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Abstract

This research attained two main achievements: 1) It characterized the large deviations

performance of distributed inference by cooperating agents, under a variety of sensing and

communications noise and failure conditions; and 2) It derived the emergent behavior in large

networks of agents, i.e., the network macroscopic behavior, from the microscopic random

interactions among the agents.
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1 Introduction

In this research we considered two main problems: 1) large deviation error performance in dis-

tributed inference; and 2) emergent behavior in large networks of distributed interacting agents.

On the first item, we studied the large deviations performance of a particular class of distributed

algorithms we refer to as consensus+innovations distributed detection over noisy networks, where

agents at a time step k cooperate with their immediate neighbors (consensus) and assimilate their

new observations (innovation). We showed that, under noisy communication, all agents can still

achieve an exponential error rate, even when certain (or most) agents cannot detect the event of

interest in isolation. The key to achieving this is the appropriate design of the time-varying weight

sequence {αk = b0/(a + k)} by which agents weigh their neighbors’ messages. We found a

communication payoff threshold on the communication noise power, i.e., the critical noise power

below which cooperation among neighbors improves detection performance and above which the

noise in the communication among agents overwhelms the distributed detector performance. Our

studied quantified several tradeoffs among network parameters and between the time (or number

of measurements) needed for reliable distributed decision and the transmission power invested

by the agents. Section 2 describes the problem and main accomplishments; see our publications

[1, 2, 3, 4, 5, 6, 7, 8, 9] for further details. Part of this work underlies the doctoral thesis [10].

On the second item, we studied the emergence of global behavior in large scale networks. The

underlying motivating application was epidemics like computer virus spreading, for example, in a

wide campus local networks. We considered multiple classes of viruses, each type bearing their

own statistical characterization - exogenous contamination, contagious propagation, and healing.

The network state (distribution of nodes infected by each class in the network) is a jump Markov

process, not necessarily reversible, making it a challenge to obtain its invariant distribution. By

suitable renormalization, in the limit of a large network (number of nodes), we described the

macroscopic or emergent behavior of the network by the solution of a set of deterministic nonlinear

differential equations. These nonlinear differential equations were obtained by mean field analysis

of the microscopic random dynamics. We established the qualitative behavior of the nonlinear

differential equations describing the mean field dynamics. Section 3 describes the problem and

main accomplishments; see our publications [11, 12, 13, 14, 15] for further details. A doctoral
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thesis on this topic, [16], is close to being finished.

2 Large Deviation Performance in Distributed Inference

We describe briefly the distributed inference problem in the context of distributed simple binary

hypothesis testing: N agents cooperate, through a sparse, connected communications graph G =

(V,E) (V is the set of agents, the nodes of the graph G, and E is the set of interagents channels,

the edges of G) to decide at each time k, k = 1, 2, · · · , between two possible states of nature,

H0 and H1. This problem arises in many applications including classical surveillance, but now

in a distributed setting like in netted, multisite, or MIMO radars, e.g., [17], where a system of

spatially separated networked multistatic radar stations cooperate at every time k = 1, 2, · · · , to

detect the presence or absence of a target, or cognitive radio networks where distributed agents

detect a primary user, e.g., [18]. Consider the following distributed sequential detector. At each

time k, agent i executes three tasks: 1) makes an observation yi(k); 2) updates its local detection

statistic xi(k) by a distributed algorithm:

xi(k + 1) = W 1
ii(k)xi(k) +

∑
j∈Oi

W 1
ij(k)xj(k)︸ ︷︷ ︸

consensus

+W 2
i (k)ηi(k + 1)︸ ︷︷ ︸

innovations

(1)

where: W 1
ij(k) and W 2

i (k), 1 ≤ i, j ≤ N , are weights; ηi(k) is the local instantaneous log-

likelihood ratio of agent i at time k computed from its own yi(k); and Oi is the set of neighbors of

agent i as determined by the edge set E of the graph G; and 3) makes a decision by thresholding

its detection statistic:

xi(k)
[

H0]H1≷γ, k = 1, 2, · · · , i = 1, · · · , N. (2)

Equation (1) updates the test statistic with a two-step structure: the first, given by the first two terms

on the right hand side (rhs) of (1), is like consensus and reflects the cooperation among agents –

it averages the local statistic xi(k) of i with the local statistics xj(k) received from the neighbors

j ∈ Oi; and the second, which we refer to as an innovations step, assimilates the measurement

yi(k) through the instantaneous local log-likelihood ηi(k). Hence, we refer to the local updating (1)
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at each agent i as a consensus+innovations distributed algorithm and to the set of N detectors (1)

and (2), i = 1, · · · , N , as the consensus+innovations distributed detector, or distributed detector

for short. We are fundamentally concerned with how ‘good’ can we make the distributed detector,

i.e., what performance guarantees can we provide, when we carefully design the weight sequences

W 1
ij(k) and W 2

i (k) in (1). To be more specific, we benchmark the error detection performance of

the distributed detector with respect to the error performance of the Neyman-Pearson centralized

sequential detector, which, under appropriate assumptions, is:

x(k)
[

H0]H1≷γ, k = 1, 2, · · · (3)

where the centralized log-likelihood ratio x(k) is given by:

x(k) =
1

k

N∑
i=1

k∑
j=1

ηi(j), (4)

and ηi(k) is a renormalization of the local instantaneous log-likelihood ratio computed by agent i

at time k from its instantaneous observation yi(k). Our goal is to determine the conditions under

which and then show that, by carefully designing the weights W 1
ij(k) and W 2

i (k) in (1), we can

similarly guarantee exponential rate decay at every agent i by a distributed detector (1) and (2), i.e.,

the error probability of the distributed detector at each and every agent i, decays asymptotically

exponentially fast.

We consider these design and performance guarantee questions under a fairly general setting

that takes into consideration limitations that may not necessarily arise in a centralized setting but

are natural in many distributed applications. Because of limited power, not only are 1) the obser-

vations yi(k) of agent i noisy, affected by sensing noise, but also 2) the communications among

agent i and its neighboring agents (when they cooperate) are noisy, impacted by communications

noise. Our research considered general nonlinear noises. Here we explain our results by consider-

ing Gaussian sensing and communication noises. Our research established exponential error rate

of decay for distributed detection. Note that, with noisy communications, the updating of the local

statistic at agent i does not follow equation (1) but is more complex, see for details [5]. Extension

to (non-Gaussian) quantized inter-agent communication and to Gaussian temporally correlated
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sensing and communication noises are in [6].

Brief comment on the literature. We place our results in the context of the literature. There

is a vast literature on decentralized and distributed inference. While we consider a distributed

architecture, i.e., with no fusion center, references [19, 20, 21, 22, 23] consider decentralized

parallel fusion architectures, where all agents communicate with a fusion center. References [24,

25, 26, 27, 28] have a distributed architecture (no fusion center) but are of the consensus type–each

sensor makes a single observation and then the sensors fuse their local decisions by the consensus

algorithm, or by belief propagation like in [24]. Reference [29] and the algorithm in Section IV

in [30] are essentially of the consensus type, since they run consensus till convergence between

each round of measurements. The algorithm in Section V in [30] assumes a complete architecture,

or, if not, it uses a multihop protocol, so that each sensor has access to the observations of all the

sensors at each and every time step. These references stand in contrast with the class of algorithms

we consider: we use a consensus+innovations algorithm, i.e., a distributed algorithm (no fusion

center) that interleaves consensus with innovations (processing of the observations) at the same

time step, rather than running consensus to convergence in between successive observations.

We now contrast our work with [31, 32, 33, 18, 34, 35, 36, 37, 38, 39, 40, 41] that, like ours,

are distributed, include communication among neighbors, and process the new observations at

every time step as they are measured. We first comment that the main features that distinguish

our work from these works are: 1) we consider single scale distributed detectors; 2) the com-

munications among agents is corrupted by additive noise; and 3) we are primarily concerned with

showing exponential error rate (with appropriate choice of the weightsW 1
ij(k), W

2
i (k) in (1).) Ref-

erences [32, 33, 18] look at distributed LMS and RLS adaptive algorithms. They assume noiseless

communications among agents (no additive noise) and they do not study the decay rate of the er-

ror probability1. Reference [35] addresses the problem of distributed change detection (a tracking

type of problem) allowing for random averaging matrices and spatio-temporally correlated data,

but this work does not consider noise in the communication among agents, nor is it concerned

with establishing the exponential error rate of the algorithm therein. References [36, 2, 38] con-

sider link failures but no additive noise in the intra-agents’ communication. Also, [36] considers

1Coupling [18] with the results in [34, 31] that considers diffusion estimators with additive communication noise,
the probability of error of the LMS detector in [18] does not go to zero as the number of observations grows to infinity,
let alone achieve exponential decay rate, in contrast with the performance of our distributed detector.
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the limiting behavior of their distributed detector when the difference between the means under

the two hypotheses goes to zero, a very different problem from the problem we considered in our

research. Our early work [39] considers deterministically time varying networks and no commu-

nications noise. Our work in [40] is concerned with estimation and considers a very general model

that includes agent failures, link failures, and various degrees of either quantized or noisy com-

munications. Because this reference studies estimation and not detection, it is not concerned with

exponential decay rates of the error probability as we considered in our research in this project;

rather, it shows consistency, asymptotic efficiency, and normality of the estimates through stochas-

tic approximation and Lyapounov function arguments and through bounding pathwise behavior,

rather than through large deviations arguments as we apply here to our detection analysis. A non-

linear estimator in [40] is mixed scale, while the class of detectors we study in this paper is single

scale. The corresponding mixed scale algorithms for detection are presented and studied in [41],

which, to the best of our knowledge, and within the consensus+innovations detection literature,

is, like in our wrk on distributed detection, the only reference to consider additive noise in the

communications among agents (also, with no link failures.) Our results contrast with [41], for the

distributed sequential detector that we design, we establish that the error probability at each agent

decays exponentially fast; we demonstrate this under broad conditions, including unequal local

agents’ sensing signal-to-noise ratios and when certain or most agents are locally not detectable.

In our references [2, 3], we focus on how link failures impinge on detection performance,

while in [5] we show that additive communication noise in the links impacts in a qualitatively

different way the error performance; with link failures, more communication among agents can

only improve the error performance, since when communication does happen agents receive their

neighbors detection statistics unencumbered by noise. But with additive communication noise, a

clear tradeoff arises between communication noise and amount of information flow (or how often

agents communicate;) this leads to a phase change behavior: only when the communication noise

power is below a threshold does increased or more often cooperation improve performance–in

that the distributed error performance of the worst (noisiest) agent is better than the isolated (no

cooperation) performance of the best agent. While in [2, 3] we model certain averaging matrices

as independent identically distributed (i.i.d.) so that their distribution is time invariant, in [5],

because of time-decaying weights, the corresponding weight matrices are time varying, forcing us
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to develop new analysis to show asymptotic stability of certain time varying systems. We refer

to our publications [1, 2, 3, 4, 5, 6, 7, 8, 9] for additional details on the specific large deviation

performance results and tradeoffs we obtained.

3 Emergent Behavior in Networks of Interacting Agents

Many complex dynamical systems exhibit emergent behavior – a well-structured macroscopic dy-

namics induced by simple, possibly random, local rules of interacting agents. Flocks of birds, ant

colonies, beehives, brain neural networks, invasive tumor growth, and epidemics are all examples

of large scale interacting agents systems displaying complex adaptive functional behaviors. Un-

der appropriate initial conditions, a flock of birds reaches consensus on its cruise velocity while

each bird probes only its nearest neighbors dynamics without a preferred leader in the flock (refer

to [42]). This gives rise to synchronized flocking flying formations. Ant colonies can design opti-

mal trails to access sources of food even though no ant bears the cognitive ability to shape up the

colony to its blueprint mature optimal global behavior. Roughly, each scout-ant wanders around

randomly tracking the leftover pheromone released by its scout peers. Reference [11] establishes

the emergent dynamics of an idealized stochastic network model for ant colonies as the fluid limit

dynamics of the network model (as the colony grows large). Seizure is an intricate outcome of the

complex neural network dynamics of the brain. Reference [43] presents an overview of graphical

dynamical models that have been applied to better understand the nature of seizures and bridge the

microscopical electrical activity in the brain with the clinical observations of the phenomenon.

Our work has two main dimensions: 1) Mean field dynamics. The first dimension derives

through analysis of the random interactions among the population agents (e.g., virus) a set of non-

linear differential equations that describes the emergent dynamics in the limit of large population

sizes. 2) Qualitative behavior. The second dimension considers the qualitative behavior of these

nonlinear differential equations to address questions like in the limit of large time are there partic-

ular strains of virus that survive, or what fraction of the population is infected by what virus. In

both of these questions we are concerned with the impact of the network topology that captures

the local interaction among population individuals.

Mean field dynamics. The challenge in studying large scale systems lies in their high-
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dimensionality plus the coupling among the agents via their interactions. Together, these are

the needed ingredients to induce emergent behavior. For instance, consider N agents whose state-

vector

XN(t) := (X1(t), . . . , XN(t))

evolves as a jump Markov process over the state space

SN := {0, 1}N .

If the agents are independent, then it turns out that the state of each agent evolves as a jump Markov

process and, moreover, any state construct

(f (X1(t), . . . , XN(t))) ,

where f : {0, 1}N → RM bears appropriate measurability properties (we skip the details here), is

a Markov jump process. For instance, the fraction of agents at state 1,

f (X1(t), . . . , XN(t)) =
N∑
i=1

Xi(t)/N,

is Markov. Even for large N , due to the independence assumption, a qualitative analysis of(
XN(t)

)
becomes tractable, but, in this example of independent agents, any weak law of large

numbers will reflect the average behavior of each individual agent rather than an emergent global

cooperative behavior. When the agents are coupled – e.g., an agent switches to state 1 with a rate

that is proportional to the number of its neighbors in state 1–then, in general, neither the state of

each agent is Markov nor the macroscopic low-dimensional states

(f (X1(t), . . . , XN(t)))

are Markov and studying the microscopic high-dimensional dynamical system
(
XN(t)

)
becomes

quickly unfeasible with the number of agents N . Establishing the emergent dynamics or, in other
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words, the functional weak law of large numbers under an arbitrary coupling topology of the agents

is challenging. For the special case of a complete topology of interaction–any agent evenly affects

any other agent in the cloud–low-dimensional macroscopic state-variables may still be Markov,

even though the state of each individual agent is no longer Markov. Again, for complete networks,

the fraction of infected nodes

f (X1(t), . . . , XN(t)) =
N∑
i=1

Xi(t)/N

is Markov. Under this complete network setting, the emergent behavior is framed as the fluid limit

dynamics of a global state variable

(Y(t)) := (f (X1(t), . . . , XN(t)))

of interest. For example, reference [44] considers a multiclass flow of packets over a complete

network with finite capacity nodes. It defines the macroscopic state variable

(
YN(t)

)
=
(
Y N
1 (t), . . . , Y N

L (t)
)

that collects the fraction of nodes Y N
i (t) with a particular distribution i of packets over the different

classes. Reference [44] proves that the empirical distribution

(
YN(t)

)
converges weakly, with respect to the Skorokhod topology on the space of sample paths, to the

solution of a vector ordinary differential equation.

For general topologies, the evolution of macroscopic state variables is intricately tied to the

high-dimensional microscopic state
(
XN(t)

)
of the system. Reference [45] proposes to consider

the impact of the topology on the diffusion of a virus in the network, but, to overcome the coupling

difficulty that arises with non complete networks, reference [45] departs from a peer-to-peer diffu-

sion model. The authors in [45] replace the exact transition rates of the microstate process (X(t))

by their average to establish their N -intertwined model. Were the states of the nodes independent
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processes (a very strong assumption) and the resulting N -intertwined model would be an exact

model to describe the dynamics of the likelihood of infection of each node as pointed out by the

authors.

In our work, we went beyond the complete network model to establish the exact meanfield

dynamics of a multi-virus epidemics over the class of multipartite networks, without making any

artificial simplifying assumptions. We assume in our work a stochastic network model for the

peer-to-peer spread of different strains of virus among a cloud of agents and establish the emergent

dynamics of the epidemics. The emergent behavior is the fluid limit dynamics of the fraction of

infected nodes over time. Namely, our work shows that, when the number of agents goes to infinity

in a certain structured way, the fraction of infected agents at each island in the multipartite network

converges weakly to the solution of a set of nonlinear ordinary differential equations.

This work established the macroscopic scale dynamics of a multi-virus epidemics or diffusion

over large stochastic non-complete networks of agents.

Qualitative behavior. The second type of questions of interest that we addressed included

when does a virus persists, when among multiple strains of virus we observe survival of the fittest,

or what is the distribution of the fraction of infected agents over the various strains of virus in the

network. These are well studied when the network is complete, i.e., any agent interacts directly

with any other agent, and a vast body of literature describes the dynamics of the fraction of in-

fected nodes by nonlinear ordinary differential equations (ODEs) that, as noted above, are arrived

at through conservation or full mixing arguments, [46]. As also noted above, these nonlinear ODEs

can also be rigorously derived when the network is complete because the fraction of infected nodes

in the complete network is a Markov process under the standard independence assumptions on the

peer-to-peer (microscopic) infection process, and the resulting macroscopic or global behavior of

the epidemics is the fluid limit of this Markov process as the size of the complete network grows

to infinity, see [47, 44]. When the network is not complete, the fraction of network infected nodes

is no longer Markov and studying the network global or macroscopic behavior is the challenge

we addressed in the previous paragraph. The mean field equations we obtained with our analysis

are nonlinear coupled ODEs. We then studied the qualitative behavior of these mean field ODEs,

i.e., the stability of their equilibria dynamics, to establish the emergent network macroscopic be-

haviors. Their coupled nonlinear behavior defies the use of Lyapunov methods. We developed a
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new methodology that upper- and lower-bounds the limiting dynamics of the stochastic network

by the much simpler to analyze dynamics of first order nonlinear systems. We considered single-

and multi-virus epidemics and arbitrary regular multipartite networks.

Summary. Our work reported in [11, 12, 13, 14, 15] derives rigorously from basic peer-

to-peer principles of diffusion the characterization of the global diffusion or infection behavior

in multipartite networked systems in the limit of large systems. Our work is a microscopic-to-

macroscopic study that goes beyond complete networked systems to obtain the exact impact of a

non-complete topology on global infection and diffusion dynamics.

4 Main Conclusions

We now present briefly the main conclusions of our work. We consider separately the two main

classes of results we obtained. Large deviation performance results for distributed inference.

We designed a consensus+innovations distributed detector that achieves exponential error rate at

all agents under noisy communication links, even when certain (or most agents) in isolation can-

not perform successful detection. The key is the appropriate design of the consensus time-varying

weights. We parameterized in terms of several network parameters a threshold on the communi-

cation noise power above which any agent that successfully detects the event in isolation still im-

proves its performance through cooperation over noisy links, while below which not even the best

agent can improve its detection performance by cooperation. We showed with numerical examples

the significance on detection performance of tuning the weight sequence, showed communication

payoff occurring already at a high noise level – and hence it is typically worthwhile to cooperate,

and illustrate tradeoffs between the time to decision – time to reduce the error probability below a

prescribed value – and the total transmission power. References [1, 2, 3, 4, 5, 6, 7, 8, 9] summarize

our main results on large deviation performance analysis under broad conditions of sensing and

communication noise and link failures.

Emergent behavior in random networks of interacting agents. There are three issues in

determining the macroscopic behavior in stochastic networks: 1) Finding a Markovian macrostate,

i.e., low dimensional functionals of the microstate XN(t) that are Markov; 2) Deriving the equa-

tions for the dynamics of the macrostate in the limit of large networks–the mean field dynamics of
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the macrostate; and 3) Studying the qualitative dynamics of the mean field.

The first and second items are dealt in greater detail in [14]; the third is in [15]. We consider

the two first items now.

1. Mean field dynamics. We established the fluid limit dynamics of a multivirus epidemics

withK virus over a multipartite network ofM islands from a peer-to-peer stochastic network

model of diffusion. We proved that the normalized macrostate

(
Y

N

ij (t)
)

collecting the fraction of j-infected nodes
(
Y

N

ij (t)
)

per island i ∈ {1, . . . ,M} with j ∈

{1, . . . , K} over the network given by the graph GN converges weakly, under the Sko-

rokhod topology on the space of càdlàg sample paths, to the solution (y(t)) of a (M ×K)-

dimensional ordinary differential equation. To this effect, we first proved that the under-

lying martingale perturbation
(
M

N
(t)
)

vanishes as N grows large, which implies that the

macrostate family
(
Y

N

ij (t)
)

is tight in N. Then, we showed that any weak accumulation

point of the family
(
Y

N
(t)
)

is solution to a vector ordinary differential equation with Lips-

chitz vector field. From the uniqueness of the solutions of the resulting meanfield differential

equation, we concluded that the whole sequence
(
Y

N

ij (t)
)

converges weakly to the solution

of this meanfield differential equation.

We now consider the third item.

2. Qualitative behavior. We analyzed the limiting (in the number of nodes) dynamics of a virus

spreading in a regular multipartite network. Our method to derive the qualitative analysis of

such coupled nonlinear dynamical system is not Lyapunov theory nor numerical simulations

based. Instead, we explored a monotonous structure of the system, upper/lower bounding

by simpler solutions any solution of the mean field equations. Our main conclusions for

symmetric generic regular multipartite networks are:

(a) Virus Resilience: If the inter island infection parameter γ > 1
d
, where d is the island

degree, the virus persists in the network; otherwise, it dies out.
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(b) Natural Selection–Survival of the Fittest: Only one strain (the most virulent one) sur-

vives, the remaining weaker ones die out; if there is a strain k? such that its infection

rate is such that γk? > γk for all k 6= k? with γk? > 1
d
, where d is the island degree,

then virus k? persists in the network and all the remaining strains die out.

For general multipartite networks, the break of symmetry may defy natural selection; this is

bing pursued in future research.

References [11, 12, 13, 14, 15] detail our approach and results on the topic of emergent behavior

in large networks of agents.
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