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Error Quantification and Confidence Assessment of 
Aerothermal Model Predictions for Hypersonic Aircraft 

Benjamin P. Smarslok* and Adam J. Culler† 
Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 

Sankaran Mahadevan‡ 
Vanderbilt University, Nashville, TN 37235 

Assessing prediction confidence and enabling its use as a decision-making metric for 
autonomous model fidelity selection is essential to the USAF’s vision of a ‘Digital Twin’ as a 
viable approach for condition-based fleet management by tail number. Significant strides 
have been made in modeling complex interactions of the multi-physics, fluid-thermal-
structural coupling applicable to hypersonic flow conditions. However, validation of these 
models remains a challenge due to limited experimental data for hypersonic conditions. This 
research addresses quantifying errors and assessing the confidence in aerodynamic pressure 
and heating predictions for a spherical dome protruding from a flat ramp. Well-
characterized aerothermal test data from hypersonic wind tunnel experiments are used to 
calibrate uncertain model parameters and quantify errors through Bayesian techniques. A 
Bayesian hypothesis testing-based confidence metric is employed to compare the accuracy in 
various model predictions. A model selection study is performed for 1st-, 2nd-, and 3rd-order 
piston theories. The results showed that the greatest confidence in model predictions does 
not necessarily correspond to the highest-order model.  

Nomenclature 
B = Bayes factor 
C =  Bayesian hypothesis testing-based confidence metric 
D = diameter of the spherical dome 
e = model error 
H = height of the spherical dome 
M = Mach number 
p = aerodynamic pressure 
q = dynamic pressure (U2/2) 
Q = aerodynamic heat flux 
Req = equivalence ratio (fuel-to-air ratio divided by stoichiometric fuel-to-air ratio) 
S = main effect sensitivity index 
ST = total effect sensitivity index 
T = temperature 
w = transverse panel displacement 
x = model prediction, location along dome 
y = observed data 
 = oblique shock angle relative to freestream 
 = uncertain input parameters 
 = ratio of specific heats 
 = mean 
 = probability density function 
____________________________ 
*Research	Aerospace	Engineer,	Air	Vehicles	Directorate,	Structural	Sciences	Center,	AIAA	Member,	
benjamin.smarslok@wpafb.af.mil	
†Postdoctoral	Research	Engineer,	Universal	Technology	Corporation,	AIAA	Member	
‡John	R.	Murray	Sr.	Chair	in	Engineering,	Civil	and	Environmental	Engineering	Department,	AIAA	Associate	Fellow	
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
 = panel inclination angle to freestream 
 = density 
 = standard deviation 

Subscripts 
aw = adiabatic wall 
e = edge of boundary layer 
i = variable index, position along spherical dome 
true = true value of x 
pred = model prediction of x 
w = wall, aerodynamic surface 
1 = freestream flow 
3 = flow at the leading edge of panel 
4 = flow at location of interest along the panel 

Superscripts 
fp = flat plate 
sd = spherical dome 
* = flow properties evaluated at Eckert’s reference temperature 

I. Introduction 
DVANCES in computational capability and model fidelity have inspired the USAF to develop a plan for 
creating a Digital Twin for every aircraft platform. The Digital Twin vision is to enable condition-based fleet 

management by tail number through numerical simulation of the structural response to the same flight spectrum as 
experienced by the physical system. That is, the Digital Twin must be capable of integrating extreme environmental, 
coupled loading with advanced damage initiation and accumulation models for life prediction. This is especially the 
case for ultra-high performance platforms, such as reusable, air-breathing hypersonic vehicles, since full-scale 
testing of the various disciplines is often impractical.1 Unfortunately, obtaining the needed long time histories from 
these complex models usually creates an intractable computational problem.2 Therefore, it is critical for a hypersonic 
twin to be capable of autonomously selecting between competing, variable-fidelity models for efficient and accurate 
representation of coupled fluid-thermal-structural interactions. However, errors inherently exist in all computational 
model predictions due to imperfect knowledge and physical variability in the system, model order reduction, 
assumptions and approximations, and the limited experimental data available for model validation. This initial phase 
of a broader research objective is focused on quantifying the errors in existing aerothermal model predictions3,4 
corresponding to a set of experiments in a high-temperature wind tunnel.5 The methods implemented in this paper 
will be used as a basis for expanding error quantification and prediction confidence assessments to a coupled 
aerothermoelastic model. 

Aircraft structures exposed to extreme environments are subjected to coupled aerodynamic, thermal, and 
acoustic loading.2,3,6-12 Neglecting these interactions can lead to gross errors in model predictions.10-15 
Aerothermoelastic aircraft structures can be modeled at multiple levels of fidelity for structural and thermal effects. 
However, there are limitations in computational resources, which make the degree of model fidelity and the level of 
coupling necessary for a particular problem play a key role in the computational tractability of the model used. For 
example, aerodynamic pressure and heating could be calculated using a computational fluid dynamics (CFD) model, 
or the decision could be made to use reduced-order models or the simpler piston theory and Eckert’s reference 
enthalpy method, respectively.3,4,12,16 Substantial research has been performed on investigating the model 
components for the physics of a coupled aerothermoelastic panel and the solution procedures for both quasi-static 
and dynamic solutions.2,3,6-12 However, the current state of the art focuses on deterministic calculations with limited 
uncertainty analysis. Lamorte et al. investigated the implementation of a stochastic collocation approach for 
propagating uncertainty in aerothermoelastic analysis.17 Related work expanded on uncertainty propagation in 
aerothermoelastic analysis for hypersonic vehicles with emphasis on assessing the impact of aerothermoelastic 
deformation on aerodynamic heating.13 Culler et al. also identified two-way coupling between structural deformation 
and aerodynamic heating as an important consideration in modeling an aerothermoelastic panel.11 These efforts 
underscore the importance of understanding the uncertainty in a coupled aerothermoelastic model; however, many 
questions remain about the significant deterministic and stochastic sources of uncertainty and how to assess the 
confidence in model predictions. 

A
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Obviously, uncertainty is prevalent in any coupled system due to physical variability, sparse data, and modeling 
errors. Physical variability is inherent in fluid-thermal-structural interactions through variations in material 
properties, geometry, boundary conditions, and load interactions. Uncertainty also exists in the experimental data 
used for model calibration and validation due to limited availability and difficulties in creating an experimental 
environment capable of fully validating the model. This is particularly the case for hypersonic aircraft structures 
exposed to extreme environments. Finally, the aerothermoelastic model prediction has both model form error and 
numerical errors. In this context, model form error encompasses the errors in representing the physical system with a 
particular model. Numerical errors include errors from sampling, discretization, coupled solution procedures, and 
other mathematical approximations. In the presence of these various uncertainty sources, engineers are challenged 
with resource allocation, uncertainty quantification, model calibration, and model validation. An attractive option for 
integrating errors and reducing uncertainty when limited data is available is the use of Bayesian techniques.18,19 
These techniques provide the statistical information to validate models and quantify the confidence in their 
predictions. Integrating statistical distributions and observed data in a systematic Bayesian framework for capturing 
interactions of uncertainty, model predictions, and experimental data is achieved through a Bayes network.18,19 A 
Bayes network is a versatile tool for performing model validation, sensitivity analysis, assessing model extrapolation 
capability, and determining experimental and computational resource allocation.5,18-20 Bayes networks enable the 
fusion of various forms of information, such as model predictions, experimental data, subjective information, errors, 
and data uncertainty.21 

The current research is part of a longer-term initiative to create a framework for integrating various sources of 
uncertainty in a coupled hypersonic structural simulation and assessing the confidence in model predictions. This 
study lays the groundwork for the previously discussed Bayes network for a coupled aerothermoelastic system. The 
four primary objectives of this paper are: 1) perform sensitivity analysis to identify significant variables, 2) calibrate 
uncertain model inputs and quantify model errors using experimental data with Bayesian updating, 3) validate the 
predictions using a Bayesian hypothesis testing-based confidence metric, and 4) use the confidence metric to make 
decisions for model selection. The existing models considered in this study correspond to aerothermal tests 
performed by NASA on spherical domes protruding from a flat ramp into Mach 6.5 flow.5 These comprehensive and 
unique experiments were conducted in 1986 by Glass and Hunt in the Langley 8-foot High-Temperature Tunnel 
(HTT)5, and the tests are still used for validation purposes in numerous, on-going research efforts.3,4 

The outline of the paper is as follows. Section II describes the coupled aerothermoelastic problem, as well as the 
simplified aerothermal model corresponding to the Glass and Hunt HTT experiments. In Section III, the model error 
for the aerothermal problem is analyzed in four steps. First, the input uncertainties are defined, along with sensitivity 
analysis for the aerodynamic pressure and heating calculations. Next, the uncertain model parameters and errors are 
calibrated using Bayesian updating with data from Glass and Hunt5 experiments. Subsequently, the calibrated 
uncertainty and errors are used for validation with experimental data from a different spherical dome. Finally, a 
Bayesian hypothesis testing-based confidence metric is used to compare several different model predictions with the 
experimental data. 

II. Aerothermal Model Definition and Experiments 
Consider a panel section on the forebody of a representative hypersonic vehicle configuration, as shown in Fig. 

1.3 As the vehicle is subjected to hypersonic flow (location ‘1’), an attached oblique shock is created at the forebody 
leading edge. This results in aerodynamic pressure at the area of interest (location ‘4’), causing elastic deformation 
of the panel, which feeds back to alter the aerodynamic pressure on the panel. This is commonly referred to as the 
aeroelastic portion of the coupling. The panel is also subjected to aerothermal effects from aerodynamic heating. 
Naturally, this aerothermal component is coupled to the aeroelastic component, since a change in the temperature of 
the structure causes additional deformation, which in turn further alters both the aerodynamic pressure and the 
aerodynamic heating. Figure 2 schematically illustrates these interactions as the coupling of: aerodynamic pressure, 
aerodynamic heating, heat transfer, and structural deformation. 
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Figure 1.  Representative hypersonic vehicle structure with aerothermoelastic panel3 

 
Figure 2.  Aerothermoelastic model 

Modeling these interactions can be critical for accurately predicting the structural response under hypersonic 
flow conditions. However, due to the complexity of the problem, presumably less important couplings are typically 
neglected in favor of a more tractable solution. On-going research is investigating models for each of the four 
aerothermoelastic system components, as well as their integration to study the importance of different types of 
coupling.3,4,13  

In order to validate these models and quantify the confidence in their predictions, experimental data from this 
extreme, hypersonic environment is required. A candidate for validation data under these conditions are the 
experiments performed by Glass and Hunt, in which a series of tests were conducted in a hypersonic wind tunnel to 
investigate the aerodynamic loads on deformed surface panels.5 To simulate a deformed panel, a rigid spherical 
dome protuberance was mounted on a flat panel holder. While the use of rigid domes removes the aeroelastic 
coupling, valuable aerothermal data was obtained. The 8-foot High-Temperature Tunnel can simulate up to Mach 7 
flow at an altitude between 25 and 40 km for up to 2 minutes by combusting a mixture of methane and air. The flow 
conditions for the tests of interest had a turbulent boundary-layer at the panel location, and the panel holder had a 
sharp leading edge, similar to the representative hypersonic vehicle depicted in Fig. 1.  

The experiments performed by Glass and Hunt used a flat plate specimen to record the aerodynamic pressure and 
heat flux at the center of the plate as a reference. In addition, spherical pressure and thermal domes with a diameter 
of 35.6 cm and the three H/D ratios shown in Table 1 were instrumented. Table 1 also summarizes the freestream 
conditions p1 and M1, for each test. A schematic of the test specimen and the 58 instrumented locations is shown in 
Fig. 3. For the purposes of this study, the analysis is limited to the points along the centerline parallel to the flow. An 
investigation by Ostoich et al.4 discovered that the recorded data at points 1 and 38 may have been affected by an 
uncharacterized gap between the dome and plate, thus only the middle 11 data points along the centerline (points 2 - 
39) are considered. 
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Figure 3. Spherical dome geometry and instrumented locations for HTT measurements5

 

Table 1. Experimental conditions from Glass and Hunt for three tests at different dome heights5 

Test p1 M1  
4p

H D  
4Q

H D

Run 30 654.9 6.60 0.028 0.033 

Run 31 648.0 6.60 0.013 0.013 

Run 32 645.9 6.60 0.006 0.010 

 
The flat plate and spherical dome measurements provide substantial validation data for error quantification and 

confidence assessments. Furthermore, since the domes and plate are thick and assumed to be rigid, potential 
coupling between structural deformation and aerodynamic heating can be neglected. Thus, the aerothermoelastic 
model in Fig. 2 simplifies to the aerothermal model shown in Fig. 4. 

 

 
Figure 4.  a) Aerodynamic pressure and heating models, b) Propagation of random variables 

Figure 4a shows the interaction of the aerodynamic pressure and heating models , and Fig. 4b shows a schematic 
of uncertainty propagation for the primary random variables. The subscripts of the flow parameters follow the same 
numbering convention as defined in Fig. 1 for the representative hypersonic vehicle forebody. Location ‘4’ refers to 
the location(s) of interest on the flat plate (fp) or spherical dome (sd). The oblique shock relations (Eqs. (1)-(4)) give 
the properties of the inviscid flow (p3, T3, and M3) parallel to the inclined surface as a function of the freestream 
conditions (p1, T1, and M1), shock wave angle  and surface inclination angle .22 
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Equation (1) is used to calculate the aerodynamic pressure prediction on the flat plate, 4 3
fpp p . For a deformed 

surface, or a spherical dome, another model must be used to calculate the aerodynamic pressure, such as piston 
theory.3 A 3rd-order expansion of piston theory (Eq. (5)) is used in this study, due to the combined presence of 
hypersonic flow and moderate protrusion of the spherical domes into the flow. 

 

2 3

23
4 3 3 3

3 3 3 3

1 1 1 1 1
2

4 12
sd q w w w w w w

p p M M
M U t x U t x U t x

                                      
 (5) 

After computing the inviscid flow over the flat plate or spherical dome, the heat flux can be calculated using 
several different approaches. In a higher-fidelity model, computational fluid dynamics could be employed to predict 
both the aerodynamic pressure and heating, as done by Ostoich et al.4 In the present study, a more computationally 
expedient method is needed. Eckert’s reference temperature method is selected because it provides a rapid 
approximation for the boundary layer flow, while incorporating local inviscid flow properties (location ‘4’) to 
capture the first order effect of panel deformation (spherical dome effect in this case). Using flow properties 
evaluated at Eckert’s reference temperature (Eq. (6)) the aerodynamic heat flux is computed using Eq. (7).3,23 

    * 0.5 0.22e w e aw eT T T T T T      (6) 

  * * *
4 e p aw wQ St U c T T   (7) 

Where, St* is the reference Stanton number, * is the reference density, Ue is the inviscid flow velocity, *
pc

 
is the 

reference specific heat, Taw and Tw are the adiabatic wall and actual wall temperatures, respectively, and Te is the 
boundary layer edge temperature. Note in Eqs. (6) and (7) all flow properties and the wall temperature are evaluated 
at the point of interest on the flat plate or spherical dome (location ‘4’). 

The next section further discusses the uncertain inputs in the aerothermal model, as well as Bayesian model 
parameter calibration, error quantification, and validation for pressure and heat flux predictions. 

III. Investigation of Model Error for Aerothermal Experiments 
This section analyzes the prediction error for the Glass and Hunt experiments5 using the assumptions and results 

from Culler et al.3 The use of the Glass and Hunt data in this paper closely follows the aerothermal model 
verification study performed in Ref. [3]. This work reevaluates some of the assumptions and errors that were 
observed in the previous study.  

 First, a description of the uncertain input parameters in the experiments and aerodynamic pressure and heating 
calculations is provided with sensitivity analysis. Next, two sets of experimental data are used to calibrate uncertain 
model inputs and errors. The calibrated inputs are then used to update nominal predictions for the spherical dome 
experiments. Then, a third data set is used for validation with Bayesian hypothesis testing-based confidence. Finally, 
a model selection study is performed using the confidence metric for different forms of piston theory. 
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A. Model Input Uncertainty and Sensitivity Analysis 
Consider the flat plate specimen, where oblique shock relations are used for aerodynamic pressure 4

fpp  and 

Eckert’s reference temperature method for aerodynamic heating 4
fpQ . Note that for the flat plate, we are interested in 

the value at the center of the plate, which corresponds to location ‘4’ in Fig. 1. The flat plate experiments consisted 
of three tests (Runs 30, 31, and 32), which all correspond to the same nominal inputs and turbulent boundary-layer 
with a sharp leading edge panel holder. For these tests, the freestream pressure p1, and Mach number M1, were given 
as shown in Table 1. In addition, the output aerodynamic pressure and heat flux were measured at the center of the 
flat plate. However, three critical pieces of information were not available in the Glass and Hunt5 report: the 
freestream temperature T1, wall temperature Tw4, and equivalence ratio Req. Therefore, realistic values had to be 
estimated from other reports of similar testing.24 The mean freestream and wall temperatures are assumed to be 
220K and 300K, respectively. The equivalence ratio is also uncertain, but for the current investigation a constant 
value of Req = 0.9 is assumed. 

To get a better understanding of the uncertainty in the outputs and their sensitivity to the inputs, statistical 
distributions were assumed for the inputs. Since p1 and M1 were measured, 1% coefficient of variation (CV) is used 
for measurement variability. However, 10% CV is used for T1 and Tw4 since they were not reported and had to be 
assumed. Normal distributions are used for all four random inputs and their distribution parameters are shown in 
Table 2. 
 

Table 2. Uncertainty for inputs to aerodynamic pressure and heat flux calculations 

Measured Inputs Mean 
Standard 
Deviation 

Coefficient of 
Variation 

p1 (Pa) 652.5 6.525 1% 

M1 6.6 0.066 1% 

Uncertain Inputs Mean 
Standard 
Deviation 

Coefficient of 
Variation 

T1 (K) 220 22.0 10% 

Tw4 (K) 300 30.0 10% 

 
Local and global sensitivity analyses are performed to investigate the sensitivity of aerodynamic pressure and 

heating to the input variables. For defining the sensitivity measures, let  1 2, , , nY f X X X  , where Xi is the 

measured or uncertain inputs and Y is the resulting random output. The local sensitivity is calculated as the 
difference of the total variance var(Y), to the variance when each of the corresponding random variables is evaluated 
at their mean with the other inputs remaining random (Eq. (8)).21 The greater the value of 2

i , the greater the 

importance of Xi on Y. Note that X~i refers to being calculated over all random variables X, except Xi. The global 
sensitivity is expressed as main effect sensitivity index Si and total effect sensitivity index STi shown in Eqs. (9) and 
(10), respectively.21 The Si of a variable is another measure of the sensitivity of Xi on Y and STi provides information 
about the interaction of Xi with other variables. The sensitivities for the initial random inputs in Table 2 are shown in 
Table 3. 

 
   

 
~2
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X i i i

i

Y Y X x

Y


 
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 
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 
 
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i i
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X X iE Y X
S

Y

    (10) 
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Table 3. Local and global sensitivity for aerodynamic pressure and heat flux for the flat plate with initial 
uncertainty 

Input Variable   42
fpp

i  4
fpp

iS  4
fp

i

p
TS    42

fpQ

i  4
fpQ

iS
 

4
fp

i

Q
TS

p1 (Pa) 0.686 0.684 0.680 0.020 0.016 0.016 

M1 0.333 0.319 0.319 0.122 0.174 0.175 

T1 (K) 0.0008 0.0002 0.0002 0.451 0.464 0.465 

Tw4 (K) - - - 0.340 0.344 0.344 
 

As expected, the temperatures play a small role in the 4
fpp  calculation; Tw4 does not appear in oblique shock 

relations and T1 is only used with Req to determine the methane-air properties. However, T1 and Tw4 are dominant in 
the heat flux calculation with 0.451 and 0.340, respectively. Furthermore, since the sum of the main effect indices Si 
is close to 1, individual values of the main effect indices Si and the total effect indices STi are so similar, it is 
indicated that there is not a strong interaction among variables. Table 4 shows the forward uncertainty propagation 
of the normal random variables from Table 2 to 4

fpp  and 4
fpQ . 

 
Table 4. Uncertainty propagation using initial uncertainty to pressure and heat flux for the flat plate 

Output Mean 
Coefficient of 

Variation 

  4 Pafpp  1385.4 1.21% 

 2
4 W cmfpQ  5.211 11.53% 

 
Observe that the 10% uncertainty in the temperatures (T1 and Tw4) play a larger role in the 4

fpQ  calculation, 

therefore it has a larger CV at 11.53%. Since these experimental values are unknown and the distributions are 
assumed, it is beneficial to calibrate these uncertain model inputs. The next section uses Bayesian updating to 
calibrate the T1 and Tw4 distributions and quantify the model errors using a Bayes network with the Glass and Hunt5 
data. 

B. Bayesian Model Parameter Calibration 
There is significant epistemic uncertainty in the true values of T1 and Tw4, therefore Bayesian model parameter 

calibration can assist in better approximating these values based on observations. Furthermore, the errors in 
aerodynamic pressure and heat flux for the flat plate and spherical dome predictions can also be calibrated. First, as 
a brief introduction to Bayesian concepts, let   be the uncertain model parameters or errors in a model  x   with 

some prior information on the parameters’ uncertainty as a basis for a statistical distribution    . Then using 

some observed data y, the distribution of the unknown parameters is updated using Bayes theorem, as shown in Eq. 
(11).18 

  
   
   

Pr |
|

Pr |

y x
y

y x d






  
  

 


  
 (11) 

Thus, this Bayesian updating reduces the uncertainty in the parameters  , given observations y. In this case, the 

uncertain parameters are 
4 4 4 41 4, , , , ,fp fp sd sd

w p Q p QT T e e e e    ; where, 
4 4 4 4
, , , andfp fp sd sd

p Q p Qe e e e  are the errors in the 

aerodynamic pressure and heat flux predictions for the flat plate and spherical dome specimens. The model error is 
defined as the difference between the model prediction and the true value, as shown in Eqs. (12) and (13) for the flat 
plate and spherical dome models, respectively. For this study, a systematic error in the predictions across the dome 
is assumed for convenience, as seen in Eq. (13). 
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44 4true pred

fp fp fp
pp p e          

44 4true pred

fp fp fp
QQ Q e   (12) 

     44 4true pred

sd sd sd
pi i

p p e              44 4true pred

sd sd sd
Qi i

Q Q e   (13) 

Building upon the relationship of the inputs and predictions from Fig. 4b, a Bayes network of the measured 
inputs (p1 and M1), uncertain inputs (T1 and Tw4), model predictions (p4 and Q4), and model errors (

4pe and 
4Qe ) is 

constructed. Figure 5 depicts the Bayes network for the aerodynamic pressure and heat flux predictions for the flat 
plate and spherical dome geometries and the interconnections between inputs, errors, and data. 

 

 
Figure 5. Bayes network for calibrating model inputs and errors using Glass and Hunt data5 

The gray nodes in Fig.5 are the uncertain inputs and errors that are being calibrated with the Glass and Hunt5 data. 
The dashed-box around the network represents the randomness in the measured inputs p1 and M1. Bayes theorem in 
Eq. (11) is rewritten for the case corresponding to the aerodynamic pressure and heat flux predictions for the Glass 
and Hunt5 experiments in Eq. (14). 

        
     

4 4 1 1

4 4 1 1

4 4 1 1

4 4 1 1

4 4 1 1

Pr , , , | , , ,
| , , ,

Pr , , , | , , ,

p Q p M

p Q p M

p Q p M

y y y y p Q p M
y y y y

y y y y p Q p M d






  
  

  


   
 (14) 

In Eq. (14), uncertain inputs and errors are 
4 4 4 41 4, , , , ,fp fp sd sd

w p Q p QT T e e e e    , data is available for 
4py  and 

4Qy  from the 

flat plate and spherical dome measurements, as well as measured input data 
1py  and 

1My (Table 1). Therefore, all 

four sources of data are incorporated in the likelihood function. Now that   and y are identified, we must now 

define the prior distributions    . Normal distributions are used for uncertain inputs T1 and Tw4, with means from 

Culler et al.3 and 10% coefficient of variation, as summarized in Table 2. Regarding model errors, observations from 
previous reports indicated that p4 and Q4 predictions are expected to be accurate within [-10%, 10%]  and 

[-10%,-30%] , respectively.24 The error bounds for Q4 are associated with Eckert’s reference temperature method, 

which is expected to consistently over-predict the true value due to the calorically perfect gas assumption. However, 
after a preliminary comparison of predictions to data, a uniform distribution over the range [-30%, +30%] of the 
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prediction was determined to be a more appropriate prior for all four error terms in this study. Therefore, this error 
model assumes uniform distributions based on the experimental means for the prior distribution of errors    . 

Normal distributions are used for the likelihood function  Pr |y x   , where the distribution parameters from 

Table 2 are assumed for 
1py  and 

1My , whereas 5% measurement uncertainty is assumed for aerodynamic pressure 

and heat flux measurements 
4py  and 

4Qy .  

Bayesian updating according to Eq. (14) is performed using all of the observed data from Glass and Hunt5, 
except for Run 30 for the spherical dome. Run 30 data is reserved for validation, which is discussed in the following 
section. When performing the Bayesian updating, the freestream pressure p1, and Mach number M1, are also treated 
stochastically due to the measurement uncertainty presented in Table 2 with 1% CV. Equation (14) is evaluated at 
100 realizations of p1 and M1 using Latin Hypercube sampling. For each of those samples, a Markov Chain Monte 
Carlo (MCMC) algorithm called slice sampling is employed using 104 samples to calculate the posterior 
distribution. Figures 6 and 7 show the integrated posterior distributions for the uncertain inputs and errors 

4 4 4 41 4, , , , ,fp fp sd sd
w p Q p QT T e e e e    . 

 

 
Figure 6. Prior and posterior distributions for a) freestream temperature T1, and b) wall temperature Tw4 

 
Figure 7. Prior and posterior distributions for a) error in flat plate p4, b) error in flat plate Q4, c) error in 

spherical dome p4, and d) error in spherical dome Q4 
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The mean and standard deviation of the posterior distributions for 
4 4 4 41 4, , , , ,fp fp sd sd

w p Q p QT T e e e e     are shown in 

Table 5. Comparing the initial and updated distributions of T1 and Tw4, it is seen that the uncertainty is reduced, 
however the mean value did not shift. This is primarily a result of the errors in p4 and Q4 predictions being more 
easily scaled as defined in Eqs. (12) and (13). Thus, calibrating the errors did result in a shift in the mean values, as 
seen in Fig. 7. Also, there is significant uncertainty reduction in the errors from the initial 30% .  
 

Table 5. Mean, standard deviation, and coefficient of variation of calibrated model inputs and errors 

Output Mean 
Standard 
Deviation 

Coefficient of 
Variation 

T1 (K) 220.67 9.25 4.19% 

Tw4 (K) 300.34 28.24 9.40% 

 
4

Pafp
pe  -108.87 (-8.5%) 40.36 37.07% 

 2
4

W
cm

fp
Qe  -4707.0 (-10.0%) 280.2 5.95% 

 
4

Pasd
pe  -75.84 (-5.0%) 21.28 28.06% 

 2
4

W
cm

sd
Qe  -4682.6 (-7.5%) 247.8 5.29% 

 
The calibrated distributions for T1 and Tw4 are propagated to 4

fpp  and 4
fpQ  in Table 6. The uncertainty in 

aerodynamic pressure is unchanged since it is insensitive to freestream temperature. However, the uncertainty in 

4
fpQ  is reduced from 11.53% to 6.46%.  

 
Table 6. Uncertainty propagation using updated uncertainty to pressure and heat flux for the flat plate 

Output Mean 
Coefficient of 

Variation 

 4 Pafpp  1385.4 1.23% 

 2
4 W cmfpQ  5.229 6.46% 

 
The next section investigates the effect of quantifying the model errors in the predictions for the spherical dome 

and uses the remaining set of data (Run 30) for assessing the confidence in 4
sdp  and 4

sdQ  predictions. 

C. Assessing Prediction Confidence for Model Validation 
The aerodynamic pressure and heat flux along the spherical dome is evaluated at the initial and updated values of 

4 41 4, , ,sd sd
w p QT T e e     from Table 5. Figures 8 and 9 show the experimental data from Glass and Hunt5 (Runs 30, 31, 

and 32), along with the initial and updated model predictions 4
sdp  and 4

sdQ  evaluated at the mean along the 

streamwise centerline of the spherical domes (see Fig. 3). Tables 7 and 8 summarize the deterministic errors in the 
predictions. As illustrated in Figs. 8 and 9, aerodynamic pressure and heating are greatest near the leading edge of 
the dome and lowest near the trailing edge. This is a result of the slope of the dome in the flow direction, where 
positive slope results in elevated values and negative slope produces lower values relative to the flat plate. Thus, the 
largest dome (Run 30) produces the greatest spatial variations in pressure and heating. Note that the slope of each 
dome is zero at x/D=0.5. At this location, pressure and heating values are nearly identical for each dome and for the 
flat plate, which indicates that local surface inclination has a strong impact on local pressure and heating values. 
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Figure 8. Aerodynamic pressure along centerline of spherical dome for Runs 30, 31, and 32 from 

experimental data, initial mean input values, and Bayesian updated mean input values 

Table 7. Error summary for nominal pressure predictions along centerline of spherical dome 

 Initial Errors in 4
sdp  Updated Errors in 4

sdp  

 Run 30 Run 31 Run 32 Run 30 Run 31 Run 32 

Average 13.6% 8.2% 6.7% 16.0% 8.3% 2.7% 

Maximum 39.3% 23.5% 14.2% 35.4% 18.5% 8.9% 

 
From Fig. 8 and Table 7 it is evident that 3rd-order piston theory predictions of 4

sdp become less accurate with 

increasing dome surface inclination. Accordingly, the largest error in 4
sdp  occurs at the forward-most location in 

Run 30. Recall that Run 30 was saved for validation and only Runs 31 and 32 were included in calibration. This 
generally resulted in smaller errors for Runs 31 and 32, but errors for Run 30 increased, as summarized in Table 7. It 
is expected that if data from Run 30 had been included in calibration, then the corresponding errors would have also 
been reduced. Furthermore, since the errors in 4

sdp  along the dome vary in magnitude spatially, it would be 

beneficial to use a more flexible error model, such as a Gaussian process model, in more practical applications.26 
Figure 9 and Table 8 show that Eckert’s reference temperature method predicted 4

sdQ  more accurately than 3rd-

order piston theory predicted 4
sdp . Again, the trend is observed that errors are reduced using the updated   values 

for Runs 31 and 32, but not Run 30. This may be expected since values of 
4

sd
Qy  from Runs 31 and 32 are included in 

the Bayesian calibration, whereas values from Run 30 were not used. 
 



13 
Approved for public release; distribution unlimited. 

 
Figure 9. Aerodynamic heat flux along centerline of spherical dome for Runs 30, 31, and 32 from 

experimental data, initial mean input values, and Bayesian updated mean input values 

 
Table 8. Error summary for nominal heat flux predictions along centerline of spherical dome 

 Initial Errors - 4
sdQ  Updated Errors - 4

sdQ  

 Run 30 Run 31 Run 32 Run 30 Run 31 Run 32 

Average 3.9% 6.2% 12.8% 11.7% 4.1% 3.6% 

Maximum 12.9% 10.4% 21.2% 24.7% 8.7% 12.4% 

 
The deterministic errors are useful for assessing the accuracy of the nominal model predictions, however this is a 

stochastic problem and error alone does not provide a statistical assessment of the confidence in the model 
prediction. Therefore, the most important step in this model uncertainty framework is to validate the models by 
assessing the confidence. This enables decision-making in regard to model development and fidelity selection. For 
the Aircraft Digital Twin, it is important to have this confidence metric to make autonomous decision making 
possible for efficient simulations and risk mitigation. 

Several validation metrics exist with advantages and disadvantages, such as classical hypothesis testing, and 
difference and area metrics; however Bayesian hypothesis testing is selected for this study.18,27,28 The Bayes factor 
approach fits appropriately with the Bayes network integration framework, but its main advantages are that it takes 
into account the entire probability distribution of the model output and its relation to a confidence metric is 
straightforward. For Bayesian hypothesis testing, we want to determine the probability of our model being correct, 
given some observed data. Consider a hypothesis test to determine the probability that a model prediction x is equal 
to its true value x0. Equation (15) calculates the Bayes factor B, as the ratio of likelihoods corresponding to the null 
hypothesis (model prediction is equal to the true value) and the alternate hypothesis (model prediction is not equal to 
the true value). Therefore, when B > 1, the data supports the null hypothesis better than the alternative hypothesis. 
The integral form of the Bayes factor in Eq. (15) includes the likelihood function of the data supporting the 
prediction Pr(y|x), the probability density function (PDF) of the model prediction  0 x , and the PDF for the 

alternative hypothesis  1 x . 

    
 

   
   

00 0
0

1 0 1

Pr |Pr | :

Pr | : Pr |

y x x dxy H x x
B x

y H x x y x x dx






 





 (15) 
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Equation (15) is rewritten in Eqs. (16) and (17) for the cases for aerodynamic pressure and heat flux, where i = 1 to 
11 for the x-location across the dome. 

      
   

4

0

4

4 0 4 4

4

4 1 4 4

Pr |

Pr |

sd
i i ii

i

sd
i i ii

sd sd sd

psd

sd sd sd

p

y p p dp
B p

y p p dp








 (16) 

      
   

4

0

4

4 0 4 4

4

4 1 4 4

Pr |

Pr |

sd
i i ii

i

sd
i i ii

sd sd sd

Qsd

sd sd sd

Q

y Q Q dQ
B Q

y Q Q dQ








 (17) 

The Bayes factor is calculated at each of the 11 points along the spherical dome used in Run 30 of the Glass and 
Hunt5 study. The likelihood function Pr(y|x) is based on the assumption of a normal distribution for measurement 
error, with a standard deviation based on 5% coefficient of variation on the mean of the pressure and heat flux data 
for Run 30 (  ,0.05iN y y ). The probability density function for the null hypothesis  0 x , is determined by 

propagating the uncertainty in p1, M1, T1, and Tw4, as well as the quantified errors for the spherical dome (
4

sd
pe  and 

4

sd
Qe ). The PDF for the alternative hypothesis  1 x , is modeled as a uniform distribution extending beyond the 

maximum and minimum values of 4
sdp

 
and 4

sdQ  predictions. 

The Bayes factors computed in Eqs. (16) and (17) can be used to the confidence C, in the prediction, as shown in 
Eq. (18).25 

  0 |
1

B
C P H y

B
 


 (18) 

As indicated in Eq. (18), C is simply the posterior probability of the null hypothesis being true, given the 
observation data (under the assumption that prior probabilities of the null and alternative hypotheses are both 0.5). 
For a Bayes factor of 1.0, the confidence C, is equal to 50%. This implies that we do not have enough evidence to 
reject or accept the null hypothesis. However, for Bayes factors greater than 1.0 (as explained for Eq. (15)), we 
would have increasing confidence that the prediction is equal to the true value. The confidence metric can be used as 
a resource allocation measure for determining when it is beneficial to perform tests, where higher fidelity models are 
required, and which disciplines need a more strongly (or less strongly) coupled solution procedure. In addition, the 
Bayes factor-based confidence can be used to assess the limits of the model’s predictions. 

Table 9 summarizes the confidence (Eqs. (16)-(18)) and deterministic error in 4
sdp

 
and 4

sdQ  predictions for the 

11 observations from Run 30 (
4
sd
ip

y  and 
4
sd
iQ

y ). 
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Table 9. Error and confidence in aerodynamic pressure and heat flux predictions along centerline of 

spherical dome for Run 30 

Location x/D 
%error 

4
sdp  4

sd
i

p
C  %error 

4
sdQ  4

sd
i

Q
C  

1 0.11 -35.4% 0.00% 2.5% 86.7% 

2 0.19 -21.0% 0.02% 2.8% 87.5% 

3 0.26 -9.3% 71.1% 3.9% 87.7% 

4 0.34 -3.9% 94.0% 4.4% 88.6% 

5 0.42 2.4% 94.6% 8.4% 85.1% 

6 0.50 7.0% 88.7% 9.7% 85.0% 

7 0.58 11.3% 74.8% 14.5% 74.1% 

8 0.66 15.3% 54.9% 21.3% 36.1% 

9 0.74 21.4% 16.4% 24.7% 25.0% 

10 0.81 23.7% 21.7% 17.1% 81.8% 

11 0.89 25.9% 30.2% 19.7% 81.5% 

 
The majority of the predictions have greater than 50% confidence, which means the data supports the prediction. 

Pressure predictions at locations 4-6 have the highest confidence. The confidence in 4
sdQ  predictions using Eckert’s 

reference temperature method are all above 80%, with the exception of locations 7-9. As mentioned for Fig. 8, the 
largest error in the 4

sdp  occurs at the front of the dome, which corresponds to 0% confidence. The deterministic 

errors give an indication of the quality of the nominal predictions, however note that it is not always indicative of the 
statistical confidence in the predicted values. For example, 2.4% error at location 5 for 4

sdp  corresponds to 94.6% 

confidence, but 2.5% error at location 1 for 4
sdQ  is lower at 86.7% confidence. This is the result of differences in the 

shape of the model error distributions for 4
sdp  and 4

sdQ .  

The scope of this work is to initiate a framework for assessing the confidence in coupled aerothermoelastic 
model predictions, not to necessarily draw definitive conclusions for these particular aerodynamic models. However, 
given the confidence associated with the 4

sdp  predictions for Run 30 (H/D = 0.028), one would likely conclude that 

3rd-order piston theory is inadequate for predicting the aerodynamic pressure on a spherical dome protuberance of 
this size. Although, to truly reach that conclusion, more thorough uncertainty quantification is required to better 
capture the model error. 

The final section builds upon the conclusions using the Bayes factor-based confidence and uses that metric to 
compare predictions using different forms of piston theory. 

D. Model Selection from Prediction Confidence Metric 
The Bayes factor-based confidence metric is also useful for model selection. Up to this point, a 3rd-order 

expansion of piston theory from Eq. (5) was used to predict 4
sdp . Naturally, 1st- and 2nd-order expansions could have 

been used instead. Consider 1st- and 2nd-order piston theories for a model selection study, as shown in Eqs. (19) and 
(20), respectively. 

 3
4 3

3 3

1
2sd q w w

p p
M U t x

  
     

 (19) 

 

2

3
4 3 3

3 3 3

1 1 1
2

4
sd q w w w w

p p M
M U t x U t x

                          (20) 
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Figures 10 and 11 show the 4
sdp  and 4

sdQ  predictions for Run 30 using 1st-, 2nd-, and 3rd-order piston theories. 

Recall that Eckert’s reference temperature method uses the 4
sdp  predictions from piston theory, so 4

sdQ  is also 

affected. 

 
Figure 10. Aerodynamic pressure predictions for Run 30 using 1st-,2nd-, and 3rd-order piston theory 

 
Figure 11. Aerodynamic heat flux predictions for Run 30 using 1st-,2nd-, and 3rd-order piston theory 

Comparing the different piston theories, both 2nd- and 3rd-order capture some of the nonlinearity in 4
sdp  and 

4
sdQ and give relatively similar predictions. First-order piston theory appears to give a more accurate prediction at the 
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front of the dome for 4
sdp , however the aft portion has larger errors than 2nd- and 3rd-order. Furthermore, the 1st-

order expansion decreases the overall accuracy over the entire dome for heat flux predictions.  
Table 10 shows the Bayesian hypothesis testing-based confidence metric for 4

sdp  and 4
sdQ  using 1st-, 2nd-, and 

3rd-order piston theory. As expected from Fig. 10, 1st-order piston theory has higher confidence at the front of the 
pressure dome, but is significantly lower when compared to 2nd- and 3rd-order predictions along the centerline of the 
dome. When comparing the confidence in 2nd- and 3rd-order 4

sdp  and 4
sdQ , not only are the two predictions very 

similar, but the confidence in the 2nd-order model is actually higher at locations 8-11. Therefore, not only would a 
lower-order model theoretically require lower computational costs, but it is statistically more representative of 
observations along the dome for Run 30. 
 
Table 10. Confidence in aerodynamic pressure and heat flux predictions using 1st-, 2nd-, and 3rd-order piston 

theory along centerline of spherical dome for Run 30 

Location x/D 
4
sd

ip
C

4
sd
iQ

C  

1st-order 2nd-order 3rd-order 1st-order 2nd-order 3rd-order 

1 0.11 0.36% 0.00% 0.00% 31.5% 84.8% 86.7% 

2 0.19 63.1% 0.09% 0.02% 62.2% 86.7% 87.5% 

3 0.26 94.4% 75.6% 71.1% 77.8% 87.5% 87.7% 

4 0.34 95.4% 94.0% 94.0% 85.7% 88.5% 88.6% 

5 0.42 94.2% 94.7% 94.6% 83.8% 85.2% 85.1% 

6 0.50 89.0% 89.1% 88.7% 84.7% 85.0% 85.0% 

7 0.58 68.6% 74.9% 74.8% 69.3% 73.8% 74.1% 

8 0.66 20.3% 57.1% 54.9% 10.6% 38.3% 36.1% 

9 0.74 0.16% 23.3% 16.4% 0.25% 35.0% 25.0% 

10 0.81 0.00% 42.7% 21.7% 0.23% 88.8% 81.8% 

11 0.89 0.00% 69.0% 30.2% 0.00% 92.0% 81.5% 

IV. Summary 
A framework to quantify the model error and assess the confidence in model predictions for a coupled 

aerothermoelastic panel is outlined. Bayesian model calibration, error quantification, and prediction confidence 
assessment procedures are described for aerothermal models with data available from tests performed in a High-
Temperature Tunnel on spherical dome protuberances subjected to hypersonic flow. The models include 3rd-order 
expansion of piston theory and Eckert’s reference temperature method to predict aerodynamic pressure and heat 
flux, respectively. This research aims to logically and optimally use the limited data available for model validation 
and decision-making. The freestream and wall temperatures are assumed since their values were not reported in the 
experiments. Bayesian calibration is employed to update the uncertain inputs and quantify errors associated with 
aerodynamic pressure and heat flux predictions. The calibrated input distributions and quantified model errors are 
used to update the model predictions along the centerline of a spherical dome specimen. The information on the 
model error is used to calculate the Bayesian hypothesis testing-based confidence to enable model validation and 
model selection for this aerothermal problem. For this model selection study among piston theories, it was observed 
that the highest-order model (3rd-order) did not result in the highest prediction confidence metric. The capability to 
have a metric for autonomously making decisions on aerothermoelastic model fidelity is critical for the USAF 
Digital Twin vision, and this study is aimed at taking steps to achieve this goal. 
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Lack of confidence in structural response and life predictions of a vehicle exposed to 

combined extreme environments has consistently prevented the USAF from fielding affordable, 
reliable, and reusable hypersonic space access platforms. Significant strides have been made in 
modeling complex interactions of the multi-physics, fluid-thermal-structural coupling applicable 
to hypersonic flow conditions. However, validation of these models remains a challenge due to 
limited experimental data for hypersonic conditions. This research addresses fundamental and 
critical issues in quantifying uncertainty and assessing the confidence in model predictions of 
hypersonic structural response through a systematic framework. The framework will provide the 
capability to quantify the model prediction confidence, enabling its use as a decision-making 
metric for model fidelity selection and determining the necessary level of coupling in the 
modeling of an aerothermoelastic system. The first phase of this research effort focused on 
developing a model uncertainty framework for the aerothermal components of the coupled 
system. The modeled conditions correspond to aerothermal test data from hypersonic wind 
tunnel experiments of a spherical dome protuberance on a flat plate. Local and global sensitivity 
analyses were employed to investigate the sensitivity of model predictions to the input variables. 
A Bayes network was constructed for aerodynamic pressure and heating to integrate model 
predictions, aerothermal data, and various sources of uncertainty. Bayesian model calibration 
was performed with the test data to quantify uncertain model parameters and errors. Finally, a 
Bayesian hypothesis testing-based confidence metric was used to compare the accuracy of 
aerodynamic pressure predictions for different forms of piston theory. 

 


