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Abstract 

This paper will establish a class of Systems of Systems (SoSs) defined as Mission-Level Systems of 
Systems and will explicitly explore and propose a solution to engineering the Integration and 
Interoperability (I&I) issues confronting Mission-Level SoSs.  Mission-level engineering revolves around 
the concept of a mission context which manages uncertainties, dynamics and stochastic behaviors of 
SoS’s.  It has been posited that complex SoS’s are driven not by the performance and behaviors of the 
constituent components, rather they are driven by the complex integration and interoperability, the 
interstitials, of the components to achieve Mission-level goals.  Building upon this work, the authors, SoS 
practitioners, present a model-based SoS engineering approach that defines a SoS/mission architecture 
using both a physical space and multiple event space constructs explicitly accounting for both 
architectural and employment nuances of the SoS.  A modeling approach, which explicitly defines the 
interstitials in physical space as operable nodes in event space, will be presented.  An exploration of 
extensions to agent-based modeling is proposed herein along with the discussion of the Event Space 
modeling approach.  This paper provides an approach to Mission-level engineering of Systems of 
Systems, addressing traditional integration and interoperability shortfalls by interrogating the 
interstitials. 

1 Introduction 
SoS architectures tend to focus exclusively on collections of physical entities (hardware, software, and 
networks) rather than the distinct differences in the ways the physical systems can be employed. 
(Weter, 2012) (Office of the ASN (RDA) Chief Systems Engineer, 2006)  The ability to investigate physical 
SoS architectures and the impact they have on employment strategies (and vice versa) has lacked 
severely throughout commercial and governmental arenas.  The development of SoS’s has focused 
primarily on bottoms-up composition with the emphasis on the constituent components and how they 
may physically connect to one another. (Office of the ASN (RDA) Chief Systems Engineer, 2006) The GAO 
has studied the problems of complex SoS’s, and the U.S. Congress has attempted to legislate focus, but 
no holistic approaches have been proposed that provide the capability to interrogate both the physical 
and employment architectures of the SoS. (GAO, 2013) (GAO, 2008) (GAO, 2013) (GAO, 2012) 
Additionally, emphasis has been put on integration to compose SoS’s, little has been done to address 
interoperability problems.  While confusing, integration and interoperability are not the same, and there 
is not yet consensus within the SE community as to a common definition of interoperability (Morris, 
Levine, Meyers, Place, & Plakosh, 2004).  Thus, there have been no actionable means to develop a 
mission capable SoS which deals directly with interoperability  (Jamshidi, 2009), (Weter, 2012)  So too 
does M&S of SoS’s struggle, M&S for SoS’s are focused primarily on Live, Virtual and Constructive (LVC) 
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compositions for the intended use of training.  Other intended uses tend to drive toward adding 
resolution and complexity across distributed, discrete-event simulations or through agent-based 
techniques.  While much money has been spent on these methods, few technical gains at the mission-
level have been realized. (Weter, 2012), (Jamshidi, 2009) 

Complex, dynamic, distributed Systems of Systems (SoS’s) are being developed and employed, which are 
intended to satisfy the objectives of single and multiple simultaneous missions.  The development of 
these complex SoS’s has, to date, relied on compositions built up from existing component systems in 
order to accomplish both the component-level and SoS-level missions to avoid the investment in 
new/improved systems development.  The integration and interoperability (I&I) of these systems into a 
complex SoS has been historically plagued with problems and continues to provide both technical and 
resource challenges.  To address these challenges, efforts have been undertaken to improve the 
traditional systems engineering requirements process to better capture SoS needs in the component 
systems’ requirements baseline. (Congress, 2009) (GAO, GAO-11-502 Missed Trade-off Opportunities, 
2011) (GAO, GAO-13-103 Weapons Acquisition Reform, 2012)  

However, progress to improve SoS performance by this route has been limited.  Perhaps another 
approach should be considered.  In their paper, Garrett, et al. (Garrett, Baron, Moreland, & Anderson, 
2012) posit that SoS’s are driven not by the performance and behaviors of the constituent components, 
but rather by their interstitials, the I&I of the components (Garrett, Baron, Moreland, & Anderson, 
2012).  In their paper, Garrett, et al. proposes a way to explore the interstitials.  In this paper we further 
investigate the I&I of complex SoS’s and propose a methodology to access and effectively interrogate 
the interstitials. 

This paper, and the techniques discussed herein, exploits both United States Department of Defense 
(DoD) and industry engineering best practices.  Thus, we believe these techniques are extensible to 
many complex SoS’s across the entire domain of Systems Engineering.  The key notion of the best 
practices that we exploit is that of a Mission which guides the SoS.  This mission constraint then focuses 
the employment of the SoS and influences SoS architecture and design.  A mission is defined as the set 
of goals and objectives that the SoS is expected to perform against.  Subsequently, a mission 
environment is defined as all of the entities and interactions; conditions, circumstances, and influences 
involved in the prosecution of the SoS against the mission.  Finally, the mission environment is 
populated with mission threads.  These mission threads are the description of the end-to-end set of 
activities and component systems employed to accomplish specific subsets of the mission goals and 
objectives.  These mission-based concepts will be used herein to guide the SoS engineering process and 
the entire construct will be termed Mission-Level System of Systems Engineering, MLSoSE. 

We found a few candidates across multiple domains like economics, biology, DoD and process 
engineering and some techniques like agent-based modeling that had potential, but fell short in 
addressing the complexities of partially self-governed Systems of Systems.    In this paper, we define a 
method, develop a technique and demonstrate the methodology that accomplishes this which can be 
extended to any complex SoS in any domain. 
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1.1 The Problem 

1.1.1 SoS – Definition and complexity 
The system engineering literature is still working toward a consistent definition for system of systems 
(Jamshidi, 2009).  Variance in the SoS definitions appear to the authors to concern key notions of 
federation, autonomy, and abstraction.  In this paper we will present a Mission-level SoS definition that 
approaches the SoS as a top-down composition, with a focus on achieving strategic mission goals.  In 
addition the concepts of autonomy and abstraction will be discussed as they pertain to SoS definition 
and mission success.  Mission-level engineering is the domain of I&I over a complex SoS.  Here the SoS 
“should be distinguished from large but monolithic systems by the independence of their components, 
their evolutionary nature, emergent behaviors, and a geographic extent that limits the interaction of 
their components to information exchange,” (Maier, 1998) so that “each constituent system keeps its 
own management, goals, and resources while coordinating within the SoS and adapting to meet 
[mission] goals.” (Director of Systems Engineering, 2010).  The SoS then achieves mission performance 
goals by “integrating [appropriate] independently useful systems into [the SoS to deliver these] unique 
capabilities.” (Director of Systems and Software Engineering, 2008).  In addition to integration to achieve 
syntactic composition of the SoS, mission-level engineering” (Director of Systems and Software 
Engineering, 2008).  Mission level engineering requires the implementation of governance, with the 
establishment of mission context, via an architecture, to achieve a unique, semantically composed SoS 
(achieving the goals for interoperability).  This mission context needs to manage uncertainty, dynamics, 
and the resultant stochastic behaviors.  While much has been written and institutionalized in systems 
engineering (SE) best practice, and while the literature base on Systems Engineering and integration 
(SE&I) has recently grown, the domain of mission-level engineering across complex SoS’s has few 
established tools, techniques and processes. 

The authors propose that the domain of mission engineering of complex SoS’s is comprised of (Jamshidi, 
2009):  

1. Being a composition of independent constituent systems that maintain their own internal 
management.  The component systems bring forth their engineering artifacts; models and 
simulations; verification, validation and accreditation for their intended use; and their 
operational governance. 

2. Being bound together via a Command, Control, Communications and Computers (C4) based 
architecture established to meet mission-level goals, 

3. Achieving its mission goals through the application of top-down governance defined by the 
Mission Environment, 

4. Establishing Mission Threads to facilitate the development of the Mission-level SoS architecture 
and establishing the subsequent domain over which the SoS will be tested, 

5. Providing a quantitative description of the mission-level SoS, proposing that the SoS behavior is 
dominated by the interstitials (not the detailed behavior of the individual constituent systems) 
and that the interstitials have inherent uncertainty due to the nature of the mission 
environment and C4 based architecture, and are thus stochastic in nature 

According to this definition, a federation or confederation of autonomous systems is not necessarily a 
SoS, but it can portray many SoS characteristics and behaviors.  In fact, there are many times where a 
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federation of heterogeneous entities do comprise a SoS, but the construction is deliberate and 
organized from the Top-Down rather than ad hoc, from the bottom up.  With the domain of complex 
SoS engineering established, a given SoS can then be applied within several Mission Environments (MEs) 
and within any ME tested against many Mission Threads (MTs).   

We have reviewed much of the literature and have found that there is a shortcoming in the lexicon with 
regard to the notions of abstraction, fidelity, precision, accuracy and resolution.  The concept of 
accuracy refers to how close a representation approximates the real system.  The mean of accurate 
measurements typically have a low percent difference while the standard deviation (the distance from 
each other) has a high percentage difference.  Precision is the other side of the coin from accuracy: all of 
the measurements may not be close to the real system, but they are close together.  In other words, the 
percentage difference of each measurement from the referent is high, but the standard deviation of all 
of the measurements is low.  When we refer to fidelity we attempt to indicate that the level of accuracy 
AND the level of precision is high, meaning that all of our measurements are close to the referent, AND 
they are close to each other.  The concept of resolution is best equated to the level of detail that can be 
observed in the representation similar to a multi-power microscope.  In this manner, abstraction and 
resolution can be used interchangeably.  Abstraction, too, carries a connotation of fidelity.  However, 
abstraction focuses on ensuring that the precision of the model is similar to the precision of the referent 
and intends to keep the accuracy within an order of magnitude.  Obviously as we increase the resolution 
or decrease the level of abstraction (as the two terms are inversely related) the necessary accuracy 
should increase while the level of precision stays in agreement with the referent. 

Similarly, complexity can be difficult to quantify or even identify, but there is an inherent understanding 
of things that are complex.  We know that automobiles may be complex, manufacturing processes may 
be complex, and even that large groups of people or animals may be complex, but they are all complex 
for very different reasons.  For the purposes of MLSoSE, we define complexity according to the number 
of entities in the SoS and the amount of possible interactions those entities have with one another 
within the ME.  Figure 1 illustrates the construct that we will use throughout the paper to represent the 
complexity of the ME.  The lower left portion of Figure 1 illustrates the notion of few entities which 
interact very little with one another.  In this domain we have M&S (and real systems) that do an amazing 
job at capturing the low-level physical dynamics of the systems.  However, at the most extreme points 
(high number of entities, large amounts of interaction) the current set of solutions struggle to 
approximate those complex points.  In the same fashion, the uncertainty that we know and can quantify 
sufficiently is large.  Each shaded circle in Figure 1 represents a Mission Thread and its domain; the 
dotted circles about the Mission Threads represent the inherent uncertainty about the mission thread.  
The distance between the mission thread and the MT uncertainty circle represents a relative amount of 
uncertainty: the greater the distance between circles the greater the uncertainty.  In other words, at the 
lower left corner of Figure 1, we typically have a small uncertainty space while at the upper right corner 
the uncertainty may be large and difficult to quantify.  These are necessary concepts that will permeate 
this paper.  Critical to the definition of the ME is the notion of uncertainty, which includes both the 
aleatoric uncertainties and the epistemic uncertainties that may lead to emergent behaviors. The 



Approved for Public Release 
13-MDA-7269 (29 April 13) 

 

5 
Approved for Public Release 
13-MDA-7269 (29 April 13) 

uncertainty is manifested within the unique character of each MT as a result of the impact of the 
mission environment on the employed MT. 

1.1.2 Interstitials 
The authors contend that it is possible that our rich heritage on successful SE and SE&I tools, techniques 
and process or procedures may not be extensible to the mission-level engineering of complex SoS.   In 
the component system SE&I, the approach is one about a classic systems engineering “Vee” with an 
emphasis on the establishment of requirements, determinism, test and Verification, Validation, and 
Accreditation (VV&A).   This approach may be too rigid and overly simplistic given the SoS propensity 
towards stochastic behaviors, un-testable regimes, and profound challenges for VV&A.  The focus on the 
complex SoS should be on managing uncertainty, and achieving interoperability/semantic composition 
through the engineering of flexible and evolving architectures (Selberg & Austin, 2008).  These SoS 
architectures predominately consist of C4 that connect the constituent systems.  In addition, a premise 
was presented by Garret, et al. (Garrett, Baron, Moreland, & Anderson, 2012), that “SoS behavior is 
driven by the Interstitials where the term “interstitials” is used to define the domain of interfaces, 
interoperability, and integration between constituent systems in a SoS.”  To that end the authors 
propose that a mission-level SoS should be architected to accommodate the self-governing constituent 
systems and not necessarily the other way around. Their paper presents a set and graph-based 
approach to represent the ‘physical space’ architecture.  In the graph of physical space, component 
systems are represented by nodes and the interactions are represented by edges.  The interstitials are 
then a path of edges and defined by the cross terms of the physical space adjacency matrix.  An 
additional construct is being proposed in this paper where the physical space is transformed to an 
“Event Space” to facilitate modeling and subsequent simulation.  In this event space, the edges of 
physical space become nodes in a Bayesian Network represented by a probability distribution function 
(PDF).  The key tenet of Event Space is that each event space node is explicitly an interstitial in physical 
space.  

1.1.3 Top-Down Constraints – Mission Environment/Mission Thread 
The DoD has invested significant effort in order to define an approach for testing component systems 
within a complex SoS under clearly defined mission context. (JTEM, 2009)  This DoD mission context 
appears extensible to any mission domain, defense or civilian, public or private, and will be used as a 
basis throughout this paper.  In addition, the DoD approach appears robust and directly applicable to 
the establishment of the mission/SoS architecture, requirements, and the subsequent engineering of 
the SoS I&I.  Thus, Mission engineering needs to focus not only on those materiel, physical entities of the 
SoS, but also on the non-materiel attributes of doctrine, organization, training, materiel, leadership and 
education, personnel, and facilities (DOTMLPF) (DoD, 2012).  The notion of Joint refers to a multi-
organizational, multi-cultural, enterprise construct brought together to “jointly” achieve the mission 
objectives.   
There are two key concepts in the mission context: the Joint Mission Environment (JME) and the Joint 
Mission Thread (JMT).  The JME is the set of physical entities – conditions, circumstances and influences 
to meet a specific mission objective.  The JMT is the path within the JME set that provides the 
operational and technical description of the end-to-end set of activities and systems (CJCS, 2010).  For 
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the remainder of this document, we will use the terms Mission Thread (MT) and Mission Environment 
(ME) as constructs that are derived from the JME and JMT.  The MT can be mathematically defined as an 
SoS operating within the ME, “A, and a subgraph, M, where M ⊆ A, a mission thread for a specific 
scenario, Ti can be represented as the composite vector, or tensor Ti, where Ti = {M1, M2, Mi}, and Mi is 
the active path in A at time, i.” (Garrett, Baron, Moreland, & Anderson, 2012).  This definition can be 
explicitly aligned with the construction of an event space mentioned previously.  The authors believe 
that these constructs of mission, ME and MTs represent a readily extensible engineering best practice 
for mission-level engineering over a complex SoS, especially with respect to the domain of SoS I&I. 

1.1.4 Uncertainty 
The compositions with any given ME and/or MTs (the notion of joint is viewed as implicit throughout the 
balance of paper) introduce some amount of uncertainty.  Examples include such things as initial 
conditions, natural environment, availability of resources, stimuli characteristics and behaviors, etc.  This 
uncertainty is either in the form of things which we know about but change every time we employee the 
SoS (statistical uncertainty), or in the form of things we could know in principle, but don’t know in 
practice (emergent behaviors, systematic uncertainty).  The aleatoric and epistemic uncertainty 
(respectively) are necessary evils, and the best we can do is to quantify and manage aleatoric 
uncertainty, and drive out epistemic uncertainty so that we may, overall, reduce risk in the design, 
development, deployment, employment and retirement of SoS’s and their constituent components.  
Ultimately, uncertainty should drive the level of abstraction of the representation (real or otherwise) of 
the SoS’s detail otherwise unwarranted focus can lead to faulty conclusions or significant expense of 
both time and engineering resources when uncertainty is great.   

Because of the economic, geographic and socio-political constraints which impact any complex SoS, 
many – if not all – of the aspects of the integrated SoS must be explored and subsequently tested within 
the realm of models and simulations (M&S).  However, as a model is only a representation (i.e., an 
approximation) of the real world, thus there is inherent uncertainty involved in any M&S solution.  
Examples of conditions that introduce uncertainty in the M&S domain are the range those conditions 
can take, multiple causal chains, timing, and even the inherent uncertainty in component-level 
computations (accuracy, precision, units, etc.) and those in distributed computations (Pilch, Trucano, & 
Helton, 2006).  

1.2 Common Definition of Complex Systems of Systems 
Given the fluid definition for SoSs over their diverse application domains, we propose that the Mission-
Level SoS is: (Jamshidi, 2009): 

• Composed of independent constituent systems that maintain their own internal management 
o The component systems bring forth their engineering artifacts, models and simulations 
o Verification, validation, accreditation and certification for their intended use 
o Independent component operational governance 

• Composed into a top-down C4 architecture 
• Able to achieve its mission goals through the application of top-down governance defined by the 

Mission Environment 



Approved for Public Release 
13-MDA-7269 (29 April 13) 

 

7 
Approved for Public Release 
13-MDA-7269 (29 April 13) 

• Able to employ Mission Threads to facilitate the development of the Mission-level SoS 
architecture and establish the subsequent testing domain 

• Dominated by the I&I (interstitials) and not the detailed behavior of the individual constituent 
systems – these interstitials have inherent uncertainty due to the nature of the ME and C4 
based architecture, thus are stochastic in nature 

From here forward the authors imply a Mission-level SoS whenever the term SoS is used.  Inherently, a 
SoS intends to be greater than the simple sum of its constituent components, but to what end?  Is the 
SoS intended to be slightly better, tremendously better, is it decomposable into single or pair-wise 
component functions; can the SoS be further abstracted up into another SoS?  In short, to be considered 
a SoS, it must be composed of independent components that can work within or without the SoS 
context and when they are composed together, with the goal that the sum of the constituent 
components’ performance is more than the individual components could perform, if employed, 
additively.  The key to the SoS definition is that the components may not have been designed with a 
prior knowledge of the intended use of the SoS as a consideration manifested in their requirements 
basis. 

1.3 Allusion to a Solution 
Because of the natural and man-made limitations, and the realities of budgetary constraints to 
implementing and testing complex SoS’s, much, if not all, integration and employment testing must be 
done through M&S.  Traditional M&S approaches leverage a physical perspective of the referent system, 
preferring to recreate (through approximation or even the use of tactical hardware and software) the 
referent in the model.  For traditional systems architected from the onset from the components up as a 
single system (e.g., airplane, car, etc.), this view is sufficient to accurately represent the system.  
However, when the SoS is comprised of independent, autonomous systems that were created for their 
own intended use, traditional modeling of every physical component becomes rapidly untenable.   

We have deemed the modeling technique of representing each physical entity as defining a Physical 
Space.  The Physical Space representation takes the form of a DoDAF OV-1 (DoDAF, 2012)or simple 
graph (components on nodes, interconnections on edges) and emphasizes the components on the 
nodes.  Figure 2 illustrates a simple system of two sensors (node A and node D), a controller (node C), 
and an actor/sensor (node B).  This representation and example will be used for the many of the 
examples in this paper.  In a normal physical space representation, each of these elements would be 
explicitly modeled to a certain level of abstraction – discrete event models, continuum models, etc.  
Each of these models is typically rooted in the physics that defines the primary functions of each node: 
for a sensor the model may represent wave forms, interaction with external stimuli, weather, etc.  
However, this deterministic approach (deterministic in that we can understand every possible cause and 
effect in the system) is difficult to explore the untestable regimes of complex SoS’s.  As the complexity of 
the environment increases, the amount of the domain in which traditional deterministic representations 
can interrogate decreases.  The number of factors that must be interrogated increases with each 
additional entity or interaction and to test each combination of these factors becomes untenable.  The 
sheer volume of the factor space that must be explored drives the cost of what interrogation that can be 
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done exponentially upward.  Thus, the use of physical space representations to investigate SoS’s is 
difficult, if not impossible. 

Additionally, the edges or interconnections between nodes are at best modeled at the information or 
message level and at worst implicitly and instantaneously.  Many of the problems with using a physical 
space representation to address complex SoS’s stem from the inability (or unwillingness) to quantify 
uncertainty in the models and ME and to allow an environment in which emergent behavior (caused in 
part by the interstitials) can arise and be explored.  However, legacy M&S tools and other physical space 
representations are necessary for exploring detailed aspects of the SoS – they are simply unable to 
explore the entire domain of the ME in a timely, cost effective manner. 

In order to accurately probe the behaviors and sensitivities of the ME, we searched for a methodology 
and toolset which would provide the capabilities necessary to explore the vast domain encompassed by 
a complex SoS.  This led to the establishment of a set of goals for the methodology and toolset: 

• Rapid Execution (tens of thousands of iterations over the SoS in minutes),  
• Stochastic in nature (able to explore the domain and range of SoS variables), and  
• Focused on the drivers of SoS behavior, i.e., the interstitials 

We found a few candidates across multiple domains like economics, biology, DoD and process 
engineering and some techniques like Agent Based Modeling that had potential, but fell short in one or 
more of the areas listed above.  Nowhere could we find a method, technique or tool that provided all 
three capabilities.  In this paper, we define a method, develop a technique and demonstrate a tool that 
accomplishes all three capabilities above which can be extended to any complex SoS in any domain.  

The authors intend to present a model-based Mission-Level SoS Engineering approach that defines a 
SoS/mission architecture using both a physical space and multiple event space constructs.  The basis for 
the modeling approach is to define each event as an interstitial in physical space and then explore the 
relationships between events using causal inference and probabilities of occurrence.  Exploration of the 
event spaces will be done using a hybrid-agent approach and a novel method to combine event spaces 
into more complex spaces due to multiple stimuli. This methodology provides a novel approach to 
mission-level engineering of complex SoS’s addressing traditional I&I shortfalls by interrogating the 
interstitials. 

2 Background 

2.1 SoS 
Complex SoS’s have been realized as a way to address mission-level and multi-mission problems in many 
domains.  However, defining, classifying, designing, integrating, employing, certifying and accrediting 
complex SoS’s is a non-trivial problem.  Much of this is due to a lack of uniqueness at the mission level 
and the seemingly incessant desire to build SoS’s from the bottom up.  The notion of architecting a 
complex SoS’s with the mission-level objectives in mind is crucial to ensure that the SoS is capable of 
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meeting the governance restrictions of the mission environment and ultimately addressing Mission-
Level goals and objectives. 

2.1.1 What is the SoS  
Here we define a hierarchy pyramid as a basis to build a multiple-mission employment of complex SoS 
architectures from component-level entities. This pyramid construct builds on that of Morris, et. al. and 
extends it to the realm of the Mission space.  Extending the notion of disparate personal and technical 
pyramids, we combine them into the mission construct as they are not distinct nor mutually exclusive. 
(Morris, Levine, Meyers, Place, & Plakosh, 2004) At the lowest level we define the system, component 
and sub-component.  These are the entities that are typically the focus of a component system 
acquisition plan or strategy.  The next level is that of Trees, which introduces the idea of stringing a few 
component systems together to achieve some larger goal.  Above Trees is a Forest (to which the Trees 
are a subset) which contains all possible Trees in a Mission Environment (ME).  The superset of the 
Forest is the Mission Thread (MT).  The Mission level contains multiple MTs and all of the information 
necessary to describe a Mission: its architecture, employment, stimuli and operating conditions.  Finally, 
the larger set of Missions, or multi-missions, is the Campaign level which encompasses all possible 
Missions for a given domain.  This hierarchy can be seen in Figure 3.  Notably, the goals at each level in 
the pyramid are different and require different levels of information and knowledge to satisfy the goals.  
To that end, a SoS can be composed at any level of the pyramid.  It should also be stated that the 
different layers of the pyramid do not indicate different abstraction levels; rather they are larger, more 
complex representations of the SoS.  Unlike traditional hierarchy pyramids which focus on greater 
resolution or lower abstraction as one moves from the top to the bottom, we define the pyramid to be 
held at a constant level of abstraction from top to bottom.  This allows us to examine complexity within 
the pyramid with the most complex concepts at the top of the pyramid and least complex at the 
bottom.  By taking this perspective, we can better understand the composition of the SoS and the 
proper level of abstraction for the intended use. 

Starting with this nominal hierarchy pyramid, we claim that the systems domain, i.e., the traditional 
single system, system engineering domain, extends from the System/Component/Sub-Component level 
to partially inside the Forest(s) level.  This implies system intended use ranging from component testing 
and integration to partial integration for achievement of a common goal with another system.  Thus, the 
Mission-level SoS domain extends from the Trees to the Campaign level.  Effective SoS’s should be able 
to provide information between levels of the Mission Hierarchy if not span multiple levels themselves in 
order to adequately investigate SoS behavior and performance.  That being said, one may craft a SoS at 
any level; however, if the expectation to develop a Mission-Level SoS from the bottom up exists, the 
foresight and Mission constraints must be in place to bound and guide the SoS development.  Yet, 
experience has proven that crafting a SoS from the bottom-up (i.e., composing disparate components 
into a federation) is fraught with extensibility pitfalls and rarely results in meeting the breadth of 
Mission-level expectations/requirements. 

2.1.2 Mission Construct Definition 
In order to move away from the construction of SoS’s from the bottom-up, the definition of the 
constraints and methodologies to develop the SoS must change.  Accurately articulating the Mission-
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Level domain in which the SoS should operate is necessary to properly bound the SoS functionality both 
in its architecture and employment.  Additionally, the goals and objectives of the Mission-Level are very 
different from those of the other levels.  A focus on integration, interoperability and the prosecution of 
many simultaneous missions lies at the heart of the Mission-Level Construct.  The Mission-Level 
definition should guide the development of SoS architectures by focusing on how the users will employ 
the SoS that are not necessarily consistent with the original intended uses of the constituent 
components. 

2.1.3 Architecture and Employment – Complementing Engineering Processes 
At the Mission level, the architecture of the SoS is a significant component of the development of the 
SoS.  However, the employment of that architecture may be equally or even more significant than the 
architecture itself.  With each mission and each mixture of missions, the mission governance, e.g., the 
tactics, techniques and procedures (TTPs) and the concepts of operations (CONOPs) employed change as 
does the capability of the SoS.  Thus, being able to involve Mission-level governance in the development 
of the SoS is critical to the success of Mission-Level SoS’s.  In addition, the ability to interrogate the 
governance themselves with regard to Mission-Level architectures and stimuli could prove very useful 
for the promulgation of the SoS.   

2.1.4 Mission-Level SoS Construction Must be Top-Down 
The traditional approach of constructing a SoS tends to aggregate components into a loose federation 
(at best).  This approach typically ignores the complexities of I&I as well as the Mission-Level goals and 
objectives.  While this is not true in all cases, most bottom-up approaches only address a subset of the 
Mission-Level goals.  We propose that in order to meet the entirety of the Mission-Level goals and 
objectives the SoS must be crafted from the top-down (Jamshidi, 2009) (GAO, 2008) (GAO, 2012) (GAO, 
GAO-13-103 Weapons Acquisition Reform, 2012).  A top-down approach explicitly accounts for these 
Mission-Level governance as well as the I&I issues and employment of the SoS.   

2.1.5 Syntactic and Semantic Composability 
 In order to define and address the I&I issues, even from the top down, we must address the notions of 
composition of the SoS.  Extending Surowiecki, we begin by defining three levels of entity (component 
system) interactions: autonomy, collaboration and cooperation (ACC) (Surowiecki, 2005).The concept of 
autonomy can be defined as independent entities that can perform their mission(s) with little to no 
additional information or interaction with external systems (barring, of course, object of interest 
stimuli).  Collaboration, on the other hand, may be defined as one or more autonomous entities passing 
and using information with other entities in order to accomplish the autonomous entity’s mission(s).  
Cooperation; however, focuses on the sharing of information and eliciting behaviors in order to 
accomplish SoS or Mission-Level goals and objectives.  An explicit decomposition of the ACC paradigm 
can be seen in Figure 16, Figure 17, and Figure 18.  A key to the ACC construct is that it could/should be 
dynamic.  That is the SoS in concert with the entity systems react to the mission environment using local 
and enterprise performance information to dynamically move between the levels of ACC to meet the 
mission goals.  If we are now to look at the domains of mission hierarchy presented in Figure 3, 
integration and interoperability, and the concepts of autonomy, collaboration and cooperation, we posit 
that integration lies in the purview of autonomy and into collaboration.  Integration then tends to be 
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focused on connections between elements, pair-wise interaction and single mission threads at the 
component level.  Interoperability, then is ranges from the collaboration level through cooperation and 
focuses on many-to-many, meaningful interactions, multiple mission threads at the SoS level, Mission-
Level goals and objectives and the Mission Environment as a whole.  This construct is depicted in Figure 
4.  The authors recognize that this may be viewed as a departure from the literature that has tended to 
focus on network communications, but we feel it is a critical component to the MLSoSE process. 
(Jamshidi, 2009) 

If we are to assume that each component of the SoS comes to the composition as a complete 
autonomous entity, then we say that bringing two of these components together is integration or 
syntactic composition.  If the autonomous components are able to connect, pass messages (correct 
protocol, format, etc.) and some (perhaps all) of the data is populated, we typically claim successful 
integration.  Interoperation on the other hand can only be achieved through semantic composition or 
meaningful interactions and behaviors across mission-level stimuli (including uncertainty) to affect 
Mission-Level goals.  This means determining the quality of the interactions of multiple systems 
simultaneously within the constraints of individual performance and top-down governance.  Obviously, 
achieving cooperation through interoperability and semantic composition can be quite a daunting task. 

2.1.5.1 Integration and Interoperability – The Interstitials 
All of the connections between autonomous elements, both physical and behavioral (syntactic and 
semantic) can be thought of as the interstitials – the space between objects or entities.  These 
interstitials carry a vast amount of information ranging from strictly measurement information to 
decisions and other behavioral context modifiers.  In a classic system, the interstitials are typically well 
defined and can be managed easily.  But in the domain of complex SoS’s there are many interstitials 
between elements – most of which are not well documented or known at all.  Because of the complex 
nature of many SoS’s and the need to provide a cooperative, interoperable composition, Garrett, et al. 
posited that it is the interstitials that drive SoS performance and behaviors, not the individual 
components.  Following this notion, the bulk of the problems with SoS architecture and employment can 
be derived directly from the interstitials. 

2.1.6 Metrics 
Questions of how to measure a system are often (and should be) at the forefront of traditional systems 
engineering.  The traditional systems engineering approaches dictate that the measure of the system’s 
performance or behavior is dictated by key performance parameters (KPPs) or key performance 
measures (KPMs), which are identified early in the SE lifecycle – traditionally in the requirements 
elicitation and analysis phases. 

However, this same approach has proven to be at best minimally extensible to the SoS and Mission-
Level domains. (GAO, 2008) (GAO, 2013)  Factors such as complexity, emergent behaviors, uncertainty 
and the interstitials make the definition of quantitative metrics to measure the SoS above the 
component level difficult.  Upon review of the SoS body of knowledge, there appear to be few well-
established, reliable metrics and measures for gauging the behavior and performance of Systems of 
Systems.   
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2.2 Optimization and Sensitivity Analysis 
The concept of optimization is critical to the development and employment of a SoS.  At its essence 
optimization focuses on a set of parameters or metrics and simultaneously attempts to maximize (or 
minimize depending on cost functions and error budgets) them to address a set of goals or objectives.  
The ultimate goal of optimization is to determine the conditions and construction of the SoS that 
maximizes behavior and response to stimuli while reducing uncertainty and identifying potentially 
catastrophic conditions (Wolkowicz, 2006).  Measuring where the SoS is sensitive (positively or 
negatively) provides the opportunity for optimization around those areas as well as to find a global 
optimum state for the system.  SoS optimization can be tricky; however, there are both quantitative and 
qualitative modifications (architecture vs. employment) that can be made to optimize the SoS.  
Overcoming this significant hurdle is necessary to effectively deploy a SoS. 

2.3 Uncertainty 
Beyond strictly the architecture and employment difficulties of complex systems of systems, uncertainty 
in the Mission Environment causes problems with SoS’s ranging from operations to fielding to risk 
management.  The types, sources and management of uncertainty is crucial to the composition and 
ultimately achieving some level of Verification, Validation, Accreditation, and Certification, VVA&C, of 
the SoS. 

2.3.1 Types of Uncertainty 
There are two primary types of uncertainty: things we know about but can’t reliably predict and things 
we don’t know at all.  These are the known and unknown unknowns, or aleatoric and epistemic 
uncertainty. Things we know about but change every time we run an experiment (statistical uncertainty) 
is defined as aleatoric uncertainty.  Epistemic uncertainty is related to the things we could know in 
principle, but don’t know in practice (things we haven’t discovered yet, systematic uncertainty). (Pilch, 
Trucano, & Helton, 2006) (National Academy of Sciences, 2012) 

2.3.2 Sources of Uncertainty 
Within the SoS there are many sources of uncertainty stemming from the Mission Environment.  
Environmental constraints, physical properties, system properties, architecture, initial conditions, and 
employment are all sources of uncertainty in the SoS.  Environmental constraints can introduce 
uncertainty that is both aleatoric and epistemic through weather, time of year, time of day, humidity, 
etc.  Physical properties of systems and the Mission Environment like copper and fiber transmission 
speeds, radar wave-form generation, specular reflectance and object characteristics can also cause both 
aleatoric and epistemic uncertainty. Both types of uncertainty can stem from system properties that 
diverge from the intended use of the system under the employ of the SoS.  The uncertainty introduced 
by the architecture and employment of the SoS ranges from timing of messages to how sensor search 
plans are conducted to the types and combinations of TTPs employed.  In order to better quantify risk, 
these uncertainties must be at least accounted for and the epistemic unknowns should be driven out. 
(Pilch, Trucano, & Helton, 2006) 

Specifically related to M&S SoS’s, uncertainty can arise from inconsistencies in the level of abstraction 
used for the models of the referent SoS.  If a similar level of abstraction for each of the models and for 
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the architecture as a whole is not implemented, then the representation of the SoS can be skewed 
because of the informational and representational differences in the models.  Consistent levels of 
abstraction for an intended use is critical for proper M&S composition and SoS representation.  Because 
M&S must represent entities and interactions that are given to us for free in the real world, uncertainty 
can be introduced through the environment, stimuli, and the level of abstraction to which the real 
entities are modeled.  Additionally, as we extend M&S to a distributed, global context where M&S 
components are expected to interoperate over a wide geographic expanse, our ability to address 
uncertainty introduced by the simulations (“sim-isms”) decreases dramatically. (Chibo, Hua, Ruili, & 
Shudao, 2012) (Roy & Balch, 2011) 

There has been a motivation to model complex systems and SoS’s by using the most detailed 
representations of entities as possible, sometimes going as far as to use the real-world systems in an 
M&S composition.  This is done in an attempt to manage uncertainty, however naively.  The intent is 
correct: manage uncertainty in the representations so that we can understand capabilities and 
limitations.  However, the introduction of live systems into an M&S construct can be fraught with 
problems.  The farther we move away from the real-world entities, the more uncertainty we introduce.  
This correlation between abstraction and uncertainty is one that is typically handled implicitly, but to 
better handle uncertainty as a whole, we must begin to quantify the relationship between abstraction 
and uncertainty.  The authors advocate using an iterative approach to employing multiple levels of M&S. 
In that the top-level M&S guides the lower-level deterministic tools which in turn inform the top-level, 
stochastic M&S. 

2.3.3 Uncertainty Management 
The process of uncertainty management is difficult to say the least.  In order to manage the uncertainty 
in a complex SoS one must identify, capture, quantify and determine an approach to deal with the 
uncertainties identified.  At best, one may manage some of the aleatoric uncertainty in a SoS, but the 
bulk of the aleatoric uncertainty will be merely identified.  Over time, some of the epistemic uncertainty 
may be transitioned to the realm of aleatoric, but that assumes adequate investigation of complex 
problem spaces with numerous factors defining them.  According to Jiminez, et al. as the number of 
factors increases above five, the amount of the space traditional techniques can interrogate is below 
20% (Jiminez & Landgrebe, 1997).  Because both architecture and employment can introduce 
uncertainty into a representation, the number of factors is significant and many of their interactions are 
poorly understood.  Thus, a new approach for interrogating the solution space of complex systems and 
determining the sensitivity of the SoS to each factor must be identified and put into use in order to 
effectively begin to manage uncertainty.  The use of optimization techniques can aid the management of 
uncertainty as minima and maxima, points that may cause the SoS difficulties, will be identified through 
optimization and sensitivity analyses.  Additionally, if uncertainty can be managed so too can the risk of 
a SoS be managed. 

2.4 SoS Interrogation Methods 
So, one may ask: “If the SoS is so complex and so little of the factor space may be explored, how then do 
we interrogate a SoS effectively to give confidence in its behavior and performance?”  Empirical means 
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are unable to test the entirety of the problem and solution space therefore traditional approaches 
employ some level of M&S to interrogate the SoS.  The use of M&S here extends to the domains of Live, 
Virtual and Constructive (LVC) (Henninger, et al., 2008).  Most testing domains focus on some 
combination of these three elements and each has their benefits and shortcomings.  A purely Live 
composition (SoS) may allow exercising of the real system in a small construct of the operational 
environment.  A Live and Virtual composition may allow a wider swath of the ME to be investigated, but 
there are both practical and accuracy issues in doing so.  A purely constructive composition allows 
interrogation of a wide breadth of the ME, but introduces uncertainty due to the abstraction of the 
models.  Each type of composition is necessary because each interrogates only portions of the SoS.  The 
common method of modeling and simulating the SoS stems from deterministic, physics-based models 
rooted in the physical representation of system components and rules in the real-world (L,V,C based on 
replication not representation).   

Based on the questions being asked during the interrogation, the M&S method changes because the 
inherent content of questions and the notion of good enough (i.e., uncertainty) play a significant role.  
For events like live and virtual tests, the most realistic representation of the system under test is 
necessary; for training events, a faithful yet abstracted model may be used.  However, all of these 
models have in common that they are rooted in the physical abstraction of reality and are based on 
deterministic techniques.  Based on the sheer number of factors in a complex SoS, it may be inferred 
that some situations may only be stimulated by using non-deterministic means. 

As an observation, we have seen that attempting to interrogate the entirety of the problem space of the 
SoS using only deterministic approaches can become prohibitively expensive in terms of both fiscal and 
temporal resources.  Eventually, attempting to interrogate the entire mission space deterministically is 
impractical, if not impossible, and must be augmented with other methods. 

2.4.1 Uniqueness 
Compounding the difficulties of interrogating the SoS is the fact that the SoS has no single unique 
outcome.  Given initial conditions, the outcome of the SoS may never be the same because of the 
uncertainties in the SoS.  Rather, the SoS produces a range of solutions given stimuli – some of which 
may be more plausible than others.  The spectrum of solutions gives rise to the need to add an 
additional technique to the interrogation toolbox: stochastic modeling.  This means bringing tools into 
the interrogation domain that allow the use of random and non-deterministic means to investigate the 
SoS domain space. 

2.4.2 Determinism 
Part of the difficulties of accurately representing a complex SoS is that the real SoS is inherently not 
deterministic: there is enough variability in the SoS that given identical initial conditions, the end result, 
state or behavior of the SoS will not be the same (National Academy of Sciences, 2012).Because SoS’s 
aren’t inherently deterministic, most engineers struggle with their representation and interrogation.  
Deterministic systems and SoS’s are typically easier to represent because their outcomes are intuitively 
a result of a cause-effect relationship, which nicely complements the software built for each L, V, or C 
representation.  However, there may be portions of the SoS that obey some determinism in the form of 
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causal relationships, but these are typically at the macro level and manifest themselves only at the 
highest levels of abstraction.  That being said, initial conditions are rarely, if ever, the same so we need 
to be able to treat the SoS as a non-deterministic entity. 

2.4.3 Stochastic Methods 
If complex SoS’s are not deterministic, then they are random and/or stochastic in nature.  So, what does 
it mean to be stochastic?  In the case of complex SoS’s it means that given identical initial conditions, a 
wide range of possible end states, behaviors and outcomes are possible.  This is a direct result of the 
inherent uncertainty and random processes at work throughout the architecture, possible employment 
options and the ME.  Thus, traditional interrogation efforts which focus primarily on deterministic 
approaches tend to be unable to investigate a wide range of possible, perhaps even likely, states and 
behaviors.  New methods to interrogate this stochastic space are necessary and by no means do they 
impinge on the domain of the deterministic tools.  Rather, they should complement and leverage the 
existing methods, exploring the factor and solution space to determine where there may be issues or 
degradation in performance of the SoS and providing a limited set of conditions to the existing tools to 
investigate directly. 

2.5 Modeling with Graphs 
A fairly well-known method of modeling is to use a graph representation of the physical SoS.  This 
representation is the basis for many other types of modeling – DoDAF views (OV-1, OV-2), SysML 
Context Diagrams, UML Use Case Diagrams, etc.  In fact, any model that depicts entities of interest 
connected to one another is based on a simple graph.  In the language of graph theory, each entity is 
called a node and each connection between them is called an edge.  This can be seen in Figure 6.  A 
graph that has each node connected to all of the other nodes in the graph is a complete or fully-
connected graph.  Other variations and subsets of this complete graph exist and relay information about 
the system that it models.  A partial graph is one in which not all of the nodes are connected, as 
illustrated in image (a) in Figure 7.  Additionally, arrows can be added to the edges in the graph 
illustrating directionality of flow (information, current, etc.) between two nodes; this is called a directed 
graph (see (b) in Figure 7.).  A directed graph inherently contains more information than a simple 
partially connected graph and can be used to infer relationships at a macro level.  In order to attach 
more information to a graph, one may extend the concept of the directed graph into two separate 
constructs.  The first is the concept of a directed graph that has no cycles or loops in it.  This is called a 
directed acyclical graph and looks like (c) or a tree graph as in (d) in Figure 7.  The second type is the 
concept of a directed multi-graph.  A directed multi-graph is a graph that has multiple, directed edges 
between each node that each represents a unique interaction or flow of information between nodes as 
seen in (e) in Figure 7.  Finally, the notion of loops can be added to each node to indicate an internal 
process within a node, depicted in (f) in Figure 7.  (Bondy & Murty, 1976) 

2.5.1 Graph Math – Adjacency and Incidence Matrices 
Within the context of graphs are the notions of adjacency and incidence matrices.  An adjacency matrix 
describes which nodes are connected to which other nodes.  It is an n-by-n matrix where each row and 
column represents a different node.  Directionality and multiple edges can be accounted for in an 
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adjacency matrix by tracing row to column and incrementing the intersection by one for each edge 
found between those nodes, in that direction.  An incidence matrix, on the other hand, is comprised of 
the nodes on each row and the edges in the graph on each column.  When an edge connects two nodes, 
the corresponding intersections are labeled.  In the case of a directed graph, a -1 is used to indicate the 
tail or source of the edge and a 1 is used to represent the head of the edge.  Loops are identified with a 
2 to indicate starting and stopping at the same node (other methods assign zero to loops, but we will 
use the 2 notation throughout).  Figure 8 illustrates the adjacency and incidence matrix for a simple 
directed multi-graph.  (Bondy & Murty, 1976) 

2.5.2 Physical Space – Link to Mission Environment 
The graph model is a way to capture the physical entities in a SoS and their interactions at some level.  
This “Physical Space” representation is directly linked to the ME in that it directly identifies the physical 
entities in the architecture and contains some of the information about the interactions between the 
nodes.  So, we can capture the location, orientation, connectivity and possible modes of operation 
within the Physical Space, but we are unable to explicitly represent interactions between nodes, 
different stimuli and operating conditions that may exist.  

2.5.3 Paths as Mission Threads 
In order to expose some of the information alluded to above; we propose building on the concepts of 
(Garrett, Baron, Moreland, & Anderson, 2012)to use walks, or paths, through the physical space to 
define mission threads (MTs) (Bondy & Murty, 1976).  If we can define the series of events that are 
necessary to accomplish a MT, then we can claim that mathematically, the set of paths is equal to the 
MT.  This translation allows us to interrogate intra and inter dependencies within the physical space, 
thereby drawing in the interstitials. 

2.5.3.1 Interstitials 
If we look at the construct setup in section 2.5.1, we can see that the two constructs (adjacency and 
incidence matrix) contain information explicitly about the nodes and edges in physical space.  Garrett, et 
al. claim that the off-diagonals in the adjacency matrix are the interstitials or the interactions between 
entities and can be interrogated as such.  We agree and posit that, in addition, the incidence matrix also 
contains information about the interstitials.  In the incidence matrix, we can identify interstitials by the 
multiple entries in a column.  Any column that sums to zero is indicative of an interstitial interaction and 
must be explored in the problem domain. 

2.5.4 Limitations 
As mentioned above, traditional models tend to focus on putting the physical entities on the nodes of 
the graph and their interactions are represented by the edges.  This paradigm is followed throughout 
the traditional modeling paradigm all the way to software implementation.  This can be beneficial for 
certain intended uses; however, the edges on the graph are typically represented implicitly or only at a 
single level of abstraction – communications modeling.   
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3 Solution Space 

3.1 Mission-Level Engineering 
Given a set or type of stimuli the Mission is the collection of tasks, goals and objectives that are to be 
achieved to successfully address the stimuli.  The Mission includes all of the physical assets necessary to 
meet the goals as well as all of the techniques and procedures necessary to effectively employ them.  
The mission includes all forests, treess, systems and components that may be employed.  The context of 
the mission also includes the operational environment (Mission Environment) that contains the natural 
environment, external stimuli and other interactive entities (e.g., “Grey Hat” in the hacking communities 
are entities who are not necessarily benevolent or malicious).  Mission-level engineering requires not 
only a SoS perspective, but also the ability to integrate the employment of the SoS for multiple stimuli, 
purposes and missions.  Mission-level engineering demands direct interaction with the users of the SoS 
throughout the lifecycle.  Engineering at this level is more complex than traditional Systems Engineering 
(SE) as it requires a different perspective (Jamshidi, 2009).  SE traditionally starts and ends with the user 
of the system, but SoS engineering at the mission-level must use input from the user at every step of the 
process.  Figure 10 illustrates the cyclical nature of Mission-level engineering and demonstrates that the 
traditional focus of SE is extended here to focus on integration, interoperability and employment of the 
SoS. 

3.2 Introduction to the Event Space 
The concept of the Event Space is simply an extension of traditional physical space representations in 
which we transform the edges in physical space (integration and interoperability) into nodes in event 
space so that we can operate on them effectively.  Many Event Spaces may be derived from a single 
Physical Space, but each one contains more information than does Physical Space by itself.  Event Space 
allows the direct inclusion of governance as well as I&I of the SoS and the causal nature of mission 
prosecution. 

3.2.1 From Mission to Mission Threads and Event Spaces 
If we define the Mission as all of the entities, interactions and behaviors of the SoS and its ME, we can 
capture implicitly all of the architectural, employment and stimuli nuances that a mission may 
encounter.  However, exploring this space can be difficult without introducing some bounds and rigor to 
the analysis.  In order to grasp the nuances of the Mission, we whittle down the ME by constraining the 
architecture to only those items that may be employed within the operational context.  From this we 
can begin to form a set of events within the Physical Space which constitute a Mission Thread or Event 
Space. 

3.2.2 Abstraction 
The notion of abstraction is critical in the proper formation of Event Space.  As opposed to traditional 
Physical Space representations, Event Space construction cannot be done from constituent component 
functionality or construction up to the SoS.  We must start at the top of the SoS and clearly define the 
depth necessary to represent Physical entities and Events based on the questions that we are going to 
ask of the model.  We propose a balanced, holistic, approach for determining adequate abstraction for 
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the SoS comprised of entity abstraction, functional abstraction and I&I abstraction.  As depicted in 
Figure 11, the three paradigms of abstraction each represent a critical, non-exclusive component of 
abstraction that must be accounted for when developing a SoS conceptual model.  

Defining the entities and how they are grouped is a critical aspect to gaining an adequate and consistent 
level of abstraction in the conceptual model.  We categorize real-world entities into five major 
functional groups: 1) sensors, 2) actors, 3) controllers, 4) stimuli, and 5) environment.  There are many 
ways to decompose entities in this manner; however, the critical aspect to any decomposition should be 
a common, consistent depth of abstraction held across the SoS.  Typically, the system under test that we 
are asked to represent is primarily decomposed into actors, sensors and controllers only.  Many have 
asked us why we chose this paradigm for demarcation in the model commenting that many of the 
elements in the system under test are aggregate systems, each containing a module or sub-system that 
provides the functionality of a sensor, actor or controller.  The reason we take this approach is to 
provide a consistent boundary in the conceptual model.  Many times we have seen models constructed 
through direct representation of real-world entities fail because of their inability to delineate between 
functions within the entity.  With this in mind, we break real-world entities along their functional lines in 
order to provide a single, consistent level of abstraction for the conceptual model.   

To approach functional or event abstraction we leverage the concept of an Observe, Orient, Decide, Act 
(OODA) loop first proposed by Col. John Boyd (Boyd, Destruction and Creation, 1976) (Boyd, A Discourse 
on Winning and Losing, 1984) (Boyd, Patterns of Conflict, 1986) to help guide the level of abstraction.  
OODA is an iterative, recursive process that allows the prosecution of stimuli with minimal resolution.  
Given the typical questions asked of a SoS (“What is the optimal deployment strategy of the SoS?”, 
“What is the optimal employment strategy of the SoS?”, “How many stimuli can the SoS interact with 
prior to “breaking”?”), we need the minimal amount of information from the model to address this.  To 
answer these questions, we have extended the OODA formulation and decomposed each top-level 
function into a set of functions that can be used to group, extract and portray events in Event Space.  
These decompositions can be seen in Figure 12, Figure 13, Figure 14 and Figure 15, and will be used as a 
basis for abstraction of a conceptual model in section 4.  Our interpretation of Boyd’s work leads us to 
apply the OODA construct such that the Orient function is resident in each actor sensor and controller.  
As shown in Figure 13, the Orient function is much more than pure communications (i.e., notify 
functionality) and includes functions like discerning, correlation and fusion.  This approach requires each 
actor sensor and controller to perform local Orientation functions prior to sending and after receipt of a 
notification from another system within the SoS. As complexity increases, this construct requires that 
both local and enterprise (MLSoS level) OODA functions must occur simultaneously.  This concept is 
difficult to accurately capture and can lead to significant issues in the design, development, testing and 
employment of SoSs.   As we begin to ask more detailed questions about sensitivities and optimization, a 
lower level of abstraction can be employed, but it should be driven by the objectives of model 
employment, not by the bottom-up construction of the system. 

The third tenet of conceptual modeling that we propose is to employ the constructs of Autonomy, 
Collaboration, and Cooperation (ACC) (Surowiecki, 2005) on OODA and the entities as an I&I 
Abstraction.  By defining interactions and interoperations on a common scale, we can better indicate 
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which components are critical in the formation and prosecution of the SoS.  Figure 16, Figure 17, and 
Figure 18 depict a decomposition of all three ACC abstractions, which will be used throughout the 
remainder of this paper.  Typically, entities that are functioning independently, or with only moderate 
interaction with the rest of the environment, are classified as autonomous.  This classification can be 
applied to the system as a whole or to the function the system is performing during an OODA cycle.  
Entities which share information for the purposes of situational awareness are typically categorized as 
being involved in a collaborative relationship.  And, those entities which share information for the 
purposes of directly acting on that information to achieve a goal they could not achieve independently 
are said to have a cooperative relationship.  The ACC construct explicitly allows for dynamic inclusion of 
Autonomy, Collaboration and Cooperation across the SoS to optimize and/or maintain performance 
based on stimulus density and environmental feedback.   As discussed earlier, this feeds directly into the 
syntactic and semantic composition definition of I&I. 

3.2.3 Directed Acyclical Networks – Using Bayesian Networks 
Physical space graph representations provide great insight into the physical architecture of the system, 
but fall short when attempting to identify all of the interactions that occur between each component of 
the SoS.  Traditional representations of physical space (in an OV-1 or a standard network graph) the 
interactions between two nodes are identified only as a single edge (maybe directed, maybe not) with 
perhaps some information contained on that edge.  One way to extend past the single edge limitations 
is to allow multiple directed edges between each node in the physical graph.  This allows the modeler to 
define directionality of the edge as well as content for all interactions between two nodes.  The 
resultant multi-graph can be interrogated for pair-wise investigation of interaction, but there are no 
causal representations between each node or within the graph as a whole.   

The move to a directed, acyclical graph, DAG, allows us to maintain all of the interaction information of 
the multi-graph, as well as the causal nature of the graph that would be lost (or at least documented 
another way).  The DAG is essential to portray causal relationships and to operate on the network using 
Bayesian methods.  The DAG typically appears as a tree (or forest if multiple entry points) and each of 
the nodes in physical space are replicated multiple times to capture the tree structure of the SoS DAG.  
This limitation (multiple representations of the same physical entity) provides us a reason to pause and 
consider the necessity of the DAG.  If we add another step to the creation of the Event Space, we can 
transition to a DAG not of physical nodes, but rather of the events that transpire between those nodes – 
we can extract a much simpler DAG with individual PDFs as the drivers of model performance.  This DAG 
is, when married with nodal probability information, a Bayesian Network (BN) (Held, 2008).  BNs have 
been used to model causal chains of events in the past and more recently, are used to perform 
inferential analysis and prediction given certain preconditions.  BNs follow a paradigm introduced by 
Thomas Bayes in 1763 that leverages the causal dependencies related through conditional probabilities.  
As discussed in the next section, this provides a unique, novel method to capture SoS metrics for every 
event within the Event Space. 
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3.3 Metrics 
In order to adequately quantify the performance and behavior of the SoS, one must introduce adequate 
metrics that capture all of the critical aspects of the composition and employment of the SoS.  
Traditional cost and schedule metrics are necessary and will be ignored for this discussion.  We are 
interested in getting at Mission-level metrics that describe performance, behavior, integration and 
interoperability.   

There are two metrics that we propose for component and SoS performance and behavior that are fairly 
generic which operate at the system and SoS level: probability of success (Ps) and breaking point (Bp).  
The probability of success, PS, is the chance of the SoS’s goals being achieved.  The breaking point, BP, is 
the number of stimuli acting on the SoS which cause the SoS to stop functioning or the PS to fall below 
an acceptable threshold.  The PS can be represented as a string of independent probabilities for each 
function, process or event to give a bound to the performance of the system. 

In a simplistic sense, PS can be constructed as the probability of a component or an event executing 
properly.  Within the SoS, these probabilities can be strung together many different ways to develop an 
overarching SoS PS.  Utilizing an adjacency matrix approach for capturing the interstitials as described in 
section 2, one can access the PS of the interstitials and provide a more robust description of the SoS 
performance.  However, simple multiplication of probabilities, indicating their independence, betrays 
the causality of events and functions within the SoS.  In the next section, we will demonstrate how to 
utilize PS while incorporating the interstitials as well as the causal nature of the SoS. 

The BP for a SoS can be as easily crafted as the PS.  If we stimulate the SoS with multiple stimuli, we can 
monitor the PS of the system to determine when it falls below a threshold value.  The BP then 
corresponds to the number of stimuli it takes to make the system fail in the sense of unacceptable 
performance.  There is a hard limit for BP too, BPMAX, which is where the system can no long function in 
the manner intended.  Typically, this corresponds with a knee in the BP curve at which point all PS go to 
zero – this is a change in sign of the second derivative of the PS against multiple stimuli.  The breaking 
point indicates a bifurcation of the performance space that can lead to many different behaviors: 
branching, discontinuities or chaotic behavior (Garrett, Baron, Moreland, & Anderson, 2012).  A sample 
representation of PS is given in Figure 19. 

System performance metrics have been the primary tool for system and SoS evaluation since the 
beginning of systems theory.  However, we believe there is a set of complementary metrics to 
specifically and quantitatively address I&I.  As we discussed in section 2, there are two primary classes of 
I&I with three subclasses: Syntactic and Semantic Composition which are broken into Autonomy, 
Collaboration and Cooperation.  To that end, we propose the following Event Space specific metrics 
build on both PS and BP to measure the I&I of a SoS: Probability of Realization (Pr), Level of Integration 
(Li) and Degree of Interoperability (Di).  These metrics are along the lines of those presented in Garrett, 
et. al., are event space specific, and ultimately build to a rigorous form of Integration and System 
Readiness Levels proposed for physical space by Sauser et. al. (Sauser, Ramirez-Marquez, Verma, & 
Gove, 2004)and ultimately, into an Enterprise Readiness Level that encompasses the entire Mission 
domain (Garrett, Baron, Moreland, & Anderson, 2012).  The Pr measure intends to gauge the divergence 
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from the expected intended use, IU, of the SoS.  The IU and associated goals (defined perhaps as an 
objective and threshold PS and BP) of the SoS are to be determined and documented at the time of 
design.  During development, integration and testing, the SoS will be measured against the goals of the 
IU.  The Stolarsky mean (Stolarsky, 1975) (Simic, 2009) measures the deviation from the acceptable 
values will be the Pr.  The Degree of Interoperability represents the amount of cooperation in a given 
SoS with regard to the mission objectives.  Di should not be mistaken for all possible interoperability 
within the SoS, rather Di = 1 corresponds to interoperability commensurate with the cooperation 
necessary to perform system functions.  Di represents a change in the fundamental architecting of SoS’s 
and requires the objectives and mechanisms to meet those objectives be defined at the onset of the 
architecture and design process.  On the other hand, Li demonstrates the amount of integration a 
system is capable of, given the goals and intents of the SoS.  Li corresponds to an Integration Readiness 
Level, mapped to a percentage scale.  Li is driven by the traditional levels of the open systems 
interconnection (OSI) model, (ISO/IEC, 1994) requiring integration through level 7, ensuring that 
messages are correct at the protocol through the content layers. 

3.4 Event Space as a Modeling Technique 
When we attempt to represent physical systems in the same manner as we perceive them, we run into a 
problem akin to the old adage about problems cannot be solved by the same conscious that created 
them.  The problem with physical space is that it focuses on the nodes of the SoS – the individual 
components – and leaves their interconnections to be modeled implicitly, each end of the 
interconnection modeled (perhaps) by one component, but the middle left to any number of 
possibilities.  The thought is then that we need to be able to explicitly investigate the interactions of the 
components to determine how those interactions may drive the behaviors of the SoS.   

In addition to being able to explicitly represent and investigate the interstitials, we also need a method 
that manages and explicitly accounts for causality of events between components.  Attempting to 
leverage the utilities and exploit the failings of traditional Physical Space, we looked for a transform to 
take us from one space to another, much like that of real and reciprocal space in solid mechanics or time 
and frequency domain in Fourier transforms.   

In order to operate on the edges in physical space, we utilize a directed acyclical graph (DAG) to capture 
the edge events from the physical space multi-graph into a pseudo-linear DAG (Held, 2008).  We named 
this DAG the Event Space as it captured the events on the nodes of the DAG and transitioned the 
“contents” of the nodes in Physical Space to the edges in Event Space.  Thus we can capture explicitly 
the interstitials and the causality of physical space in a form that is readily operable. Figure 20 is an 
example of a physical directed multigraph. 

The transition from Figure 21 to Figure 22 notionally illustrates this process.  The directed multigraph in 
Figure 23 represents an autonomous system composed of an organic actor, controller and sensor; this 
system is then integrated to a remote sensor net.  The remote sensor net comprises a controller and 
two spatially separate sensors.  The autonomous system is free to use the remote sensor data to 
augment its organic sensor as it engages 5 stimuli.  The edges indicate the rich space of potential 
interactions. Figure 24 depicts four possible Event Space transpositions from the Physical Space.  Each 
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space contains the content of the Physical directed multigraph as well as causal dependencies that 
result from the employment of the Physical space in the ME.  Based on the construct of ACC and 
stimulus and employment variations, we can see in Figure 25 and Figure 27 how each of these makes a 
distinct impact on the structure of event space.   

If we were to assign each of our nodes a PS, we could easily see that the DAG (Event Space) explicitly 
resembles a BN (Held, 2008).  Using the conditional probability rules of BNs and the PS assigned to each 
of the nodes, we can explicitly compute the conditional probabilities for any point in the event chain, 
allowing the exploration of the entire SoS in a single space (Figure 19).  Computing many PS for the 
network as a whole allows us to determine the Bp as well, knowing that the Bp is the sign change in the 
second derivative of the PS curves.   

3.4.1 Probabilities 
Each PS used in the Event Space is a continuous PDF, allowing expressions of behavior of the event.  
However, we know that most behaviors don’t follow a typically Normal distribution or even one of the 
more “exotic” distributions (Weibull, Logarithmic, Exponential, etc.).  Often, because of the multiple 
factors that underlie each behavior, their PDF is “bumpy”, that is they have defined substructure.  In 
order to approximate these substructures, we can use linear superposition of Normal PDFs as in Figure 
28 or by using estimations and inverse problems (Banks, Kenz, & Thompson, 2012).  This approximation 
allows us to effectively employ a PDF for each event. 

Now, we need to know what the PDFs for each event are.  There are two methodologies to do this.  
First, we can start with first principles and create the PDFs from expert knowledge, basic math and 
physics.  This method will give us a rough order of estimate for the event within the Event Space, but it is 
resource intensive and subject to their own types and levels of uncertainty.  The second way we can 
develop these PDFs is to make informed estimations by employing existing data that relates to the 
events in the form of test data, assessment (M&S) data, training and exercise data or exploratory data.  
All bring a level of inherent uncertainty with them, but typically, the data is validated and/or certified for 
an Intended Use and can be leveraged to benchmark the data used in the Event Spaces with only small 
resource investments.  

Because we are dealing with the stochastic nature of the SoS and constantly capturing and quantifying 
uncertainty, we need not know all of the PDFs with 100% certainty.  What we can do; however, is create 
PDFs utilizing both techniques outlined above within given resource means, and run them in parallel to 
ascertain deviations and similarities in the two.  Deciding which is correct may be more difficult and 
choosing a method to select the estimate generating model leaves room for uncertainty, but it can be 
readily quantified (Banks, Kenz, & Thompson, 2012).  

Another complementary approach using minimal resources to finding PDFs and the Bayesian technique 
is to utilize a Frequentist (Mayo & Cox, 2006) approach where we look at actual data and determine a 
relative frequency for each event.  By doing this we can circumvent some of the issues with defining a 
PDF for each event; however, we will use the relative frequency in much the same manner as the data 
pulled from the PDFs. 
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 𝑃(𝑋) ≈
𝑛𝑥
𝑛𝑡

 (1) 

or 
𝑃(𝑋) ≈

�𝑛𝑙𝑜𝑤 ≤ 𝑛𝑥 ≤ 𝑛ℎ𝑖𝑔ℎ�
𝑛𝑡

 
(2) 

 

We will use it in the Bayesian formulation where we need to gauge dependence.  Departing slightly from 
the Frequentist approach; however, we use a range of occurrence values to assess the impact on the 
overall SoS to ensure sensitivity.   

3.4.2 Causality 
Due to the nature of the employment of complex SoS, capturing the dependence between events in the 
space is critical to ensuring behaviors and their stimuli are accurately captured.  By transitioning from 
Physical Space to Event Space, using OODA and ACC, we can begin to capture the dependence on the 
behaviors of the SoS.  Utilizing the Bayesian construct to contain the Event Space naturally allows the 
explicit inclusion of causality into the computations of the metrics (Held, 2008).  This is important as 
many traditional component and system metrics tend to be computed using independent probabilities 
which may cast an overly negative tone (or at least inaccurate) on the true behavior of the SoS.  

Because of the causal nature of the Event Space and the Bayesian structure we have used to capture it, 
we can utilize Bayes’ rule of conditional probability: 

 𝑃(𝐵|𝐴) =
𝑃(𝐵 ∩ 𝐴)
𝑃(𝐴)  (3) 

to determine the outcome of the network at any node.  In theory, this sounds nice and straightforward; 
however, in practice, determining the multi-variate probability density functions may be impossible or at 
least impractical.  A set of conditional probability tables may be built for each node: 

 𝑃(𝐵|𝐴) = �
𝐴 = 𝑇 𝐴 = 𝐹 𝐵 = 𝑇 𝐵 = 𝐹

1 0 0.98 0.02
0 1 0.45 0.55

� (4) 

 

outlining all of the possible input states and resultant nodal probabilities.  For a large, complex SoS with 
many events, this could be daunting.  We have devised a simple, linear approximation to account for 
causality given a single parent (the serial case, Figure 29) (McCabe, 1968). 

 𝑃(𝐶|𝐵) ≈ 𝜑�𝑃(𝐵)� + �(1 − 𝜑)𝑃(𝐶)� (5) 
 

This approximation utilizes a normalization factor,𝜑, which can be approximated or even optimized to 
devise the best employment and causal dependence between events and physical entities. 

 
𝑃(𝐴,𝐵,𝐶) = 𝑃(𝐶|𝐵)𝑃(𝐵|𝐴)𝑃(𝐴)

≈ �𝜑𝑃(𝐵) + (1 − 𝜑)𝑃(𝐶)�𝑃(𝐵|𝐴)𝑃(𝐴) (6) 
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In order to determine how multiple nodes stemming from a single parent may impact the outcome of a 
child node, we must borrow a formulation from the reliability community (START, 2010).  We utilize a 
parallelization schema in addition to a normalization parameter to determine the impact on the child 
node. 

 
𝑃(𝐹|𝐶,𝐷,𝐸) ≈ �𝜑�1 − �1 − 𝑃(𝐶)�𝑤𝑐�1 − 𝑃(𝐷)�𝑤𝑑�1− 𝑃(𝐸)�𝑤𝑒�

+ �(1 −𝜑)𝑃(𝐹)��𝑃(𝐶|𝐵)𝑃(𝐷|𝐵)𝑃(𝐸|𝐵)𝑃(𝐵|𝐴)𝑃(𝐴) 
(7) 

 

By weighting each of the parallel nodes, 𝑤𝑖, we may also address the amount of influence each one 
exerts on the child.  Similarly, if we have multiple, non-related or distantly related parents influencing a 
child (Figure 31) we can use the multi-variate, multi-normalization parameter formulation of (8) to 
determine the outcome of the child node. 

 

𝑃(𝐷,𝐵,𝐶) = 𝑃(𝐷|𝐵,𝐶)
≈ �𝜑𝐵�𝑃(𝐵)� + 𝜑𝐶�𝑃(𝐶)�

+ (1 −𝜑𝐵 − 𝜑𝐶)�𝑃(𝐷)��𝑃(𝐵|𝐴)𝑃(𝐶)𝑃(𝐴) 
(8) 

where ∑𝜑𝑖 = 1 (9) 
 

3.4.3 Dealing With Multiple Stimuli – Convolution 
Thus far we have dealt with capturing how an SoS may react to a single stimulus, but we know that real-
world systems must interact with far more than one stimulus at a time.  The way that we capture the 
SoS’s ability to interact with multiple stimuli is to convolve multiple, single stimuli event spaces into a 
single complex Event Space, i.e., a mission thread, which provides the computation of the probability of 
each stimulus given the others.  This means being able to create new edges between two event spaces 
to create complex networks.   

We can create these additional edges by exploring the similarity of events (based on OODA, ACC and the 
entity tenets of abstraction) in each event space and determining if they exist on the same physical node 
in Physical Space.  If they do, and the nodes are sufficiently “close” (temporally separated) to one 
another we can craft a new edge between them, Figure 32.  This new edge may cause a degradation or 
improvement in behavior due to the nature of the interaction.  Being able to convolve multiple event 
spaces into a single Event Space network, we can begin to explore employment options and “raid” 
sensitivities.  This can be seen in Equation (10).   

 𝐺3 = 𝐺1 ∗𝛿Δ 𝐺2 (10) 
 

The asterix in equation 10 indicates a convolution of the two networks with Δ, and 𝛿 indicative of an 
offset between the two networks and the acceptable temporal influence duration, respectively.  

As seen in Figure 33 there are direct links between the entity, functionality and I&I aspects of each node 
that require the two networks to be convolved.  Simply stated, there is dependence between events 
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because each event occurs on the same physical node which may cause a behavioral or performance 
variation.  Basically, convolution of two networks attempts to find a set of edges that connect the two 
networks, thereby allowing the computation of the impacts of multiple stimuli concurrently. 

 𝐺3 = [𝑉1 + 𝑉2,𝐸1 + 𝐸2 + 𝐸∗] (11) 
where, 

 𝐸∗ = �𝑒𝑖𝑖∗ , 𝑒𝑖𝑗∗ , … , 𝑒𝑗𝑗∗ � (12) 
 

In equations 11 and 12, the notion of 𝐸∗ is that there are new edges formed in the graph which are not 
part of the original set of edges, 𝐸1 or 𝐸2.  These new edges provide links between the convolved 
networks and begin to insert non-linear behaviors that are expected between two networks. 

Determining the new edges is done by searching for common functions or types of events that fall 
within an influence boundary and then linking them with a new edge originating on the earlier node and 
terminating on the later node.  This algorithm is described below: 

 ∀𝑣𝑖 ∈ 𝑉1,𝑣𝑗 ∈ 𝑉2 (13) 
 𝑒𝑖𝑗∗ = 𝐸�𝑣𝑖, 𝑣𝑗� (14) 

iff 𝑣𝑖 ≡ 𝑣𝑗 (15) 
and 𝑣𝑗(𝑡) + Δ + ∑𝑒𝑗(𝑡) = �𝑣𝑖(𝑡) + ∑𝑒𝑖(𝑡)� ± 𝛿 (16) 

 

The ability to interrogate multiple stimuli interacting with a SoS provides great insight into the 
behavioral and performance ramifications of the dense stimulus environment.   

3.5 Agents 
Agent-based modeling has been a staple for modeling and interrogating complex groups of autonomous 
entities for nearly two decades.  Agent-based models  utilize simple, heuristics based representations of 
independent, autonomous entities to investigate how groups or supply chains may operate.  Agent-
based models are traditionally built from the bottom-up with no central authority or controller for how 
the system operates or is transitions from state to state. 

3.5.1 Hyper-Agents 
We propose an extension to traditional agent-based modeling techniques in the construction of Hyper-
agents.  Hyper-agents encompass many (if not all) event spaces derived from a physical space for a SoS.  
Through convolution, Hyper-agents have the ability to look at SoS-level interactions and all of the 
permutations therein while being stimulated by numerous external entities.  Through artificial 
intelligence (AI) and decision logic, Hyper-agents can explore complex SoS architectures and 
employments.  The Hyper-agent approach allows the interrogation of SoS-level metrics and behaviors to 
determine mission thread sensitivities that can be subsequently investigated by legacy, physics-based 
M&S tools.  A simulation built around Hyper-agents can embed tens to hundreds of SoS representations 
into a field of stimulus agents to efficiently explore many mission-level permutations.   
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3.6 Optimization and Architectural Ramifications 
Today, M&S is really quite good at investigating system-level component and system solutions based on 
well-formed, physics-based models.  However, there is a need to explore new capabilities in the SoS and 
to explore both materiel and non-materiel approaches to address user needs.  Multivariate optimization 
combined with the Hyper-agent construct can allow both architectural and employment optimization 
over the solution space.  Optimization with evolutionary algorithms operating on the Event Spaces in 
Hyper-agents allows exploration of gaps, morphing architectures and employment strategies to meet 
the needs of a user.  Within the realm of SoS Engineering and SE, the engineering and employment 
communities can both provide requirements and solutions that optimize cost and performance and 
minimize uncertainty in the behavior of the SoS. 

4 Discussion – Uncertainty is the running thread throughout MLSoSE 

4.1 There is No Single “Right” Answer 
As we constructed this methodology to build and explore a conceptual model of complex systems of 
systems, we came to the conclusion that, because of the uncertainty in the system (from architecture to 
employment) there is no single “right” answer.  Rather there are many answers that will suffice; 
bounded by both architecture and employment, e.g., independent versus conditional relationships.  So 
we need to explore a range of solutions, look at trends in the solution space that indicate a level of 
goodness, and then determine what our error budgets in the SoS are.  In other words, answer the 
question “what is good enough?”  

Because of the probabilistic approach we have taken, the ultimate goal of the methodology is to 
demonstrate the sensitivity of the SoS to each factor in a multi-factor space in order to limit the problem 
domain that complementary, physics-based approaches must explore.  Additionally, if we understand 
the trends of the SoS and the factors that the SoS is most sensitive to, we can better architect the 
physical system as well as the employment of the system once it is developed and deployed. 

A conceptual model has been built and exercised over a Physical Space and several single stimuli Event 
Spaces presented previously in Figure 23 and Figure 24.  The conceptual model identifies multiple 
sensors, actors and controllers all working to prosecute stimuli.  The resultant event spaces in Figure 24 
show variations in stimulus as well as employment and architecture of the SoS.  These variations are 
highlighted in Figure 25 and Figure 27 and explicitly capture the nuances of employment, stimulus and 
architecture that physical space representations cannot.  Applying the techniques described in section 
3.4.1, we applied a PDF to each node in event space and a random correlation variable, 𝜑, to each 
dependency.  Drawing randomly from each PDF, we computed the approximations for causal 
probabilities for each node in Event Space and a traditional independent estimation of the network 
alongside the conditional computations which can be seen in Figure 33, Figure 34, and Figure 35.  
Additionally, we performed a two stimuli and three stimuli convolved Event Spaces to illustrate how 
convolution is performed, the results of which can be seen in Figure 36 and Figure 37, respectively.  
Figure 38 and Figure 33 illustrate the details of each convolution; indicating in Figure 38 where 
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controller (grey) and sensor (green) convolutions may occur and the abstraction relevance to 
convolution of two sensors in Figure 33.   

From these computations, we note in Figure 33, Figure 34 and Figure 35 that there is a wide range of 
possible answers for the behavior of the SoS between the independent and dependent curves.  We can 
also see that the level of dependence on prior events and the level of autonomy, collaboration and 
cooperation through the architecture (i.e., employment strategies) drive trends in the SoS far more than 
the individual nodal probabilities themselves.  This is more apparent as we convolve multiple networks 
in a multi-stimulus environment as in Figure 36 and Figure 37.  In the convolved results we can also see 
that there are benefits and consequences to increasing the complexity of the Event Space architectures.  
We believe that as we investigate more networks we will identify that there are certain breaking points 
along the lines of ACC abstraction in convolved networks.  Thus, we can attempt to better architect the 
employment of the SoS and we can begin to appropriately bound the range of solutions for an SoS given 
a set of error budgets.  From this, we can ultimately eliminate those variables, conditions and 
interactions that have no impact on the SoS and minimize those that do.  

4.2 Lessons Learned - Structuring the Conceptual Model 
Before we can get to the point of determining how the architecture and employment of the SoS impacts 
its overall behavior, we must first appropriately structure and develop the conceptual model through 
the Mission Environment and the Mission Threads in a holistic, top-down manner.  

From our previous experiences, the authors have come to realize that many times detail (too much or 
too little) becomes detrimental in Mission-Level SoS Engineering.  One must construct the conceptual 
model with common and consistent abstraction given the objectives (questions being asked of the 
model).  The best way that we have found to do this is through the tenets of abstraction: entity, 
functional and I&I abstraction.   

Once we have identified all of the entities, characterizing them as actors, sensors or controllers, and 
their possible interactions in the physical domain, we must then extract the walks that define the 
mission threads and event spaces.  Because there is a seeming plethora of methods to extract this 
information, we decided on the most complete, yet generic “kill chain” that we could come up with:  
OODA.  Following OODA allows us to recursively formulate, to whatever level of abstraction we desire, 
the appropriate events in event space or walks in physical space.  Similarly, we can also classify events 
derived from the application of OODA to physical space according to the taxonomy of Autonomy, 
Collaboration and Cooperation (ACC).  In doing this we can appropriately bin, not only what type of 
interaction we are dealing with, but we can bound where to find supporting data and what data we may 
need to describe the PDF of that event.  The ACC taxonomy can be seen in Figure 16, Figure 17, and 
Figure 18.  The impact of ACC can be seen in Figure 25 and Figure 27 as simple and slight changes in 
employment or stimulus can cause dramatic structural changes in Event Space.  None of these variations 
are easily or explicitly identified in physical space representations. 

Through convolution, based on abstraction, we can see that the ACC paradigm gives us insight into what 
may or may not drive the overall behavior of the SoS.  Convolution of multiple event spaces must be 
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done for each type of abstraction.  As seen in Figure 33 the likeness in entity, similarity in functionality 
(as well as dependence on resources) and equivalence in I&I dictates how the convolution will be 
performed.  From this concept, we can begin to explore degrees of convolution and their impact on the 
overall SoS.  Mathematically, we can represent these degrees in the correlation factor, 𝜑, in the 
computations, varying it over a wide range to ascertain the impacts to behavior and to tune the 
conceptual model to observed data. 

The goal of the conceptual model is to be able to execute it on a white board or as a game.  There is no 
need to code the exercise of the conceptual model as the model should be complete, well-bounded and 
executable.  The methodology that we have described above provides the ability to create a set of 
models that describes the space of the SoS and then exercise them in concert when multiple stimuli or 
scenarios are posed against the SoS.  

4.3 Dynamic Nature of the Mission-Level SoS Composition 
A key component in a MLSoS is the ability to dynamically evolve within the ACC domain in order to 
maintain performance based on environmental factors, e.g., increasing stimulus density.  This can be 
accomplished by simultaneously managing across the local and enterprise entity states and functions 
after appropriate integration and interoperability engineering and testing have been accomplished.   The 
vision of the balanced MLSoS is an initial tendency toward Autonomous behavior.  Based on the 
environment, particularly stimulus density, the SoS will evolve through collaboration to cooperation as 
sensors, controllers, and ultimately communications saturate (both locally then centrally for the 
enterprise SoS).  The distributed nature of the Orient function is a key in the SoS architecture to 
achieving dynamic re-balancing between autonomy, collaboration, and/or cooperation.  Frequently, 
focus on the Orient function centers around robust information networks and standardization of 
message formats.  While the attention to syntactic composition is necessary, the authors believe it is 
insufficient.  Interoperability must be achieved by focusing not on the interface itself, but around the 
interface and through the SoS to insure semantic interoperability.  This implies the engineering of 
interface standards must not only insure that message content has consistent meaning on both sides of 
the interface (beginning with the local orient functions) but ultimately that the semantics are 
maintained across the MLSoS. 

4.4 Relationship between Architecture and Mission Environment and 
Mission Threads and Physical and Event Space 

There are a number of different sources of uncertainty which stem from the architecture of the SoS to 
its ME.   Because of the complexities of any given SoS and its ME, one must be able to draw an atomic 
line between the architecture, ME and resultant Mission Threads in both Physical and Event Space.  Both 
the physical architecture and the employment of that architecture define the performance and 
behavioral space of the SoS.  Therefore, each change to the physical environment must be transferred to 
the MTs and each change to the employment strategy must be mapped back to physical space when 
there are changes in laydown or performance parameters of any of the individual elements.   
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The ability to map back and forth between spaces provides a necessary, complementary technique to 
focus legacy M&S tools to only the points of interest within the SoS with real, reasonable boundary 
conditions for those investigations.  Using the tools and techniques described herein, one can easily 
investigate a large combinatorial space and provide bounds to any M&S tools that may be necessary to 
investigate at a lower level of abstraction.  Executing the map between physical and event space allows 
us to effectively interrogate a wide range of employment and architectural differences within a short 
period of time and manifest the results in a meaningful way to both engineers and users of the SoS.  This 
makes for an extremely rich Conceptual Model that can inform all aspects of the Mission-Level SoS 
Engineering process as well as the lower level component SE processes. 

4.5 Employing the Conceptual through Simulation  
Because of the richness of the Conceptual Model and the heuristics described in this paper, we can 
effectively exercise the model over many permutations of the stimulus and response spaces to gain 
insight into performance and SoS behaviors.  Because the Conceptual Model is built to represent many 
possible reactions and combinations of reactions to stimuli, there is a need to perform analysis not at 
the individual MT level, but at the aggregate SoS level.  This type of analysis focuses on many different 
variables, each computed through the heuristics of the Event Space and the questions that are being 
asked of the model.  Additionally, because we are focusing on SoS-level behaviors, we must not look for 
single valued answers from the Conceptual Model, rather an analysis approach that focuses on being 
able to infer “goodness” based on the trends of SoS performance and behavior.  This allows the use of 
the Conceptual model for efforts to optimize on both the upper right and upper left sides of the classic 
System Engineering “Vee” or through the entirety of the MLSoSE lifecycle (Figure 10). 

4.6 Getting at the I&I Metrics 
From the PS and BP metrics computed for each Event Space and for each SoS, we can start to develop a 
method to determine the I&I metrics: Probability of Realization (Pr), Level of Integration (Li) and Degree 
of Interoperability (Di).  As we investigate the sensitivities of the SoS we will find that for each layer of 
ACC, there will be tradeoffs to the overall success of the SoS.  This starts by assessing Li for autonomous 
and collaborative interactions and their impacts on the behavior of the SoS.  As Li corresponds to an 
Physical Space Integration Readiness Level, we can immediately assess the IRL of the SoS.  Building up 
from IRL, we can also investigate the Di and the collaborative and cooperative interactions and develop a 
Physical Space SRL to grade the SoS.  Utilizing Li, Di, PS and BP we can ultimately assess the probability of 
realization, which corresponds to a Physical Space Enterprise Readiness Level (ERL), to grade the SoS as 
a whole. 

4.7 Implications to SoS Acceptance; VVA&C – 

4.7.1 Processes 
Current system level Verification, Validation, Accreditation and Certification (VVA&C) processes address 
a very component centric, bottoms-up approach to each VVA&C activity.  These processes assume that 
each individual entity is solely responsible for I&I and they should be covered in the VVA&C artifacts 
delivered to the SoS.  From these artifacts, the attempts to build mission level SoS VVA&C processes 
claim that SoS VVA&C is a simple linear extraction and aggregation from the components and can be 
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accomplished with little to no testing or investigation at the SoS level (National Academy of Sciences, 
2012) We believe that the construct of MLSoSE and the methods to achieve it can provide for a 
paradigm shift resulting in a means to achieve the recommendations of the National Academy (National 
Academy of Sciences, 2012) 

4.7.2 Limitations 
We contend that the extensibility of current component system approach is severely limited when it 
comes to SoS VVA&C.  The assumption of linear extrapolation from component VVA&C artifacts is at 
best insufficient.  Each component is built with a specific set of intended uses that may not necessarily 
align with the intended uses of the SoS.  Additionally, the syntactic and semantic portions of the SoS I&I, 
and the SoS uncertainties are not traditionally fully encompassed by the component VVA&C activities; 
therefore, their artifacts won’t/can’t provide sufficient information to complete an SoS VV&C process.  
We posit that because of the inherent complexities of the SoS and its different intended uses, the 
VVA&C activities for the SoS are far more than simply the linear sum of its parts.  Because of this, special 
attention must be paid to the intended use of the SoS (under the construct of Mission Environment and 
Mission Threads) and the composition of the SoS during the VVA&C activities. 

4.7.3 VVA&C and the Pyramid 
At each level of the pyramid, VVA&C is different and requires a unique (or at least modified) process to 
accomplish its goals.  At the system level, VVA&C can be well accomplished with traditional SE 
techniques and provides a robust methodology for delivering and fielding functional systems.  At the 
Trees and Forest Levels; however, the VVA&C processes of the component level start to fall apart 
because they do not put as much attention on syntactic integration as necessary nor do they address 
semantic integration.  At the Mission-Level, VVA&C techniques further fall apart due to the uncertainty 
inherent in the Mission Environment.  Once at the Campaign level, dealing with multiple missions, the 
ability of VVA&C techniques that currently exist to actually capture any of the complexity and 
uncertainty is near zero.  The bulk of this is due to the different intended uses and I&I issues. 

4.7.3.1 Multi-level VVA&C 
All of that being said, there are vertical components to VVA&C that must exist between levels in the 
pyramid: constraint comes from the top and support comes from the bottom.  In order to provide 
effective SoS VVA&C each level of the pyramid must complement those above and below it while 
retaining their own uniqueness.  The key to accomplishing VVA&C across multiple levels is alignment of 
intended uses and quantification of uncertainty.  This essentially reduces to an accurate capture and 
description of the component, system and SoS capabilities and limitations with regard to the SoS 
intended use. 

4.7.4 Acceptability 
The notion of acceptability is at best a two-tiered function for the SoS.  At one level, there is the 
engineering acceptability of the SoS (i.e., the SoS does what it should when it should do it and all of the 
requirements in the ME and MT have been met) and at the other is the user’s acceptability of the SoS.  
While acceptability cannot be met without both tiers, special emphasis has to be put on the user’s 
acceptability of the SoS.  The SoS employment is expected to elicit particular responses or display a 
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certain set of behaviors under employment constraints.  Many, if not all, of these user-based needs are 
ignored during engineering acceptance and must be a critical component of SoS VVA&C. 

5 Conclusions and Future Work 

5.1 Definition of Mission-Level SoS 
We have defined a consistent definition of a SoS that articulates the nuances of the difference between 
a system and a SoS.  We propose that the SoS is: 

• Composed of independent constituent systems that maintain their own internal management 
o The component systems bring forth their engineering artifacts, models and simulations 
o Verification, validation, accreditation and certification for their intended use 
o Independent component operational governance 

• Composed into a top-down C4 architecture 
• Able to achieve its mission goals through the application of top-down governance defined by the 

Mission Environment 
• Able to employ Mission Threads facilitate the development of the SoS architecture and 

establishes the subsequent testing domain 
• Dominated by the integration and interoperability (interstitials) and not the detailed behavior of 

the individual constituent systems; these interstitials have inherent uncertainty due to the 
nature of the mission environment and C4 based architecture, thus are stochastic in nature 

• Can dynamically re-balance the SoS composition both locally and at the enterprise between 
autonomy, collaboration and cooperation based on the mission environment to achieve mission 
goals. 

The last bullet can be achieved with the advent of the Event Space construct.  An event Space allows for 
a unique set of metrics.  By in-situ monitoring of PS and BP metrics and tracking the evolution of 
Probability of Realization (Pr), Level of Integration (Li) and Degree of Interoperability (Di) dynamic 
balancing across the SoS can be accomplished.  An example could be after employment of the SoS 
composition the dynamic rebalancing process is achieved by a flexible central SoS C4 architecture 
including a sensor network, C4ISR, monitoring the mission environment, and a series of entity systems 
(integrated actor/sensor/controller) monitoring the local ME.  Most likely the entity systems will 
initialize in an autonomous state.  Local system ‘saturation’ due to increasing stimuli loading 
could/should drive the local system to request SoS support from the central C4ISR moving through 
collaboration and ultimately  to cooperation.  As the stimuli density increases the SoS may saturate in 
terms of sensor-net and/or communications capability.  This enterprise saturation could then drive the 
entity systems back toward autonomy. 

 

This definition and set of conditions can be used to define any SoS within any domain ranging from 
commercial supply chain management to air traffic control to any DoD construct.  This common 
definition should be employed to define the difference between systems and SoS’s.   
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5.2 Implications for Real World Problems 
Because the Intended Use(s) of the systems that comprise the SoS are not necessarily the same, or even 
aligned with the IU of the composition (the SoS for the Mission) there must be a methodology to 
capture those differences and architect an SoS with those deviations in mind.  It is in this way that 
Mission Level SoS Engineering is distinctly different from traditional Systems Engineering.  Thus the 
lifecycle engineering of a SoS must be treated differently than that of an ordinary system.  Specifically, in 
the MLSoSE paradigm, requirements are derived from the mission context as conditions, behaviors and 
operating environments vice the SE requirements which consist of many will and shall statements that 
are intended to elicit specific functionality vice mission-level behaviors.  The MLSoSE paradigm also 
provides a methodology and quantification of statistical bounds on requirements for the SoS.  This leads 
directly to V&V and can help render a SoS flexible, rather than fragile. 

While this discussion may seem esoteric in points, the implications for problems encountered in 
engineering today are profound.  With the MLSoSE construct outlined in this paper, engineers now have 
the ability to interrogate and ultimately optimize not only the physical structure of the SoS but also the 
employment thereof.  This technique is already being tested against problems during both the early 
requirements definition and design phases as well as for assessing behavioral and performance 
anomalies.  The technique allows exploration of component and SoS architectural concepts as well as 
development, optimization and evolution of employment strategies, processes and procedures.  As we 
discussed, uncertainty quantification is critical to increase confidence and reduce risk.  Through the 
exploitation of this technique along with some of the pervasive UQ techniques in the literature today, 
can be used to accurately quantify uncertainty (in the aleatoric realm), identify sensitivities in the SoS 
and provide a mechanism to reduce risk. 

5.3 Importance of UQ 
Because of the nature of all SoS’s, as outlined in the definition of an SoS, the role of uncertainty 
quantification is a key consideration on the critical path to mission success and core to risk 
management.  In order to provide adequate confidence in the SoS, both during development and upon 
fielding, uncertainty and its sources must be sufficiently quantified, explored and mitigated.  The ability 
to do this relies on the ability to identify those factors to which the SoS is sensitive and then explore the 
bounds and impacts of the sensitivity as well as driving out and exploring emergent behaviors. 

While the technique described in this paper takes a significant step towards identifying and investigating 
uncertainty, the iterative approach with other tools at various levels of abstraction is necessary to 
adequately quantify the uncertainty in the system.  Additionally, the ability to quantify uncertainty in 
the early portions of the SoS lifecycle provides a foundation on which to form new Verification, 
Validation, Accreditation and Certification (VVA&C) techniques that leverage the inherent confidence in 
the SoS rather than the single valued, perfect solution that is implemented currently.   

5.4 Implications for SoS Architecting 
By following the approach to Conceptual Modeling described herein, the SoS engineers can begin to 
develop effective, employable architectures that focus more on the necessary capabilities of the SoS 
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vice the capabilities of the constituent systems.  Because the integration and interoperability issues 
impact not only the physical architecture but the employment of the SoS as well, this technique provides 
the ability to explore those I&I issues and their impacts on both the physical architecture and 
employment strategies of the SoS.  The long term implications of building and exercising a conceptual 
model in this manner are significant changes in the way SoS’s are thought of, developed, deployed and 
employed. Ultimately, exploitation of the event space may result in employment modifications and even 
changes to the physical architectures at both the component and SoS level. 

The goal of this conceptual modeling approach is to craft a SoS which is flexible enough to accommodate 
the dynamic nature of the Mission sets.  The SoS, in order to achieve Mission objectives, may shift 
between levels of the ACC as the SoS become saturated with stimuli.  These shifts may be continuous or 
discontinuous and functionality within levels of the ACC hierarchy.  Because of this, the execution of the 
OODA paradigm tends to morph between autonomy, collaboration and cooperation blending aspects of 
each tenet to prosecute the stimuli at hand and achieve Mission-level objectives.  

5.5 The Abstraction Paradigm 
The abstraction paradigm that we have developed for conceptual modeling is the key to MLSoSE.  Recall 
Figure 11, there are three major tenets to abstraction that must be addressed in concert: Entity 
Abstraction, Functionality Abstraction, and I&I Abstraction. In addition, these tenets should be 
considered at both the local and enterprise levels in order to dynamically rebalance across the ACC 
paradigm based on the environmental conditions of the MLSoS.   If only one of the tenets is addressed, 
then the Conceptual Model will be incomplete.  Traditionally two tenets (Entity and Functionality) of 
abstraction are addressed in most Conceptual Models and the resultant products are: 1) marginally 
credible with no way to assess validity, 2) difficult to interrogate as the intent of the Conceptual Model 
has been lost, and 3) unable to present information that can be used to address any I&I questions 
necessary to achieve a semantically composed SoS.  In order to create a usable, effective Conceptual 
Model all three tenets of abstraction must be applied consistently; only then will a common level of 
abstraction be achieved across the SoS that addresses the Intended Use(s) of the SoS. 

5.6 Simulation Tools and Readiness Levels as Future Work 
Currently we are in the process of finalizing the second version of software which develops, exercises 
and analyzes the conceptual model.  This work is being applied to many different domains to answer 
questions regarding development, testing, assessment, operations planning and requirements 
derivation.  Additionally, in the near future we will explore the ramifications of this technique on VVA&C 
and intend to develop a methodology for VVA&C based on the techniques described herein and their 
relationship to the Readiness Levels proposed by Sauser, et. al. at the Steven’s Institute of Technology. 
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Figure 1: Describing Complexity 
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Figure 3: Mission Hierarchy 

 

Figure 2: Physical Space Representation 
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 Figure 5: Crosswalking I&I with the Hierarchy 

Figure 4: I&I Levels and Sub-classes 
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Figure 6: Simple Graph 
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Figure 7: Simple, Directed, and Multi-Graphs 
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Figure 8: Notional Adjacency and Incidence Matrices 



Approved for Public Release 
13-MDA-7269 (29 April 13) 

 

44 
Approved for Public Release 
13-MDA-7269 (29 April 13) 

 

Figure 9: SoS Pyramid 

 

 

 

Figure 10: Mission-Level SoS Engineering 
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Figure 11: The Three Tenets of Abstraction 

 

 

Figure 12: The Observe Functionality of OODA 
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Figure 13: Orient Function of OODA 

 

 

Figure 14: The Decide Function of OODA 

 

 

Figure 15: The Act Function of OODA 
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Figure 16: The Autonomy Taxonomy of ACC 

 

 

Figure 17: The Collaboration Taxonomy of ACC 



Approved for Public Release 
13-MDA-7269 (29 April 13) 

 

48 
Approved for Public Release 
13-MDA-7269 (29 April 13) 

 

Figure 18: The Cooperation Taxonomy of ACC 

 

Figure 19: Metrics are a Natural Output of MBSoSE 
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Figure 22: Directed 
Acyclical Graph 

Figure 21: Expanded Multi-graph 

Figure 20: Simple Network 
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Figure 23: Sample Physical Space with Integrated and Non-Integrated Systems 
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Figure 24: Sample Resultant Event Spaces 

 

 

Figure 25: Sample Resultant Event Spaces 
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Figure 26: Stimulus and Employment Variations in Event Space 

 

Figure 27: Employment Differences in Event Spaces 
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Figure 28: Superposition of PDF's 
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Figure 29: Serial Bayesian Network 
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Figure 30: Parallel Bayesian Network Formulation



Approved for Public Release 
13-MDA-7269 (29 April 13) 

 

56 
Approved for Public Release 
13-MDA-7269 (29 April 13) 

 

 

Figure 31: Bayesian Networks with Indirectly Related Parents 
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Figure 32: Convolution of Event Spaces 

 

 

Figure 33: Convolution Through Abstraction
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Figure 34: Notional Event Space 1 with Computations
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Figure 35: Notional Event Space 2 with Computations
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Figure 36: Notional Event Space 3 with Computations
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Figure 37: ES 1 and 3 Convolved 
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Figure 38: Convolution of ES1, ES2, ES3 

 

Figure 39: Details of Controller and Sensor Convolution 
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