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1. Objective 

Quantum imaging is a new science that is developing new technology such as Quantum Ghost 
Imaging (QGI) to exploit quantum optical information.  QGI increases versatility in imaging 
objects of interest to the warfighter.  The Army fights in all types of adverse imaging situations 
and there is a benefit to exploiting quantum optical information to image objects through 
partially obscuring media, i.e., optical turbulence, obstructions, smoke, and fog.  Imaging 
through obscuring media is difficult; consider the difficulty of driving in foggy weather.  
Attempts at solutions have involved using different wavelengths and polarimetry.  In cases in 
which these techniques are not effective or when they cannot be employed, it would be helpful to 
have other imaging methods to penetrate obscuring media. 

The primary objective of the current research is to exploit quantum optical imaging in adverse 
imaging conditions.  Ghost imaging is a quantum optical technique that shows promise for 
imaging through smoke and fog.  Ghost imaging exploits quantum optical information using 
photon coincidence measurements.  In ghost imaging, photon energy is put onto a target and a 
bucket detector is used to measure reflected and scattered photons (1).  Ghost imaging has been 
shown to be insensitive to scattering disturbances encountered by radiation going to the bucket 
detector (2, 3).  The main problem that remains is putting illuminating energy onto the target 
through the obscuring media.  This project investigates a means of achieving energy on target 
through obscuring media and combining it with the ghost-imaging technique to produce a ghost 
image. 

2. Approach 

Since photon intensity variation is used in thermal ghost imaging, the main risk factor was in 
replacing the Gaussian light source used in the interaction with the ground glass that produces 
the thermal light inhomogeneities.  The new light source used a nearly diffraction free source 
rather than a Gaussian light source.  The approach was to find diffraction free patterns that will 
propagate down beam with the self mending property.  There are several probable fixes to 
mitigate this problem.  One technique is to bundle a number of fibers in parallel that each launch 
self-mending solitons of light that substitute for speckles.  Another technique is to use a fiber 
positioner on the diffraction free light source fiber and have it undergo a high speed random 
displacement and launch the light solitons in random transverse positions.  Our solution to 
producing the variation of the signal source was to randomly displace the center of the Bessel 
beam projected through a spatial light modulator (SLM).  A Bessel beam is nearly diffraction  
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free and has a self-mending property upon interaction with particulate disturbances.  This 
approach proved to be successful.  The experiments used the Quantum Inspired Ghost Imaging 
(QIGI) setup displayed in figure 1. 

 
Figure 1.  Schematic layout of the Bessel beam illumination ghost imaging experiments.  

Normally, QGI uses two sensors.  The first sensor is a camera that looks at the reference beam of 
the light source.  A second sensor is a single-pixel photon bucket detector that collects photons 
from a separate test beam path that are scattered and reflected from the object to be imaged.  The 
quantum ghost image is constructed from the Glauber G(2) coherence using the coincidence 
measurements of photons.  QGI is quantum, since it can use entangled photons or thermal 
photons that have a nonlocal, nonfactorizable property (3).  The current experiments are termed 
QIGI since only a photon bucket detector is used.  The G(2) is computed using projected patterns 
of light for the reference beam and not the measured patterns of light.  As the illuminating Bessel 
beam was displayed, each illumination pattern of the SLM was saved in computer memory so the 
QIGI could be computationally reconstructed using the additional photon bucket detector values.   

This project was built on the U.S. Army Research Laboratory (ARL) ghost imaging experimental 
setup created by Ron Meyers and Keith Deacon (1), but used only a single-pixel distant photon 
bucket detector as the only sensor (3).  A diffraction free laser light source was added to the 
setup in place of the usual transverse Gaussian or spatially random intensity beam.  Diffraction 
free light beams penetrate though obscuring media far better than Gaussian beams (4).  In fact, 
the Defense Advanced Research Projects Agency (DARPA) is funding their development for use 
in high energy laser sources.  The diffraction free light beams have a self mending property in 
that when they encounter a small absorber their shape is temporarily distorted, but as they pass 
around the absorber they re-form into a self-similar shape.  There is some loss of energy, but the 
concentrated light beam shape is maintained (5).  This is a near ideal property for putting energy 
on target in the presence of the small and large particulates that occur in military smokes and fog.  
The diffraction free source can be fabricated from axicon lenses, special fiber optics, diffraction 
gratings, or an SLM and a laser.  For our experiments, a diffraction free source was developed 
using an SLM and a laser.  
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3. Results 

3.1 Unobscured QIGI Experiments 

The schematic layout for the basic experiments using Bessel beams is shown in figure 1.  A laser 
beam was expanded and transmitted through an SLM to impress on the laser beam profile the 
phase for a Bessel beam (figure 2).  

 

Figure 2.  Bessel beam illumination  
pattern. 

A single-pixel photon bucket detector was used to collect photons scattered and reflected from 
the object.  This beam was then propagated to a target, in this case, the letters “ARL.”  Figure 3 
presents an image of this target. 

 

Figure 3.  Image of the ARL target used  
in the experiment. The ARL is  
a 10-point font size. 

To achieve reasonable illumination coverage over the ensemble of measurements of the target 
area, the Bessel beam patterns were randomly translated in x and y on the SLM.  The sum, or 
equivalently the average, of all the Bessel beams used for illumination were computed and are 
displayed in figure. 4.  The patterns were not quite uniform; rather they exhibited some 
structured variation, although most of the space was filled.   

ARL
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Figure 4.  Sum of all Bessel illumination 
patterns used cropped to the 
area of interest. 

Bessel patterns were randomly translated in x and y across the field of view by modulating the 
SLM for different illumination patterns on the target (figures 5 and 6). 

 

Figure 5.  Illustrative image of the coarse Bessel pattern 
illuminating the ARL target. 

 

Figure 6.  Sample randomly translated, coarse Bessel 
illumination patterns. 

A single-pixel, photon-counting bucket detector collected and measured the light reflected from 
the “ARL” target (figure 7).  These “bucket” measurements were then combined with the known 
Bessel illumination patterns (see figure 6) to generate an image of the object (figure 8).  Fine-
scale illumination patterns can be resolved with high resolution fine images.  The current 
experiments, however, used coarse Bessel patterns in an attempt to see if they could resolve fine 
lettering.  That is, the distance between maxima in the illuminating beam was greater than the 
size of the letter dimensions.  



 

5 

 

Figure 7.  The 200 normalized “bucket” measurements from an experimental run. 

 

Figure 8.  Computed “ARL” ghost image using random  
Bessel beam illumination without obscuration. 

This first set of experiments was performed without obscuration to align and test the optics and 
SLM properties.  As shown in figure 8, even the coarse Bessel beams could resolve the fine 
letters.  

3.2 Obscured Experiments 

The next set of experiments used a modified layout as shown in figure 9, where an offset pinhole 
(less than 2 mm in diameter) was placed between the “ARL” target and the Bessel beam source.  
The target “ARL” was not in the direct line of sight from the laser to pin hole.  The experiments 
were performed again using the randomly translated Bessel patterns similar the one use in 
figures 5 and 6.  As was anticipated from the self-mending property of the Bessel beams, I was 
able to generate a ghost image (figure 10) under such an adverse condition that was only slightly 
degraded from the unobscured ghost image in figure 8. 
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Figure 9.  Schematic layout of obscured Bessel illumination ghost imaging experiment. 

 

Figure 10.  Computed “ARL” ghost image using random Bessel 
beam illumination with obscuration. The aperture 
diameter was 2 mm. The aperture was 27.8 cm from 
the SLM and 73.7 cm from the target. 

3.3 Quantum Inspired Ghost Imaging 

In other sets of experiments, a similar layout was used (figure 11).  The SLM was used to project 
random illumination patterns onto a model soldier to generate ghost images of a three-
dimensional (3-D) opaque object. 
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Figure 11.  Schematic setup of the QIGI experiment. 

Varying numbers of “on” illuminating pixels of the SLM were used in these experiments. The 
term “on” pixels means “macro-pixel illuminators” or “macro pixels.”  The positions of the “on” 
macro pixels were randomly distributed in space from measurement to measurement.  QIGI 
results using a 1 macro pixel illuminator are presented in figure 12 and similar results using  
3 macro pixel illuminators are presented in figure 13.  

 

Figure 12.  Computed opaque 3-D toy soldier image using  
1 random single macro-pixel illuminator patterns 
and bucket measurements using 4000 illuminations 
patterns: (left) compressive imaging computation 

and (right) G⁽²⁾, the inspired computation. 
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Figure 13.  Computed opaque 3-D toy soldier image using  
3 random single macro-pixel illuminator patterns 
and bucket measurements using 4000 illuminations 
patterns: (left) compressive imaging computation 

and (right) G⁽²⁾, the inspired computation. 

It should be noted that increasing the number of “on” pixels from 1 to 3 per measurement 
appeared to decrease the contrast of the generated ghost images, though the resolution may be 
greater.   

3.4 Quantum Inspired Ghost Imaging Through Turbulence 

Another set of experiments were run replacing the pinhole aperture of figure 9 with a heating 
element to generate strong optical turbulence.  Random Bessel beams were propagated over this 
heating element onto the target.  Results from these experiments are presented in figure 14.  The 
strong turbulence decreased the signal received by the bucket detector and only slightly blurred 
the ARL images.  

 

Figure 14.  Bessel illuminated QIGI through laboratory generated turbulence. 

3.5 Compressive Imaging 

An imaging technique called compressive imaging was used to compute the QIGI images from 
the known illumination patterns and the bucket measurements.  This technique follows the 
methods of Figueiredo et al. (6) to construct the image from an imaging integral equation.  It is 
based on finding approximate solutions to the integral equations:  

  (1) JR  B.
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where  

  (2) 

is the object reflectance. 

The term J is a matrix, where the rows are the illumination patterns at time k and the B vector, 

  (3) 

represents the bucket values.  In cases where the system is underdetermined (too few Bk), then L1 
constraints are used to complete the system and sparseness is used: 

  (4) 

The computational strategy takes advantage of the fact that it is normally true in images that not 
all pixels in an image contain new information and the system is said to be sparse on some basis 
since fewer degrees of freedom are needed to describe the system than the total number of pixels 
in the image.  The parameter τ is often a constant.  

4. Conclusions 

The research tested the ability of diffraction free light sources to ghost image and penetrate 
partially obscuring media.  The experiments using diffraction free light beams were successful, 
supporting the capability of QGI to reveal images through partial obstructions to the 
illumination.  Given the results of other experiments performed through turbulence and 
obstructing paths, the technique using diffraction free photon beams such as Bessel beams 
appears to provide an advantage in imaging through other obscurants (2).  The results of this 
effort demonstrated the ability to perform QIGI using only a single sensor, that is, a distant 
single-pixel bucket detector.  Furthermore, randomly displaced nearly diffraction free Bessel 
beams successfully provided illumination patterns for QIGI and resolved a small distant target.  
Finally, QIGI successfully recovered the image of the object even when the coarse illuminating 
Bessel beam had re-formed after passing through the obstruction of a small aperture displaced 
transverse to the laser beam. 

 

R  Rx,y

B  Bk

arg min
R

 1
2
‖B − JR‖2

2  ‖R‖1 .
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6. Transitions 

I have written a paper entitled “Quantum Inspired Ghost Imaging with a Distant Bucket Photo-
Sensor” (3) that uses the research findings of this Director’s Research Initiative (DRI).  
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