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ABSTRACT

This document presents an overview of the most common memory forensics techniques
used in the acquisition and analysis of a system’s volatile memory. Memory forensics
rose from obscurity in 2005 in response to a challenge issued by the Digital Forensics
Research Workshop (DFRWS). Since then, investigators and researchers alike have
begun to recognise the important role that memory forensics can play in a robust
investigation. Volatile memory, or Random Access Memory (RAM), contains a wealth
of information regarding the current state of a device. Memory forensics techniques
examine RAM to extract information such as passwords, encryption keys, network
activity, open files and the set of processes and threads currently running within
an operating system. This information can help investigators reconstruct the events
surrounding criminal use of technology or computer security incidents.
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Memory Forensics: Review of Acquisition and Analysis Techniques

Executive Summary

In this document the state of the art in memory forensics is examined. Memory forensics is a
domain of digital forensics focused on the investigation of information stored in a system’s volatile
memory (or RAM). RAM contains a wealth of information such as logged in users, process objects,
threads, network connections and open files. In both criminal cases and security incident responses,
memory forensics can provide useful insights into the state of a system under investigation.

First the mechanisms by which Windows operating systems organise memory are discussed. Key
areas discussed include the methods involved in memory management, virtual address translation
and the Windows data structures that are used to manage processes and threads. This information is
useful in understanding the analysis techniques used by memory forensics tools.

Common methods for acquiring exact copies of RAM were examined next. It was found that
hardware-based approaches were reliable, but had low availability. Conversely, software-based
acquisition approaches were found to be more commonly available, but produced images of memory
with less reliability.

Methods to analyse RAM images are discussed. A literature review found that the most
commonly extracted items of information include lists of currently executing processes and threads,
cryptographic keys, registry information, established network connectivity, command history and
open files. Also discussed was the implementation of these techniques in several tools such as the
Volatility Framework.

This review identified that there is no single best technique for the acquisition of memory
samples from a target system. An investigator needs to make a judgement on the best approach to
take in the current situation. Overall the literature shows that that memory forensics techniques are
useful for extracting the current state of a system. Such system state information could be useful
for Defence in a security incident response.

UNCLASSIFIED iii



DSTO–GD–0770 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

iv UNCLASSIFIED



UNCLASSIFIED DSTO–GD–0770

Author

Dr Grant Osborne
CEWD

Grant was awarded a Bachelor of Advanced Computer and Informa-
tion Science (Honours) from University of South Australia in 2006.
Upon graduation he commenced work as a software engineer for a
major Australian defence contractor. In 2008 he commenced a PhD at
the University of South Australia, which he completed in 2011. His
experience includes over 5 years of software engineering developing
both desktop and web based applications. Grant has worked as a
researcher in the Cyber Assurance and Operations (CAO) branch at
DSTO since 2012. His research interests include visual analytics,
information visualisation and computer security.

UNCLASSIFIED v



DSTO–GD–0770 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

vi UNCLASSIFIED



UNCLASSIFIED DSTO–GD–0770

Contents

1 Introduction 1

2 Technical Background 3

2.1 Memory Management Overview . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Processes and Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Memory Acquisition 8

3.1 Hardware-Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Dedicated Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Hardware Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Software-Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Virtualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.2 Crash Dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.3 User-Mode Applications . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.4 Kernel-Mode Applications . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.5 Operating System Injection . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Cold Booting Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Memory Analysis 14

4.1 Process and Thread Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Cryptographic Key Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Open File Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5 System State Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6 Analysis Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusion 21

References 22

UNCLASSIFIED vii



DSTO–GD–0770 UNCLASSIFIED

Figures

1 Mapping virtual memory pages to physical memory pages . . . . . . . . . . . . . 4

2 Data structures associated with processes and threads . . . . . . . . . . . . . . . . 6

viii UNCLASSIFIED



UNCLASSIFIED DSTO–GD–0770

Tables

1 EPROCESS block key components . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 ETHREAD block key components . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 KTHREAD block key components . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Overview of Acquisition Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 14

UNCLASSIFIED ix



DSTO–GD–0770 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

x UNCLASSIFIED



UNCLASSIFIED DSTO–GD–0770

Acronyms

AES Advanced Encryption Standard.

API Application Programming Interface.

AWE Address Windowing Extensions.

BIOS Basic Input/Output System.

CCV Card Code Verification.

CPU Central Processing Unit.

CSRSS Client/Server Runtime Subsystem.

DES Data Encryption Standard.

DFRWS Digital Forensic Research Workshop.

DKOM Direct Kernel Object Manipulation.

DLL Dynamic-Link Library.

DMA Direct Memory Access.

FBI Federal Bureau of Investigation.

FDE Full Disk Encryption.

GDI Graphics Device Interface.

GUID Globally Unique Identifier.

IP Internet Protocol.

MMU Memory Management Unit.

NAS Network-attached Storage.

PAE Physical Address Extensions.

PCB Process Control Block.

PCI Peripheral Component Interconnect.

PDB Program Database.

PDE Page Directory Entry.

PEB Process Environment Block.

UNCLASSIFIED xi



DSTO–GD–0770 UNCLASSIFIED

PGP Pretty Good Privacy.

PTE Page Table Entry.

PTI Page Table Index.

RAM Random Access Memory.

RPC Remote Procedure Call.

SAN Storage Area Network.

SATA Serial Advanced Technology Attachment.

SSD Solid State Drive.

SSL Secure Sockets Layer.

TEB Thread Environment Block.

UMA Upper Memory Area.

URL Uniform Resource Locator.

USB Universal Serial Bus.

VAD Virtual Address Descriptor.

VM Virtual Machine.

xii UNCLASSIFIED



UNCLASSIFIED DSTO–GD–0770

Glossary

CR3 A control register for an x86 processor. The CR3 register enables the processor to translate
virtual addresses into physical addresses by locating the page directory and page tables for
the current task.

EPROCESS An Executive Process, or EPROCESS data structure, is a Windows API data structure
that represents a process.

ETHREAD An Executive Thread, or ETHREAD data structure, is a Windows API data structure
that represents a task.

KTHREAD A Kernel Thread data structure is used by the Windows Kernel to schedule and
synchronise running threads.
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1 Introduction

Digital forensics is a branch of forensic science primarily concerned with the acquisition and
analysis of material found on computer devices used for inappropriate or illegal purposes. These
purposes include hacking, cyber stalking, identity theft, fraud and the production and procurement
of child exploitation material. In addition to criminal investigations, digital forensic investigation
techniques have been adopted for the purpose of security incident response and management of
business-critical systems. In short, the goal of digital forensics is to capture and analyse binary data
stored or transmitted by an electronic device in order to help support or refute a theory on how the
misuse of equipment or criminal activity occurred [1]. This captured binary data is more commonly
known as digital evidence. Common types of digital evidence investigated include images, text,
video and audio files [1].

To date, digital forensic investigations have focused on the acquisition and analysis of persistent
data. Persistent data is information contained on hard disk drives, storage media such as Universal
Serial Bus (USB) flash drives or optical disk storage formats such as DVDs. Investigation procedures
involve powering off the target machine, creating an identical image of the attached storage media
and performing a postmortem analysis of the collected information [2].

Similar “pull the plug” procedures have been advocated throughout the digital forensics domain,
in particular by U.S departments including the National Institute of Justice [3] and the National
Institute of Standards and Technology [4]. Although these processes are valuable for first responders,
they commonly neglect the acquisition of Random Access Memory (RAM) [5], even though the
literature suggests that data be collected based on the order of volatility (i.e. collect the most volatile
source of data first) [1, 6].

Persistent data investigations face difficult challenges in handling developments in hard drive
capacity, Full Disk Encryption (FDE) and the rising prevalence of in-memory malicious software [7].
The increase in applications designed to leave little to no persistent trace of their activities (such
as Mozilla Firefox with private browsing enabled) also presents a major challenge for current
investigative techniques that rely on traces of user actions being left on the persistent media.
Current tools and techniques do not scale effectively with increasing hard drive capacities and are
completely ineffectual when analysing storage with encryption or software that leaves little to no
permanent trace.

The ever-growing storage capacity of hard drives dramatically increases the time taken for both
acquisition and analysis of the information they contain [8]. Imaging a hard drive of only 250
gigabytes, which by today’s standards is relatively small, may take upwards of 100 minutes [9].
Recent disk and transfer speed improvements have been made through technologies such as Solid
State Drives (SSDs), Serial Advanced Technology Attachment (SATA) Express, Thunderbolt and
USB 3.1. However, adoption of these technologies is not yet prevalent in a majority of machines
under investigation. Furthermore, the sheer amount of data in high capacity Network-attached
Storage (NAS) or Storage Area Networks (SANs) means that even with speed improvements it is
still highly unlikely that all of the data could be analysed in a reasonable time frame.

FDE is another major challenge for techniques focused on persistent data oriented analysis [7].
Such technologies may be used to prevent an investigator access to all of the digital evidence stored
on a disk [10]. Many freely available and simple to use software products such as TrueCrypt1

1htpp://en.wikipedia.org/wiki/TrueCrypt
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or Pretty Good Privacy (PGP)2 and the inclusion of encryption technologies as security features
in popular operating systems (such as Windows 7’s BitLocker3) are causing the prevalence of
FDE technology to increase. Defendants are often not compelled to give up encryption keys to
investigators. Furthermore, a suspect can feign cooperation by providing only one of many keys to
multiple containers or by providing an incorrect key to investigators. In the first case, the suspect
may provide a key to a container with no incriminating evidence. In the latter case, the defendant
could declare that the container had somehow been damaged as part of the investigation. Casey
et al. [10] cite several cases that have been foiled by FDE including the case of the Brazilian
banker, Daniel Dantas. Dantas used TrueCrypt to prevent access to hard drives captured from
his apartment by Brazilian Police. To date, neither dictionary-based attacks from the Brazilian
National Institute of Criminology nor attempts by the Federal Bureau of Investigation (FBI) have
successfully accessed the data.

Memory resident malicious software (malware) presents a challenge to “live” investigation
digital forensic analysis techniques [7]. Malware may compromise the reliability of an investigation
by altering the perceived system state (such as by providing a fake list of running processes to
the investigator). Furthermore, malware may even be used to execute anti-forensics techniques
that modify the data captured by digital forensics tools and techniques [11]. Malware authors
often employ compression, armouring and obfuscation techniques that make static analysis and
reverse engineering of their code incredibly difficult [12]. In the case of commonly known malware
such as Code Red, Witty and SQL Slammer, evidence of execution exists only within volatile
memory [13–15]. As such, current digital forensics approaches may fail to find evidence of this
malicious software by performing postmortem analysis after the machine has been powered off [16].

There has been a research focus shift toward the recovery of transient system-state information
stored in volatile memory, most commonly referred to as memory forensics [17, 18]. Memory
forensics typically seeks information that only exists in RAM to provide insight into the state of
a system, to corroborate any existing evidence and to provide helpful synergies to persistent data
investigations. The information it extracts commonly includes encryption keys, passwords, active
network connections, open files and currently executing processes (including hidden processes and
malware). An example of how memory forensics can help persistent data analysis could be through
the identification of encryption keys in memory. These keys could be used to enable investigators
to perform persistent data investigations on encrypted containers or devices with FDE.

Memory forensics as a research domain has been gaining momentum since the 2005 Digital
Forensic Research Workshop (DFRWS)’s “Memory Forensics Challenge”. This challenge caused a
significant research effort focused on the analysis of the contents of memory dumps, with tools
such as memparser by Betz [19] and kntlist by Garner [20] emerging in direct response.
Unfortunately these initial tools had major drawbacks. One drawback was the use of hard coded
memory structures to extract target memory artifacts. Another drawback was the reliance on lists
maintained by the Windows kernel in order to retrieve processes, threads and other items that exist
in the memory sample.

Building on these first steps, techniques such as those from Schuster [21] showed that it
was possible to use knowledge of the in-memory structure of processes and threads to create
search patterns that enable entire memory dumps to be analysed for traces of these objects. These
techniques helped to address issues associated with enumerating lists kept by the Windows kernel

2htpp://en.wikipedia.org/wiki/Pretty_Good_Privacy
3http://en.wikipedia.org/wiki/BitLocker_Drive_Encryption
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such as the failure to detect objects that have been hidden by manipulating the kernel process lists.
However, these search patterns are also limited as they require prior in-depth knowledge of the
characteristics of the operating system being analysed [22]. As such, the current research direction
within the memory forensics domain is focused on the analysis of memory dumps without relying
on hard coded structures [17, 22].

The domain of memory forensics can be considered a sub-domain of live forensics. Live
forensics, as the name implies, attempts to capture as much information as possible from a system
that is currently running [13]. Live forensics tools commonly rely on the underlying system in
order to acquire information such as by copying files, or by examining the task manager to view the
list of running processes. More recently, first responders who perform live forensics have begun to
include memory forensics in their suite of triage tools [8, 11]. This is because memory forensics
tools have been found to be less destructive than executing new processes on the system in order to
capture data [13].

This literature review provides an overview of the most common techniques used to acquire
and then analyse a computer’s RAM. The primary focus of this review is on techniques that are
used to analyse the Windows family of operating systems. This scope is based on the assumption
that investigators are most likely to encounter Windows-based machines in practice, owing to the
high popularity and market positioning of the operating system. This literature review is structured
as follows: Section 2 presents a brief technical overview of the main data structures used to manage
the execution of processes and threads within a system’s RAM; Section 3 provides an analysis of the
most common methods of memory acquisition; Section 4 discusses the most common techniques
used for the analysis of memory captures; and Section 5 provides a summary of the literature
presented.

2 Technical Background

This section provides an overview of the processes involved in memory management and the
in-memory structures pertinent to the acquisition and analysis of physical memory. This section
is largely based on content from Russinovich, Solomon and Ionescu’s “Windows Internals” book
[23]. A deeper understanding of Windows memory management, processes and threads can be
acquired by reading the works of these authors. Section 2.1 provides an overview of memory
management. It describes the mechanisms involved in virtual memory, address translation and
memory paging. Section 2.2 describes the Executive Process EPROCESS and Executive Thread
ETHREAD structures, commonly targeted by memory analysis to understand the current state of a
system from a memory capture.

2.1 Memory Management Overview

Processes running on modern multitasking operating systems operate on an abstraction of RAM,
called virtual memory [7]. In these systems, processes are given the impression that they are
operating with a large contiguous section of memory. The reality however, is that a process’
memory may be spread across non-contiguous pages of physical memory, or may have even been
paged out to a backup storage device (typically the hard drive). This abstraction requires specific
hardware support via a Memory Management Unit (MMU) and offers inherent advantages over

UNCLASSIFIED 3
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directly addressing RAM. These advantages include providing each process with its own protected
view of system memory, as well as monitoring and restricting read/write activities through the
use of privilege rules [24]. The layouts of virtual and physical memory can differ as illustrated in
Figure 1 (based on [23] p. 15). Notice that the blocks of virtual memory do not map to contiguous
physical addresses.

Process
Virtual Memory Physical Memory

Hard Drive (Paged Data)

...

Belongs to process

Belongs to another process

Unallocated

Figure 1: Mapping virtual memory pages to physical memory pages

Each process has its own private virtual address space that is non-accessible to other processes,
unless a portion of memory is specifically shared [23]. This stops potential collisions in memory
and also helps to prevent privilege violations between different executables. 32-bit x86 user-mode
processes have access to 2GB of virtual memory by default [23], with the other half of the total
(4GB) address space reserved for system usage (assuming advanced features such as Physical
Address Extensions (PAE), Address Windowing Extensions (AWE) or large address spaces are
turned off). Kernel memory is shared between, and available to all, system applications and
components. As such these applications are designed with particular care to ensure they do not
cause system instability [23]. Furthermore, this system memory space contains critical regions,
such as the process page tables required for virtual-to-physical address translation, as well as system
pool data that contains volatile system state information [23].

As discussed, each process operates within its own virtual memory address space. In order
to manipulate physical data the MMU must continuously translate, or map, a process’ virtual
addresses into physical addresses. At the hardware level, memory storage is organised into pages.
Each page is commonly 4 kB on x86 systems [23, 24]. The operating system maintains a page
directory that stores Page Directory Entry (PDE) pointers. PDE pointers are 4 bytes each and the
entry may contain up to 1024 unique links to page tables. Page tables, in turn, store up to 1024
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pointers to Page Table Entry (PTE) data structures that correspond to a page in memory. As such,
the translation from virtual to physical memory addresses requires two main steps. The MMU first
recovers the base address of the page directory, which is stored in the CR3 register of the system’s
processor. The first 10 bits of a virtual address can then be used as an index into the page directory
to retrieve the desired PDE. The PDE in conjunction with the Page Table Index (PTI), which is the
next 10 bits of the virtual address, are used to identify the appropriate page table and PTE. Finally,
the appropriate page in RAM is determined by following the link in the PTE.

The virtual address translation mechanism described previously assumed that the data was
immediately available in physical memory. It is often the case however, that the total amount of
virtual memory consumed by the currently executing processes on a system is larger than the size
of the physical memory [7]. Operating systems cope with this scenario by temporarily swapping
memory contents out to the hard drive (known as paging) in order to free up the required space
in physical memory. When a thread (the working unit of a process) attempts to operate on a
swapped-out page, the MMU generates a page fault interrupt to request that the operating system
transfer the requested page back into physical memory. The current location of a virtual address
(hard disk or memory), is indicated within the PDE and PTE data structures of a process by setting
a valid flag to 1 or 0. There are other flags within these structures that specify whether the memory
page is currently in transition or is a non-swappable address. By default the page file is stored in
the operating system installation root, in a file called pagefile.sys [23].

This section has provided an overview of the elements of memory management in Windows
family operating systems. In the next section the main data structures targeted by memory forensics
techniques are examined.

2.2 Processes and Threads

The Windows family of operating system records all of the metadata necessary to manage the
processes currently being executed in physical memory [21]. Even if a process exits its metadata
may be retained in memory for weeks [25]. The information stored in the metadata provides a
snapshot of the processes and threads that are either currently or have recently executed on a system.
As such an understanding the common data structures utilised by Windows operating systems to
manage the execution of processes is an important part of memory analysis. Figure 2 (based on [23]
p. 336) illustrates the process and thread data structures and their relationships with each other in a
simplified manner.

A few key aspects of Figure 2 are discussed here. Processes are represented in memory by an
EPROCESS data structure [23]. The EPROCESS block contains many process attributes, as well
as pointers to a number of related data structures. For example, a process has one or more threads
represented by an ETHREAD block. The EPROCESS block and the data structures it contains
reside within the system address space. Another key structure, the Process Environment Block
(PEB), exists in process address space. The PEB contains a process’s global contextual information
such as start up parameters or synchronisation objects. Each ETHREAD block has a pointer to
a KTHREAD block. The KTHREAD block has a pointer the Thread Environment Block (TEB)
which maintains user-mode contextual information about threads. The key components of the
EPROCESS, ETHREAD and KTHREAD data structures will now be examined.

EPROCESS. The EPROCESS block is an opaque Windows Application Programming In-
terface (API) data structure whose primary purpose is to represent process objects for internal
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PEB

ETHREAD

EPROCESS

TEB

KPROCESS

KTHREAD

System address space

Process address space

Figure 2: Data structures associated with processes and threads

Windows operating system functions [26]. Table 1 (based on [23]) examines the components of the
data structure relevant to memory forensics. Further details of the EPROCESS structure, including
memory offsets and other technical details can be found in “Windows Internals” [23].

Table 1: EPROCESS block key components

Element Purpose
Kernel Process Block Used to record the amount of time a process spends on the Central

Processing Unit (CPU) or within kernel/user-mode, the process’ affinity,
scheduling priority, process lock status and many other items.

Process Identification Unique identifier for the process and its parent.
Quota Stores the limits on processor usage. The structure also contains flags

for which type of memory to be stored in (non paged or paged).
Virtual Address Descriptor Describe the status of the virtual portions of the address space that exist

in the process.
Virtual Memory Information Current and peak virtual size of the process, page file usage and the page

table entry for the process page directory.
Handle Table Contains the address to the per-process handle table, which manages

handles to the objects the process is using.
Process Environment Block Contains information about the image that is running (such as its base

address and version number), process heap information and thread-local
storage utilisation.

Windows Subsystem Process A structure that contains details needed by the kernel-mode component
of the Windows subsystem for a given process.

ETHREAD. In Windows operating systems threads are represented by an ETHREAD block
[23, 26]. Similar to the EPROCESS block, the ETHREAD block and the structures it points to
exist in system address space. As per the EPROCESS block, the Client/Server Runtime Subsystem
(CSRSS) also maintains a structure for each thread created in a Windows subsystem application.
Finally, for threads that have called a User or Graphics Device Interface (GDI) function the kernel-
mode Windows subsystem (Win32k.sys) maintains a per-thread structure that the ETHREAD

6 UNCLASSIFIED
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points to. Table 2 (Based on [23]) highlights the pertinent components of the ETHREAD data
structure for memory forensics.

Table 2: ETHREAD block key components

Element Purpose
KTHREAD Contains the information that the Windows kernel needs to perform

thread scheduling and synchronisation on behalf of running threads.
Thread Time The creation and exit time of the thread.
Process Identification Contains the process ID and a pointer to the EPROCESS block that the

thread belongs to.
Input/Output Information A list of pending input and output requests.
Start Address The address of the thread start routine.

KTHREAD. The KTHREAD contains scheduling and synchronisation information that is used
by Windows to maintain a process’ threads. The key elements of the KTHREAD structure are
outlined in Table 3 (Based on [23]). One particularly useful component of the KTHREAD is its
pointer to the TEB. The TEB is a process space data structure that stores contextual information for
the thread, including information about the executable image loader and any Dynamic-Link Library
(DLL) handles the thread has [23].

Table 3: KTHREAD block key components

Element Purpose
Execution Time This records the total user and kernel-mode CPU time for the thread.
Cycle Time This records the total amount of time spent on the CPU.
Kernel Stack Pointer The thread stores a pointer to the upper and base address of the kernel

stack.
Scheduling Information Stores the base and current priority of the thread, its affinity mask as well

as the thread’s ideal processor, deferred processor and the next processor
it will execute on.

TEB Contains a Thread ID, a pointer to the PEB and also information about
whether the thread is using Windows Sockets, OpenGL, Remote Proce-
dure Call (RPC), GDI and other user-mode code.

2.3 Summary

This section has provided an overview of the key memory management mechanisms and data
structures that are of interest in memory forensics investigations. Firstly, the concept of virtual
memory was introduced. This examined the way modern operating systems abstract RAM by using
virtual memory mapping to provide processes with a seemingly contiguous allocation of memory,
even though the physical mapping of these memory addresses may be scattered throughout RAM
or paged into the system’s page file. The next section presented several data structures that can be
extracted from a memory image to provide a representation of the current state of a machine. These
structures are the EPROCESS, ETHREAD and KTHREAD blocks. Each contains a wealth of
information about the processes that are executing within a Windows operating system environment
and can be used to locate open files and the DLLs that a process may be using. It is by exploiting
these data structures (in conjunction with standard searches for strings and file carving techniques)
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that analysts are able to reconstruct the state of a machine when examining a memory image. The
following section examines the methods commonly used to acquire memory images.

3 Memory Acquisition

Techniques used to extract volatile memory images from target systems are defined as either
hardware-based or software-based solutions. Software-based solutions rely on the operating system
in order to perform memory capture. Hardware-based solutions in contrast, directly access the
volatile memory of the target system. To date, hardware-based solutions for memory acquisition
have been considered the most reliable as it is difficult to obtain a complete and accurate memory
snapshot from software [7].

In order to measure the efficacy of acquisition techniques, Schatz [27] suggests several criteria.
These are:

∙ the fidelity and reliability of the generated image

∙ the availability of the mechanism (software or hardware) used to capture the image.

The fidelity and reliability criteria ensures that the image obtained is a “precise copy of the
host’s memory” [27]. In particular these criteria dictate that the resultant memory image should be
trustworthy (i.e. the capture process is not interfered with by malware or other actors). Schatz [27]
suggests that if the result is not guaranteed to be trustworthy there should be no memory capture
at all. This is because if the memory image contains misinformation as a result of tampering, the
information gained from its analysis is likely to add confusion to an investigation.

The availability criteria stipulates that the technique must work on arbitrary computers and/or
devices — essentially meaning that the method be operating system agnostic and not require
specialised techniques.

Vömel and Freiling [7] suggest slightly different criteria used to measure efficacy for an
acquisition technique: atomicity and availability. The availability factor extends Schatz’s [27]
definition, stating that a technique that is characterised by a high availability does not make
any assumptions about particular pre-incident preparatory measures and can be applied without
knowledge of the execution environment and without requiring that any pre-configurations exist
prior to its execution. The atomicity of a technique reflects the demand to produce an accurate
and complete image of a host’s volatile storage, which encompasses the fidelity and reliability
requirements put forth by Schatz [27].

The remainder of this section will analyse a variety of memory acquisition techniques, using
the factors of atomicity and availability as a basis for discussion. For reference, an ideal acquisition
method would be characterised as both highly atomic and highly available [7]. Section 3.1 discusses
hardware-based acquisition methods; Section 3.2 discusses software-based acquisition techniques;
and Section 3.3 examines cold booting techniques.
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3.1 Hardware-Based Techniques

This section describes hardware-based techniques for memory sample acquisition. It is structured as
follows: Section 3.1.1 describes approaches that require the installation of a dedicated devices; and
Section 3.1.2 discusses approaches that acquire memory samples using hardware bus connections.

3.1.1 Dedicated Hardware

Dedicated hardware techniques are those that involve the installation of a physical device in order
to assist investigators in acquiring a memory image from a target system. Carrier and Grand’s [16]
Tribble is an example of one such device. It is a Peripheral Component Interconnect (PCI) card
that enables the capture of physical memory using Direct Memory Access (DMA) at the push of
a button [16]. A major advantage of a device such as Tribble is that it is able to obtain a precise
copy of physical memory without any interaction with the operating system running on the target
machine. As such, it will bypass any subverted processes or memory structures running on the
host machine [16]. The Tribble device itself must be installed prior to an investigation. When it
is activated, the host machine is suspended to prevent any malicious code being executed during
memory imaging. Once the memory dump is completed control is returned to the host operating
system.

Until recently hardware devices such as Tribble were characterised as producing accurate and
concise (highly atomic) memory images. This was based upon the assumption that as dedicated
hardware does not rely on the operating system on the target machine it is able to produce a true
picture of a system’s memory. This includes any malware or rootkits that may be resident only
in the system’s volatile memory. However, Vömel and Freiling [7] discuss recent experiments
that show that the northbridge chipset of motherboards is able to be reprogrammed to provide
a subverted view of the system’s memory, allowing regions to be swapped in and out with both
software and hardware processes alike oblivious to the substitution. Although it is currently unlikely,
investigators will need to consider that the hardware itself has been compromised when taking a
memory snapshot [28]. This means that while hardware-based acquisition techniques generally
produce highly atomic memory images, it is not necessarily always the case.

Dedicated hardware solutions for memory acquisition generally have low availability. For
instance Tribble requires that the PCI card be installed in the system prior to use [16]. Such devices
are not designed to be part of a first responder’s triage toolkit, but assume that they will most likely
be installed on critical infrastructure where high-stakes intrusions may occur. Dedicated hardware
devices may also be used in a honeypot to facilitate learning about the tools and tactics utilised by
attackers [7, 16].

3.1.2 Hardware Bus

A hardware bus facilitates data transfer between components (such as PCI) or between devices
(such as USB or FireWire) within computer architectures. Memory acquisition techniques have
been developed to exploit the use of the FireWire hardware bus to access the volatile memory of a
system [29]. These approaches initially targeted Mac OS X and Linux-based systems, although they
have also been shown to work on Windows operating systems [30]. FireWire-based approaches
have shown to be quite popular primarily because the bus provides DMA by design. As such,
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several proof-of-concept applications able to extract raw physical memory from a system through
the FireWire bus have been developed [7].

Compared to dedicated hardware, hardware bus acquisition techniques are much more highly
available. This is because hardware bus ports such as FireWire are quite common across both
portable and desktop computers. However, Vidstrom [31] illustrates that when FireWire methods
of acquisition access the Upper Memory Area (UMA) region of memory they can cause random
system crashes. This decreases the reliability and atomicity of the results of this hardware bus
approach. Other researchers have also found that the memory images captured through FireWire
are often corrupt (i.e. missing data) [7]. As such, hardware bus approaches can have low atomicity.

3.2 Software-Based Techniques

This section describes software-based techniques for memory sample acquisition. It is structured
as follows: Section 3.2.1 describes the extraction of memory using virtualised environments; Sec-
tion 3.2.2 discusses the use of crash dumps to acquire memory samples; Section 3.2.3 explores low
privilege user-mode applications; Section 3.2.4 discusses high privilege kernel-mode applications;
and finally, Section 3.2.5 discusses the use of operating system injection as a technique for acquiring
memory samples.

3.2.1 Virtualisation

Virtualisation provides isolated and reliable emulated system environments (Virtual Machines
(VMs)) that execute within a host computer [32]. VMs are monitored to ensure proper management,
sharing and restriction to the available hardware resources. Each VM is equipped with a virtual
processor, memory, graphics adapters, network and IO interfaces and may run in parallel with many
other VMs.

An important characteristic of VMs, is that they are capable of having their execution paused or
suspended. The state of the machine is temporarily frozen and its virtual memory is saved to a hard
disk on the underlying host. In the case of VMWare-based VMs, all of this volatile memory data is
stored to a .vmem or .vmss file located in the working directory of the guest machine4. As such,
the entire memory contents of such VMs can be acquired by simply suspending then copying this
generated snapshot of main memory.

Within an environment that makes use of virtualisation, memory acquisition is both highly
atomic and readily available [7]. This makes virtualisation-based approaches a highly useful testing
ground for both memory analysis and memory acquisition techniques. Any techniques developed
to acquire memory can do a bit-by-bit comparison of the data they captured with the .vmem file of
the VM. This can help to verify and validate the technique that has been developed.

3.2.2 Crash Dumps

Windows operating systems can be configured to write memory dumps to a file when the system
unexpectedly stops working [23]. In the case of a critical system failure the system state is frozen

4http://www.vmware.com/support/ws55/doc/ws_learning_files_in_a_vm.html
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and the main memory as well as relevant CPU information are saved in the system root directory for
later examination [7]. These dump files can then be examined with Microsoft’s Debugging Tools for
Windows or manually analysed [21]. For a memory forensics investigation, a responder may force
the generation of a software crash dump by interrupting key system services using a third-party
application, or by editing the registry to enable Right-Ctrl+ScrollLock+ScrollLock
crash dumps [23]. This technique is only suitable to limited situations as the Windows registry
must be modified in order to enable the manual crash dump technique. Furthermore, crash dumps
can override parts of the system page file, which can decrease the total amount of evidence
available [23].

3.2.3 User-Mode Applications

It is an extremely challenging task to atomically read physical memory using a user-mode applica-
tion. Early attempts were able to access the \\.\Device\PhysicalMemory address to gain
DMA on a Windows system. However, due to security reasons user-mode access to this object
was restricted in Windows Server 2003 and later [7]. As such this technique is no long viable for
memory acquisition and researchers have had to develop new techniques for acquisition, commonly
involving the execution of another process on the target system.

PMDump [33] was developed to help investigators analyse the memory space of a target system.
This tool only extracts the address space of a single process from volatile memory. This has the
advantage of completing execution much more quickly and only capturing the memory space of a
process of interest [33]. However, tools such as this must also run as a process within the operating
system meaning that they modify the volatile memory of the system from which they are capturing
process memory space. Furthermore, PMDump requires the process ID of the process the user
wishes extract data from. This is not useful in the situation where the process has hidden itself from
the operating system, such as in the case of rootkits.

A key advantage of user-mode applications is that they are characterised by a high level of
availability. Such tools can be executed from an external USB flash drive to minimise system
impact and be designed such that they will run on most Windows-based operating systems. The
primary disadvantages of pure software based approaches is that by the very nature of being a
software program, it must be loaded into volatile memory to execute [23]. As such, user-mode
applications are not atomic when they acquire memory from a target system. Furthermore, as these
applications rely on functions provided by the operating system they are vulnerable to subversion
by malicious software. For instance, a rootkit may deny direct access to physical memory and
return a modified representation during image generation [7]. As such, the overall atomicity of such
techniques is questionable especially in the case of acquiring memory from a target system that
may be running malware.

3.2.4 Kernel-Mode Applications

In order to mitigate the shortcomings of user-mode applications, software vendors and researchers
are increasingly focusing on developing kernel-mode applications and drivers that can be used to
create forensic copies of volatile memory [7]. These techniques are utilised in some freely available
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tools, such as Memory DD5, Windows Memory Toolkit6 (Community Edition) and Memoryze7.
Commercial software vendors have also developed some alternatives. These include Guidance
Software’s WinEN (Part of EnCase 6.11 and higher 8), GMG Systems’ KnTDD9 and Fast Dump
Pro from HB Gary 10.

Kernel-mode applications still suffer from the inherent weaknesses that affect user-mode
applications [7]. Even if an application is a kernel-mode driver, it still modifies memory as
Windows will create new process and thread structures when it is executed. Such techniques are
also susceptible to compromised operating system functionality as per user-mode applications.
Furthermore, kernel-based approaches suffer from availability issues as they require the investigator
to have administrator privileges to install a driver-based approach onto the system itself prior
to utilising it, or to execute a process that requires elevated user privileges. It could be argued
that in practice this might not be an issue, due to the common practice of Windows users having
administrative privileges.

3.2.5 Operating System Injection

A novel approach to help overcome the inherent issues with software-based approaches to memory
acquisition was developed by Schatz [27] in their proof of concept tool called BodySnatcher. The
approach injects an independent operating system into the kernel of the target machine. The target
machine’s native kernel execution is then frozen such that BodySnatcher can then provide an atomic
snapshot of the machine’s volatile data. A strength of the tool is that it does not matter if the target
operating system has been subverted, as BodySnatcher only relies on its own tool set [27]. Although
the technique shows promise as it produces atomic snapshots of memory, its availability is low due
to a reliance on specific hardware platforms. In addition, the technique is limited to single processor
execution [27]. As a result the acquisition of memory also takes a great deal of time.

3.3 Cold Booting Technique

Halderman et al. [34] present a novel approach to the acquisition of volatile memory. Their approach
is based on the observation that information is not erased from volatile memory immediately after
powering off a machine and may be recovered for a non-trivial amount of time [25]. Halderman et
al. [34] present three methods for acquiring volatile memory contents, based on this phenomena
of memory remanence. The first and most simple approach is to reboot the machine and launch a
custom kernel with a small memory footprint that gives access to residual memory. The second
is to briefly cut power, restore power and then launch the custom kernel. The second approach
deprives the operating system of any opportunity to scrub the contents of RAM. The third attack
involves cutting the power of the target machine and translating the RAM modules to a second
computer which is configured to extract their state. This third approach denies the original Basic
Input/Output System (BIOS) and computer hardware any chance to clear the memory.

5http://sourceforge.net/projects/mdd
6http://www.moonsols.com/windows-memory-toolkit
7http://www.mandiant.com/products/free_software/memoryze
8http://www.guidancesoftware.com
9http://www.gmgsystemsinc.com/knttools

10http://www.hbgary.com/fastdump-pro
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In the approaches that involve the power to the system being cut, two methods have been
developed to reduce the corruption of the remnant data [34]. The first is to cool the memory
chips prior to removal, which improves data retention times substantially [34]. The second is to
apply data correction algorithms. The level at which the cooling of RAM modules helps to reduce
the decay of the information stored is significant. In the four machines tested, with no cooling
the average amount of corruption after a few minutes was between 41% and 50%. In the cases
where the RAM modules were cooled before restarting the machine and acquiring the contents, the
amount of corruption after a few minutes was between 0.000036% and 0.18% [34]. This shows that
this method is able to capture an atomic snapshot of RAM. Furthermore, the approach is readily
available — the cooling of the memory chips was done with canned air and the memory capturing
kernel was based on Syslinux11.

A number of techniques have demonstrated the usability and validity of the Cold Boot approach.
For example the proof of concept AfterLife, is able to copy the contents of RAM to an external
storage medium after the target is rebooted [35].

3.4 Summary

This section has presented a number of memory acquisition techniques, both hardware-based
approaches in Section 3.1 and software-based in Section 3.2. These methods of acquisition were
discussed with regard to both their atomicity and availability. The hardware-based techniques
that have been developed so far tend to be highly atomic, but require the preparation of a system
prior to its investigation. As such these approaches are most viable for cases were business-critical
servers need to be protected and have access to real-time information in the event of an intrusion.
Conversely, software-based techniques for memory acquisition tend to be more available than
hardware-based approaches, but are far less atomic in the production of memory images. There are
some exceptions to this lack of atomicity however. In particular, virtualisation-based approaches
are able to precisely copy the contents of a VM’s volatile memory with little effort. Of course
these approaches are limited to infrastructures that have been set up to use virtualisation. Another
exception is images created by cold booting techniques. Such approaches are able to copy the
contents of RAM with little data loss, using a custom kernel that is executed when a system is
rebooted. An overview of the techniques with regards to their atomicity and availability is given in
Table 4.

The current state of memory forensics acquisition techniques shows that there is no single best
approach. Each of the approaches discussed have various advantages and disadvantages. In practice
first responders will have to decide for each case whether it is worth capturing volatile data from
the target system (such as if they observe encryption tools being executed) and then determine
which acquisition method would be the best course of action. Section 4 examines the most common
techniques within the memory forensics domain used to analyse the contents of a memory image
that has been acquired by an investigator.

11http://www.syslinux.org/wiki/index.php/The_Syslinux_Project
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Table 4: Overview of Acquisition Techniques

Technique Atomicity Availability Comments
Dedicated Hardware (3.1.1) High Low Atomicity may be compromised with

hardware tampering.
Hardware Bus (3.1.2) Moderate High Atomicity affected by random crashes in

some cases.
Virtualisation (3.2.1) High High In environments that utilise virtualisa-

tion.
Crash Dumps (3.2.2) Low Low Not all memory is dumped, can over-

write system page file and requires reg-
istry modifications to work.

User-mode Applications (3.2.3) Low High Easily subverted, will modify memory
when capturing it and will not have ac-
cess to entire memory range.

Kernel-mode Applications (3.2.4) Low Moderate Easily subverted and will modify mem-
ory when capturing it.

Operating System Injection (3.2.5) High Low Reliance on hardware platforms and
very slow.

Cold Booting (3.3) High High Requires off the shelf items and Sys-
linux

4 Memory Analysis

The physical memory of computers running Windows based operating systems contains a large
amount of metadata necessary to manage the execution of processes running within the operating
system [21]. This information can survive in volatile memory for several weeks, even if the
system is under load [25]. As such the analysis of memory should be considered as an important
component of a forensic investigation as it can provide a wealth of transient system state information
not available in persistent storage. Various memory acquisition methods were discussed previously
in Section 3. This section discusses the most common techniques used to analyse memory contents
once they have been successfully extracted.

It is common practice for digital forensics practitioners to use command line tools such as
strings and grep to search binary memory images for textual information such as user names,
email addresses and passwords [7]. Analysts also use tools such as WinHex to identify headers or
other suspicious data within memory images. Other tools such as foremost are also commonly
used to “carve” out files from raw data. An analyst could use this tool to recover all of the images
that reside in the memory – even those that are in memory addresses flagged as deleted that have
not yet been overwritten. Methods such as these are easy to apply but create highly noisy data sets,
require huge overhead and lead to a large number of false positives [36]. Beebe and Clark [36] argue
that such tools require investigators to wade through thousands of search hits for even relatively
small queries – most of which may be irrelevant to the their current objectives. Furthermore, even
if interesting results are generated (for example strings | grep “drugs” finding matches
within the raw data), they do not take into consideration the context of the result. For instance,
if the string was found within the memory space of a user launched application (such as a web
browser), it may be of probative value. However, if the same string was found in the memory space
of malicious software it may not hold weight in court.

Recent research efforts focus on structured approaches to finding valuable traces in memory
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images rather than manually searching images or using naïve approaches with strings-like tools [7].
Researchers have recognised that memory can be used to provide many vectors for analysis in an
investigation and that there is a large amount of useful data stored in both the system and user
address spaces, either directly in RAM or in the page file of the system [37]. New approaches tend
to focus on determining what types of data are available in memory, how are these defined and
where they are located in memory. The most common types of information that researchers are
developing techniques to extract include:

∙ lists of currently executing processes and threads

∙ cryptographic keys

∙ system registry information

∙ established network connections and related network data such as Internet Protocol (IP)
addresses and port information

∙ command history

∙ open files

∙ current users

∙ lists of rootkits or other malware.

Investigators can easily establish the state of a system with these types of information.

The remainder of this section examines these common analysis vectors and presents examples
of novel approaches that have been implemented by researchers in the domain. It is structured as
follows: Section 4.1 examines the extraction and analysis of process and thread data structures;
Section 4.2 discusses the extraction of cryptographic keys from memory; Section 4.3 looks into
the memory structures associated with the analysis of network connectivity; Section 4.4 discusses
approaches used to identify open files; Section 4.5 discusses additional types of information that
can be used to reconstruct the state of a system; and finally, Section 4.6 examines tools that have
been developed that incorporate these analysis techniques.

4.1 Process and Thread Analysis

As discussed in Section 2, Windows operating systems maintain lists of EPROCESS and ETHREAD
structures in memory, to help schedule and execute programs. Early attempts at extracting the
state of a system are based on the concept of enumerating the lists of the processes and threads
maintained in areas such as the Process Control Block (PCB) in a memory image [21]. These
list-walking techniques are able to extract the list of currently executing processes and the threads
attached to them from memory helping to provide a snapshot of the system from RAM. However,
as these techniques enumerate through lists maintained by the kernel the results of the analysis
may be subverted through techniques such as Direct Kernel Object Manipulation (DKOM). The
FU-Rootkit for instance is able to unlink itself from the ActiveProcessLinks list (a member
of the EPROCESS block) and thus avoid detection by methods that walk through lists and tables of
processes in memory.
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The limitations of enumeration style approaches to process and thread analysis have led to the
development of signature-based scanning of memory. Schuster [21] developed a signature based
scanning tool, that uses a set of rules to precisely describe the structure of a system process or
thread. These signatures are used to extract all of the processes and threads from memory, even
those that have unlinked themselves. As such, signature-based methods are useful in helping to
detect malware that has hidden itself. This can be achieved by comparing the results of the system’s
task manager, or a traditional list-walking approach to the processes listed by a signature driven
analysis. Any anomalies between the two could indicate the presence of malicious software [21].

Walters and Petroni [38] presented similar approaches, although they emphasised the need to
use a signature that relies on components of a process or thread that are essential. By ensuring
that only essential components of a process are used to identify processes and threads in memory
images, these robust signatures can avoid attempts by malicious software to circumvent signature
based scanners. For instance an attacker could set a non-essential field (such as the size of the
block) to 0, which would cause Schuster’s [21] method to fail. An attempt to set an essential field
to an erroneous value to trick a robust signature would result in a guaranteed system-crash and thus
cause the attack to be ineffectual [38].

Moving on from techniques that use hard-coded signatures to identify the structures of processes
and threads in memory, Okolicia and Peterson [22] have developed a “Windows Operating System
Agnostic” approach. This work extends existing analysis techniques in [21, 38]. [22]’s work is a
novel example of how memory images can be analysed to extract information about the processes
and threads executing on a system. The work presented aims to make it possible to take any
arbitrary memory image from a Windows operating system and parse it without prior knowledge of
the version. This removes the reliance on hard coded memory structures and signatures in order
to search and analyse the memory image. Furthermore, the authors state that as new versions of
Windows operating systems are released, the tool should continue to work.

The system developed in [22] first locates several debugging data structures in memory, such
as _DBGKD_DEBUG_DATA_HEADER, _KDDEBUGGER, _DATA or _DBGKD_GET_VERSION.
These data structures are parsed to determine whether the image is from a 32-bit or 64-bit Windows
operating system and whether PAE is turned on or off. Based on this information, the kernel
page directory table is found. This table can be used to parse virtual addresses into physical
addresses. Next, the base addresses of the kernel executable and of tcpip.sys are extracted from
_DBGKD_DEBUG_DATA_HEADER directly and PS_LOADED_MODULE_LIST respectively. By
examining the debug section of these two structures the authors tool is able to extract the Globally
Unique Identifier ( GUID) and age of the processes. With this information, the tool downloads
Program Database (PDB) files from Microsoft’s symbol server. These files contain a list of all of
the defined symbols in an executable and their addresses. By parsing these files, the tool is able to
export the kernel data structures from the executable. With these data structures, it is then possible
to parse the memory image without any hard coded offsets, although the names of the EPROCESS
and ETHREAD structures themselves are still hard wired into the tool.

Once the common operating system data structures have been identified and modelled (by
extracting this information from the kernel’s PDB file) they can be used to parse the memory
image and extract process or system state information. For instance, the information contained
in EPROCESS structures can be used to extract data about running processes. The PDB file of
the process can be acquired in a similar fashion to that of the kernel executable, which enables
the size and offset of the internal structures of the EPROCESS block to be examined. Using this
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information a signature can be generated to help scan memory to extract all of the processes in
the image. While signatures have been used previously (such as in [21, 38]) these signatures have
always been generated prior to analysis, with specific versions Windows in mind. The novel aspects
of the approach developed in [22] are that search signatures are generated dynamically, by pulling
out pertinent version and platform information from the memory dump itself and then using this
knowledge to acquire PDB files to aid in analysis.

4.2 Cryptographic Key Analysis

The analysis of memory images can be used to recover cryptographic keys which may provide
access to encrypted information on a system. Casey et al. [10] argue that it is vitally important
to capture volatile memory, as it may provide the only possible way to access devices that have
FDE. Traditional methods involve “pulling the plug”, which renders encryption keys in memory
and any encrypted data inaccessible. Casey et al. [10] were able to recover a TrueCrypt password
from a memory image. This password had been used to encrypt an entire disk volume. While their
approach demonstrates the possibilities of capturing information to help decrypt data, the password
was a known value.

Other approaches, such as those presented by Halderman et al. [34] show novel approaches to
the recovery of encryption keys from memory, rather than known passwords. One of the methods
they presented reconstructed keys from precomputed key schedules used by most encryption tools
for efficiency. The usage scenario for this type of reconstruction was in the event that the original
key had been damaged by memory decay, or during the acquisition process. Their methodology
relies on the notion that most (if not all) disk encryption software pre-computes data from an
original key, such as a key schedule for block ciphers or an extended private key for RSA. These
precomputed values have much more structure than the original keys and can be used to reconstruct
the original keys. The authors noted that in all of the disk encryption systems studied, precomputed
key schedules were kept in memory for as long as the encrypted disk was mounted. Based on
these schedules the authors were able to reconstruct Data Encryption Standard (DES), Advanced
Encryption Standard (AES) and RSA private keys without resorting to brute force methods [34].

Another method from Halderman et al. [34] was aimed at pulling keys out of memory. The
usage scenario for this approach is where the keys are not damaged and exist in full in the acquired
memory image. Again, the authors target the key schedule instead of the key directly – searching
for blocks of memory that satisfy the properties of a valid key schedule. The tool developed
iterates through each byte of memory and treats each as the start of an AES key schedule. The tool
checks the Hamming distance (i.e. the amount of substitutions required to transform one string into
another) between each string in the potential key schedule and the strings that should be generated
surrounding the key if it was real. If the substitution counts are low, the region must be close
to a correct key schedule and the key is outputted. This was implemented for both 128-bit and
256-bit AES keys. The authors state that their approach was able to successfully recover keys
from closed-source disk encryption programs without having to reverse engineer them. Their
methodology successfully used memory to find keys and decrypted hard drives that were protected
with BitLocker, TrueCrypt, dm-crypt and Loop-AES [34].
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4.3 Network Analysis

Memory images are able to provide an insight into the network connectivity of a system. In addition
to extracting process information from memory, work by Okolicia and Peterson [22] is able to
extract the local and remote socket addresses of active network connections. Again their approach
used Microsoft PDB files to identify the data structures and symbols used by an executable. In this
case, the tcpip.sys executable was examined in memory, as the Windows kernel itself does not
directly handle TCP/IP communications. Once the relevant symbols had been found the tool used
the PDB file to locate them in physical memory and extract information from them. Through this
method they were able to identify active TCP connections from a volatile memory image.

Network analysis provides insight into any malicious applications that may be executing on
a system [7]. Such applications typically bind to pre-defined ports to allow attacks to execute
arbitrary code on the target machine. Existing live forensics tools such as TCPView are able to
reveal such threats [23]. Memory forensic analysis techniques can be used to help correlate data
with these existing tools to gain a more thorough understanding of an incident.

4.4 Open File Analysis

In addition to identifying the processes executing on a system and related network activity, iden-
tifying the DLLs or files a process references may provide crucial evidence in an investigation.
For instance, an attacker may have injected a malicious DLL in the address space of a legitimate
process. These techniques commonly thwart traditional forensic analysis, as no data is written to a
persistent source – the change is made entirely in RAM. By examining the PEB (see Section 2) of a
process, analysis tools are able to extract the Ldr member. The Ldr pointer references multiple
lists that contain the full name, size and base address of all loaded libraries. By iterating this list
one may identify an injection attack, although this simple list walking technique is susceptible to
manipulation.

An alternative approach to identifying files that a process has open, is to exploit the Virtual
Address Descriptor (VAD) structure to uncover the files and objects a process has references
to [7, 23]. The VAD data structure is maintained by the kernel to keep track of allocated memory
ranges [23]. By examining the various components of the VAD structure, analysts are able to
identify a control area that points to a number of file objects. These objects then contain the
name of the file that is opened by the process. Open file analysis is an important aspect of any
memory analysis, as it may be able to provide evidence that the user had opened a particular file for
manipulation or viewing (such as an illegal image). Such evidence could be used to help refute
common “Trojan” defence strategies that claim the defendant was not in control of the application
or process that downloaded or opened a particular file.

4.5 System State Analysis

The most broad area of memory analysis involves extracting items from a memory image that can
be used to reconstruct the state of a system. There are many different approaches used which target
a large range of data structures that may provide insight into what a user was doing on the system
before it was seized. Okolicia and Peterson [17] present a technique to extract the contents of the
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Windows clipboard from RAM. The authors state that the clipboard is often overlooked as a source
of digital evidence in forensic analysis, highlighting user passwords, copied sections of (potentially
classified) documents and incriminating Uniform Resource Locators (URLs) as some types of
information that could be found within the clipboard. Initially the authors used an application
such as Notepad within a VM environment to transfer known information into the clipboard. A
VM memory snapshot was used to then analyse the memory image. Then using a tool based on
earlier work they searched within the memory for processes that had opened the user32.dll
library [22]. If a process does not have this DLL loaded, then it is not able to access the clipboard.
Based on the PDB of the user32.dll file, the location of symbols pointing to the clipboard
memory for that application are found and the information at that location is extracted.

In addition to process and thread extraction techniques developed in [22], the authors also
examined the extraction of system configuration from the Windows registry entries that are stored in
RAM. They use a signature developed in a similar way to that used for process extraction, to search
for “hives” in memory. Specifically, they search for the _CMHIVE field signature of 0xbee0bee0.
While most registry hives are stored on the disk as well as being loaded into RAM, there are two
volatile only hives that are never stored to disk. These hives are called Hardware and Registry.
The authors were able to extract information from these hives using their techniques, providing
information about the current state of the system that would have been destroyed if a traditional
analysis approach was used.

Aljaedi et al. [13] highlight the large variety of information types able to be extracted from
memory to aid investigators in understanding the state of a system and to reconstruct user activity
prior to capture. Specifically, their work focuses on extracting Internet browsing history from
a memory image. Their analysis methodology only used simple approaches (such as searching
for strings) but they were able to present some interesting findings. The authors launched a web
browser and navigated to an online transaction store, which was secured with Secure Sockets Layer
(SSL). They also used WireShark to capture traffic between between the browser and the server.
The packets captured helped to determine the parameters of the session cookies sent from the web
browser. These known values were then used to determine if session cookies are easily accessible
in memory images, even after a web browser has been closed. In their experiments the cookies
were identified in plain-text in RAM. Furthermore, the values entered into the forms on the secure
website were also accessible in memory. For example, credit card numbers, Card Code Verification
(CCV) numbers and the card holder’s full name exist in memory even if the browser was in “private
browsing” mode while the transaction took place.

4.6 Analysis Tools

Since the DFRWS in 2005 several tools and frameworks have been developed to help investigators
with the analysis of volatile memory images. These tools have been developed in response to the
level of difficulty and complexity in the analysis of memory images. There are a variety of products
available for the analysis of volatile memory, including freely available open-source software and
proprietary commercial products. The open-source frameworks tend to be more research focused
and the commercial tools focused on delivering a product to digital forensic investigators. Some
common tools and frameworks include:
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∙ Windows Memory Toolkit from MoonSols12

∙ Responder (Professional and Community) from HB Gary13

∙ Memoryze from Mandiant 14

∙ The Volatility Framework from Volatile Systems15.

The Windows Memory Toolkit is a closed source, proprietary tool developed by MoonSols.
It comes in both free and pro editions, with the primary difference being that the pro edition is
scriptable and has interactive analysis modes. The tool supports the analysis of memory images
acquired from a wide range of Windows operating systems, including Windows XP through 7.
Unfortunately, neither version of the tool supports extensibility through plugins or an API and the
analysis methods are not disclosed (due to the closed source nature of the product).

HB Gary’s Responder (Professional and Community) provides physical memory analysis and
malware analysis bundled into one application. It is able to extract information regarding the
operating system, running processes, open files, network activity, open registry keys, passwords,
web mail and malware. This tool utilises another HB Gary tool, Fast Dump Pro, to freeze the
state of the operating system and extract the RAM. The professional edition is not free and the
community edition is provided as an evaluation only. The source is closed and there are no methods
of extending the software.

Memoryze from Mandiant is freeware digital forensic software designed to help investigators
uncover malware and other malicious activity in live memory captures. The tool is able to perform
acquisition and analysis, with support for full system memory acquisition and extraction of a single
process’s memory space to disk. The analysis techniques provided facilitate enumeration of running
processes including those hidden by rootkits. For each running process the tool is able to identify
open files, open registry keys, virtual address space, loaded DLLs, network sockets and active
connections belonging to the particular process. The tool supports raw binary memory images
captured via any means. Memoryze supports many Windows variants, including Windows 2000,
XP (SP2/3), Server 2003 (SP1/2), 7 and Server 2008. The tool is available free of charge, but is
not open source and does not provide any mechanisms to extend the capabilities of the product
(through plugin interface or API).

The Volatility Framework is an open source software framework built to facilitate volatile
memory forensics. A major advantage of the Volatility Framework when compared to other
common tools is extensibility via a Python-based plugin framework. As a result of its plugin-based
design Volatility supports a wide variety of input formats, including both Windows and Linux
address spaces. Volatility provides analysis support in many ways, including extracting the image
date and time, running processes, network connections, network sockets, open DLLs, open files,
registry keys, process memory spaces and currently loaded kernel drivers. Furthermore, through
community plugins the tool supports malware and rootkit detection. A full list of developed plugins
is available at https://code.google.com/p/volatility/wiki/FeaturesByPlugin.

12http://www.moonsols.com/windows-memory-toolkit/
13http://www.hbgary.com/responder-pro-2
14http://www.mandiant.com/products/free_software/memoryze
15http://www.volatilesystems.com/
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4.7 Summary

The analysis of volatile memory images should be considered an important component of any digital
forensic investigation, in particular by first responders. Many techniques have been developed that
enable crucial state information to be extracted from a memory image. Such techniques include the
ability to list the currently executing processes (including those hidden by malware) and to identify
files, registry keys and network connections that a process has open. By examining these files or
network connections, theories regarding the users actions can be supported or refuted. For example,
it can be determined whether it was the user or malware that had uploaded a confidential file.

One aspect of volatile memory analysis that could prove highly valuable to investigators is
the ability to identify and extract encryption keys from memory images. In cases where systems
have been hibernated, locked, or suspended and a suspect has employed FDE to protect illegal data,
memory forensics may provide the only mechanism for the acquisition of that data. Brute force
attempts to crack passwords or keys for encrypted containers typically fail to produce results in a
meaningful time frame.

The most common analysis techniques have been incorporated into software tools and frame-
works that can be used by investigators. These tools are able to streamline the process of acquiring
and analysing the volatile memory.

5 Conclusion

Digital forensics is a branch of forensic science that involves the analysis and acquisition of data
stored on digital devices. Specifically, it investigates the illegal or inappropriate use of such
technology. Digital forensic investigations typically focus on the analysis of persistent data sources,
such as the information contained on a hard disk or DVD. The process of investigation often
involves removing power from the system, creating an exact copy of the static media and finally
performing an analysis postmortem. However, these common practices fail to recognise the wealth
of transient system-state information that is available in RAM.

RAM images can be used to reconstruct the current state of a system. Memory forensic
analysis techniques search for any information that exists in RAM that can provide insight into
the state of a system or corroborate any existing evidence in an investigation. Such information
includes encryption keys, passwords, active network connections, open files and currently executing
processes (including hidden processes and malware).

The most difficult component of memory forensics is typically the acquisition of a memory
image in both an atomic and available manner. There are two broad genres of acquisition techniques,
software-based and hardware-based. Software-based techniques (such as kernel drivers or user
applications) are generally considered to be more “highly available”, in that they are more likely
to function without prior setup or knowledge of the environment. Unfortunately, software-based
acquisition methods require the allocation of memory on the target system in order to function. As
such, approaches based on these techniques will always modify RAM as a by-product of capturing
it. Furthermore, as software-based approaches rely on the underlying operating system they are
susceptible to having their results modified during capture. In contrast, hardware-based approaches
(such as dedicated hardware devices like Tribble and hardware-bus interfaces like FireWire or PCI)
produce more accurate snapshots of memory, as they do not rely on the operating system and can
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operate without requiring allocation of memory. Unfortunately, hardware-based approaches often
rely on knowledge of the target environment and involve setting up the devices prior to an attack or
investigation. As such, hardware-based approaches to acquisition have limited availability in most
cases.

While there appears to be no single solution to the issues surrounding the acquisition of volatile
memory, there are some novel approaches being developed. One such technique involves injecting
a memory capturing operating system into the kernel of the target system. This approach is able to
pause the target system and acquire RAM in a non-destructive manner. Another novel technique
involves rebooting machines and executing a custom kernel to acquire memory on startup. This
approach relies on the fact that data remains in RAM for a short while, even after a cold (power
on/off) or warm (reboot) restart. Other approaches, such as the acquisition of RAM in virtualised
environments, do not suffer from atomicity or availability issues. It is common for VM hypervisors
to provide easy methods to capture a snapshot or image of the current state of a VM’s operating
system. These snapshots can, if the user desires, also capture the entire contents of memory in a
file for later forensic analysis. This makes virtualised environments highly useful for testing and
developing memory analysis techniques.

After a memory image has been acquired, many methods have been developed in order to
analyse the information contained within it. Early methods enumerated the lists maintained by the
Windows kernel to extract information about the processes running on a system. However, these
techniques commonly failed to identify hidden processes or those that had maliciously unlinked
themselves from kernel management lists. More advanced analysis approaches incorporate the use
of process and thread signatures rather than simply enumerating lists. Such techniques are able to
more reliably extract information about the state of the system, even in the case where malware has
hidden itself. In addition to process extraction, other research has focused on extracting encryption
keys, passwords, open files, registry keys and a wealth of other transient system state data. Of
particular importance is the extraction of data such as pre-computed encryption key schedules,
which only exist in RAM and may be used to unlock encrypted containers on a suspect’s system.

Due to the high complexity of the in-memory data structures contained in memory images,
several commercial and freely available analysis tools and software frameworks have been de-
veloped. The software generally includes common analysis techniques developed in the domain,
such as process extraction, password recovery, open file analysis and so on. Of particular interest
from a research perspective is the Volatility Framework. This software framework provides a
highly extensible plugin-based architecture allowing researchers to develop new analysis modules
or format readers. It has a healthy community, that provides many plugins to extract important
data from memory images, including malware and rootkit analysis modules. Frameworks such
as Volatility enable researchers and investigators to contribute new knowledge to the domain and
easily share it by developing new plugins for the framework.
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