a database, use the
action "activate term," where term must evaluate to a name. Using the
action deactivate-or-just activate by itself always returns you to the
global database. Once you are "in" an alternate database (i.e., you have
activated it), any assertions, denials, lets, database testing, etc.,
pertain to that database. Because rulesets do not reside in a database,
these are accessible from all databases. The system-defined procedures "add
PROP to DATABASE"- and "remove PROP from DATABASE" allow you to assert and
delete primitive sentences in one database while working in another. The
system-defined procedure "show DATABASE" allows you to see the contents of
any database while residing in any other.

-17- Class Elements

3.6. CLASS ELEMENTS

One concept which appears often in real-world knowledge is that of groups
or classes of entities. ROSIE supports the concept of class with a number
of unique features. The most basic of these is the ability to enumerate all
elements within a database that conform to a particular constraint. In the
following session, the use of each of and every demonstrates this feature.

Classes are even more useful because of the special interpretation given
to class elements. A class element consists of the reserved word any
followed by a description. The class element itself represents every
database element that satisfies that description. Thus, a class element
designates a variable number of elements and the actual elements generated
depend upon the description. A database relationship which involves class
elements is treated exactly as though a ~eparate relationship existed for
all elements described by the class. In the following session the terms
"any girl," "any man," and "any person" demonstrate the use of class
elements.

Sample session:

[ROSIE Sunday, February 1, 1981 5:27pm

<1> Assert each of John, Dick, Dave and Sam is
<2> Assert each of Mary, Jane, Sue and Sally
<3> Assert any man does like any woman.
<4> Assert any woman is a person and any man
<5> ?
[Global Database]

ANY MAN does like ANY WOMAN.
JOHN is a man.
DICK is a man.
DAVE is a man.
SAM is a man.
MARY is a woman.
JANE is a woman.
SUE is a woman.
SALLY is a woman.
ANY WOMAN is a person.
ANY MAN is a person.

<6> If John does like Dick, display YES.
<7> If John does like Sally, display YES.
YES
<8> Display every man.
JOHN
DICK

is

is

a man.
a woman.

a person.

ROSIE Language Reference Manual -18-

DAVE
SAM
<9> Display every person.
MARY
JANE
SUE
SALLY
JOHN
DICK
DAVE
SAM
<10> Forget about every man.
<11> ?
[Global Database

ANY MAN does like ANY WOMAN.
MARY is a woman.
JANE is a woman.
SUE is a woman.
SALLY is a woman.
ANY WOMAN is a person.
ANY MAN is a person.

<12> Display every person.
MARY
JANE
SUE
SALLY
<13> logout.

In statements <1> and <2> eight relationships are asserted using two is a
relations. In <8> the user asks ROSIE to enumerate all men by using every.
ROSIE scans the global database looking for the appropriate is a
relationship and generating the elements which are members of the
appropriate class.

The example above points out an important use of class elements--delayed
evaluation. If we had said in <4> "assert every woman is a person and every
man is a person," the sentences "JOHN is a person," "DICK is a person,"
etc., would have been added to the database. Since the class element acts
as a placeholder for all the individual elements of a class, the effect of
using the any construction is to delay the enumeration of all the
individual is a relations until they are needed. In short, the use of class
elements enables you to store more knowledge in the database using less
space than if you stored the same knowledge explicitly.

A class element is different from other elements in that it is equal only
to elements which are members of the class it describes, rather than to

-19- Class Elements

identical elements. In addition, two class elements are equal only if an
element exists which is a member of both classes.

3.7. DATABASE COMMANDS: QUICK REFERENCE

These actions provide access to the current database:

assert sentence{: and sentence :} --adds relationships to the current
database. Each sentence is interpreted as described in section
4.8.2.

deny sentence{: and sentence :} --removes relationships from the current
database. Each sentence is interpreted as described in section
4.8.2.

assert term{: and term :} --each term must evaluate to a proposition
element. Adds each proposition to the current database.
Equivalent to: assert term is provably true {: and term is
provably true :}. (see~.4)

deny term {: and term :} -- each term must evaluate to a proposition
element~emoves each proposition from the current database.
Equivalent to: deny term is provably true {: and term is provably
true :}. (see 4.6.4)--

let definite-description be term{: and definite-description be term :}
the definite-description must be either "the description" or
term's description." The description from the
definite-description is extracted and used to deny every "is a
description" and assert "term is a description." Let leaves the
terms as the only element that fits the description. For
example, these rules are equivalent and leave John Smith as the
only mayor of Chicago known to the database:

Let the mayor of Chicago be John Smith.
Let Chicago's mayor be John Smith.

Let permits the order of the definite-description and the term to
be reversed if no confusion arises. However, if the term itself
begins with the, ROSIE assumes the definite-description precedes
be and the term follows be. Thus, the following are two
additional ways of performing the previous action.

ROSIE Language Reference Manual -20-

Let John Smith be the mayor of Chicago.
Let Chicago's mayor be John Smith.

create a[n] description -- fabricates a new name element and asserts
element is a description. Create builds the name from the
relation-name given in the description and appends #n where n is
an integer which makes the name unique. Useful for applications
where the elements created represent objects which the user does
not wish to name explicitly. The #n is generated in sequence
starting with #1. ROSIE will insure its own generated numbers
are sequenced properly but will not check to see if the user has
defined identical names explicitly.

forget about term -- removes all relationships from the current database
that explicitly contain the element value of term.

describe term -- displays every database sentence containing the term.

term ? -- equivalent to describe term.

? -- displays the statements in the current database.

clear database -- removes all relationships from the current database only.

activate [term] -- sets the current database to term. If term is omitted
the global database is selected.

deactivate -- sets the current database to be the global database.

database -- a system generator that produces the name of the current
database.

databases a system generator that produces a tuple containing the name
of each database that has been activated.

PROPOSITION is true in DATABASE system-defined predicate that tests the
truth of the proposition in the given database. Concludes true or
false.

add PROPOSITION to DATABASE system-defined procedure that asserts the
proposition into the specified database.

remove PROPOSITION from DATABASE -- system-defined procedure that denies
the proposition in the specified database.

show DATABASE -- system-defined procedure that is equivalent to ? for the
specified DATABASE.

-21- Database Commands: Quick Reference

dump as term -- term must evaluate to a single-word name element. Saves
the entire global database on the file name.DATABASE in
machine-readable format. The database is not changed. Dump is
useful for creating and editing databases using the ROSIE
interactive support features.

restore term -- term must evaluate to a single-word name element. Reads a
file name.DATABASE which was created by the dump action and
restores the global database to its state when the database file
was created. The previous contents of the global database are
lost.

ROSIE Language Reference Manual -22-

4. THE SYNTAX OF THE ROSIE SENTENCE

4.1. OVERVIEW

This section describes how the primary elements and reserved words
combine to form higher-level ROSIE constructs: descriptions (4.2), terms
(4.3), and verb phrases (4.4). These constructs, in turn, combine to
produce the different types of ROSIE sentence (4.6). Finally, section 4.9
discusses patterns and pattern matching--a mechanism for extracting
specific information from an existing sentence.

4.2. DESCRIPTIONS

A ROSIE description represents a class of elements. They can be used
within terms (4.3), conditions (4.7), and actions (4.8) to test for class
membership or search for all the members of a class in the database. The
classes represented are implicit; that is, descriptions describe the
elements they represent rather than enumerate them explicitly. The set of
elements which a description represents changes as the database changes.
Thus ROSIE descriptions act very much like natural-language descriptions
and are designed to closely resemble such descriptions in English.

Descriptions are used by ROSIE constructs in three ways:

1. Testing an element for class membership, which simply asks
whether a description fits that element.

2. Generating some or all of the elements in a class. This is a
fancy database lookup which scans the database for elements that
fit the description.

3. Adding or removing an element from a class. This is accomplished
by adding or removing all the is a relationships in the database
that make that element a member of the class. The is a relations
are extracted from the description.

Thus, using this sample description:

full-time employee of VitaTech who does play tennis

we can write three rules that illustrate the use of descriptions.

-23-

Sample rules:

If John Doe is a full-time employee of VitaTech
who does play tennis,
go tell that employee about the competition.

Display every full-time employee of VitaTech who does
play tennis.

Assert John Doe is a full-time employee of VitaTech
who does play tennis.

Descriptions

A description can represent one or more primitive relationships to be
tested or asserted about. For example, the third rule above will add these
relationships to the database when executed:

John Doe is full-time
John Doe is an employee of VitaTech
John Doe does play tennis

Similarly, the first rule checks to see if these three primitive
relationships exist in the database. The second rule generates the set of
elements x, such that x is full-time, x is an employee of VitaTech, and x
does play tennis.

Descriptions are sometimes used to reduce the number of rules needed to
express a concept. For example, the third rule above could have been
written as follows:

Assert John Doe is full-time
and John Doe is an employee of VitaTech
and John Doe does play tennis.

NOTE: An important point to remember is that ROSIE distinguishes between
descriptions and compound names purely by syntactic means. For example, in
"Tom Brown is young," "Tom Brown" is a name, while in "The large ship is
burning," "large ship" is a description, since it is preceded by the.
ROSIE would be just as happy with "Large ship is young" and "The Tom Brown
is burning" in which case "Large ship" would be considered a compound name
and "Brown" a term modified by the adjective "Tom."

ROSIE Language Reference Manual -24-

4.2.1. Simple Descriptions
The simplest description represents the class of elements where the

primitive relationship

element is a relation-name{: preposition element :}

exists in the database. Descriptions of this form represent all the
elements where the implied relationship has been asserted. The following
are examples of simple descriptions and the relationships they represent.

Sample descriptions:

company
employee of VitaTech
candidate for public office in 1981

Relationships represented:

element is a company
element is an employee of VitaTech
element is a candidate for public office in 1981

Adjectives and relative clauses can be used to further restrict the
represented class of elements.

NOTE: Sentences of the form "element is not a description" (e.g., "John
is not a bad boy") are stored as negations of the components (i.e., "John
is not a boy" and "John is not bad").

4.2.2. Descriptions with Relative Clauses
Relative clauses place additional restrictions on the class represented

by a description. A number of relative clause forms can be used. Each form
restricts the class by specifying additional conditions that the element
must satisfy.

Relative clauses follow the descriptions they modify. The following are
examples of descriptions with relative clauses and the relationships which
they represent.

Sample descriptions:

company which is bankrupt

-25- Descriptions with Relative Clauses

employee of VitaTech who does play tennis and who did retire

candidate for public office in 1981
who did serve in Congress
and who President Brown does endorse

Relationships represented:

element is a company
element is bankrupt

element is an employee of VitaTech
element does play tennis
element did retire

element is a candidate for public office in 1981
element did serve in Congress
President Brown does endorse element

The legal relative clause forms are described and examples of their use
are given in section 4.5.

4.2.3. Descriptions with Adjectives
Adjectives are the simplest way to add conditions to a description. Each

adjective implies an additional relationship of the form

element is adjective {l preposition element l}

Adjectives are relation-names which appear immediately before the
descriptions they modify. For example, these pairs of descriptions are
equivalent:

company which is bankrupt
bankrupt company

employee who is retired
retired employee

candidate from Colorado who is popular and who is Republican
popular Republican candidate

ROSIE Language Reference Manual -26-

4.2.4. Description Variables
Description variables are local variables used within a description.

They are bound to the element being generated or tested by the description. Every description, when evaluated, binds a variable associated with it.
This variable can be referenced either explicitly (using the variable's
name) or implicitly (using anaphora--the term "that relation-name"--or through one of the relative clause forms). The description variable is
usually invisible to the user and referenced implicitly. In some cases,
however, implicit reference is not adequate. In order to disambiguate, the user must supply a variable name explicitly and then use the variable when needed. These are some descriptions which use explicit description
variables:

integer (i) such that i is greater than 300

American citizen (c)
such that c was charged with some crime
and where c was acquitted of that crime

popular Republican candidate (c)
where c does hold some public office
and where President Brown does endorse c

The following sets of rules are equivalent. Each set demonstrates the
explicit use of a description variable along with two methods that
reference the variable implicitly.

Display every man (m) such that m does support ERA.
Display every man where that man does support ERA.
Display every man who does support ERA.

Display every teacher (t) such that
John is a student of t.

Display every teacher where
John is a student of that teacher.

Display every teacher of whom John is a student.

Display every mother (m) such that
there is more than one child of m.

Display every mother such that
there is more than one child of that mother.

Display every mother who has more than one child.

-27- Description Variables

The following rule demonstrates a situation where explicit variables are
required:

For each integer (x) from 1 to 100,
if there is an integer (y) from 1 to 200

such that
(y is a prime and x 7-.~ y < 34E10),

display y.

Description variables, whether used implicitly or explicitly, are always
bound to the elements they generate, test, or make assertions about. This
works for descriptions used in any construct. For example, the following
rules refer implicitly to description variables which are bound to the
appropriate elements:

For each father of any child,
display that father and display that child.

If John is a tall man, display that man.

Assert John is an exemplary student
and VitaTech will hire that student after graduation.

NOTE: It is important to remember that the use of a variable as shown in
the examples above holds only over a single rule. Thus

Display every person(p) such that p is a man
and assert p is a male.

will have the desired effect, but

Display every person(p) such that p is a man.
Assert p is a male.

will cause the sentence "p is a male" to be added to the database.

ROSIE Language Reference Manual -28-

4.2.5. Descriptions as Generators
Many constructs use descriptions to generate elements. For example, these

rules all use the description "citizen of Los Angeles" to generate one or
more elements:

Display some citizen of Los Angeles.
Display every citizen of Los Angeles.
For each citizen of Los Angeles,

go supply that citizen with oxygen.

Elements are generated from descriptions by searching the database for
relationships which assert some element "is a description." The above
rules all search for relationships of the form

element is a citizen of Los Angeles

A description with relative clauses and adjectives will make the tests
implied by those restrictions for each element it generates. For example,
the following rule finds "citizen of Los Angeles" in the database and tests
to see if that element is wealthy and if that element will support Reagan:

Display every wealthy citizen of Los Angeles
who will support Reagan.

Since descriptions generate elements from the database, they can also
generate from generator rulesets (5.5) when appropriate. If the generator
"citizen of city," for example, is defined, the above rule would invoke the
generator to produce elements after scanning the database. The
relationships "element is wealthy" and "element will support Reagan" will
be tested for each element before it is generated. Note also that the
predicate "citizen will support candidate" might be invoked in addition to
scanning the database if such a predicate ruleset (5.6) were defined.

4.2.6. Descriptions as Class Membership Tests
Descriptions in conjunction with other forms can act as implicit

conditionals to test each element against a particular set of constraints.
The following rules illustrate this usage:

If the student is a healthy adult male,
go enlist that student.

-29-Descriptions as Class Membership Tests

If the mayor is a wealthy citizen of Los Angeles,
go ask that mayor for financial support.

Display every candidate
who is a Republican proponent of ERA.

Relationships tested:

element is healthy
element is adult
element is a male

element is wealthy
element is a citizen of Los Angeles

element is Republican
element is a proponent of ERA

4.2.7. Descriptions and Modification
The assert, deny, and let actions can all be used to make multiple

changes to the database by permitting a description to be the object of an
is a relation. Such a "sentence" represents a number of relationships and
the assertion, denial, or reassignment via let of such a sentence will
assert, deny, or reassign each of the implied relations. This sample
session demonstrates the convenience of these features.

Sample session:

[ROSIE Friday, February 6, 1981 4:19pm

<1> Assert Mary Jones is a young girl who will become famous.
<2> ?
[Global Database]

MARY JONES will become FAMOUS.
MARY JONES is a girl.
MARY JONES is young.

<3> Deny Mary Jones is a young girl.
<4> ?
[Global Database]

MARY JONES will become FAMOUS.

<5> Deny Mary Jones will become famous.
<6> Assert John Doe is a male employee of VitaTech

whose salary is large and who does play tennis on weekends.
<7> ?

ROSIE Language Reference Manual -30-

Global Database]
JOHN DOE does play TENNIS on WEEKENDS.
JOHN DOE is an employee of VITATECH.
LARGE is a salary of JOHN DOE.
JOHN DOE is male.

<8> Clear database.
<9> Let Max Schneider be the exemplary student of music at Hoover High

who will compete in international competition.
<10> ?
[Global Database

MAX SCHNEIDER is exemplary.
MAX SCHNEIDER is a student of MUSIC at HOOVER HIGH.
MAX SCHNEIDER will compete in INTERNATIONAL COMPETITION.

<8> Logout.

4.2.8. Anaphoric Descriptions
Sometimes a complex description must appear more than once in a rule.

Rather than requiring the repetition of the full description in the second
instance, ROSIE permits the use of an anaphoric reference. A such followed
by the description's relation-name is an appropriate form. The following
rules show how an anaphoric reference can be used:

If there is an exemplary student of mathematics
who will graduate before 1984,
go recruit (every exemplary student of mathematics
who will graduate before 1984) for summer employment.

If there is an exemplary student of mathematics
who will graduate before 1984,
go recruit every such student for summer employment.

NOTE: The resolution of anaphora always refers to an element named in a
preceding description. Thus,

Assert gs-level 13 is a group
and let the salary-range of that group be $12K-16K.

results in the error "no referent for THAT." In the example, that tries to
refer to "group" but the only usage of "group" does not occur inside a
description. A way of expressing this sentence correctly is

-31- Anaphoric Descriptions

Assert gs-level 13 is a group whose salary-range
is $12K-16K.

4.3. TERMS

Terms are the syntactic constructs that represent elements. Terms become
elements when evaluated within the context of the rule that contains them.
For example, the terms

"a string"
4.0 + 5.3
<3 + 2, 4 - 1>
The mayor of Los Angeles

when evaluated become the elements

"a string"
9.3
<5' 3>
Tom Bradley

Most terms evaluate to a single element. That element is then used by the
construct in which the term appears.

4.3.1. Name Terms
Name terms evaluate to name elements: one or more words separated by

blanks.---

Examples: John
John Wesley Harding
Ship ff2

4.3.2. String Terms
String terms are characters enclosed in double quotes. They evaluate to

string elements.

Examples: ""
"Please enter command:"
"566-96-9990"

ROSIE Language Reference Manual -32-

4.3.3. Number Terms
Number terms evaluate to number elements. These terms cannot be

distinguished from the number elements to which they evaluate (see 2.3.4).

Examples: 335
-25
4.603
3.2E10
45E-10
7742Q

33 Oranges
24 miles/hour

(Integer)
(Negative integer)
(Floating-point)
(Floating-point with positive exponent)
(Floating-point with negative exponent)
(Octal)

-4.7 feet/secondim2
800 feet*pounds/seconds*i~2
200 metric tons/cubic feet
13. 7 1 If eet~'d~2

Probability . 33
Certainty 7
Ground Combat Division 13

4.3.4. Tuples as Terms
Tuple terms evaluate to tuple elements. Tuples consist of any number of

terms enclosed by angle brackets and separated by commas. Each term within
the tuple is evaluated when the tuple is evaluated.

Examples: <>
<John, Bill, Sue>
<3 + 4, "a string", The mayor of Los Angeles>

when evaluated, these become

<>
<JOHN, BILL, SUE>
<7, "a string", TOM BRADLEY>

4.3.5. Variables as Terms
Variable terms evaluate to the element bound to the variable. A variable

term can be-an-explicit variable name or an implicit variable reference
through anaphoric resolution. The term "that relation-name" refers to a
preceding description and thus the element that description represents.

-33- Variables as Terms

Examples:
If there is a person (x) and x is a man, display x.

If there is a person and that person is a man,
display that person.

4.3.6. Arithmetic Expressions as Terms
Expression terms perform arithmetic operations on number elements. Each

term in an expression must evaluate to a number element. In addition, the
units or labels which are part of the number elements must be compatible
according to the following rules (see 2.3.4 for discussion of label and
unit constants).

- When numbers are added or subtracted, e1ther both numbers must be
label constants with the same label or both numbers must be unit
constants with the same units. The result is a number element
with the same label or units.

- When numbers are multiplied or divided, they must either both be
label constants with the same label or both be unit constants
possibly with different units, or one of the two numbers must be
unlabeled and without units. The result is a number element
which has the appropriate label or units.

- The exponent operation (;~') requires that the exponent be a
numeric value without units or labels. The other operand can be
any number element. If it is a label constant, the result
retains the same label. For unit constants, the units also
reflect the exponentiation.

Examples of legal operations:
3 + 4
14 apples - 7 apples
The distance from Paris to London * 2
16.3 I 2
certainty . 2 ;•, 5
The value id> 2

Examples of illegal operations:

3 apples + 4 oranges
14 - 7 apples
Certainty .5 *Probability .7
4 ·k;', 15 miles

ROSIE Language Reference Manual -34-

The evaluation of arithmetic expressions proceeds according to standard
operator precedence. Exponentiation (**) is evaluated first, grouping
right to left; multiplication and division are next, grouping left to
right; and addition and subtraction are last, also grouping left to right.

NOTE: It is important to remember that ROSIE has no concept of the
semantic meaning of a term. Thus, while "14 apples 7 apples" results in
"7 apples," it is also true that "Girl Scout Troup 6 - Girl Scout Troup 4"
results in "Girl Scout Troup 2".

4.3.7. Other Types of Terms
The terms described in this section perform specialized operations on

elements. Some create new elements, others access the database. The
syntactic form of each is given, followed by a brief explanation and an
example.

the description -- this term generates one element from the description.
That element is the value of the term. If no element satisfying
the description exists in the database, it is an error. These
are examples of terms of this form:

The enemy ship
The son of John who is responsible for household chores
The logarithm of 14.8

term's description-- this term is shorthand for "the description of term".
For example, these pairs of terms are equivalent:

The father of John
John's father

The mayor of Chicago in 1971
Chicago's mayor in 1971

the Cl number I string I name I) pattern-- this term builds a string from
the pattern and converts it to an element of the type indicated.
The examples below show a few sample terms and their element
values:

The string {"Hi", 1 blank, John Doe}
The number {37, ".", 3 + 2}
The name {John, 1 blank, Doe}

"Hi JOHN DOE"
37.5
JOHN DOE

-35- Other Types of Terms

the tuple containing each description -- this term returns a tuple that
contains all the elements generated from the description. This
allows classes to be converted into an explicit tuple
representation.

a[n] [new] description -- this term, without the new option, will attempt
to generate an element from the description. If no such element
exists, a new one is created and the assertion "element is a
description" is added to the database. If "new" appears, a new
element will always be created. In that case, the term works just
like the create action and returns the new element (see
documentation for the create action in 3.7). The following rules
demonstrate how this term can be used:

Display a solution to Problem 3.
Assert a new enemy ship did appear at the current time.

In the first example, if at least one sentence "element is a
solution to problem 3" exists in the database, the value of the
element will be displayed. If no such relation exists in the
database, this action will result in the addition of "SOLUTION #1
is a solution to PROBLEM 3" to the database.

4.3.8. Pseudo-terms: some, every, each of, one of
The pseudo-terms provide a unique way of scanning a group of elements to

perform an action or test a condition. For the "some description" and
"every description" terms, the elements scanned are members of a class
generated from a description. For the each of and one of terms, the list of
elements to scan is given explicitly. These are the pseudo-term forms:

some description
every description
each of term{: , term :}
one of term{: , term :}

[,] and term
[,] or te~

Pseudo-terms do not evaluate to a single element like other terms.
Instead, they change the meaning of the condition or action which contains
them. In most cases, the new meaning is identical to what a ROSIE-naive
user would expect from reading the rule text. (Pseudo-terms as used in
actions work differently from pseudo-terms as used in conditions). The
rest of this section explains how psuedo-terms work and gives examples.

ROSIE Language Reference Manual -36-

An action which contains an every or each of pseudo-term will be executed
once for each element indicated. An action which contains a some or one of
pseudo-term will be executed only once, using only the first element
generated (if any). The rules below demonstrate:

Go attack every enemy ship.
Go attack each of ship #1, ship #2 and ship #3.
Assert every young boy does like popcorn.
Assert each of John, Bill, Sam and Dick is a young boy.

Go attack some enemy ship.
Assert some boy does like popcorn.

(picks one such ship)
(picks one boy)

A sentence which is used as a condition can also contain pseudo-terms.
The every and each of pseudo-terms will cause the sentence to be tested for
each element indicated. The sentence will be true only if each element
passes the test. The some and one of pseudo-terms will cause the sentence
to be true if any one of the elements indicated passes the test. The rules
below demonstrate these points:

If every student is present, go begin class.
If each of John Jones and Dave Jones did get high marks,

go commend Mr Jones for excellent results.

If some enemy ship did attack some friendly ship,
go declare war.

If one of John, Bill or Dave did get low marks,
go discuss parenthood with Mr Jones.

Sentences and actions can contain more than one pseudo-term, in which
case the scanning operations are nested appropriately. For example, the
following two rules are equivalent:

Assert every boy does like every girl.

For each boy, for each girl,
assert that boy does like that girl.

-37- Verb phrases

4.4. VERB PHRASES

Five basic verb phrases are permitted by ROSIE. Each form captures a
specific class of English usage. The verb phrase forms and examples of
their use follow.

Class Membership:

Cl islwaslwill I) [not] [be] a[n] relation-name {I~ element I}

Examples: is a doctor
will not be a witness
was an individual with glasses

Predication:

Cl islwaslwill I) [not] [be] relation-name {I~ element I}

Examples: is happy
was not alone at the time
will be late at (the sound) of the bell

Complement:

(I islwaslwill I) [not] [be] relation-name element {I prep element I}

Examples: is nuclear powered
was not really exciting to Mary
will be running rapidly toward Bethlehem

Intransitive Verbs:

(I didldoeslwill I) [not] relation-name {I prep element I}

Examples: did eat
does eat with a fork
will not eat without a fuss

ROSIE Language Reference Manual -38-

Transitive Verbs:

Cl didldoeslwill l) [not] relation-name element {l ~element l}

Examples: does study biology at school
will cook (a steak) for dinner
did not divide by 2

NOTE: The parentheses in the examples above are needed to disambiguate
the scope of the modifying prepositional phrases.

NOTE: Although we refer to was a and will be under class membership,
only is a relations are tested for determining class membership. Thus,
asserting "Mary will be a girl" will not result in "MARY" when testing the
database for each girl. Similarly, only the present tense is forms the
predicate is-adjective.

NOTE: Although not shown above, the plural forms of the verbs are
permitted as in section 3.2.

4.5. RELATIVE CLAUSE FORMS

The relative clause forms serve two distinct functions. In actions, they
permit the assertion of supplementary relations. In conditions, they permit
the testing of additional constraints. The relative clause forms and
examples of their use follow.

Cl where l such that l) sentence -- the sentence is tested as a condition
which must be satisfied for each element. The sentence can refer
to the element tested using description variables or the "that
relation-name term" form as demonstrated in these rules:

Display every employee (e) such that
e does play tennis.

Display every employee such that
that employee does play tennis.

Assert john is a man where john is happy.

NOTE: The assertion above will result in the addition of "JOHN is a man"
and "JOHN is happy" to the database. A conditional beginning with "if john

-39- Relative Clause Forms

is a man (where john is happy) ... " will cause ROSIE to search for just
those two assertions. On the other hand, a conditional beginning with "if
john is happy ... " alone will also result in a successful database search,
since the modifying relationship between "John is a man" and "John is
happy" is lost.

C: where : such that :) (condition) -- the entire condition (which must be
enclosed in parentheses) is tested for each element. This rule
demonstrates:

(: that

C: that

Display every employee where
(that employee does play tennis or
that employee does play volleyball).

Assert john is a man where
(john is happy and
john does meditate).

who : which :) verbphrase -- the verbphrase is treated as a
sentence with the element being tested as its first argument.
Examples:

Display every employee who does play tennis.

Display every distance which is greater than 400 miles.

Assert john is an employee who does play tennis.

who : which :) term c: is : was : will :) [not] [be]
relation-name {:preposition element} -- the element tested is
passed to the sentence as its second argument as if it were the
object of the predicate complement. Examples:

Display every diplomat such that
Reagan is meeting that diplomat on Thursday.

Display every diplomat who Reagan is meeting on Thursday.

Assert John is a diplomat who Reagan is meeting.

ROSIE Language Reference Manual -40-

(l that who l which l) term Cl did l does l will l) [not] relation-name
{ preposition term} -- the element tested is passed to the
sentence as its second argument, as if it were the verb's direct
object. Examples:

Display every girl where John does not like that girl.

Display every girl who John does not like.

Assert Jane is a person that Bill does know.

preposition Cl which l whom l) primitive sentence -- this form inserts a
prepositional phrase into the primitive sentence. The phrase
refers to the element tested and bears the preposition indicated.
Examples:

Display every club such that John is a member of that club.

Display every club of which John is a member.

Assert Boy Scouts is a society of which John is a member.

whose description is [not] value -- represents the sentence "value is a
description," where the prepositional phrase "of element" has
been inserted into the description. For example, these pairs of
rules are equivalent:

Display the fleet such that
Ship23 is a flagship of that fleet.

Display the fleet whose flagship is Ship23.

Display every city
where 2-million is a population of that city in 1981.

Display every city whose population in 1981 is 2-million.

Assert Barrington is a town
where BHS is a school of that town.

Assert Barrington is a town whose school is BHS.

NOTE: The value in a whose construct must be a single atom, i.e.,
numbers, compound names, tuples, etc., are not permitted. The reason for
this restriction is the issue of consistency. Since "assert age is 2 11 is

-41- Relative Clause Forms

not allowed in ROSIE, neither is "assert John is a man whose age is 2."

Multiple relative clauses can be logically combined using and and or.
These are examples of rules which use compound relative clauses:

Display every city which does support music
and which is not smoggy.

Display every student of math at Roosevelt High
who did get excellent marks
or who does bring apples to the teacher.

Assert john is a man who is happy and who is rich.

4.6. PRIMITIVE SENTENCES, PROPOSITIONS, AND SENTENCES

The largest syntactical unit that can be added to a database is the
primitive sentence. However, ROSIE permits the expression of more complex
sentences. In order to add these to a database, ROSIE must first decompose
the more complex sentence into a set of primitive sentences. Conditions,
actions, rules, and rulesets all incorporate sentences to effect their
results. The constructs discussed so far (e.g., terms, descriptions, verb
phrases, etc.) are the building blocks of ROSIE sentences--together they
combine to provide a rich and powerful expressive ability.

4.6.1. Primitive Sentences
The simplest ROSIE sentences are those that determine a single

relationship. These sentences are constructed using the legal relational
forms (3.2) with terms in place of elements. Most terms evaluate to single
elements, and so these sentences define a relationship determined by the
relational form and the element represented by the embedded term.

Primitive sentence forms:

term (I waslwere I) [not] a[n] relation-name {I ~term I}
term Cl islamlare I) [not] a[n] relation-name {I ~term I}
term will [not] be a[n] relation-name {I~ term I}

term (I waslwere I) [not] relation-name {I~ term I}
term (I islamlare l) [not] relation-name {l ~term I}
term will [not] be relation-name {I~ term I}

ROSIE Language Reference Manual -42-

term did [not] relation-name {l preposition term l}
term Cl doldoes l) [not] relation-name {l ~term l}
term will [not] relation-name {l ~term l}

term Cl waslwere l) [not] relation-name term {l ~term l}
term Cl islamlare l) [not] relation-name term {l ~term l}
term will [not] be relation-name term {l ~term l}

term did [not] relation-name term {l ~term l}
term Cl doldoes l) [not] relation-name term {l ~term l}
term will [not] relation-name term {l ~term l}

Examples of primitive sentences:

John is a man
The student did not fail the exam
John does support the republican candidate
Every boy does like some girl
John's father will not succeed in business
Any friendly ship was attacked before 1300 hours

4.6.2. Propositions
Proposition terms evaluate to proposition elements. They are primitive

sentence forms enclosed by an accent grave (ASCII 140) and a single quote.
They can represent any legal primitive sentences. When a proposition is
evaluated, each term in the constituent primitive sentence is evaluated.

Examples: John Smith was late for work'
The teacher did punish the student in class'
3 + 4 is a prime'

The evaluation name of a proposition element is the relationship
represented between ,-, and "'". The evaluation name contains the
evaluation name for all elements involved in the relationship connected by
words which describe the relational form. Thus, the evaluation name for the
previous examples might be

JOHN SMITH was late for WORK'
MARTHA did punish JOHN in CLASS'
7 is a prime'

-43- Propositions

Two propositions are equal or equivalent if both propositions represent
the same relationship over equal elements.

4.6.3. Comparative Sentences: <, >, = etc.
In addition to the primitive sentences, a few built-in sentence forms

allow comparisons of numbers and other elements. Element equality is tested
using the equality sentence form, which can be written tersely using the
"=" character or in expanded natural English as is equal to.

Equality sentence forms:

term is [not] equal to term
term Cl= term

When number elements are tested for equality, they are equal only if both
have the same units or labels and represent the same numeric value. Numbers
which have different units or labels are not equal regardless of their
numeric values. For example, these sentences will all test true:

33.2 = 33.2
33 miles/hour = 33 miles/hour
33 miles = 33.0 miles
Probability .4 = Probability .40

33 apples
33 apples
33 apples

= 33
= 33 oranges
= certainty 33

The following sentence forms are used to compare number elements only.
They also have long and short forms. Comparisons can be made only between
numbers with the same units or labels. All other comparisons are illegal
and will generate errors.

Number comparison sentence forms:

term is [not] greater than [or equal to] term
term [-] > [=]. term

term is [not] less than [or equal to] term
term [-] < [=] term

ROSIE Language Reference Manual -44-

NOTE: Comparative sentences are not primitive sentences and therefore
they cannot be used in propositions or asserted into the database.

4.6.4. Other Sentence Forms
The remaining legal sentence forms make a variety of tests which may or

may not involve the database. Some are supplied for convenience, others
expand ROSIE's capabilities in fundamental ways.

NOTE: Like comparative sentences, these forms are not primitive sentences
and therefore cannot be used in propositions or asserted into the database.

there is Cl no l a[n : just one : more than one :) description-- This is a
convenient way to test the cardinality of a clas~ of elements.
The description generates as many··elements as the test requires.
The no and a[n] options try to generate one element. If an
element exists, the no test fails and the a(n] test succeeds.
The just one and more than one options try to generate two
elements. The just one alternative fails if none or more than one
element exists. The more than one alternative succeeds if at
least two elements exist. The following rules demonstrate the
use of this sentential form:

If there is a file for the employee, go print that file.

If there is no file for the employee, go request data.

If there is just one enemy ship, go attack that ship.

If there is more than one enemy ship, go surrender.

term has Cl no l a[n : just one : more than one :) description-- This
sentence also performs a cardinality test, but adds on "of term"
as a prepositional phrase to the description. For example, the
following sentence pairs are equivalent:

John has a girlfriend
There is a girlfriend of John

Grotz Airfield has more than one runway in use
There is more than one runway of Grotz Airfield in use

term is [not] a[n] description -- This sentence tests the element generated
by the term against the constraints of the description. All

-45- Other Sentence Forms

relationships must test true for the test to succeed. The not
option negates the result of the test. If the tested sentence is
a primitive sentence, it tests true only when a sentence in the
database matches it exactly or when a predicate matching the
sentence concludes true.

If John is an exemplary student of math, display John.

If John is not an exemplary student who did pass the final
and who did pass the midterm, go disqualify John.

term is [not] provably Cl true l false l) -- This sentence allows
proposition elements to be tested against the database. A
proposition is provably true if it is found in the database, and
it is provably false if its negation is found. If neither the
positive nor the negative of the proposition exists in the
database, the test is not provably true and the test is not
provably false will both test true. In short, ROSIE incorporates
a three-valued logic. Like all database access operations, this
test will invoke a predicate ruleset if one is defined to test
the relationship. When a predicate is invoked, the sentence is
considered provably true if the predicate concludes true and
provably false if it concludes false. If the predicate reaches no
conclusion, the relationship is neither provably true nor
provably false (undecided). The following groups of sentences
are equivalent:

John is a student.
'John is a student' is provably true.
John is not a student' is provably false.

John is not exemplary.
'John is not exemplary' is provably true.
John is exemplary' is provably false.

term is [not] matched by pattern -- This sentence uses the pattern matcher
to match a string against a pattern. If the element value of
term is not a string, it is converted to one using the element's
evaluation name. The following rule demonstrates:

If "Dear John;" is matched by
{"Dear ", anything (bind s), ";"},

display NAME and display s.

ROSIE Langupge Reference Manual -46-

4.7. CONDITIONAL SENTENCES

Conditions are constructs that ask questions. They represent conditions
that can be confirmed or refuted by a search for the relevant relationships
in the database. A condition is true if all of the constraints on the
database test true; otherwise it is false.

Conditions are fundamental in ROSIE because rules are often stated as
conditional operations that perform actions only when certain conditions
hold. These are examples of rules that test conditions before executing
their actions:

If John did fail in math, go expel John.

If any student did fail the exam, display that student.

If the student was tardy or the student did fail any exam,
go punish that student and display that student's name.

If there is an enemy ship which is currently within range,
go attack that ship.

4.7.1. Conditions and Compound Conditions
Conditions are composed of one or more sentences, each of which tests a

relationship or invokes a predicate. The conclusion reached by the invoked
predicate is used as the result of that test. Sentences are combined using
and and or to create composite logical predications. (The conjunction and
binds more strongly than or.) In addition, conditions can include commas
and parentheses to indicate logical groupings. The following examples are
compound conditions:

John does like Mary and Mary does like John
John did fail any exam or John did fail any midterm

The precedence rules permit more complex conditionals to be written
without the need for parentheses. Thus,

if John does like Mary
and Mary does like John
or Mary does like Tony

-47- Conditions and Compound Conditions

is equivalent to

if (John does like Mary
and Mary does like John)
or Mary does like Tony

Parentheses can logically group sentences to override the built-in
precedence groups. In the example below, "John is a student" is grouped
with "John is a teacher." Normal precedence rules would have grouped "John
is a teacher" with "John did attend graduation."

(John is a student or John is a teacher) and
John did attend graduation

Commas can also be used to structure conditions. They are less general
than parentheses but will suffice for most applications. Conditions
structured with commas are more English-like than those which use
parentheses and so should be used whenever possible.

A comma directly following a sentence both ends and begins a sequence of
sentences which are grouped as though enclosed in parentheses. The
sequence ends with the next comma or with the end of that condition. For
example, these groups of conditions are equivalent:

(John is a student or John is a teacher) and
(John did attend graduation)

John is a student or John is a teacher, and
John did attend graduation

(John is an exemplary student) or
(John is an average student
and John's grades did improve)

John is an exemplary student, or
John is an average student
and John's grades did improve

(x is an integer or x is a floating-point) and
(x is positive or x is negative) and
(x is odd or x is even)

x is an integer or x is a floating-point, and
x is positive or x is negative, and
x is odd or x is even

NOTE: The syntax of the if rule requires a single action. If the
execution of more than one action is dependent upon the "if," the set of

ROSIE Language Reference Manual -48-

actions conjoined with and must be either enclosed in parentheses or
preceded by a comma (i.e. "if <conditional>, <actionl> and <action2>." or
"if <conditional> (<actionl> and <action2>).").

4.8. ACTIONS

Actions do the work in ROSIE programs. There are many built-in actions.
Actions can change the database, build program files, read and write to
files and other devices, test conditions, and perform other operations
required by a program.

Procedure rulesets (5.3) are invoked by the go and call actions. A
procedure is essentially a user-defined action, and so the number of
actions can be expanded with the definition of custom rulesets for special
applications.

Action syntax forms are designed to read like English and to indicate the
type of operation they perform. Procedure invocation can be equally
readable when procedure names and parameters are selected carefully.
Multiple actions can be sequenced using and. The readability of sequenced
actions can be enhanced through the use of parentheses and commas.

A few action forms include other actions as parameters. For example, if
condition action [otherwise action] takes one or two actions as arguments.
The ROSIE syntax allows actions to be grouped together with parentheses,
commas, semicolons, and and to improve readability and to allow the parser
to parse rules unambiguously (see 4.8.1).

ROSIE-defined actions occur at all levels of the ROSIE environment. A
discussion of each class of actions can be found in the following sections:

Database Actions 3.7

Program Control Actions 5.13

Input/Output Actions 5.12

4.8.1. Actionblocks, Commablocks, Colonblocks
Actionblocks are simply a way of collecting actions together. Commablocks

and colonblocks are special types of actionblocks. The commablock can be
used instead of parentheses to disambiguate the meaning of a sentence. The
colonblock is used in certain types of program control actions.

-49-Actionblocks,Commablocks,Colonblocks

An actionblock is simply a sequence of one or more actions connected with
the word and. The following are examples of actionblocks.

Display HELP
Display HELP and quit
Display HELP and display the error and quit

For example, a rule consists of actionblock followed by a terminal
character. These are legal rules:

Display HELP!
Display HELP and quit.
Display HELP and display the error and quit.

Parentheses can be used to specify several actions at once wherever a
single action is required. Any actionblock surrounded by parentheses is a
legal action.

Sample actions:

(display 1 and display 2)
(assert John is a teacher and deny John is a student)
(send {"Computing ... ", return} and go compute)

A commablock is an actionblock which is preceded with a comma and ended
with a comma or period. Since commas are more English-like than
parentheses, these constructs were conceived to allow users to avoid
parentheses in most applications. The following pairs of equivalent rules
demonstrate how commas can be used where parentheses would normally be
required. In all of these examples, the absence of grouping characters
would change the meaning of the rule.

If John is good
(go commend John and go notify John's parents).

If John is good,
go commend John and go notify John's parents.

(For each student
go review that student) and display FINISHED.

For each student,
go review that student, and display FINISHED.

ROSIE Language Reference Manual -50-

For each student
(if that student did finish

(go collect that student's paper and
assert that student's paper was collected)

and go assign homework to that student).
For each student,

if that student did finish,
go collect that student's paper and
assert that student's paper was collected,

and go assign homework to that student.

Commas often improve readability even when not strictly required, as in
the following examples:

If the ship was attacked before 1200 hours, go declare war.

For each student, if that student did fail, go expel that student.

NOTE: The use of commas does affect the meaning of a sentence. In "If
John was late, go scold John and assert John was punished.", a comma is
necessary to execute both actions only if the condition is true. The
effect of including a comma is illustrated by these equivalent pairs of
rules:

If John was late
go scold John and assert John was punished.

(If John was late
go scold John) and (assert John was punished).

If John was late,
go scold John and assert John was punished.

If John was late
(go scold John and assert John was punished).

Colonblocks are actionblocks which are optionally terminated by a
semicolon. They are used in a few actions which take many action arguments
and are therefore clarified by the use of semicolons. These are examples of
rules which use colonblocks:

-51-Actionblocks,Commablocks,Colonblocks

Select situation:
If the target was enemy, go declare war;
If the target was neutral, go apologize;
If the target was friendly, go hide.

Match the message:
{"Lovingly", anything}
{"Sincerely", anything}
{"Cordially", anything}
Default: let the mood be

4.8.2. Sentences and Modification

let the mood be intimate;
let the mood be concerned;
let the mood be formal;
neutral.

Assert and deny are actions which take sentences as arguments. Each
sentence form instructs assert or deny to make a particular change or
changes to the database. Not all sentence forms can be asserted or denied;
those that are legal are documented below.

Primitive sentences -- the relationship indicated is simply added or
removed from the database. When a relationship is added, its
negation is automatically removed to maintain consistency (see
3.4).

Assert John is a student and John does like Mary.

Assert Ship 34 did attack Ship 45 at 400 hours.

term is [not] a[n] description -- in the absence of the not option, all
relationships indicated by the description are added or removed
at once. When not is used, the roles of assert and deny are
reversed for consistency. The following groups of rules are
equivalent:

Assert John is good and John is a boy.
Assert John is a good boy.
Deny John is not a good boy.

Assert John is a boy and John does like girls.
Assert John is a boy who does like girls.
Deny John is not a boy who does like girls.

Deny John is good and John is a student.
Deny John is a good student.
Assert John is not a good student.

ROSIE Language Reference Manual -52-

term is [not] provably (true : false) -- term must evaluate to a
proposition element. Without the not option, the proposition is
simply asserted or denied if provably true is used. If provably
false is used instead, the negation of that proposition is
asserted or denied. When not also appears, the roles of assert
and deny are reversed for consistency. The following groups of
rules are equivalent:

Assert John is good.
Assert -John is good' is provably true.
Assert John is not good' is provably false.

Assert John is not good.
Assert -John is not good' is provably true.
Assert John is good' is provably false.

Deny John is good.
Deny -John is good' is provably true.
Assert -John is good' is not provably true.

NOTE: All other sentence forms are illegal in assert and deny statements
and will generate error messages.

4.9. PATTERNS

Patterns are constructs which allow programs to create and manipulate
strings of text. A pattern is a sequence of subpatterns enclosed in braces
"{}" and separated by commas. Each subpattern in turn represents a
restriction on the successive portions of the text string. That text string
is either being created from the pattern or matched against the pattern.
For example, the subpattern "3 blanks" represents a sequence of three blank
characters, and the subpattern "one or more numbers" represents a sequence
of one or more numeric digits.

When a pattern is used to create a string, each subpattern is interpreted
as a substring of text. These substrings are concatenated together to form
the resulting string. For example, each of these patterns can be used to
create the string which follows it:

{"The value is: ", 3 + 7}
{John Doe, 3 blanks, "Accounting"}
{the student, " was absent"}

"The value is: 10"
"JOHN DOE Accounting"
"JANE was absent"

-53- Patterns

When a pattern is matched against an existing string of text, each
subpattern represents a restriction on a portion of the string being
matched. Variables can optionally be bound to any substring matched by a
subpattern. This allows programs to extract fields of text from strings,
using the pattern matching facilities. For example, each of these patterns
will match the string which follows it:

{"Dear ", anything (bind name), ";"} "Dear John;"
{2 letters, 3 blanks, 2 numbers} "ab 34"
{3 numbers, "-", 2 numbers, "-", 4 numbers} "566-96-9990"

4.9.1. Subpatterns
This section describes each of the legal subpatterns.

term the term is evaluated and the element generated is converted to a
string. For matching, that string must appear in the text being
matched. For string creation, the string text is inserted into
new string.

integer [or Cl more I less I)] line[s] --matches the indicated number of
text lines. A line of text is any number of characters followed
by a carriage-return or end-of-line character. For string
creation, inserts the indicated number of carriage-returns into
new string.

integer [or Cl more I less I)] restriction [[not] in string] --matches
the indicated number of characters which satisfy the restriction
(see 4.9.2). If the in string option is included, the characters
matched must also appear in that string. If the not in string
option is used, the characters matched must not appear in that
string. For string creation, this causes the insertion of the
indicated number of characters into the generated string (the not
in string option is disallowed for this case).

anything -- same as 0 or more characters.

something -- same as 1 or more characters.

quote -- matches the double-quote character. For string creation, inserts a
double-quote into the new string.

control string -- characters in string are converted to control characters.
For example, send {control "G"} will beep the user's terminal.

codes ((I integer {I , integer I} I)) --represents the characters
indicated by the integers interpreted as ASCII character codes.

ROSIE Language Reference Manual -54-

one of c: subpattern {: , subpattern :l :) --matches any substring that is
matched by any one of the subpatterns given.

each of C: subpattern {: , subpattern :} :) -- matches any substring that
is matched by each of the subpatterns given.

pattern -- invokes the pattern matcher recursively. This subpattern matches
any substring which is matched by the pattern given.

return -- matches a carriage-return or end-of-line character. For string
creation, inserts a carriage-return or end-of-line into the new
string. In TOPS-20, ports and files each use a different
end-of-line character, and so return will work differently in the
send action depending on whether the device is a port, a file, or
a terminal.

end -- matches end-of-file from a file, port, or terminal. Useful for
reading from a device until end-of-file is detected. The
end-of-file concept is explained under documentation for the read
action. End-of-file is actually represented as the NUL character
(octal 0), and so this subpattern is equivalent to codes (0). No
other subpattern will match the NUL character.

4.9.2. Character Restrictions
These are the legal character restrictions. For restrictions which are

optionally preceded by non, the meaning is inverted.

[non]letter [s] -- any alphabetic characters.

[non]number[s] -- any numeric digits.

[non]alphanumeric[s] -- allows numbers or letters.

[non]blank[s] -- blank characters only.

[non]control[s] -- control characters only.

character[s] -- allows any character.

4.9.3. Variable Binding
A subpattern can be followed optionally by a bind form. This causes the

variable specified to be bound to the substring matched by that subpattern.
The syntax of bind is

C: bind var [to the C: number string name D] D

-55- Variable Binding

The to the Cl number l string l names l) option specifies an element-type
conversion. The number option will try to interpret the substring as a
number element, and the variable will be bound to the resulting number.
The name option will convert the substring to a name element if possible.
The string option will bind the variable to a string element; if no element
type is specified, to the string is the default.

4.9.4. Pattern Matching
When a pattern is used to match a string, the entire string must be

accounted for by the pattern. Each subpattern will match the shortest
segment of the string. For example, consider the following rule:

If "[LINE 1] [LINE 2] [LINE 3] " is mat<:hed by
{"[", anything (bind string), "]", anything},
display string.

When this rule is executed, it will display the string "LINE 1," not
"LINE 1] [LINE 2] [LINE 3". In other words, the first subpattern was
associated with the shortest matching substring.

ROSIE Language Reference Manual -56-

5. PROGRAMMING STRUCTURES

5 . 1 . OVERVIEW

Like other high-level programming languages, ROSIE allows the user to
gather individual ROSIE rules into rulesets. The sorts of constructs
discussed so far (e.g., conditionals, assertions, etc.) comprise only a
small fraction of the possible actions that ROSIE can perform. Rules in
general are discussed in more detail in section 5.2. Other types of actions
needed in almost any programming application include input/output (5.12)
and control structures such as loops (5.13). Rules, input/output actions,
and control structuring actions are the building blocks of rulesets (5.3).
A ROSIE program is really a collection of rulesets that examine and modify
the information in the database.

5.2. RULES AND RULE VARIABLES

Rules are the fundamental building blocks of ROSIE. Each rule represents
one or more actions to be performed when the rule is executed. Users, when
interacting with ROSIE, type individual rules to the top level. These are
immediately parsed (see 6.1) and executed. On the other hand, ruleset rules
are executed only when the ruleset is invoked. Single rules (i.e., not in
rulesets) that occur in a previously parsed file are executed when that
file is loaded.

A rule consists of one or more actions connected by and and terminated by
" " or"!". There are also a handful of special interactive rules which
end with the terminal character "?" and which are primarily intended for
use at the top level. However, they may be used in a ruleset (see 7.4).

These are examples of ROSIE rules:

If John is a Republican, go convert John.
Display the object and assert that object was displayed.
For each former president who did serve any term which

is greater than 4 years, display that president.
Which man was a Republican in office?
Go buy groceries!

Variables exist only within the context of a rule. They serve as
temporary storage for intermediate results. Variables can be used
explicitly or implicitly through anaphora. In either case, a variable's

-57- Rules and Rule Variables

value always consists of a single element. The value that is bound to the
variable results from some operation such as database lookup, reading a
string from a file, or finding a substring within a string using the
pattern-matching facilities.

When used explicitly, variables must first appear in some
variable-binding construct. There are currently only two such constructs:
descriptions and patterns. Once a word appears in a bind construct, ROSIE
will interpret that word as a variable anywhere else in the rule.

Sample session:

[ROSIE Sunday, February 1, 1981 6:54pm

<1> If "Dear John," is matched by {"Dear ", anything
(bind str), ","},

display Letter to and display str.
LETTER TO
"John"
<2> Assert John is a man.
<3> If there is a man (m1), display MAN and display m1.
MAN
JOHN
<4> If there is a man, display that man.
JOHN
<5> logout.

In line <1>, the variable STR appears within a bind construct, so STR is
treated as a variable rather than as a name. Note that LETTER TO is treated
as a name. In line <3>, M1 appears in a description as a variable, so it
is treated as a variable later on.

Line <4> is an example of the use of implicit variables. The phrase
"that MAN" refers to the implicit variable bound by the description "MAN."
Only descriptions have implicit variables associated with them, and these
variables are bound according to rules outlined in section 4.2.4.

NOTE: A variable is bound, implicitly or explicitly, only within a single
rule. In the example above, reference to m1 in <4> would have treated M1
simply as a name, rather than as a variable bound to some man.

NOTE: When a relation is restricted by a prepositional phrase (e.g., "man
on Mars"), the variable to be bound occurs before the preposition, e.g.,

Display every man (m) on Mars and assert m is an astronaut.

ROSIE Language Reference Manual -58-

This form also holds for other types of restrictions, as in

Display every man (m) who is tall and assert m is handsome.

NOTE: There are instances in which anaphoric reference may be permitted
syntactically but will result in the run-time error "unbound local
variable." Thus, if we say "For each person whose age (n) is not five,
display <that person, n>" we are searching the database for only those
persons about whom the assertion "age is not five" has been made. Thus,
there is no value reflecting the actual age available to us through this
construct and the variable, n, cannot be bound.

5.3. RULESETS

Rulesets are collections of rules which embody various kinds of
procedural knowledge. Like subroutines in more conventional programming
languages, they provide a convenient way to modularize a program into
coherent procedural units. Unlike other languages, these modules are
invoked in a natural way using English-like syntactic forms, and consist of
a set of readable rules that modularize information.

There are three kinds of rulesets, each providing a different way of
using procedural knowledge. Rulesets can simply carry out a set of
operations (procedures), generate a sequence of elements on request
(generators), or prove or disprove simple relationships among elements
(predicates). In addition, system rulesets can be defined. These are
written in INTERLISP and may be desirable because of a need for speed or
flexibility.

5.4. PROCEDURES

Procedures are rulesets for performing modular tasks. They accept any
number of parameters but do not return results to the rule that invoked
them. They allow users to define conceptually modular tasks that can be
parameterized conveniently.

Procedures are invoked using the go and call actions. The go action
directly invokes the specified procedure. The call action provides a way
of computing the name of the procedure at run-time. A procedure terminates
when the return action is executed or the end statement is reached.
Control is then returned to the rule following the invoking go or call
action.

-59- Procedures

The following examples invoke a procedure named "display". The procedure
looks up the file for an employee and displays an item from the file.

Go display Social security number for John Doe.
Call the display-procedure-using Social security number

for John Doe. - -

Sample procedure:

To DISPLAY ITEM for EMPLOYEE:

[1] Send {"The ", the item, " for employee ",
the employee, 2 lines}.

[2] If the employee has a file,

End.

5.5. GENERATORS

display that file's slot for the item,
otherwise send {"No file for employee: ",

the employee, return}.

Generators are rulesets that define a class of elements procedurally and
produce elements one-by-one on demand.

The action produce is used by generators to return an element.
Generators need not be concerned about generating the same element twice,
since an internal check automatically ensures that each element produced is
unique. Generators terminate upon executing the return action or reaching
the end statement.

Generators are invoked whenever the database is requested to generate the
members of a class. As described in 4.2.5, this happens when a description
is used as a generator. The following examples all use the simple
description "project leader" as a generator. The first asks for just one
leader, the next tries to generate two, and the last will generate and
print as many as possible:

Display the project leader.
If there is more than one project leader, display YES.
Display every project_leader. -

ROSIE Language Reference Manual -60-

If the generator below is defined when these rules are executed, it may
be invoked.

Sample generator:

To generate PROJECT LEADER.

[1] Produce the current research director.

[1] For each active project,
produce the employee who does head that project.

[2] For each project which will begin before 1982,
produce the employee who will head that project.

End.

NOTE: If a generator is defined for a particular description and the
database already contains "is a" relations for that class, those relations
will be accessed first. Thus, if an element satisfying is
a(project_leader) exists in the database, the example "Display the
project_leader" given above would never cause the invocation of the
generator.

5.6. PREDICATES

Predicates are rulesets which determine the truth or falsehood of
relationships among elements. They allow the specification of a method for
testing relationships that cannot or should not be stored explicitly in the
database.

The conclude action terminates a predicate by specifying whether the
relationship is either provably true or provably false. If, instead, the
predicate is terminated with a return statement, the relationship is
undecided (neither true nor false). The same occurs when the end statement
is reached.

Predicates may be invoked whenever the database is asked about a
relationship whose relational form matches that of a defined predicate. If
the test cannot be resolved by a simple database search, the appropriate
predicate is invoked and its conclusion determines the result of the test.
The rules in the following examples all test relationships of the form
"element is active in element":

-61-

If John Doe is active in GLEE CLUB, display YES.
Display every employee who is-active in some

organization.
For each organization in which John Doe is active,

display that organization.

Predicates

The following example defines a predicate that determines whether an
employee "is active in an organization." If the above rules are executed
after this predicate is defined, the predicate will be called once by the
first rule and possibly many times by the second and third.

Sample predicate:

To decide EMPLOYEE is ACTIVE in ORGANIZATION:

[1] If the employee has a file
and the organization is currently in
(that file's slot for ORGANIZATIONS),
conclude TRUE.

[2] If there is a membership roster for the organization
and the employee is currently on that

membership roster,
conclude TRUE.

[3] Conclude FALSE.

End.

NOTE: If a predicate incorporates the same general form as a sentence in
the database, the sentence (or, possibly, sentences) in the database will
be accessed first.

5.7. SYSTEM-DEFINED RULESETS

The ROSIE environment includes a number of predefined rulesets that
perform useful operations. This package is called the ruleset library. A
brief explanation of each of the system-defined generators, predicates, and
procedures is given below. Most of the predefined rulesets are system
rulesets, i.e., they are written in INTERLISP. Section 5.11 explains how
to write a system ruleset and Appendix C, "System Support Library," gives
the actual code for the rulesets described below.

ROSIE Language Reference Manual -62-

element is a thing -- always true regardless of element type.

element is a proposition -- true if element is a proposition, otherwise
false.

element is a tuple -- true if element is a tuple, otherwise false.

element is a string -- true if element is a string, otherwise false.

element is a name -- true if element is a name, otherwise false.

element is a number -- true if element is a number, otherwise false.

element is a class -- true if element is a class, otherwise false.

element is a filesegment -- true if element is a filesegment, otherwise
false.

proposition is true in database -- tests the truth of the proposition in
the given database; concludes true or false.

element_type of element -- produces a single name element which indicates
type of element. The name element produced is one of
PROPOSITION, TUPLE, STRING, NAME, NUMBER, CLASS, FILESEGMENT.

integer from integer to integer -- produces each integer in the given
range.

integer from integer to integer by integer produces integers from the
first to the second, incremented by the third.

number value of number -- produces numeric value of the number element
(units or labels are discarded).

negation of element -- if the element is a number, produces the negation of
the number. If the element is a proposition, produces the
negation of the proposition. Otherwise an error occurs.

square-root of number -- produces square root of number.

sine of number [in radians] -- produces sine of number. Number is assumed
to be in degrees unless in radians option is given.

cosine of number [in radians] -- produces cosine of number. Number is
assumed to be in degrees unless in radians option is given.

tangent of number [in radians] -- produces tangent of number. Number is
assumed to be in degrees unless in radians option is given.

-63- System-defined Rulesets

arcsine of number [in radians] -- produces arcsine of number in degrees or
radians.

arccosine of number [in radians] -- produces arccosine of number in degrees
or radians.

arctangent of number [in radians] -- produces arctangent of number in
degrees or radians.

floor of number -- produces number with fractions truncated.

log of number -- produces logarithm of number.

antilog of number -- produces antilog of number.

random_number from number to number -- produces a single pseudo-random
number within bounds.

member of tuple produces every element in tuple, in order.

member of, tuple at integer produces the single elem~t which is at
position integer in tuple.

length of tuple -- produces length of tuple.

tail of tuple -- produces a copy of tuple without the first element.

tail of tuple from integer -- produces a new tuple which contains the
~ments of old tuple starting from position integer.

concatenation of tuple with tuple produces a new tuple which contains
elements of both tuples in order.

reverse of tuple -- produces a new tuple which contains the elements of the
old tuple in reverse order.

add proposition to database
database.

adds the given proposition to the given

remove proposition from database -- removes the given proposition from the
given database.

show database -- displays the contents of the given database.

ROSIE Language Reference Manual -64-

5.8. PRIVATE RELATIONS IN RULESETS

Because rulesets often need to save intermediate results, each ruleset
invocation is allocated a private database for class membership relations.
This database is accessible only by that ruleset invocation, and it is
discarded when the ruleset has finished its work. A place for storing
private classes is useful for a number of reasons. For example, rulesets
using this method of storage do not have to clean up after themselves.
Also, an error which occurs during ruleset execution need not leave the
global database cluttered with relationships that were meant to be
discarded.

Global relations and private relations are accessed using exactly the
same ROSIE operations. Among these, the assert, deny, and let actions
modify relations, descriptions can be used to generate elements from
relations, and conditions test for the presence of relations.

A database access operation examines the private is a relations if the
relation-name of the relationship has been declared private. A
relation-name is private if it (a) is the name of a parameter to a ruleset
or (b) has been declared private in the ruleset definition.

The following procedures demonstrate how private relation-names affect
database access operations. Both procedures display a list of candidates
for employee benefits by scanning the global database for part-time and
full-time employees.

Sample procedure:

To PRINT CANDIDATES:

[1] For each full-time employee,
assert that employee is a candidate.

[2] For each part-time employee,
assert that employee is a candidate.

[3) Display every candidate.

[4] Deny every candidate is a candidate.

End.

Sample procedure:

To PRINT CANDIDATES:

Private CANDIDATE.

-65- Private Relations in Rulesets

[1] For each full-time employee,
assert that employee is a candidate.

[2] For each part-time employee,
assert that employee is a candidate.

[3] Display every candidate.

End.

In the first procedure, the relationship "element is a candidate" is
asserted in the global database for each full- or part-time employee by
rules [1] and [2], and then all of those employees are displayed by rule
[3]. Before the procedure exits, rule [4] cleans up by removing those
candidate assertions from the global database.

The second procedure declares candidate as a private relation-name, so
the relationship "element is a candidate" asserted by rules [1] and [2] are
all directed to the "private database." Rule [3] scans the private
relations looking for those relationships and printing the employees. Rules
[1] and [2] still scan the global database looking for full-time or
part-time employees, since neither full-time, part-time, nor employee is
declared as a private relation-name. When the procedure exits, no cleanup
is done because the global database has not been modified.

To further illustrate, imagine that the following rules appear in a
ruleset which declares employee, deserve, and full-time to be private
relation-names. All of these rules when executed will scan or modify
private relations only.

Declaration: Private EMPLOYEE, DESERVE, FULL-TIME.

Display the employee.

If the employee is full-time, display YES.

Let the employee be John Doe.

Display every employee who does deserve salary review.

Display every full-time employee of Corporate
Enterprises.

For each full-time employee in 1969,
assert that employee does deserve benefits.

ROSIE Language Reference Manual -66-

Assert Mike Meyers is a full-time employee of DataTech
who does not deserve benefits.

5.9. PASSING ARGUMENTS TO RULESETS

As mentioned above, a ruleset's parameter names are private
relation-names. When a ruleset is invoked, relationships of the form
"element is a parameter-name" are placed in the ruleset's "private
database," one for each parameter. Parameter elements can thus be retrieved
using normal database access operations.

Most parameters are retrieved from terms embedded in a prepositional
phrase. These parameters are passed to rulesets according to the
preposition which precedes them, not according to the order in which they
appear. That is, prepositional phrases need not present parameters in the
order in which they appear in a ruleset definition.

The following examples illustrate the use of parameters. The first rule
invokes the procedure PRINT, passing three elements as parameters: a
number, a string, and a name. Using the device TEMPFILE, the procedure
prints the string and the number and then exits. The prepositional phrase
supplies two of the parameters correctly even though the order of the
prepositions has been reversed.

Go print 55 miles/hour to TEMPFILE after "Speed limit:".

Sample procedure:

To PRINT VALUE after STR to DEVICE:

[1] Send to the device {return,the str,l blank,the value,return}.

End.

Note that the VALUE, STR, and DEVICE parameters are retrieved in this
case using the term "the description"; the parameter names act as simple
descriptions. This works because the following become private relations
when the procedure is invoked:

55 MILES/HOUR is a value.
"Speed limit:" is a str.
TEMPFILE is a device.

-67- Order of Execution in Rulesets

5.10. ORDER OF EXECUTION IN RULESETS

The order of execution of rules can vary from ruleset to ruleset.
Sometimes it is desirable that the rules be executed sequentially,
cyclically, or even randomly. The execute action tells ROSIE which type of
execution you want. The three forms are execute sequentially, execute
cyclically, and execute randomly.

The execute action occurs in the ruleset definition after the declaration
of the private relations (if there are any). If no declaration is
supplied, ROSIE assumes sequential execution. Most ruleset examples in
this document incorporate sequential execution.

Sequential order executes ruleset rules in a top-to-bottom order. After
the last rule has been executed, a return action is automatically executed
terminating the ruleset as though the return···was executed explicitly. This
order is ideal for most rulesets, since it is the most intuitive and since
an explicit return statement need not be included.

Cyclic order executes rules sequentially, but rather then ending once the
last rule is executed, it begins again with the first rule. The ruleset
terminates only on the execution of a return, conclude, or quit action.
This order is useful when a sequence of rules must be executed repeatedly.

Random order executes rules in a pseudo-random fashion. After each rule
is executed, another rule is selected at random and executed. As with the
cyclic execution, the ruleset must be terminated explicitly.

5.11. WRITING SYSTEM RULESETS

System rulesets are rulesets which are defined in the ROSIE
implementation language (currently INTERLISP). Writing these rulesets
requires some knowledge of the implementation language.

System ruleset bodies are single INTERLISP Spread-NLAMBDA expressions.
The NLAMBDA expressions should have one parameter for each argument.
Arguments are passed to the NLAMBDA expression in alphabetical order of the
prepositions associated with each parameter, not in the order in which
parameters appear in the ruleset header.

NLAMBDA expressions for system procedures need not return any special
value. They are simply executed when the procedure is invoked.

NLAMBDA expressions for system predicates should return the literal atom
<TRUE> or <FALSE> to reach a conclusion. Any other returned value is
treated as "undecided."

ROSIE Language Reference Manual -68-

System generators can produce strings, numbers, names, and tuples. If
the NLAMBDA expression returns one of these, that element is treated as the
only element produced by the generator. The expressions can also return a
list of elements. In that case, the list of elements is interpreted as
those produced by the generator. NIL is treated as an empty list (no
elements generated).

To return a string from a system generator, you need only return an
INTERLISP string element. To return a number, you must make sure the number
is without label or units. Names are returned as simple atoms. Tuples can
be returned by using (LIST-TO-TUPLE x) where x is the list of elements you
want in the tuple.

Comments cannot appear between a system ruleset header and the body which
follows it. The parser expects to find exactly one s-expression after each
system ruleset header.

System rulesets may be written using CLISP. All system rulesets are
DWIMified when necessary. The filepackage action compile will compile
system rulesets.

The INTERLISP function ABORT[MSGI; MSG2] is available to system rulesets.
ABORT is the function called by ROSIE when a runtime error occurs. It
prints the location of the error followed by any messages supplied as
arguments to ABORT. The user is then returned to the top level gracefully.
This function is similar to the INTERLISP ERROR function. MSGI should be a
string; MSG2 is an optional list of items which are printed following MSGI.

The following two system rulesets are examples taken from the system
ruleset library:

System ruleset to generate INTEGER from INTI to INT2:
(NLAMBDA (INTI INT2)

(IF (NULL (FIXP INTI)) THEN
(ABORT "Not an integer:" (ELTTOTOKENS INTI)))

(IF (NULL (FIXP INT2)) THEN
(ABORT "Not an integer:" (ELTTOTOKENS INT2)))

(FOR I FROM INTI TO INT2 COLLECT I))

System ruleset to decide ELT is a STRING:
(NLAMBDA (ELT) (IF (EQ (ELTTYPE ELT) 'STRING)

THEN I <TRUE>
ELSE '<FALSE>))

-69- Input/Output

5.12. INPUT/OUTPUT

The input/output actions allow programs to read and write directory
files, communicate with the user's terminal, run other programs, and
connect to remote computer sites. Users can also create transcript files
that will record all or part of a ROSIE session.

An input/output device is a source/destination which can be read from or
written to. The user's terminal is one such device. Other devices can be
directory files (files of text kept in the user's directory) or ports
(separate jobs logged in to the host computer). Input from these devices
is performed using the read action. The send action is used to output text
to a device.

Before a device can be accessed, it must be initialized or opened using
one of the open actions. The user's terminal is a device which is always
open. When a directory file is opened, it is "noticed" by ROSIE and an
internal buffer is allocated for it. The file is not actually created or
modified in the user's directory until it is closed with the close action.
Files can be opened to read, write, or append. The read and append options
both open an existing directory file, while the write option will create a
new file. The read action will work only on files which are opened to read.
The send action allows files to be opened for writing or appending.

When a port is opened, a new job is logged in on a TOPS-20
pseudo-teletype. This job looks just like another user to the host
computer. Text sent to the port is read by the computer as though typed by
the "user," and the computer's response can be retrieved by reading from
that port. Closing the port will logout the phantom user and kill that
job. Since ports act just like users, they allow ROSIE programs to do
anything a user can do, which includes running another ROSIE program and
also network communication programs.

NOTE: If you start a job from within ROSIE you must make sure to follow
every send to that job by a read. Sending characters to a job results in
those characters being echoed in the job's output buffer. If you do not
read from that output buffer it will fill up and block the process. Once
the job has been stopped the input buffer you are sending to will fill up
and, eventually, you will receive an input overflow error. You can solve
this problem simply by following each send to the job {anything,return}
with a read from the job {anything, return, the prompt-character}.

Input/output devices are all assigned names when they are opened. Those
names are recognized by the read, send, and close actions. The user's
terminal, which is always open, has no name and is used when no device is
specified. (The user's terminal may be referred to explicitly using
"TTY:".) A device can be named with a single-word name or string element.

ROSIE Language Reference Manual -70-

The commands for input and output actions can be found at the beginning
of section 5.14.

5.13. PROGRAM CONTROL STRUCTURES

These actions provide various ways of telling a program what to do and
when to do it. Program control structures include iterative loops,
conditionals, a variety of structures resembling a "case" statement,
procedure invocation, etc. A complete list of program control actions is
given in section 5.14.

5.14. PROGRAMMING ACTIONS: QUICK REFERENCE

This section contains descriptions of each of the input, output and
program control actions. For a more general discussion of these topics see
sections 5.12 and 5.13.

display term-- prints the evaluation name of the term to the user's
terminal followed by a carriage return.

open term to (l read l write l append l) -- opens a directory file. Term
must evaluate to a single-word name element or a string. The
read and append options open an existing file, the write option
opens a new file. A file opened to append will be added to by the
send action rather than overwritten.

open port to term-- creates a new port (logged in and running an EXEC).
Term must evaluate to a single-word name or string element, which
will be the name of the new port.

close term -- closes the device. Ports are killed, directory files are
closed, and the directory is updated. Term must evaluate to a
single-word name or string element.

close everything -- closes all open files and ports.

NOTE: If you open a file for both reading and writing, the close action
will only close the file with respect to one of those functions.
To close the file completely you should use the close everything
action.

send [to term] pattern -- creates a string from the pattern and sends it to
the device (a name or string). If no device is specified, sends
text to the user's terminal.

-71-Programming Actions: Quick Reference

read [for number seconds] [from term] pattern -- reads text from a device
(from the user's terminal if no device is specified). Read will
input one character at a time from the device. The input
operation terminates after the string thus accumulated matches
the pattern supplied. If at any time the pattern matcher
recognizes that the string will never match the pattern, an error
occurs. The text read can only be retrieved using variables in
the pattern; these are bound when a match occurs. If a time
limit is supplied, end-of-file is forced for the terminal and
ports after the read has used up the allotted time. When no time
limit is specified, end-of-file is declared for ports when the
port program is waiting for input, while reading from the
terminal will never terminate due to end-of-file. End-of-file
for directory files occurs after the last character on the file.
Note that end-of-file is treated by the pattern matcher as a
character (octal 0) which can be matched with the end subpattern.
This allows a read action to read deliberately until end-of-file
from any device without generating an error.

NOTE: There is a problem if you try to read the terminal input buffer
when there is nothing there. Saying "read for 5 seconds {anything (bind),
return}" when the buffer is empty results in the error "input won't match
string." One suggestion for getting around this problem is to use the
following:

Read for 5 seconds {one of ({anything (bind x),
return (bind y)},

{anything (bind x), end (bind y)})
and if y is matched by {end} go failure

otherwise go success.

dribble to term -- term must evaluate to a single-word name element. This
action begins copying everything which appears on the user's
terminal to the directory file name. The dribble file need not
(should not) be opened or closed. This is a convenient way to
save a transcript of all or part of a ROSIE session for later
viewing. Note that you may edit during a "dribbled" session, but
that part of the session will not be dribbled.

stop dribbling-- stops copying to the dribble file.

if condition action [otherwise action] -- the condition is tested and if

ROSIE Language Reference Manual -72-

true, the first action is executed. If the condition is not true
and the second action is given, it is executed instead.

NOTE: Unlike other languages, ROSIE does not use the "if ... then" format.
In fact, the "then" is not even optional. The user must be aware of this
because it is not always the case that using a "then" will cause a syntax
error. In "if john is bad then display yes," for example, "then" is
considered a perfectly valid term (if this seems counterintuitive, consider
"if john is growing old display yes"--remember that ROSIE relies on purely
syntactic constraints during parsing).

unless condition action [otherwise action] -- action occurs only when
condition is not probably true. This is useful for actions
conditional upon the absence of database sentences.

[for each description] [while condition] [until condition action] -- this
construct is used to perform iterative loops. The action is
performed repeatedly until the loop is exhausted. If for each
description is supplied, the action is performed once for each
element generated from the description. If while condition is
given, the condition is tested before each iteration and the loop
terminates if the condition is not true. If until condition is
given, that condition is tested after each iteration, and the
loop is terminated if the condition is true. Any combination of
for each, while, and until can be used. These rules demonstrate
this action:

For each enemy ship,
go attack that ship.

For each enemy ship
while there is an unassigned aircraft,
go deploy that aircraft to that ship.

Until Norswegia does surrender,
go attack Norswegia.

match term against pattern -- the element value of term is converted to a
string if it is not one already; invokes the pattern matcher to match that
string against the pattern. If the match succeeds, any variable bindings
indicated in the pattern are performed; otherwise this action does nothing.

select term: {: tuple colonblock :} [default: colonblock] --this
action finds the appropriate action block and executes it. Each tuple term

-73-Programming Actions: Quick Reference

is evaluated and searched for the element value of the first term. If that
element is found, the actions associated with the tuple containing it are
executed. If no tuple contains the element, the default actions (if
supplied) are executed instead. This rule demonstrates:

Select the country:
<Russia, China> display BAD GUYS;
<USA, Canada> display GOOD GUYS;
<Any third-world nation> display CANT TELL;
Default: display MORE INFO and go get info.

match term : {l pattern colonblock l} [default : colonblock] -- similar
to the select action, but selects the actions by attempting to match the
element value of term against each pattern until a match is found. This
rule demonstrates:

Match the message:
{"Hello"}
{"Goodbye"}
{something}
Default:

display HOWDY;
display SOLONG and logout;
display WHAT?;
display SAY SOMETHING!

choose situation : {l if condition colonblock l} [default : colonblock
-- similar to the select action but selects the actions by testing each
condition. This rule demonstrates:

Choose situation:
If the mayor is a republican,

go donate 120 dollars;
If the mayor is a democrat,

go donate 300 dollars;
Default: go donate 100 dollars.

go relation-name [term] {l preposition term l} -- invokes the procedure
relation-name with the value of term (if given) and the value of each
prepositional term (if any) as arguments.

call term [(using term)] {l preposition term l} -- similar to the go
action, but uses the value of the first term, which must be a single-word
name element, as the name of the procedure to invoke.

ROSIE Language Reference Manual -74-

do nothing -- does absolutely nothing. Sometimes useful as a place-filler
in actions which take action arguments. These equivalent rules demonstrate:

If John is happy, do nothing, otherwise go cheer-up John.

Unless John is happy, go cheer-up John.

return -- this action terminates a ruleset. In procedures, it simply ends
the ruleset. In generators, it causes the ruleset to stop generating
elements. In predicates, it declares the truth value of the relation to be
undecided.

produce term in generator rulesets, causes the ruleset to return the
element value of term.

conclude (true : false) -- in predicate rulesets, causes the rule set
to reach a conclusion of provably true or provably false.

quit [because pattern] --this is a programmable control-B (interrupt).
ROSIE immediately returns to the top level. If because pattern is given,
the pattern is converted to a string and that string is printed to the
terminal before quitting.

wait for number seconds -- the program does nothing for the indicated
number of seconds. This causes programs to pause for any length of time
without using computation resources during that time. Useful when a program
must wait for a response from a user or from another program.

save as term -- term must evaluate to a single-word name element. This
action creates a file name.EXE which freezes the complete state of the
program which executed it. The user can type "name" to the operating system
to resume program operation from after the point at which the save action
was executed. The save action closes all input/output devices and creates
the name.EXE file, but otherwise does not affect the running program which
executed it. For example, ROSIE is created by executing

Sysload SYSTEM and save as ROSIE.

revert to term -- term must evaluate to a single-word name element. This
action is the inverse of the save action. The program which executes it is
completely abandoned and the name.EXE file is resumed as though the user
typed name directly to the operating system. Provides a programmable way
to switch the user to another ROSIE program.

-75-Programming Actions: Quick Reference

logout -- closes all open input/output devices and terminates the ROSIE
session. Control is returned to the operating system or invoking program.

push-- connects user to the operating system (a lower EXEC), where he
can interact without losing the current ROSIE session. Return to ROSIE by
typing POP to the EXEC.

ROSIE Language Reference Manual -76-

6. STORING PROGRAMS: THE FILEPACKAGE

6.1. OVERVIEW

The filepackage actions are the heart of the ROSIE programming
environment. They help the user build, modify, examine, and keep track of
programs in a way that exploits the modular and English-like nature of
ROSIE rulesets. They also encourage interactive and real-time system
development by minimizing parsing and compiling overhead caused by changes
to individual rules.

The filepackage actions also support debugging by helping users to find,
display, and modify offending rules. Other helpful features keep track of
syntax errors, outline the contents of files, remember the compilation
status of rulesets, and aid in locating strings of text in programs.

User programs are stored as program files in the user's directory. Rule
numbers in program text are maintained automatically, and text is spaced
evenly for easy reading. Along with text files, the filepackage actions
maintain other directory files that reduce parsing, compilation, and
storage overhead. Thus a single program file is actually a group of files
a user modifies via filepackage actions rather than directly.

6.2. PROGRAM FILES

ROSIE programs are kept on program files. These contain ruleset
definitions and file rules. Program files are named by the user when they
are created by the build action. They can be referenced by that name when
loaded, compiled, examined, and edited.

To the user, a program file is simply a text file that may be modified.
To work on a file, the user loads it using the load action. When a file is
loaded, its rulesets are defined and its file rules are executed. It is
also "noticed" by the filepackage, which means that filepackage actions
will know where to find things in that file. The sysload action can also be
used to load a file without "noticing" it. This is more efficient but does
not allow the user to change or examine the file. The system ruleset
library is preloaded using sysload.

For every program file, the filepackage actually maintains three or four
files to minimize overhead. None of these files should ever be edited or
deleted directly by the user, since they are all required by the
filepackage and are interrelated in unobvious ways. These files are
explained briefly below.

-77- Program Files

Files kept by the filepackage:

.TEXT file -- contains the actual program listing in its original text
form. It is the only readable file in the group and is the file
which should be printed when a hardcopy program listing is
required. The .TEXT file is used by the parser in order to
produce the .PARSE file .

. PARSE file -- contains the executable parse of all items in the .TEXT
file. When a program file is loaded, this is the file which is
actually loaded into the system .

. MAP file -- contains a map of the .TEXT, .PARSE, and .COMPILE files. It
allows filepackage actions to access and change portions of the
other files efficiently .

. COMPILE file -- is created only when the program file is compiled. It
contains compiled code and is loaded in place of the .PARSE file
whenever it exists, and its creation date is newer than that of
the .PARSE file.

NOTE: A file must be "noticed" in order to be examined or changed. For
ROSIE to "notice" a file, it must be loaded or built. A load action works
on the parse file and will "notice" only those rules and rulesets that are
free of syntax errors in the ruleset header. To edit those rules and
rulesets that have header errors, you must edit the file (i.e., "edit file
<filename>" or "edit <filename>"). Rulesets with syntax errors in the
ruleset body are "noticed." The build action is used to create a new file;
once the file has been edited, and the editing session completed, the file
will automatically be parsed and will thereafter behave like a loaded file.

6.3. RULESET DEFINITIONS AND FILE RULES

A program file usually contains ruleset definitions. These rulesets are
defined when the ruleset definitions are loaded (using the load or sysload
action). Rulesets which contain syntax errors (other than those in the
header) are not defined but are still "noticed" by the filepackage so they
can be corrected. Rulesets with errors in the header (e.g., "To generate
is a foo" rather than "To decide is a foo") are neither loaded nor noticed;
to correct such errors the entire file must be edited.

Program files can also contain file rules, i.e., individual rules which
are not part of any ruleset. When a file is loaded, the rules are executed
after all of the file's rulesets have been defined. File rules can be used

ROSIE Language Reference Manual -78-

to initialize the database, start a program, print useful information, etc.

The following example of a program file called INTEGERS will print the
integers from 1 to 10 when loaded. It contains three file rules and one
ruleset definition. Following the file listing is a sample session which
shows the file being loaded and examined.

===========
===========
[: INTEGERS Created 28-Jan-81 1:07pm, edit by GORLIN :]

[rule 1] Let the first number be 1.

[rule 2] Let the last number be 10.

The next rule invokes PRINT NUMBERS when this file is
loaded.]

[rule 3] Go Print numbers.

[This procedure prints a sequence of numbers.]

To PRINT NUMBERS:

[1] For each integer from (the first number) to (the last
number),

display that integer.

End.

===========
===========

Sample session:

[ROSIE Friday, January 30, 1981 8:50pm]

<1> Load INTEGERS.
To PRINT NUMBERS
1
2
3
4
5
6

7
8
9
10
<2> Show INTEGERS, 3.

-79- Ruleset Definitions and File Rules

The next invokes PRINT NUMBERS when this file is
loaded.]

[rule 3] Go Print numbers.

<3> Show PRINT NUMBERS.

[This procedure prints a sequence of numbers.]

To PRINT NUMBERS:

[1] For each integer from (the first number) to (the last
number),

display that integer.

End.

<4> Logout.

In the example above, note the rule numbers printed as comments at the
beginning of every file rule and ruleset rule. These comments are inserted
and updated automatically by the filepackage and are displayed along with
the rules when the user examines the file text. Rule numbers also aid in
debugging, since ROSIE error messages identify offending rules by number.
The filepackage allows rules to be cited by those numbers using the form
edit filename rulenumber (see also statement <2> in the sample session).

Rules and other file items are also separated uniformly by blank lines,
regardless of how the user types them. This simplifies rule editing and
further improves readability.

A comment which appears between rules or rulesets is associated with the
item which follows it and is considered part of that item. When a rule or
ruleset is displayed or edited, the comments associated with it, if any,
are included as part of the item. The example above has two comments; they
are parts of file rule 3 and the PRINT NUMBERS ruleset, respectively.
Comments can also appear anywhere within a rule.

ROSIE Language Reference Manual -80-

6.4. MODIFYING AND USING PROGRAM FILES

Some filepackage actions (insert, edit, copy, etc.) are used to edit
program text. These actions all create new .TEXT, .PARSE, and .MAP files
reflecting the changes made. Parts of these files that were not changed are
copied from the old versions to save time. The parser is called only on
portions of program text edited by the user, so the entire file is not
reparsed after each modification. Users should take advantage of the fact
that editing actions will work on individual rules and rulesets as well as
on whole files. Whenever an entire file is edited, that file must be
completely reparsed regardless of what changes were made.

NOTE: If you select an editor which associates line numbers with each
line (e.g., SOS or DEC's EDIT), you must leave each edit session with a
command that does not store the line numbers in the file written by the
editor (U for SOS, EU for EDIT). If line numbers are left in, an INTERLISP
error will occur.

6.5. COMPILATION

The compile action allows users to compile an error-free program file. A
compiled file, once loaded, takes up much less storage, and its rulesets
will execute much faster. Compilation is therefore critical when a program
grows large, since it may not fit into memory in any other form. In fact,
it may be necessary to sysload compiled forms to reduce the program to an
acceptable size.

The compile action has two effects: redefinition of all rulesets in the
program file with compiled definitions, and creation of a new .COMPILE
file. The next time the program file is loaded, that .COMPILE file will be
read instead of the .PARSE file, so the compiled definitions of rulesets
will be loaded. When compiled program files are changed and recompiled,
the compile action will recompile only rulesets which have changed since
the last compilation and will copy old compiled definitions from the old
.COMPILE file to the new one. For this reason, old .COMPILE files should
not be deleted.

6.6. FILESEGMENTS

Filesegment terms evaluate to filesegment elements. A filesegment term
identifies either a file, a ruleset, or a sequence of file or ruleset
rules.

Examples:

-81-

"To generate CONTENTS of BOX at TIME"
"To generate MEMBER of TUPLE"
"To PRINT FILE, 5"
"To decide MAN is a COLONEL, 1 7"

Filesegments

NOTE: The system ruleset "Member of tuple" is referred to above like any
other rule set, i.e., you do not need to include the words "System rule set"
from the header when accessing a system ruleset as a filesegment.

The examples above demonstrate the long form of this term. There is also
a more convenient short form which allows files or rulesets to be
identified with a single word. If the word names a loaded program file,
that file is taken to be the source of the segment. Otherwise, the word is
assumed to be all or part of a relation-name which identifies a loaded
ruleset. If more than one ruleset fits the d~scription, the user is asked
which one was intended. For example, the following pairs of terms might be
equivalent if the indicated files or rulesets are loaded:

Examples: "To generate CONTENTS of BOX at TIME, 3 9"
CONT, 3 9

"To generate PRINT FILE"
PR

file PROGRAM, 6
PROG, 6

6.7. FILE COMMANDS: QUICK REFERENCE

File and directory actions allow manipulation of directory files from
within ROSIE. Their operation is system-dependent, since they attempt to
duplicate the basic operating system commands. All of these actions accept
single-word names or string elements.

NOTE: These actions require the full file name specification, i.e.,
"filename.ext." (The dir action will work without the extension by assuming
all files with the given filename are intended.)

dir [term] -- displays selected file names in the directory, with their
---- creation date and size. Accepts TOPS-20 special characters.

Works much like the TOPS-20 DIRECTORY command.

type term -- types contents of file to the terminal.

ROSIE Language Reference Manual -82-

copy term to term -- copies a file.

append term to term -- appends contents of filel to the end of file2.
---F-ilel~not changed.

rename term to term -- renames a file.

delete term deletes a file from the user's directory. Does not ask for
----confirmation. The file will not actually be removed from the

filesystem until the directory is EXPUNGED in TOPS-20.

Filepackage program file actions create, load, and compile program files.
As discussed in section 6.2, a program file consists of three or four
directory files maintained by the filepackage. These files should only be
manipulated using the filepackage actions.

load term -- term can evaluate to a single-word name or string element.

sysload

Loads a program file into core. Once loaded, rulesets in the
file are defined in core and can then be invoked. If a .COMPILE
file exists, it is loaded; otherwise the .PARSE file is loaded.
If the program file contains file rules, these are executed after
rulesets are defined. Load also "notices" the file, which allows
other filepackage actions to access it. A ruleset that contains a
syntax error will still be "noticed" (unless the error was in the
ruleheader) but will not be defined.

term -- same as load but the program file is not "noticed" and so
--cannot be displayed or edited. More efficient than load and takes

up less memory space. Sysload is useful when a program file is
loaded only for its ruleset definitions or file rules. For
example, the system ruleset library is sysloaded.

compile term -- requires single-word name element. Compiles or recompiles a
program file, creating a new COMPILE file. If the file has not
been loaded, it is loaded first. If the file was previously
compiled, only the rulesets which have changed are recompiled,
and old compiled definitions are copied from the last .COMPILE
file. The compile action also redefines each ruleset compiled
with the new compiled definition. This frees the space
previously used by uncompiled rulesets (compiled rulesets take up
very little space). A program file must be free of syntax errors
before it can be compiled. File rules are also compiled if any
are found, and will subsequently execute much faster when loaded.

build term-- this action creates new program files. Requires a single-word
----name element. The file will bear the name given to build. Build

-83- File Commands: Quick Reference

leaves the file loaded and noticed, so the user can immediately
begin editing it.

change term to term -- this is the only safe way to rename a program file.
Both arguments must be single-word name elements. The program
file named by the first argument is renamed. The file need not be
loaded, but the .MAP file must exist.

parse term -- term must evaluate to a single-word name element. This
action can be used to turn a solitary text file into a loadable
program file. The text file is parsed and a new set of
filepackage files (.TEXT, .PARSE and .MAP) is created for it.
The new program file can then be loaded using the load or sysload
action. The parse action is used only for special applications
where a text file which was not created through the filepackage
must be loaded. Also, if a .PARSE or .MAP file is accidentally
deleted, the program file can be reconstructed by executing

Parse filename.text.

Most of the filepackage filesegment actions change program files. Each
change causes a new .TEXT, .PARSE, and .MAP file to be created in the
user's directory. Those actions which invoke the user's text editor will
parse the text edited immediately after the editor is exited. The program
file is then rewritten, and if no syntax errors have been introduced, any
rulesets that have been changed are redefined. The rulenumber comments
that appear before each rule are inserted and updated automatically and all
file items are evenly spaced in the .TEXT file.

When editing program text, the user is free to split rules apart or add
new rules before and after the rules being edited.

Users are responsible for saving changes from the text editor before
exiting. Most text editors do not update files edited until the user asks
for an update. This update must be performed or ROSIE will ask the user if
he wishes to abort the editing session. If the session is aborted, no
changes are made to the program file. If not, ROSIE attempts to return to
the edit session (which may not work with some text editors).

NOTE: If you select an editor which associates line numbers with each
line (e.g. SOS or DEC's EDIT), you must leave each edit session with a
command that does not store the line numbers in the file written by the
editor (U for SOS, EU for EDIT). If line numbers are left in, an INTERLISP
error will occur.

ROSIE Language Reference Manual -84-

show fileterm -- displays filesegment text to the terminal.

trace [fileterm] -- the trace facility can be used to monitor the
invocation of rulesets. When a traced ruleset is invoked, a
message is printed and the values of its arguments are given.
When the ruleset has finished executing, another message is
printed and the value being returned (if any) is given. Trace
alone traces all currently defined rulesets. Trace fileterm,
where fileterm is the name of a file, traces all rulesets in that
file.

untrace [fileterm] -- untrace the ruleset fileterm, all the rulesets in the
file named fileterm, or all rulesets.

NOTE: Attempting to trace a single rule in a file or ruleset will result in
a run-time error.

erase fileterm -- removes the filesegment from its file and discards it.
Asks for confirmation from the user before making the change.

NOTE: Fileterms that are rulesets will still be defined during the session
even after they have been erased. Thus, removing the predicate
"is married" from the file "foo" will not cause subsequent
invocations of "is married" to bomb. At present there is
effectively no way to rid yourself of a ruleset once it has been
noticed short of erasing it from the file, logging out of ROSIE,
and starting a new session.

copy fileterm to C: before : after :) fileterm -- copies one filesegment to
before or after another. The file that receives the copied text
is rewritten. Some intuitive restrictions are placed on the
kinds of changes that can be made.

move fileterm to (I before I after I) fileterm -- similar to copy, but
erases the original filesegment from its file after copying it.
Both files involved are rewritten (or only one is rewritten if
the move is made within a single program file).

insert C: before : after I) fileterm -- invokes the user's text editor,
allowing the user to compose program text which is then parsed
and inserted before or after the indicated filesegment. The file
is then rewritten. Insert can be used to add text to the end of a
program file without requiring any existing text to be reparsed.

edit fileterm -- invokes the user's text editor to edit the indicated
filesegment text. The new text is then parsed and the old
filesegment replaced. NOTE: to edit just one rule in a file you
must use the form edit filename rulenumber.

-85- File Commands: Quick Reference

find string in fileterm -- displays the lines of a program file that
contains the string. Upper- and lower-case characters in string
are equivalent. The location of these lines is indicated in
terms of the rulesets or rules which contain them. This is very
useful for finding things when programs get large.

scan fileterm -- this feature outlines the filesegment by naming rulesets,
indicating compile status, pinpointing syntax errors, etc. For
example, scan program will outline the contents of file PROGRAM.

ROSIE Language Reference Manual -86-

7. USER AIDS

7.1. OVERVIEW

The purpose of this chapter is to provide the user with information that
should be helpful in using the ROSIE system and debugging ROSIE programs.

7.2. ERRORS

Errors cause ROSIE to abort ruleset execution and return to the top
level. The error message printed provides an indication of the problem.
Below, we provide most of the error messages ROSIE produces, arranged
alphabetically. The number in parentheses is the section of this manual
that may pertain. Text following ">>>" is an attempt to help you diagnose
the problem.

Attempt to assert or deny EQUALITY. (4.6.3)
Attempt to assert or deny GREATER THAN. (4.6.3)
Attempt to assert or deny GREATER THAN OR EQUAL TO. (4.6.3)
Attempt to assert or deny IS MATCHED BY. (4.6.4)
Attempt to assert or deny LESS THAN. (4.6.3)
Attempt to assert or deny LESS THAN OR EQUAL TO. (4.6.3)
Attempt to assert or deny THERE IS. (4.6.4)

>>>Any sentence that contains a non-primitive verb phrase cannot be
asserted or denied.

Attempt to create illegal NAME from the string (2.3.2)
Attempt to create illegal NUMBER from the string (2.3.4)
Attempt to create NUMBER with illegal UNITS from the string (2.3.4)

Bad file name (6.7)
Bad PROCEDURE name in CALL (5.4)
Body is not a SPREAD-NLAMBDA expression. (5.11)

>>>System ruleset definition was not SPREAD-NLAMBDA.
BUILD can't create filepackage files for (6.7)

>>>Check to see if the file already exists, is protected, or no disk
space.

BUILD requires an atomic file name. (6.7)

Can't change file loaded from another directory (6.7)
Can't COPY ruleset rules to a point outside any ruleset (6.7)
Can't COPY rulesets or file rules to within a ruleset (6.7)

-87- Errors

Can't create an edit file! (6.7)
>>>Check to see if file is in another directory, no disk space, file is

protected, or file doesn't exist.
Can't create file (6.7)

>>>No disk space, file already exists, etc.
Can't delete file (6.7)

>>>File is protected against deletion or in another directory.
Can't find file (6.2)
Can't find filepackage files for (6.2)
Can't find PARSE file for (6.2)
Can't find SAVE file (5.13)
Can't find SUCH reference (4.5)
Can't find TEXT file (6.2)
Can't find THAT reference (4.2.8)

>>>Attempting to resolve anaphora with no antecedent description.
Can't find this file segment (6.6)
Can't MOVE ruleset rules to a point outside any ruleset (6.7)
Can't MOVE rulesets or file rules to within a ruleset (6.7)
Can't rename file (6.7)
CHANGE requires atomic filenames (6.7)
COMPILE requires an atomic filename (6.2)
Computation depth limit exceeded

>>>Check for infinite recursive loops.
CONCLUDE not inside a PREDICATE. (5.6)

Device not OPEN (5.13)
Device not open for input (5.13)
Device not OPEN for output (5.13)
Discarding a spurious PRIVATE or MONITOR declaration (5.2,5.10)

>>>Only one private or monitor statement allowed per ruleset.
Discarding an unexpected END (5.3)
Discarding an unexpected RULESET header (5.3)
DIRECTORY takes an atom or string (6.7)
Does not describe a known file or ruleset (6.7)

File already exists (6.2)
File no longer known to file package (6.2)
Filename not known to file package (6.2)
Filepackage files already exist named (6.2)
File still contains syntax errors (6.7)

>>>You cannot compile a file that has syntax errors.
File is already compiled (6.7)

Illegal comparison (2.3.4)
>>>Attempting to compare non-comparable numbers.

ROSIE Language Reference Manual -88-

Illegal DATABASE file (3.1)
Illegal DATABASE name (3.1)
Illegal DRIBBLE file (5.13)
Illegal file name in LOAD (6.2)
Illegal FILESEGMENT descriptor(6.6)
Illegal operation (4.6.3)

>>>Arithmetic operations require consistent labels or units.
Illegal LET action; one TERM must be THE DESC or TERM'S DESC (3.7)
Illegal PORT name (5.13)
Illegal UNITS following a number (2.3.4)
Improper SAVE file name (5.13)
Input from device won't match pattern (4.9)
Input from terminal won't match pattern (4.9)
Input is ambiguous at (4.2)

Line contains unterminated comment (2.2.2)

MISSING END. (5.3)
MONITOR declaration doesn't belong here (5.10)

No DRIBBLE file currently active (5.13)
No such element exists (3.3)

>>>"the" requires the existence of at least one (and preferably only
one) such element.

No such DATABASE file (3.7)
Not a FILESEGMENT element (6.6)
Not a proposition (4.6.2)
Nothing saved for line (7.4)

>>>Only the last 40 lines are remembered.

Old COMPILE file has been deleted! File must be reloaded (6.2)
Only RULES can be executed here (B.2)

>>>You are at the top level of ROSIE. You must build or edit a file
to create a ruleset.

PARSE requires an atomic file name (6.2)
PARSE can't find file (6.2)
PARSE can't create parse files for (6.2)
PARSE can't create filepackage files for (6.2)

>>>All of the above indicate an improper file name.
Consult the TOPS-20 documentation.

PORT already open (5.13)

-89-

PRIVATE declaration doesn't belong here (5.8)
Procedure not defined (5.4)
PRODUCE not inside a GENERATOR (5.5)

Quota exceeded or disk full ...

Errors

>>>If you received this error message it is because you have used up all
your directory space. You have also been dumped into the EXEC. Unless
you have crucial files deleted, just type "expunge" and, after the
pages have been freed, "continue." This will leave you back in ROSIE
right where you were.

RETURN not inside a RULESET (5.3)
Ruleset no longer known to file package (B.2)
Ruleset not known to file package (B.2)

Same preposition used twice (3.1)
>>>Each preposition introduces an element; that element will be

associated with the preceding object. NO object may have the
same preposition used twice.

Sections of rulesets are not permitted (6.7)
>>>You cannot trace or untrace single rules.

Segments overlap in a MOVE statement (6.7)
Some definitions in-core are not from this file! file must be reparsed(6.2)
Syntax error at (6.2)
Syntax error is (6.2)
SYSTEM GENERATOR returned illegal value (5.11)

>>>Rewrite the system generator to produce an appropriate ROSIE element.

THAT refers to an unbound local variable.
>>>A sentence relying on a construct like

"any ... which ... any x ... that x ... "
causes real problems, since ROSIE cannot resolve the actual binding
at the time the sentence is used. Give up and rewrite the sentence.

Too many PRIVATE declarations (5.2)
Too many MONITOR declarations (5.10)

>>>Only one declaration of monitor type is allowed. Similarly for
private variables.

Unknown INFO request (7.3)
Unbound local variable (5.2)
Unmatched left paren or missing body (5.11)

>>>A system generator definition either is missing or was not closed
correctly.

ROSIE Language Reference Manual -90-

7.3. USER SUPPORT ACTIONS

The following actions provide general support for user interaction. The
fix and redo actions deal with rules executed at the top level by the user.
ROSIE remembers the last 40 rules typed. The info action answers some
global questions about memory space, program files, etc.

fix linenumber -- allows users to edit and resubmit rules typed to the top
level. Invokes the user's text editor on the rule indicated and
executes the modified rule when the editor is exited. The
modified rule is remembered instead of the fix action that
exhumed it, so it can be referred to later by its line number.

redo linenumber [thru linenumber] [integer times] -- reexecutes one or more
rules typed to the top level. More than one rule can be
reexecuted by using redo linenumber thru linenumber. The rule or
rule sequence can be reexecuted more than once by supplying the
integer times argument.

info storage -- prints a rather verbose accounting of memory space after
collecting unused space (garbage collection). The most
informative part of the printout for most users is at the bottom
and tells how many pages of memory are left. Since this action
forces a garbage collection, it can be executed just before the
save action to clean things up a bit.

info files -- enumerates all filepackage program files in the user's
directory, along with date last modified, size of the text file,
compile status, and whether that file has been loaded.

info loaded -- tells which program files have been loaded, including those
loaded from other directories. Also gives date of last
modification, size of text file, compile status.

info users -- tells which users are currently on the computer.

info date -- prints the date, time, and name of the program in comment
form.

7.4. ROSIE'S TOP LEVEL AND USER INTERACTION

When ROSIE is entered, a user interacts with the system by typing single
rules at the terminal. Each rule typed is immediately executed, after which
the user is prompted for another rule. This cycle continues until the ROSIE
session is terminated. When waiting for rules to be typed, ROSIE is said

-91- Top Level and User Interaction

to be at the top level.

At the top level, ROSIE prompts for each rule with a line number.
Thereafter this number can be used to refer to the line typed. Lines typed
are remembered by ROSIE for future reference and can be edited,
resubmitted, and displayed (see section 7.3).

Sample session:

[ROSIE Friday, January 30, 1981 8:50pm]

<1> assert john is a man.
<2> display every man.
JOHN
<3> assert each of sam, bill and joe is a man.
<4> display every man.
JOHN
SAM
BILL
JOE
<5> assert mary does like every man.
<6> ?
[Global Database]

MARY does like JOHN.
MARY does like SAM.
MARY does like BILL.
MARY does like JOE.
JOHN is a man.
SAM is a man.
BILL is a man.
JOE is a man.

<7> logout.

Note in the above example that line numbers are displayed in angle
brackets "<>" before each rule. In this example, the user is interactively
building a simple database, which he displays just before exiting ROSIE.

Useful commands related to user interaction:

Line history -- ROSIE remembers up to 40 lines typed by the user,
forgetting the oldest lines as new ones are typed. Actions exist
which allow the user to edit these lines to be resubmitted (fix)
or to resubmit one or more lines as typed (redo) (see section
7.3). Once a line is forgotten, it can no longer be referenced
by these actions.

ROSIE Language Reference Manual -92-

Interrupt -- Control-B is the ROSIE Interrupt character. When typed, it
causes control to return to the top, regardless of what is being
executed. It will also erase a partially typed rule being
submitted and repeat the line number prompt. This provides a
clean way to terminate program execution but may leave programs
in a funny state, since effects of execution up to the interrupt
cannot be reversed.

Inform -- Control-T is the ROSIE Inform character. When typed, the user is
told what ROSIE is doing (which ruleset is running, which rule is
being executed). Program execution is not affected.

Editing -- Some actions cause the user's text editor to be invoked. ROSIE
always creates a temporary file for editing applications; the
name of the file is passed to the editor. Users are responsible
for saving the results of editing·sessions and exiting normally
from the editor. When the editor is exited without having
updated the temporary file, ROSIE will give the user a chance to
return to the editing session; otherwise the edit will be aborted
and ROSIE will return control to the top level. In the TOPS-20
implementation, ROSIE will invoke the editor defined by the
logical name "Editor:" when a text editor is required. Users who
do not use the default editor can redefine Editor: by typing the
following line to his EXEC:

DEFINE EDITOR: youreditor

If your editor asks for a filename explicitly, rather than being
able to read one from the TOPS-20 command line, you should type
ROSIE-EDITOR.

A few special rules designed to improve user interaction are included as
legal rules in the language. These rules are legal in rulesets, but are
primarily useful while interacting at the top level:

?? -- displays the last 40 lines typed to top level.

? -- displays the current contents of the global database.

term ? displays all relationships in the global database that include
the element value of the term.

-93- Top Level and User Interaction

primitive sentence ? -- displays all relationships in the global database
built from the same relational form that have equal elements.

Sample session:

[ROSIE Sunday, February 1, 1981 7:37pm]

<1> Assert each of Bill, Sam, Dick and Henry is a boy.
<2> Assert each of Mary, Sue, Jane and Margaret is a girl.
<3> Assert Bill does like Margaret and Sue does like Henry.
<4> Assert any boy is a person and any girl is a person.
<5> ??

<1> ASSERT EACH OF BILL, SAM, DICK AND HENRY IS A BOY.
<2> ASSERT EACH OF MARY, SUE, JANE AND MARGARET IS A GIRL.
<3> ASSERT BILL DOES LIKE MARGARET AND SUE DOES LIKE HENRY.
<4> ASSERT ANY BOY IS A PERSON AND ANY GIRL IS A PERSON.
<5> ??

<6> ?
[Global Database]

BILL does like MARGARET.
SUE does like HENRY.
BILL is a boy.
SAM is a boy.
DICK is a boy.
HENRY is a boy.
MARY is a girl.
SUE is a girl.
JANE is a girl.
MARGARET is a girl.
ANY BOY is a person.
ANY GIRL is a person.

<7> Bill?
BILL]

BILL does like MARGARET.
BILL is a boy.

<8> Which boy does like Margaret?

BILL does like MARGARET.
<9> Which person does like which person?

BILL does like MARGARET.

ROSIE Language Reference Manual -94-

SUE does like HENRY.
<10> logout.

7.5. ROSIE BNF

A BNF description of ROSIE'S syntax is given for the user who wants a
terse but complete definition of the language. The following conventions
apply:

- uppercase (without a "$") indicates that the word appears on the
left-hand side of some production; lowercase indicates that the
word is recognized by ROSIE.

the use of the "$" character, i.e., in $ATOM, $NUMBER, and
$STRING, indicates a placeholder for a word of the given type.
$ATOM requires a ROSIE name (2.3.2); $NUMBER, and $STRING a ROSIE
number (2.3.4) and ROSIE string (2.3.3), respectively.

- the use of the word Nil indicates that the production need not
decompose further.

- comments are surrounded by "i;;'d•"

<PROGRAM> ::=<DECLARATION> <RULES> <ENDBLOCK>
: <QUERY>

<DECLARATION> ::=<HEADER>
I
I
I
I

<ONERULE>

<HEADER> <PRIVATEDEC>
<HEADER> <MONITORDEC>
<HEADER> <PRIVATEDEC> <MONITORDEC>

<RULES> ::= <ONERULE> <RULES> <ONERULE>

<ENDBLOCK> ::=end.

<PRIVATEDEC> ::=private <PRIVATELIST> .

<PRIVATELIST> ::=$ATOM, <PRIVATELIST> $ATOM

<MONITORDEC> ::=execute <MONTYPE>

<MONTYPE> ::=sequentially : randomly cyclically

-95-

<HEADER> .. -to generate <FUNCTION-FORM> :
system ruleset to generate <FUNCTION-FORM>
to <PROCEDURE-FORM> :
system ruleset to <PROCEDURE-FORM> :
to decide <PREDICATE-FORM> :
system ruleset to decide <PREDICATE-FORM>

<FUNCTION-FORM> ::=$ATOM <PRIVATEPP> *.,"*Rule set
F o rms~tn'(--;"(

<PROCEDURE-FORM> ::=$ATOM <PRIVATEPP>
<PRIVATEPP>

$ATOM $ATOM

<PREDICATE-FORM>

<AAN> : : = a l an

<ISFk> : : = was
is
were
am
are
will be

<DOESFi~> : : = did
do
does
will

$ATOM <ISF*> <AAN> $ATOM <PRIVATEPP>
$ATOM <ISFi~> $ATOM-~PRIVATEPP>
$ATOM <ISF*> $ATOM $ATOM <PRIVATEPP>
$ATOM <DOESFi~> $ATOM <PRIVATEPP> I

$ATOM <DOESF*> $ATOM $ATOM <PRIVATEPP>

was not
is not
were not I

I

am not I
I

are not I
I

will not be

did not
do not
does not
will not

<PRIVATEPP> ::=Nil l <PI>

<PI> ::=<PI> <PREP> $ATOM <PREP> $ATOM

<QUERY> ::=? l ?? l <TERM>? <PRIMITIVE-SENTENCE>?

<ONERULE> ::= <ACTIONBLOCK> <ACTIONBLOCK> !

<ACTIONBLOCK> ::= <ACTLIST>

ROSIE BNF

ROSIE Language Reference Manual -96-

<ACTLIST> ::=<ACT> I <ACT> and <ACTLIST>

<COLONBLOCK> .. - <ACTIONBLOCK> ; I <ACTIONBLOCK>

<COMMABLOCK> <ACTLIST>

<ACTION> ::=<ACT>

I

' I
<ACTLIST>

<ACT> ::= (<ACTLIST>) I
<ACT> , <COMMABLOCK>

<ACT> : :=
assert <ANDFORM>
deny <ANDFORM>
assert <ANDTERM>
deny <ANDTERM>
<LET-ACTION>
create <AAN> <DESC>
describe <TERM>
forget about <TERM>
dump
activate <TERM>
activate
clear database
deactivate
dump as <TERM>
restore <TERM>

*imMultiple Action
Blocks*iri•

~'ri•~"'Database

Actions*~'rl•

<AND FORM> <SENTENCE> I <ANDFORM> and <SENTENCE>

<AND TERM> <TERM> I <ANDTERM> and <TERM>

<LET-ACTION> ::=let <LETFORM> I <LET-ACTION>
and <LETFORM>

<LETFORM> ::=<TERM> be <TERM>

<ACT> : :=
<ITERATE>
<IFACT>
match <TERM> against <PATTERN>

***Flow-of-Control
Actions-1,-.,',·k

select <TERM> : <SELECTBLOCK> <DEFAULTBLOCK>
match <TERM> : <MATCHBLOCK> <DEFAULTBLOCK>
choose situation : <CHOOSEBLOCK> <DEFAULTBLOCK>

-97-

go $ATOM <OPTPPHRASE>
go $ATOM <TERM> <OPTPPHRASE>
call <TERM> <OPTPPHRASE>
call <TERM> (using TERM) <OPTPPHRASE>
do nothing
return
produce <TERM>
conclude true
conclude false
quit
quit because <PATTERN>
wait for $NUMBER seconds
save as <TERM>
revert to <TERM>

<ITERATE>
for each <DESC> while <CONDITION> until <CONDITION>

<ACTION>
for each <DESC> while <CONDITION> <ACTION>
for each <DESC> until <CONDITION> <ACTION>
while <CONDITION> until <CONDITION> <ACTION>
for each <DESC> <ACTION>
while <CONDITION> <ACTION>
until <CONDITION> <ACTION>

<IFACT> : :=
if <CONDITION> <ACTION>
unless <CONDITION> <ACTION>

I
I
I
I

if <CONDITION> <ACTION> otherwise <ACTION> l
unless <CONDITION> <ACTION> otherwise <ACTION>

<SELECTBLOCK> ::= <TUPLEl> <COLONBLOCK> l
<SELECTBLOCK> <TUPLEl> <COLONBLOCK>

<MATCHBLOCK> : :=

<CHOOSEBLOCK>

<DEFAULTBLOCK>

<ACT> : :=
display <TERM>

<PATTERN> <COLONBLOCK> l
<MATCHBLOCK> <PATTERN> <COLONBLOCK>

if <CONDITION> <COLONBLOCK> l
<CHOOSEBLOCK> if <CONDITION>

<COLONBLOCK>

Nil l default : <COLONBLOCK>

open <TERM> to read
*;'~;·~Input/Output

Actions;'~·k··k

ROSIE BNF

ROSIE Language Reference Manual -98-

open <TERM> to write
open <TERM> to append
open port to <TERM>
close <TERM>
send <PATTERN>
send to <TERM> <PATTERN>
read <PATTERN>
read <TIMEOUT> <PATTERN>
dribble to <TERM>
stop dribbling
read from <TERM> <PATTERN>
read <TIMEOUT> from <TERM> <PATTERN>

<TIMEOUT> ::=for $NUMBER seconds

<ACT> : :=
dir
dir <TERM>
type <TERM>
delete <TERM>
copy <TERM> to <TERM>
append <TERM> to <TERM>
rename <TERM> to TERM

<ACT> : :=
parse <TERM>
load <TERM>
sysload <TERM>
compile <TERM> l
build <TERM> l
info <TERM>
change <TERM>

<ACT> : :=
show <FPTERM>
scan <FPTERM>
erase <FPTERM>
edit <FPTERM>
trace
untrace

I
I

to

trace <FPTERM>
untrace <FPTERM>

<TERM>

find $STRING in <FPTERM>
copy <FPTERM> to before <FPTERM>

i'nht'File
Actions·kin'•

"''*"'•File Package
Actions;',;h~

idd•File Package
Filesegment
Actionsidd>

(NOTE: attempting
to TRACE a single
rule will result

-99- ROSIE BNF

copy <FPTERM> to after <FPTERM>
move <FPTERM> to before <FPTERM>
move <FPTERM> to after <FPTERM>
insert before <FPTERM>

in a run-time error)

insert after <FPTERM>

<FPTERM> : : =
II <FILESEG> II

$ATOM
$ATOM , $INTEGER
$ATOM , $INTEGER $INTEGER
file $ATOM <RULE-SPEC>

<FILESEG> : : =
to generate <FUNCTION-FORM> <RULE-SPEC>
to <PROCEDURE-FORM> <RULE-SPEC>
to decide <PREDICATE-FORM> <RULE-SPEC>

<RULE-SPEC> : : =
Nil

$INTEGER I

, $INTEGER $INTEGER

<ACT> .. -
fix $INTEGER '1d;;'>Line
redo $INTEGER History
redo $INTEGER thru $INTEGER Actions-1dd>
redo $INTEGER $INTEGER times :
redo $INTEGER thru $INTEGER $INTEGER times

<ACT> : :=
push :
logout

<CONDITION> ::=<PRIMITIVE-CONDITION>

<PRIMITIVE-CONDITION> ::=
<COND>

*7~-kSys tern
Support
Actions;'::;'rk

<PRIMITIVE-CONDITION> , and <COND>
<PRIMITIVE-CONDITION> , or <COND>

<COND> <COND> or <COND-CONJUNCT>

ROSIE Language Reference Manual -100-

<COND-CONJUNCT>

<COND-CONJUNCT> ::= <COND-CONJUNCT> and
<COND-PRIMARY> l

<COND-PRIMARY>

<COND-PRIMARY> (<COND>) l <BASE-SENTENCE>

<PRIMITIVE-SENTENCE> ::=<TERM> <PRIMITIVE-FORM>

<SENTENCE> ::= (<SENTENCE>) l <BASE-SENTENCE>

<BASE-SENTENCE>
<DESC>

<HOWMANY> : : = no

<TERM> <VERB-PHRASE> l there is <HOWMANY>

<AAN> just one more than one

<TERM> : := <SUBTERM> l <EXPRESSION>

<SUBTERM> ::=$STRING
<NAMELIST>
$NUMBER
$NUMBER <NAMELIST>
<NAMELIST> $NUMBER
<TUPLE I>
<TUPLE2>
' <PRIMITIVE-SENTENCE> I

the <DESC>
<TERM> 's <DESC>
that $ATOM
<AAN> <DESC>
<AAN> new <DESC>
some <DESC>
every <DESC>
each of <TERMLIST> and <TERM>
each of <TERMLIST>, and <TERM>
one of <TERMLIST> or <TERM>
any <DESC>
one of ,TERMLIST>, and <TERM>
which <DESC>
the string <PATTERN>
the name <PATTERN>
the number <PATTERN>

-101-

<NAMELIST> .. -$ATOM <NAMELIST> $ATOM <NAMELIST>

<TUPLEl> ::= < > < <TERMLIST> >

<TUPLE2> ::=the tuple containing each <DESC>

<TERMLIST> ::=<TERM> l <TERM> , <TERMLIST>

<EXPRESSION>

<LEVEL2>

<LEVELl>

<LEVEL2>
<EXPRESSION> + <LEVEL2>
<EXPRESSION> - <LEVEL2>

<LEVELl>
<LEVEL2> * <LEVELl>
<LEVEL2> I <LEVELl>

<PRIMARY-EXPR>
<PRIMARY-EXPR> iri• <LEVELl>

<PRIMARY-EXPR> ::= (<TERM>) l <SUBTERM>

<DESC> ::=such $ATOM l <ADJECTIVES> <DESC-CLASS> <RELCLAUSE>

<DESC-CLASS> $ATOM <OPTVAR> <OPTPPHRASE>

<ADJECTIVES> <ADJECTIVE-LIST>

<ADJECTIVE-LIST> ::=<ADJECTIVE>
LIST>

<ADJECTIVE> $ATOM

<OPTVAR> ::=Nil l ($ATOM)

<OPTPPHRASE> ::=Nil l <PPHRASE>

<PPHRASE> : := <PPHRASE> <PP> I <PP> I

<PP> : := <PREP> <TERM> I (<PREP> I

<PREP> .. - above at for
after of per
among by with

<ADJECTIVE> <ADJECTIVE-

<TERM>)

outside without
during because
against behind

ROSIE BNF

ROSIE Language Reference Manual -102-

along as from around before
below in near beside inside
while up over within through
until on into across toward
since to onto under about

<VERB-PHRASE> ::= <PRIMITIVE-VERBPHRASE> : <OTHER-VERBPHRASES>

<PRIMITIVE-VERBPHRASE> ::=<PRIMITIVE-FORM>

<OTHER-VERBPHRASES> ::=
is <AAN> <DESC>
is not <AAN> <DESC>
is provably true
is provably false
is not provably true
is not provably false
is matched by <PATTERN>
is not matched by <PATTERN>
has <HOWMANY> <DESC>
<RELATIONAL-OPERATOR> <TERM>

<RELATIONAL-OPERATOR> ::=
is greater than
is greater than or equal to
is less than
is less than or equal to
is equal to
is not equal to
is not greater than
is not less than
is not greater than or equal
is not less than or equal to

<PRIMITIVE-FORM> ::=
<ISF> <AAN> $ATOM <OPTPPHRASE>
<ISF> $ATOM <OPTPPHRASE>
<ISF> $ATOM <TERM> <OPTPPHRASE>
<DOESF> $ATOM <OPTPPHRASE> :
<DOESF> $ATOM <TERM> <OPTPPHRASE>

<ISF> .. - was was not
is is not
were were not
am am not

to

>
> =
<
< =
=

=
>
<
> =
< =

-103-

are are not I
I

will be will not be

<DOE SF> .. - did did not
do do not
does does not
will will not

<RELCLAUSE> ::= <RCl>

<RCl> ::= <RC> : <RCl> and <RC> <RCl> or <RC>

<RC> ::= (<RC>)
<SUCH-THAT> <SENTENCE>
<SUCH-THAT> (<PRIMITIVE-CONDITION>)
<THAT-WHO-WHICH> <VERB-PHRASE>
<THAT-WHO-WHICH> <TERM> <ISF> $ATOM <OPTPPHRASE>
<THAT-WHO-WHICH> <TERM> <DOESF> $ATOM <OPTPPHRASE>
<THAT-WHO-WHICH> <TERM> <RELATIONAL-OPERATOR>
<PREP> <WHICH-WHOM> <TERM> <PRIMITIVE-FORM>
whose <DESC> is $ATOM
whose <DESC> is not $ATOM

<SUCH-THAT> ::=where : such that

<THAT-WHO-WHICH> ::=that :who which

<WHICH-WHOM> ::=which :whom

<PATTERN> { <PATTERNS-LIST> }

<PATTERNS-LIST> <PATTERN-SPECIFICATION-LIST>
<PATTERN-SPECIFICATION-LIST> ,

<PATTERNS-LIST>

<PATTERN-SPECIFICATION-LIST> ::=
<SPECIFICATIONl>
<SPECIFICATIONl> (bind $ATOM)
<SPECIFICATIONl> (bind $ATOM to the string
<SPECIFICATIONl> (bind $ATOM to the name)
<SPECIFICATIONl> (bind $ATOM to the number

)

)

<SPECIFICATIONl> ::=<PATTERN-SPECIFICATION> : <TERM>

ROSIE BNF

ROSIE Language Reference Manual -104-

<PATTERN-SPECIFICATION> ::=
<SPEC-QUANTITY> line
<SPEC-QUANTITY> lines
<SPEC-QUANTITY> <SPEC-RESTRICTION>
<SPEC-QUANTITY> <SPEC-RESTRICTION> in $STRING
<SPEC-QUANTITY> <SPEC-RESTRICTION> not in $STRING
anything
something
control $STRING
quote
codes (NUMLIST)
one of (<PATTERNS-LIST>)
each of (<PATTERNS-LIST>)
{ <PATTERNS-LIST> }
return
end

<SPEC-QUANTITY> ::=
$INTEGER
$INTEGER or more
$INTEGER or less

<SPEC-RESTRICTION> ::=
letters
nonletters
numbers
nonnumbers
alphanumerics
nonalphanumerics
blanks

<NUMLIST>

nonblanks
controls
noncontrols
characters

$INTEGER $INTEGER , <NUMLIST>

-105- GETTING STARTED WITH ROSIE

APPENDIX A

GETTING STARTED WITH ROSIE

The following sample session is provided to give the new user a feeling
for programming in the ROSIE environment. This demonstration is by no means
complete but should make the reference manual easier to understand and your
first attempt at interacting with ROSIE more successful.

ROSIE produced the text beginning on unnumbered, unindented lines. Lines
beginning with a bracketed number were typed by hand. Line <1> below is
missing because it commanded ROSIE to dribble this session to a file.

TM
Rosie Friday, August 7, 1981 1:18pm]

<2> assert john is a man.
<3> assert each of mary and sara is a woman.
<4> ?
[Global Database]

JOHN is a man.
MARY is a woman.
SARA is a woman.

Programming in ROSIE consists primarily of actions
performed on information in the database. The database
is built up by asserting ROSIE sentences. Lines <2> and
<3> above are examples of assertions. In line <2> we
tell ROSIE that "john" is an element contained in the
class "man". In line <3> we see how to make the same
sort of assertion for more than one class member. The
assertion "assert mary is a woman and sara is a woman."
is equivalent to <3>. In line <4> we use the character
"?" to look at the contents of the database. Notice how
the compound assertion (<3>) has been broken into two
database sentences. Notice also how ROSIE capitalizes
all elements (the words "man" and "woman" are not
elements in these sentences--they are part of the
relations "is-a-man" and "is-a-woman" and are called
"relation-names").

<5> assert any man does like any woman.
<6> ?

ROSIE Language Reference Manual

Global Database]
ANY MAN does like ANY WOMAN.
JOHN is a man.
MARY is a woman.
SARA is a woman.

-106-

Lines <5> and <6> show us another kind of element: the
"class element". Here, "ANY MAN" and "ANY WOMAN" are
elements that describe a class of elements. Thus, the
element "ANY MAN" stands for every element in the
database satisfying the "is-a-man" relation. Notice

that ROSIE requires the form "does like" instead of
simply "like".

<7> display every woman that john does like.
MARY
SARA

In order to determine which women "john does like",
ROSIE scans the database for the "does-like" relation.
What ROSIE finds is the relationship "ANY MAN does like
ANY WOMAN." Because ROSIE is generating elements from
the database, and because this relationship uses at
least one class element, ROSIE must generate the set of
relationships that "ANY MAN does like ANY WOMAN"
represents. Generating sentences means substituting
each element in the class specified by the any for the
class elements in the relationship. Because we asked
for "every woman", ROSIE will generate all the
relationships that result from substituting each element
in the class of "man" for "ANY MAN" and each element in
the class of "woman" for "ANY WOMAN". In terms of the
database displayed by <6>, this means ROSIE generates
the relationships "john does like mary" and "john does
like sara". In the process of generating these, ROSIE
checks each one to see if it meets the criteria stated
in <7>. Note that if we had asked for "a woman that
john does like" or "some woman that john does like",
ROSIE would have stopped as soon as it had generated one
sentence that met the criteria.

<8> deny any man does like any woman.
<9> ?

Global Database]
JOHN is a man.
MARY is a woman.
SARA is a woman.

-107- GETTING STARTED WITH ROSIE

In <8> we have an example of how to delete a sentence
from the database. Notice that the generation of
sentences caused by <7> did not assert anything into the
database; indeed, had we retyped <7> instead of <8>,
ROSIE would have had to compute the response all over
again. Note also that denial of the relationship
containing an any construct requires that the any
construct be typed exactly as it appears in the
relationship. This is especially important when the
any contains adjectives or relative clauses, i.e.,
"deny any big man ... " is not equivalent to "deny any man
who is big ... ".

<10> assert any man does like a woman.
<11> ?
[Global Database]

ANY MAN does like MARY.
JOHN is a man.
MARY is a woman.
SARA is a woman.

In <10> we see an important difference between any
and a. The article a is not a class element
and, therefore, does not "delay evaluation". Instead,
ROSIE picks some element satisfying the criteria "is-a­
woman" and substitutes it in. The choice of MARY is
arbitrary. The semantics of a take some time to
master but a thorough knowledge of its actions is
important if you want to avoid undesirable side-effects.

<12> forget about mary and forget about sara.
<13> ?
[Global Database]

JOHN is a man.

Here is another example of how to delete information
from the database. "Forget about x" where x is an

ROSIE Language Reference Manual -108-

element or evaluates to an element causes every sentence
containing x to be deleted from the database.

<14> assert any man does like a woman.
<15> ?
[Global Database]

ANY MAN does like WOMAN #1.
JOHN is a man.
WOMAN #1 is a woman.

Here we find out still more about the semantics of a.
When there is no element in the database that satisfies
the "is-a-woman" relation, the use of a demands that
one be created. After "WOMAN #1 is a woman." is
inserted, the reference to "a woman" evaluates to "WOMAN
lf:l" .

<16> display the woman.
WOMAN #1

<17>
<18>
<19>
<20>

The other article, the, always refers to the one and
only element that satisfies the specified relation. If
there is more than one element that does so, one is
chosen at random. However, if the article the is
used in a let action, e.g., "let the woman be mary.",
the effect would be to deny all the "is-a-woman"
relations already in the database and then assert the
sentence "mary is a woman".

clear database.
assert each of john and paul is a man.
assert each of jane and pam is a woman.
assert any man is a person and any woman is a person.

<21> ?
[Global Database]

JOHN is a man.
PAUL is a man.
JANE is a woman.
PAM is a woman.

ANY MAN is a person.
ANY WOMAN is a person.

-109- GETTING STARTED WITH ROSIE

<22> display every person.
JOHN
PAUL
JANE
PAM

<23>
<24>

The clear database action deletes all sentences from
the database. Lines <18>, <19>, <20>, and <21> are all
of a form discussed above.

deny any man is a person and any woman is a person.
?

[Global Database]
JOHN is a man.
PAUL is a man.
JANE is a woman.
PAM is a woman.

<25> assert every man is a person and every woman is a person.
<26> ?
[Global Database]

JOHN is a man.
PAUL is a man.
JANE is a woman.
PAM is a woman.
JOHN is a person.
PAUL is a person.
JANE is a person.
PAM is a person.

In line <23> we undo the assertion of line <20> and in
line <25> we assert what is, in some sense, its
intuitive equivalent. But the database displayed by
line <26> is very different from that displayed by line
<21>. This is because every, unlike any, does
not delay evaluation. Rather, it immediately generates
the same relationships that any would generate when
called upon to do so. You can see that the real trade­
off between any and every is one of time versus
space. Using any saves you space but causes
recomputation every time the relation is referenced.

ROSIE Language Reference Manual -110-

Note, however, that if you add "Mary is a woman" to the
database displayed by line <26>, the relationship "Mary
is a person" would not appear in the database.

<27> forget about person.
<28> ?
[Global Database]

JOHN is a man.
PAUL is a man.
JANE is a woman.
PAM is a woman.
JOHN is a person.
PAUL is a person.
JANE is a person.
PAM is a person.

<29> deny every man is a person and every woman is a person.
<30> ?
[Global Database]

JOHN is a man.
PAUL is a man.
JANE is a woman.
PAM is a woman.

In <27> we attempt to clean out the database the way we
did in <12> above. This time, however, the database
remains unchanged, because we supplied the forget
action with a relation-name instead of an element.
This may be confusing at first because we are used
to thinking about all nouns as being the same sort
of thing. An easy way to tell if something in the
database is an element or not is by whether it is
capitalized or not. In <29> we use the correct form to
effect the desired change.

<31> load demoprog.
To decide INDIVIDUAL is a person
To generate PERSON
To decide INDIVIDUAL is married

All of the actions you have seen so far are single rules
submitted to ROSIE's "top level." As in any high-level
programming language, rules can be gathered together to

-111- GETTING STARTED WITH ROSIE

form purposeful units. In ROSIE these units are called
"rulesets" and they come in several flavors. Two types
of rulesets, generators and predicates, were previously
written into a file called "demoprog" using the
build and edit actions. When the editing was
finished, ROSIE parsed the file and left demoprog.parse
in the current directory. The load action looks for
that parse file (or a compile file if it exists) in
order to load it. ROSIE reminds you what is in the file
as it is loaded.

<32> scan demoprog.

To decide INDIVIDUAL IS A PERSON
File DEMOPROG, 2 rules, NOT compiled.

To generate PERSON
File DEMOPROG, 2 rules, NOT compiled.

To decide INDIVIDUAL IS MARRIED
File DEMOPROG, 2 rules, NOT compiled.

Another way to find out the rulesets in a file is to use
the scan action. Notice that this gives you only
information about the rulesets in the file. To see
the actual ruleset you use the show action (or edit
the file) as in lines <33>, <34>, and <35> below.

<33> show "To decide individual is a person".

To decide individual is a person:

[1] If the individual ~s a man or the individual is a woman
conclude true.

[2] Conclude false.

End.

The ruleset definition above consists of three parts: a
legal predicate header (To decide individual is a
person.), the rules that make up the body of the ruleset

ROSIE Language Reference Manual -112-

([I] and [2]), and the "endblock" (End) that
must end every ruleset. Once defined, every time ROSIE
tests "xis a person", this ruleset may be invoked,
and whatever occurs in the x-position will be bound to
"the individual". Notice that you must use the article
the to refer to the bound value of the argument.

When a ruleset is invoked, a "private" database is set up
for any ruleset arguments and private relationships. If
you invoked this predicate by "if john is a person,
display YES.", the relation is-an-individual (john) would
be inserted into the ruleset's private database.
Thereafter, any reference to "the individual" retrieves
the one and only element satisfying the is-an-individual
relation (i.e., the private database is always searched
first). When the predicate terminates, the private data­
base is discarded.

Predicates use the conclude action to return a value
of "true" or "false". Because ROSIE uses a three-valued
logic, a predicate can also use the return action to
indicate that there is no element in the database that
satisfies the predicate or the predicate's negation.
Notice also that the "if" construction above does not
require the word "then" as is usual in most high-level
programming languages.

<34> show "To generate person".

To generate person:

[1] Produce every man.

[2] Produce every woman.

End.

A generator ruleset produces the elements satisfying a
given description. It does this by executing the rules
that make up the body of the generator. Even if the
rules of the generator produce a particular element more
than once, ROSIE insures that that element is produced
by the generator only once. The number of actual
elements a generator produces depends upon how it is
invoked. If we say "display every person," all elements

-113- GETTING STARTED WITH ROSIE

produced by the rules in the generator body will be
displayed. If we say "display a person", the generator
will produce only one person. Notice how generators and
predicates work in tandem; generators produce the
members of a class and predicates test a particular
element for class membership.

<35> show "To decide individual is married".

To decide individual is married:

[1] If the individual = pam or the individual = paul
conclude true.

[2] Conclude false.

End.

<36> ?

This predicate is constructed similarly to the one
above. It illustrates the fact that ROSIE permits the
definition of semantic concepts such as "individual is
married" to the depth needed to solve the programming
task at hand. The most general definition is not
needed! Predicates and generators are only two of the
three types of rulesets. A third type is called a
procedure and is used to collect together rules that
perform a particular task. The procedure is invoked by
using the go or call action. ROSIE procedures
are quite similar to procedures in other high-level
languages. Procedures are discussed at length in
section 5.4 of this manual.

[Global Database]
JOHN is a man.
PAUL is a man.
JANE is a woman.
PAM is a woman.

<37> display every person.
JOHN
PAUL

ROSIE Language Reference Manual -114-

JANE
PAM

Here we have an example of generator invocation. Notice
that there is no apparent difference between lines <37>
and <22>, al{hough the former is a generator call and the
latter is a reference to a class element. As far as the
user is concerned, class elements and generators are
indistinguishable.

<38> if john is a person display YES.
YES
<39> if pam is married display YES.
YES

In lines <38> and <39> we have examples of predicate
invocation. Notice again that there is no discernible
difference between the use of the predicate and that of
either a class element or the explicit appearance of the
relationships in the database. In other words, we could
replace the predicate "is a person" with "assert any man
is a person and any woman is a person.", or with "assert
each of john, paul, jane and pam is a person."

<40> assert Jane is married.
<41> ?
[Global Database

JOHN is a man.
PAUL is a man.
JANE is a woman.
PAM is a woman.
JANE is married.

<42> display every person who is married.
JANE
PAUL
PAM

Although in our discussion of lines <38> and <39> we
noted that the use of class elements, predicates, and
explicit relations were equivalent, there is one aspect
of rulesets of which the user should be aware. In <42>
we ask for every person who is married; clearly, Jane is
married, since this fact is represented explicitly in the

-115- GETTING STARTED WITH ROSIE

database. The database relation "is-married" is
accessed first; then the predicate is invoked.

<43> assert john is not a man.
<44> ?
[Global Database

PAUL is a man.
JOHN is not a man.
JANE is a woman.
PAM is a woman.
JANE is married.

<45>
<46>
<47>

In lines <8> and <12> above we saw two different ways of
deleting information from the database. Line <43> shows
us the third. Since ROSIE does not allow explicit
contradictions in the database, asserting the negation
of a relationship that already exists in the database
automatically removes that relationship and adds its
negation. Thus, in the example above, "JOHN is a man" is
denied and "JOHN is not a man" is asserted.

deny Jane is married and assert Jane is engaged to tony.
assert tony is engaged and tony is a man.
?

[Global Database
PAUL is a man.
JOHN is not a man.
TONY is a man.
JANE is a woman.
PAM is a woman.
JANE is engaged to
TONY is engaged.

TONY.

<48> display every person who is engaged.
TONY
<49> display every person who is engaged to tony.
JANE

In lines <45> and <46> we add some new information to
the database. In line <49>, however, it appears that
ROSIE is mistaken. Surely, if Jane is engaged to Tony,
Jane is engaged. Fortunately or unfortunately, this is
not the case in ROSIE. In "JANE is engaged to TONY.",
the relation is-engaged-to is dyadic, i.e., takes two

ROSIE Language Reference Manual -116-

<50>
<51>
TONY
PAUL
JANE
PAM

arguments (JANE and TONY). In the sentence "TONY is
engaged.", the relation is-engaged is monadic, i.e., has
only one argument (TONY). Thus, when we ask for "every
person who is engaged" we are looking for those elements
of the class defined by the relation is-engaged. In <49>
we can get at the fact that Jane is also engaged by
using the correct relation. Note that the arguments in
the dyadic relation are ordered. By this we mean that if
we say "display every person who is engaged to any
person.", we would still only find Jane listed; just
because Jane is engaged to Tony, ROSIE does not assume
Tony is engaged to Jane.

deny tony is a man and assert tony is a person.
display every person.

As in the case of predicates, the database is searched
before the generator is invoked.

<52> if there is a person who is engaged to tony, assert that
person is engaged and assert tony is a man.

<53> ?
[Global Database]

PAUL is a man.
JOHN is not a man.
TONY is a man.
JANE is a woman.
PAM is a woman.
TONY is a person.
JANE is engaged to TONY.
TONY is engaged.
JANE is engaged.

Line <52> is a common form for a ROSIE rule: if
condition actionblock. Notice the use of "that
person" to refer to the person who is engaged to tony.
Note also the use of the and to accomplish more than

-117- GETTING STARTED WITH ROSIE

one action. Line <52> gives you some idea of the
complexity ROSIE rules can have.

<54> for each person who is engaged
send {that person," is engaged.",return}.

TONY is engaged.
JANE is engaged.

<55>

Line <54> presents a general format for output: the
send action. Send takes a pattern as its
"argument". A pattern, in turn, is made up of
subpatterns. These subpatterns may consist of a term
("that person") which evaluates to an element before it
is printed, a literal string (" is engaged."), or special
subpatterns that have predefined meanings (return). The
send action can be used to write to a file, another
computer port, or the user's terminal (the terminal is
the default argument as displayed above).

tony ?
[TONY]

TONY is a man.
TONY is a person.
JANE is engaged to TONY.
TONY is engaged.

<56> describe tony.
[TONY]

TONY
TONY
JANE
TONY

is a man.
is a person.
is engaged to TONY.
is engaged.

Databases can grow to be quite large, and you do not
always want to have to read the whole database to see if
a particular set of relationships is present. In
particular you may want to see all the relations
involving a particular element; <55> and <56> show
equivalent actions for accomplishing this.

ROSIE Language Reference Manual -118-

<57> ??

<18> ASSERT EACH OF JOHN AND PAUL IS A MAN.
<19> ASSERT EACH OF JANE AND PAM IS A WOMAN.
<20> ASSERT ANY MAN IS A PERSON AND ANY WOMAN IS A PERSON.
<21> ?
<22> DISPLAY EVERY PERSON.
<23> DENY ANY MAN IS A PERSON AND ANY WOMAN IS A PERSON.
<24> ?
<25> ASSERT EVERY MAN IS A PERSON AND EVERY WOMAN IS A PERSON.
<26> ?
<27> FORGET ABOUT PERSON.
<28> ?
<29> DENY EVERY MAN IS A PERSON AND EVERY WOMAN IS A PERSON.
<30> ?
<31> LOAD DEMOPROG.
<32> SCAN DEMOPROG.
<33> SHOW "TO DECIDE INDIVIDUAL IS A PERSON".
<34> SHOW "TO GENERATE PERSON".
<35> SHOW "TO DECIDE INDIVIDUAL IS MARRIED".
<36> ?
<37> DISPLAY EVERY PERSON.
<38> IF JOHN IS A PERSON DISPLAY YES.
<39> IF PAM IS MARRIED DISPLAY YES.
<40> ASSERT JANE IS MARRIED.
<41> ?
<42> DISPLAY EVERY PERSON WHO IS MARRIED.
<43> ASSERT JOHN IS NOT A MAN.
<44> ?
<45> DENY JANE IS MARRIED AND ASSERT JANE IS ENGAGED TO TONY.
<46> ASSERT TONY IS ENGAGED AND TONY IS A MAN.
<47> ?
<48> DISPLAY EVERY PERSON WHO IS ENGAGED.
<49> DISPLAY EVERY PERSON WHO IS ENGAGED TO TONY.
<50> DENY TONY IS A MAN AND ASSERT TONY IS A PERSON.
<51> DISPLAY EVERY PERSON.
<52> IF THERE IS A PERSON WHO IS ENGAGED TO TONY, ASSERT THAT

PERSON IS ENGAGED AND ASSERT TONY IS A MAN.
<53> ?
<54> FOR EACH PERSON WHO IS ENGAGED SEND {THAT PERSON, " is

engaged.", RETURN}.
<55> TONY?
<56> DESCRIBE TONY.
<57> ??

ROSIE keeps track of the last forty lines typed. To see
all forty, type "??" as in <57>. Once you know the rule

<58>

-119- GETTING STARTED WITH ROSIE

associated with a line number, you can refer to that line
number. This allows you to redo that rule as in <58>,
below, or edit that rule.

redo 28.
[Global Database

PAUL is a man.
JOHN is not a man.
TONY is a man.
JANE is a woman.
PAM is a woman.
TONY is a person.
JANE is engaged to TONY.
TONY is engaged.
JANE is engaged.

Notice that even though we are redoing the 7 action
of line <28>, the database displayed is the current one.

<59> logout.

End the ROSIE session. Note that the logout action
automatically ends the dribble begun in line <1> and
closes the file being "dribbled" to.

ROSIE Language Reference Manual -120-

APPENDIX B

A ROSIE PRIMER

This primer familiarizes the new user with some of the more basic ROSIE
concepts. These concepts should enable the newcomer to utilize the
Reference Manual more effectively and, in addition, should dispel some of
the initial confusion associated with learning a new system.

The primer consists of three sections. The first section is a glossary of
terms. The second section gives an overview of ROSIE as a system. Here
the interaction of the top level, the database, and the filepackage are
explained. Finally, the third section provides an explanation of the most
frequently encountered "actions." These three sections should provide the
reader with a firm base for exploring ROSIE.

B.l. GLOSSARY

Definitions may use concepts defined elsewhere in the glossary. Such a
word will appear in boldface.

ACTION

Some type of manipulation of data. An action may send output to the
user's terminal (e.g., "display YES"), query the database (e.g,. "if john
is a man, display YES"), invoke procedures (e.g., "go ask Mary"), affect
the program control structure (e.g., "while john is a man, display YES"),
etc. Sentences are the bases of actions and actions are the bases of rules.

ACTIONBLOCK

Any collection of actions joined by the word "and".

ALTERNATE DATABASE

Any database other than the global database or a ruleset's private
database. An alternate database can be used to segregate information (i.e.,
hide it from the global database and other alternate databases).

BNF

The Backus-Naur form used to describe a language. The form consists of
"productions" whose format is "<non-terminal> ::=some combination of
terminals and <non-terminals>" where a non-terminal on the right-hand side

-121- GLOSSARY

of the"::=" is always found on the left-hand side of another production
and where a terminal is an actual word in the language.

BINDING

The process of associating a value to a variable. If we say "for each man
(x) display x", then each element in the database that satisfies the
relation is-a-man will in turn be bound to x. Once bound, the value of x in
"display x" is the bound element.

CLASS ELEMENT

An element that stands for a class of elements. Represented using "any"
followed by a name. Thus, "any man" refers simultaneously to the class of
elements in the database satisfying the relation is-a-man.

COLONBLOCK

An actionblock optionally terminated with a semicolon. Used by the
"select", "choose", and "match" actions.

COMMABLOCK

An actionblock optionally terminated with a comma. Used in place of
parentheses whenever possible to increase readability.

CONDITION

Constructs that ask questions of the database. For example, "if john is a
man" asks the database if the relation is-a-man exists for the element
john.

CONTROL STRUCTURE

Actions that tell a program what to do and when. Looping, if-then
statements, and case statements are the usual forms found in high-level
programming languages. ROSIE has its own version of these forms.

DATABASE

The collection of asserted relations.

DESCRIPTION

A representation of a class of elements. Descriptions are used within
terms, conditions, and actions to test for class membership or search for
all the members of a class in the database. Descriptions may incorporate
adjectives, relative clauses, prepositional phrases, and combinations of
these.

ROSIE Language Reference Manual -122-

ELEMENT

A primitive data type. Elements come in 6 flavors: names, numbers,
strings, tuples, propositions, and class elements.

EVALUATION NAME

The element resulting when a term is evaluated. Thus, the evaluation name
of the term "the teacher" might evaluate to the element "MARY SMITH" and
the evaluation name of the term "3 + 7" is "10".

FILE

ROSIE maintains four files associated with the user's program file. The
.TEXT file, .PARSE file, .MAP file, and .COMPILE file. These are explained
further in connection with the filepackage.

FILE SEGMENT

A rule, sequence of rules, or a ruleset within a .TEXT file. The file
itself can also be considered a filesegment. ROSIE's filepackage allows you
to work on single filesegments. This means ROSIE does not have to reparse
every rule and ruleset in a file when one rule or ruleset is changed.

FILEPACKAGE

The filepackage refers to the three or four files associated with a
user's program file. The .TEXT file contains the actual program listing in
a readable form with rule numbers and uniform spacing added. The .PARSE
file contains the executable parse of the items in the .TEXT file. The .MAP
file contains information about the layout of the .TEXT, .PARSE, and
.COMPILE, files thereby allowing the filepackage actions to access and
change portions of a file as needed. The .COMPILE file (when it exists)
contains the compiled version of the program file. The "load" action will
load either the .PARSE file or the .COMPILE file, depending upon which has
the newest creation date. A file must be loaded to permit editing or
examination.

GENERATOR

A ruleset that generates elements. It is invoked via a description.

GLOBAL DATABASE

The global database is the default ROSIE database. Alternate databases
can be created by the user to segregate information and make it
inaccessible to the global database.

-123- GLOSSARY

NAME

An element type. Name elements represent literal names and can contain
more than one word separated by spaces. They cannot include words that can
be interpreted as numbers or strings.

NAME TERM

A term that evaluates to a name.

NUMBER

An element type that represents a numeric value and the units or label
associated with that value (if any). Numbers can be integer, floating
point, or octal with optional positive or negative exponents.

NUMBER TERM

A term that evaluates to a number.

PATTERN

Constructs which allow the creation and manipulation of strings of text.
A pattern is a sequence of subpatterns separated by commas and enclosed in
braces. Each subpattern places a restriction on the string to be matched or
generated. Example: {"John Doe", 2 blanks, "$12."} would match John Doe
$12.

PREDICATE

A type of ruleset that is used to determine the truth or falsehood of
relationships among elements. Predicates use the "conclude" action to
return a value of true if the necessary relation can be found, or false if
its negation is present in the database. A predicate can also use a simple
"return" if neither the relation nor its negation can be found, thus giving
ROSIE a three-valued logic.

PRIMITIVE SENTENCE

A sentence that determines a single relationship. There are five basic
forms which can be extended by changes in tense and negation. They are:

term is a[n] relation-name optional-prep-phrase
term is relation-name optional-prep-phrase
term is relation-name term optional-prep-phrase
term does relation-name optional-prep-phrase
term does relation-name term optional-prep-phrase

ROSIE Language Reference Manual -124-

PRIVATE DATABASE

The database associated with a ruleset when it is invoked. It is used to
store intermediate results via private relations and disappears when the
ruleset concludes execution.

PROCEDURE

A type of ruleset. Procedures are used for collecting together rules that
perform a particular task. Procedures cannot return values.

PROGRAM FILE

The file the user builds and edits when writing ROSIE programs. The
filepackage uses the program file to develop its own set of related files.
The files produced by the filepackage provide ROSIE with an efficient means
for examining and manipulating rulesets.

PROPOSITION

A primitive sentence enclosed in single quotes.

PSEUDO-TERM

The phrases "some", "every", "each of", and "one of" have a special
meaning in ROSIE. They are terms that can evaluate to more than one
element. This provides a unique way of scanning a group of elements to test
a condition or perform an action. Example: "Assert each of John and Sue is
a person." will add the relations is-a-person(John) and is-a-person(Sue) to
the the database.

RELATION-NAME

The word provided by the user that helps distinguish the primitive
relational forms. Thus, in the sentences "John is a man" and "John is a
boy", "man" and "boy" are both relation-names. The relations themselves
become is-a-man and is-a-boy.

RULE

One or more actions connected by the word "and" and terminated by the
character"." or"!". Rules enable the user to manipulate the information
in the database.

-125- GLOSSARY

RULE SET

A collection of rules that embodies a type of procedural knowledge. The
three types of rulesets are procedures, generators, and predicates.
Rulesets cannot be defined at the top level of ROSIE; they must be written
into a program file which is then parsed and loaded.

STRING

An element that represents any number of characters found between double
quotes.

STRING TERM

A term that evaluates to a string.

SYSTEM GENERATOR

A generator provided by the System Ruleset Library or written by the user
in INTERLISP. A sample System Ruleset generator: "negation of element"
returns the negation of a number or a proposition.

SYSTEM PREDICATE

A predicate provided by the System Ruleset Library or written by the user
in INTERLISP. Sample: "element is a name" returns true if the element is a
name; otherwise returns false.

SYSTEM PROCEDURE

A procedure provided by the System Ruleset Library or written by the user
in INTERLISP. Sample: "show database" displays the contents of the database
named.

SYSTEM RULESET

Predefined or user-written rulesets that perform useful operations.
System rulesets are written in INTERLISP.

TERM

The syntactic construct that represents an element. The evaluation of a
term produces an element. Thus, if "john's mother" is the term, then "mary
smith" might be the element it represents.

ROSIE Language Reference Manual -126-

TUPLE

An element that represents an ordered list of elements. Elements in the
list are separated by commas, and the list itself is surrounded by left and
right angle brackets. Example: <John, 5, "this string">.

TUPLE TERM

A term that evaluates into a tuple where the individual elements
comprising the tuple have also been evaluated.

VARIABLE

A name used to stand for another element. Thus, in "for each person (x),
display x", x is the variable that stands for each person produced by the
"for each" action. We call the process of assigning a variable a value
"binding".

VARIABLE TERM

A term that evaluates to the element bound to the variable.

B.2. THE ROSIE ENVIRONMENT

The ROSIE environment facilitates the creation of rule-based expert
systems. It may be useful to think of ROSIE as a system comprised of three
parts which work together but contain/demand different sorts of
information. The three parts are the filepackage files, the database, and
the top level. Their interrelationships are described below.

The TOP LEVEL: In TOPS-20, when you type "ROSIE" to the EXEC you will be
placed at ROSIE's top level. At this point you are free to type
any single rule to ROSIE. You can assert a sentence into the
database, interface to TOPS-20 through "dir" and similar
commands, interrogate or display the database, or load files.
What you cannot do is define rulesets. Rulesets are aggregates of
rules and are, in some sense, a higher-level information packet
than you can construct in this part of the environment. You can
load rulesets into this part of ROSIE, but even then they are
accessible only through invocation from within a single rule.

The DATABASE: The top level allows you access to information in the
database. The database is where the information expressed in an
assertion or denial is stored. The information is stored in terms
of relations between elements. You cannot enter the database the

-127- THE ROSIE ENVIRONMENT

way you can a file or the top level--your access to information
at the database level is through the use of ROSIE actions that
manipulate those relations in different ways. Thus, in some
sense, the database is at a "lower" level than the top level,
since it can only be accessed by going through the top level and
since its representation of information is more primitive.

The FILEPACKAGE: When you write a program in ROSIE, the filepackage creates
a set of files to facilitate changes to and examination of your
program. Programs are where you can use rulesets--collections of
rules that may define a concept (predicate rulesets), generate
elements satisfying some description (generator rulesets), or
pull together into one location a set of rules that perform a
discrete task (procedure rulesets). Program files can also
contain single rules. In this sense, the filepackage level is
"higher" than the top level, since it allows you access to those
types of information available at the top level as well as those
that are not.

B.3. BASIC ACTIONS

The follow1ng list presents some actions that are frequently used in
ROSIE programming. The form given is not always the most general form
available but, rather, is the form that reflects a common usage.

DATABASE ACTIONS

assert primitive-sentence: adds the primitive-sentence to the database
(e.g., assert mary does like tom's new cat).

deny primitive-sentence: removes the primitive-sentence from the database
(e.g., deny paul does not need money).

let term be the description: removes from the database all relations for
the given description and asserts term to be the element
satisfying that description (e.g., let john be the boy with blond
hair.).

forget about term: removes all relations involving the term from the
database.

?: displays the sentences in the current database.

term?: displays any sentence in the current database involving the term.

ROSIE Language Reference Manual -128-

clear database: removes all relations in the current database.

activate term: makes term the current database.

INPUT and OUTPUT ACTIONS

display term: prints the evaluation name of the term on the user's
terminal, followed by a carriage return.

open term to write: opens the directory file named term for writing. You
can also open a file to read or append.

send to term pattern: creates a string from the pattern and sends it to
the device referred to by term. If the phrase "to term" is omitted, the
string is sent to the user's terminal.

read from term pattern: reads one character at a time from the device
referred to by term. Will give an error if at any time the input precludes
matching the pattern.

dribble to term: sends a copy of a ROSIE session to the file named by
term. Sends everything that transpires in the session until the "logout" or
"stop dribbling" action. (Actually, excursions into the editor are not
recorded.)

PROGRAM CONTROL ACTIONS

if condition action: if the condition tests true, the action is
performed.

for each description action: performs the action for each element
satisfying the description.

while condition action: condition is tested before each iteration of the
loop.

until condition action: condition is tested after each iteration of the
loop.

go relation-name: invokes the procedure identified by relation-name.

return: terminates a ruleset. In a procedure it simply ends the ruleset;
in a generator it causes the generator to stop generating elements; and in
a predicate it causes the predicate to provide an indeterminate response.

-129- BASIC ACTIONS

produce term: used by generator rulesets to produce elements.
conclude true/false: used by predicate rulesets to indicate the truth

value of the relation for a particular element.

logout: exits ROSIE to the EXEC.

FILEPACKAGE ACTIONS

load term: brings a program file into core. Causes ROSIE to "notice" any
rules or rulesets so that they can later be examined or modified. Causes
any ruleset without a syntax error to be "defined" so that it can be
invoked.

build term: creates a new program file named term. Causes this file to be
"noticed" so that you can edit it and thus create new rulesets.

parse term: used only when a program file is not created using the build
action. In all other cases, return from the editor automatically invokes
the parser to parse any new or modified rulesets.

show fileterm: displays the filesegment identified by fileterm to the
terminal.

edit fileterm: allows you to edit a particular rule, ruleset, or file
identified by fileterm.

scan.fileterm: outlines the contents of the file named by fileterm.
Outline includes naming rulesets, indicating compile status, pinpointing
syntax errors, etc.

trace fileterm: a debugging aid that allows you to monitor the invocation
of one or more rulesets. Typing simply "trace." at the top level will trace
all currently defined rulesets. Using "trace fileterm" where fileterm is a
file name will trace all the rulesets associated with that file. "Trace
fileterm" may also be used with a single ruleset name. You cannot trace a
single rule. The "untrace" action works in an analogous manner.

USER SUPPORT ACTIONS

??: displays the last forty lines of the current ROSIE session.

redo linenumber: allows you to resubmit one of the last forty lines.

fix linenumber: allows you to edit and resubmit one of the last forty
lines.

info files: enumerates the filepackage files in your directory and
whether or not they are loaded.

ROSIE Language Reference Manual -130-

info loaded: tells which files have been loaded.

info storage: calls the garbage collector, then prints a detailed record
of memory space. The bottom of the report tells how many pages of memory
are free.

-131-

APPENDIX C

SYSTEM SUPPORT LIBRARY

[SYSTEM RULESETS]

SYSTEM RULESET TO DECIDE ELT IS A THING:
(NLAMBDA (ELT) '<TRUE>)

SYSTEM RULESET TO DECIDE ELT IS A PROPOSITION:

SYSTEM SUPPORT LIBRARY

(NLAMBDA (ELT) (IF (EQ (ELTTYPE ELT) 'PROPOSITION) THEN '<TRUE>
ELSE '<FALSE>))

SYSTEM RULESET TO DECIDE ELT IS A TUPLE:
(NLAMBDA (ELT) (IF (EQ (ELTTYPE ELT) 'TUPLE) THEN '<TRUE>

ELSE '<FALSE>))

SYSTEM RULESET TO DECIDE ELT IS A STRING:
(NLAMBDA (ELT) (IF (EQ (ELTTYPE ELT) 'STRING) THEN '<TRUE>

ELSE '<FALSE>))

SYSTEM RULESET TO DECIDE ELT IS A NAME:
(NLAMBDA (ELT) (IF (EQ (ELTTYPE ELT) 'NAME) THEN '<TRUE>

ELSE '<FALSE>))

SYSTEM RULESET TO DECIDE ELT IS A NUMBER:
(NLAMBDA (ELT) (IF (EQ (ELTTYPE ELT) 'NUMBER) THEN '<TRUE>

ELSE '<FALSE>))

SYSTEM RULESET TO DECIDE ELT IS A CLASS:
(NLAMBDA (ELT) (IF (EQ (ELTTYPE ELT) 'CLASS) THEN '<TRUE>

ELSE '<FALSE>))

SYSTEM RULESET TO DECIDE ELT IS A FILESEGMENT:
(NLAMBDA (ELT) (IF (EQ (ELTTYPE ELT) 'FILESEGMENT) THEN '<TRUE>

ELSE '<FALSE>))

ROSIE Language Reference Manual -I32-

SYSTEM RULESET TO GENERATE ELEMENT TYPE OF ELT:
(NLAMBDA (ELT) (ELTTYPE ELT)) -

SYSTEM RULESET TO GENERATE INTEGER FROM INTI TO INT2:
(NLAMBDA (INTI INT2)

(IF (NULL (FIXP INTI)) THEN
(ABORT "Not an integer:" (ELTTOTOKENS INTI)))

(IF (NULL (FIXP INT2)) THEN
(ABORT "Not an integer:" (ELTTOTOKENS INT2)))

(FOR I FROM INTI TO INT2 COLLECT I))

SYSTEM RULESET TO GENERATE INTEGER FROM INTI TO INT2 BY INT3:
(NLAMBDA (INT3 INTI INT2)

(IF (NULL (FIXP INTI)) THEN
(ABORT "Not an integer:" (ELTTOTOKENS INTI)))

(IF (NULL (FIXP INT2)) THEN
(ABORT "Not an integer:" (ELTTOTOKENS INT2)))

(IF (NULL (FIXP INT3)) THEN
(ABORT "Not an integer:" (ELTTOTOKENS INT3)))

(FOR I FROM INTI TO INT2 BY INT3 COLLECT I))

SYSTEM RULESET TO GENERATE NUMBER VALUE OF NUMBER:
(NLAMBDA (NUM) -

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(GETNUMBERVAL NUM))

SYSTEM RULESET TO GENERATE NEGATION OF NUM/PROP:
(NLAMBDA (NUM/PROP)

(IF (EQ (ELTTYPE NUM/PROP) 'NUMBER)
THEN (IF (ATOM NUM/PROP)

THEN (MINUS (GETNUMBERVAL NUM/PROP))
ELSE (RPLACA (CDR NUM/PROP)

(MINUS (GETNUMBERVAL NUM/PROP)))
(CONS NUM/PROP))

ELSEIF (EQ (ELTTYPE NUM/PROP) 'PROPOSITION)
THEN (RPLACA (CDDDR NUM/PROP)

(IF (CADDDR NUM/PROP)
THEN NIL
ELSE T))

(CONS NUM/PROP)
ELSE (ABORT "Not negatable:" (ELTTOTOKENS NUM/PROP))))

-133-

SYSTEM RULESET TO GENERATE DATABASE:
(NLAMBDA ()

(PROG (NAME)

SYSTEM SUPPORT LIBRARY

(COND [(SETQ NAME (GETPROP '<ACTIVATE> 'DB-NAME))
(COND [(EQ (CHCONl NAME) 40)

(RETURN (CONS (CONS 'name
(READ (MKSTRING NAME)))))]

[T (RETURN NAME)])]
[T (RETURN 'GLOBAL)])))

SYSTEM RULESET TO GENERATE DATABASES:
(NLAMBDA ()

(CONS
(CONS 'tuple

(CONS 'GLOBAL
(for X in (GETPROP '<ACTIVATE> 'DATABASE-LIST)

collect (COND [(EQ (CHCONl X) 40)
(CONS 'name

(READ (MKSTRING X)))]
[T X]))))))

SYSTEM RULESET TO GENERATE UPPERCASE OF STRING:
(NLAMBDA (STRING)

(IF (NEQ (ELTTYPE STRING) 'STRING) THEN
(ABORT "Not a string:" (elttotokens string)))

(U-CASE STRING))

SYSTEM RULESET TO GENERATE LOWERCASE OF STRING:
(NLAMBDA (STRING)

(IF (NEQ (ELTTYPE STRING) 'STRING) THEN
(ABORT "Not a string:" (elttotokens string)))

(L-CASE STRING))

SYSTEM RULESET TO GENERATE SQUARE-ROOT OF NUMBER:
(NLAMBDA (NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(SQRT (GETNUMBERVAL NUM)))

SYSTEM RULESET TO GENERATE SINE OF NUMBER:
(NLAMBDA (NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

ROSIE Language Reference Manual -134-

(SIN (GETNUMBERVAL NUM)))

SYSTEM RULESET TO GENERATE SINE OF NUMBER IN RADIANS:
(NLAMBDA (RAD NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(SIN (GETNUMBERVAL NUM) T))

SYSTEM RULESET TO GENERATE ARCSINE OF NUMBER:
(NLAMBDA (NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(ARCSIN (GETNUMBERVAL NUM)))

SYSTEM RULESET TO GENERATE ARCSINE OF NUMBER IN RADIANS:
(NLAMBDA (RAD NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(ARCSIN (GETNUMBERVAL NUM) T))

SYSTEM RULESET TO GENERATE COSINE OF NUMBER:
(NLAMBDA (NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(COS (GETNUMBERVAL NUM)))

SYSTEM RULESET TO GENERATE COSINE OF NUMBER IN RADIANS:
(NLAMBDA (RAD NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(COS (GETNUMBERVAL NUM) T))

SYSTEM RULESET TO GENERATE ARCCOSINE OF NUMBER:
(NLAMBDA (NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(ARCCOS (GETNUMBERVAL NUM)))

SYSTEM RULESET TO GENERATE ARCCOSINE OF NUMBER IN RADIANS:
(NLAMBDA (RAD NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN

-135- SYSTEM SUPPORT LIBRARY

(ABORT "Not a number:" (ELTTOTOKENS NUM)))
(ARCCOS (GETNUMBERVAL NUM) T))

SYSTEM RULESET TO GENERATE TANGENT OF NUMBER:
(NLAMBDA (NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(TAN (GETNUMBERVAL NUM)))

SYSTEM RULESET TO GENERATE TANGENT OF NUMBER IN RADIANS:
(NLAMBDA (RAD NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(TAN (GETNUMBERVAL NUM) T))

SYSTEM RULESET TO GENERATE ARCTANGENT OF NUMBER:
(NLAMBDA (NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(ARCTAN (GETNUMBERVAL NUM)))

SYSTEM RULESET TO GENERATE ARCTANGENT OF NUMBER IN RADIANS:
(NLAMBDA (RAD NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(ARCTAN (GETNUMBERVAL NUM) T))

SYSTEM RULESET TO GENERATE FLOOR OF NUMBER:
(NLAMBDA (NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(FIX (GETNUMBERVAL NUM)))

SYSTEM RULESET TO GENERATE LOG OF NUMBER:
(NLAMBDA (NUM)

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(LOG (GETNUMBERVAL NUM)))

SYSTEM RULESET TO GENERATE ANTILOG OF NUMBER:
(NLAMBDA (NUM)

ROSIE Language Reference Manual -136-

(IF (NEQ (ELTTYPE NUM) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM)))

(ANTILOG (GETNUMBERVAL NUM)))

SYSTEM RULESET TO GENERATE RANDOM NUMBER FROM NUMI TO NUM2:
(NLAMBDA (NUMI NUM2) -

(IF (NEQ (ELTTYPE NUMI) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUMI)))

(IF (NEQ (ELTTYPE NUM2) 'NUMBER) THEN
(ABORT "Not a number:" (ELTTOTOKENS NUM2)))

(RAND (GETNUMBERVAL NUMI) (GETNUMBERVAL NUM2)))

SYSTEM RULESET TO GENERATE MEMBER OF TUPLE:
(NLAMBDA (TUPLE)

(IF (NEQ (ELTTYPE TUPLE) 'TUPLE) THEN
(ABORT "Not a tuple:" (ELTTOTOKENS TUPLE)))

(CDR TUPLE))

SYSTEM RULESET TO GENERATE MEMBER OF TUPLE AT INTEGER:
(NLAMBDA (INTEGER TUPLE)

(IF (OR (NULL (FIXP INTEGER)) (ILEQ INTEGER 0)) THEN
(ABORT "Not a positive integer:" (ELTTOTOKENS INTEGER)))

(IF (NEQ (ELTTYPE TUPLE) 'TUPLE) THEN
(ABORT "Not a tuple:" (ELTTOTOKENS TUPLE)))

(IF (SETQ TUPLE (CAR (FNTH (CDR TUPLE) INTEGER))) THEN
(CONS TUPLE)))

SYSTEM RULESET TO GENERATE LENGTH OF TUPLE:
(NLAMBDA (TUPLE)

(IF (NEQ (ELTTYPE TUPLE) 'TUPLE) THEN
(ABORT "Not a tuple:" (ELTTOTOKENS TUPLE)))

(FLENGTH (CDR TUPLE)))

SYSTEM RULESET TO GENERATE TAIL OF TUPLE:
(NLAMBDA (TUPLE)

(IF (NEQ (ELTTYPE TUPLE) 'TUPLE) THEN
(ABORT "Not a tuple:" (ELTTOTOKENS TUPLE)))

(CONS (CONS (CAR TUPLE) (APPEND (CDDR TUPLE)))))

SYSTEM RULESET TO GENERATE TAIL OF TUPLE FROM INTEGER:
(NLAMBDA (INTEGER TUPLE)

(IF (OR (NULL (FIXP INTEGER)) (ILEQ INTEGER 0)) THEN

-137- SYSTEM SUPPORT LIBRARY

(ABORT "Not a positive integer:" (ELTTOTOKENS INTEGER)))
(IF (NEQ (ELTTYPE TUPLE) 'TUPLE) THEN

(ABORT "Not a tuple:" (ELTTOTOKENS TUPLE)))
(CONS (CONS (CAR TUPLE) (APPEND (FNTH (CDR TUPLE) INTEGER)))))

SYSTEM RULESET TO GENERATE CONCATENATION OF TUPLE1 WITH TUPLE2:
(NLAMBDA (TUPLE1 TUPLE2)

(IF (NEQ (ELTTYPE TUPLE1) 'TUPLE) THEN
(ABORT "Not a tuple:" (ELTTOTOKENS TUPLE1)))

(IF (NEQ (ELTTYPE TUPLE2) 'TUPLE) THEN
(ABORT "Not a tuple:" (ELTTOTOKENS TUPLE2)))

(CONS (APPEND (CONS (CAR TUPLE1)) (CDR TUPLE1) (CDR TUPLE2) NIL)))

SYSTEM RULESET TO GENERATE REVERSE OF TUPLE: ...
(NLAMBDA (TUPLE)

(IF (NEQ (ELTTYPE TUPLE) 'TUPLE) THEN
(ABORT "Not a tuple:" (ELTTOTOKENS TUPLE)))

(CONS (CONS (CAR TUPLE) (REVERSE (CDR TUPLE)))))

To decide PROP is true in WORLD:

Private original-db.

[1] Let the original-db be the database.

[2] Activate the WORLD.

[3] If the PROP is provably true,

End.

activate the original-db and conclude true,
otherwise activate the original-db and conclude false.

To add PROP to WORLD:

Private original-db.

[1] Let the original-db be the database.

[2] Activate the WORLD.

[3] Assert the PROP is provably true.

[4] Activate the original-db.

End.

ROSIE Language Reference Manual -138-

To remove PROP from WORLD:

Private original-db.

[1] Let the original-db be the database.

[2] Activate the WORLD.

[3] Deny the PROP is provably true.

[4] Activate the original-db.

E~.

To show WORLD:

Private original-db.

[1] Let the original-db be the database.

[2] Activate the WORLD.

[3] ?

[4] Activate the original-db.

End.

-139-

REFERENCES

[1] Fain, J., Hayes-Roth, Sowizral, H., Waterman, D.,
Programming in ROSIE: An Introduction £y Means of Examples.
The Rand Corporation, N-1646-ARPA (forthcoming).

[2] Hayes-Roth, F., Gorlin, D., Rosenschein, S., Sowizral, H.,
Waterman, D., Rationale and Motivation for ROSIE.
The Rand Corporation, N-1648-ARPA, November 1981.

-141-

INDEX

Actionblocks 48
Actions 48
Adjectives 25
Alternate database 16
Anaphora 26, 30, 56
Anaphoric reference 30
Arithmetic expressions 33
Arithmetic operators 8

Bind 54
Binding 54, 57
BNF 94
Break character 5
Break characters 10

Class elements 17, 106
Colonblocks 50
Commablocks 49
Commas 46, 47, 49, 52
Comments 6
Comparative sentences 43
Comparison operators 8
Compilation 80
Compound names 23
Conditionals 28, 46
Control structures 56, 70, 71

Database 11, 16, 19, 29, 51, 105, 126
Descriptions 22

Editing 92
Element 6
Elements 31
Environment 1, 126
Errors 77, 86
Evaluation names 6
Execution 67

File 81
File rules
Filepackage
Files 69,
File segment

77
76, 80, 82, 127

76, 80
80, 83

Generators 28, 58, 59
Global database 16
Glossary 120

I/o 69, 70
Input/output 69, 70

Label constants 8

Names 7, 31
Negation 15
Notation 2
Numbers 8, 32

Order of execution 67

Parentheses 46, 47
Patterns 52, 117
Ports 69
Precedence 34, 46
Predicates 58, 60
Primitive sentences 41

-142-

Private database 16, 64, 66, 112
Procedures 58
Propositions 42
Pseudo-terms 35

Relation-name 12, 30, 66, 81
Relational forms 12
Relative clauses 24, 38
Reserved words 9
Restrictions 54
Rules 56
Rule sets 58, 77' 110, 111

Separator character 5
Strings 7, 31
Subpatterns 52, 53
System rulesets 61, 67

Terminal character 5
Terminal characters 10
Terms 6, 31, 34, 35
Token 6
Tokens 5, 10
Top level 90
Toplevel 110, 126
Trace 84

Tuples 9, 32

Unit constants 8
Untrace 84

-143-

Variable binding 54
Variables 26, 32, 53, 56
Verb phrases 37

RAND/N-1647-ARPA

