
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT

14. ABSTRACT

15. SUBJECT TERMS

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON

 a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Adobe Professional 7.0

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

16. SECURITY CLASSIFICATION OF:

19b. TELEPHONE NUMBER (Include area code)

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

Reset

31-10-2013 Final 01-08-2009 - 31-10-2013

Final Report for Scalable and Accurate SMT-based
Model Checking of Data Flow Systems

Clark Barrett and Morgan Deters

FA9550-09-1-0596

New York University
70 Washington Square S
New York, NY 10012-1019

USAF/AFRL DUNS 143574726
AF OFFICE OF SCIENTIFIC RESEARCH
875 N RANDOLPH ST. ROOM 3112
ARLINGTON, VA 22203

Unclassified Unlimited

In this project, we developed CVC4, a new SMT solver for use in verification and other
applications, especially in the KIND model checker developed collaboratively at U Iowa.
CVC4 was developed from scratch into an award-winning 200K+ LOC solver extensively
used and cited by academic and industry users around the world. CVC4 is competitive
with the very best SMT solvers and outperforms all other SMT solvers on certain classes
of problems.

Verification, model-checking, SMT, satisfiability modulo theories

U U U 20 212-300-6909

Clark Barrett

1 Introduction

Formal verification is crucial to ensuring hardware and software quality. Mi-
crochip manufacturers regularly apply verification to ensure the proper be-
havior of their products, and developers designing safety-critical software
employ verification to provide assurance that the software meets safety con-
straints.

One of the key technologies supporting formal verification of hardware
and software is that of Satisfiability Modulo Theories (SMT). SMT solvers
operate by solving formulas in logic. These formulas capture the behaviors of
hardware and software, and can be written to test the possibility of unwanted
behavior. A solution provided by an SMT solver affirms the presence of
unwanted behavior, or, conversely, proves its absence.

SMT formulas are Boolean combinations of theory constraints. Theories
of interest in SMT typically target verification applications, and thus they
are geared toward the accurate specification of software, hardware, memory
states, and related data. Theories commonly supported by SMT solvers are:

• Theories of arithmetic over integers, reals, and mixed reals and in-
tegers. Virtually all software contains arithmetic; arithmetical con-
straints (e.g., the value of variable x is always less than that of variable
y) can be represented in this theory.

• A theory of inductive datatypes. Modeling software datatypes can be
done directly in this theory.

• A theory of arrays. Software that uses arrays can be modeled with
constraints in this theory, as can computer memories (which are, es-
sentially, large arrays of values).

• A theory of fixed-width bitvectors. For modeling hardware circuitry,
constraints over bitvectors are often needed. In software, “integers”
are not true mathematical integers, but bitvectors; this theory is thus
indispensable in the accurate modeling of both hardware and software.

• A theory of uninterpreted functions. First-order theories not supported
directly by a solver can be axiomatized with the help of functions, and
parts of the analysis that don’t require precision can be abstracted
away by using a function, simplifying the formula.

1

Additional theories are sometimes supported, such as a theory of strings, a
theory of sets, or a theory of floating-point. All of these are first-order theo-
ries supporting quantification over relevant domains. For example, one can
write an SMT formula representing the statement that “all integers satisfy
a certain property.” It is well-known that for many theories, such quantified
statements cannot always be answered affirmatively or negatively; the satis-
fiability problem for such theories is said to be undecidable, and SMT solvers
must sometimes yield an answer of “unknown” when facing such problems.

The challenges in constructing SMT solvers lie in efficiently solving prob-
lems of practical interest. To that end, new heuristics are developed to solve
formulas more quickly; new theories and restrictions of theories are identi-
fied that are useful for verification and other applications; and new, practical
decision procedures are implemented for these theories and their restrictions.

Over the four years of this AFOSR project, a new, innovative SMT solver
named CVC4 has been designed, developed, and released. CVC4, the Cooper-
ating Validity Checker version 4, incorporates many new advancements over
its predecessors and over other available SMT solvers. Significant theoretical
and practical advances were made to make CVC4 applicable to problems of
interest. In particular, all of the above-mentioned theories were supported by
CVC4 or in development at the conclusion of this project. Further, SMT chal-
lenges were addressed by implementing novel decision procedures for theories
of interest, and a new combination framework was developed for deciding for-
mulas over combined theories (for example, arrays of bitvectors combines the
theory of arrays and the theory of bitvectors). Finally, advances were made
to identify cases where CVC4 can confidently answer affirmatively or nega-
tively in cases where, due to quantification, other solvers yield an answer of
“unknown.”

1.1 Motivation and impact

Great advances have been made in automated reasoning by research into
SMT. The field of SMT itself has gained significant attention since 2005
(see Figure 1). Within this hot research area, many SMT solvers have been
developed; a few examples of modern, popular SMT solvers are Barcelogic [6],
MathSat [7] OpenSMT [8], Yices [10], and Z3 [9]. These solvers support
somewhat different feature sets and performance profiles.

CVC4 was developed at an opportune time: its design took advantage of
considerable research into SMT in the years preceding the effort. Further,

2

the development team, with decades of combined experience in these solvers,
was well-situated to design a new tool. Novel research was conducted during
the design phase to determine the best course of action, and many novel
products of research are found in CVC4. CVC4 has consistently performed
well in competitions against other, similarly-capable solvers; more details are
given in Section 3. In the first year after its initial public release, over 50
articles (as counted by Google Scholar) have referenced the project.

THE COOPERATING VALIDITY CHECKER, VERSION 4
Clark Barrett1, Cesare Tinelli2, Kshitij Bansal1, François Bobot3, Christopher Conway4, Morgan Deters1, Liana Hadarean1, Dejan Jovanović5, Tim King1, Tianyi Liang2, and Andrew Reynolds2

1New York University 2The University of Iowa 3Commissariat à l’Energie Atomique (CEA) 4Google Inc. 5SRI International

ARCHITECTURE

Prop
Engine SAT core

Theory
Engine

Theory implementations
Decision procedures

Arithmetic
(and specialized fragments)

Arrays

Inductive datatypes
Bit-vectors

Uninterpreted
functions

SMT
Engine

Input interfaces

FEATURES
Support for a variety of theories. CVC4 supports functions,
linear arithmetic, bit-vectors, arrays, and inductive datatypes.
Additional theories are currently in development.
Quantifiers. CVC4 supports quantification through heuristic
instantiation and includes a novel finite model finder.
Proofs and counterexamples. CVC4 can emit proofs of proven
formulas, and counterexamples for formulas that can be falsified.
Modularity. A modular design and well-structured internal
interfaces make it much easier to extend CVC4 than for other
projects of its size and scope.
Tactics. A new tactics subsystem is in development, which will
allow users to customize the pipeline of strategies and heuristics.
Cross-language and cross-platform support. CVC4’s API can
be accessed from C, C++, Java, and OCaml, and provisions have
been made to support other languages. CVC4 can be compiled
and run on various flavors of Linux, Mac OS, and Windows. Our
automated build system regularly builds and tests many different
configurations on these platforms to ensure quality.
Community standards compliance. In addition to CVC4’s
library API, CVC4 supports standard textual input languages, such
as SMT-LIB and TPTP.
Coming soon. By Q3 2014, CVC4 will have much improved
support for proofs and unsatisfiable cores, relevant for many
application domains.

MOTIVATION AND IMPACT
In the last decade, great advances have been made in automated
reasoning by research into Satisfiability Modulo Theories (SMT).
An SMT solver checks the satisfiability of first-order formulas
with respect to a collection of background theories. Within this
hot research area, many SMT solvers have been developed.

CVC. The Cooperating Validity Checker software series has a
long history. The Stanford Validity Checker (SVC) came first in
1996, and four versions of the Cooperating Validity Checker
(CVC) have been released since then. CVC has been quite
popular, as it supports many features that other tools do not, and it
is available for research and further development under an open-
source license. The new version, CVC4, is a complete rewrite,
now four years in the making as a joint project between New York
University and the University of Iowa. It celebrated its first public
release in December, 2012. Since then, CVC4 has been
downloaded over 1000 times.

The re-evaluation and ground-up rewrite allowed our research
team to rethink some elements of the design that proved inflexible,
and to address performance concerns. The result is a highly-
efficient, modern, industrial-strength tool for SMT solving.

0

200

400

600

800

1000

1200

1400

2005 2006 2007 2008 2009 2010 2011 2012

Articles mentioning SMT over time
(according to Google Scholar)

 Satisfiability Modulo Theories SMT solver either one

SMT competition results from 2012, with a prerelease version of CVC4

APPLICATIONS

Constraint Solving
SMT technology is increasingly being used outside of the field of
computer science as well. One example is resource scheduling.
SMT offers a flexible way to combine traditional scheduling
constraints with arbitrary first order constraints. SMT solvers can
be iterated to find optimal solutions according to an arbitrary cost
function or to incorporate other new constraints.

Automatic Exploit Generation

Binary Program

Safety PropertiesBinary Symbolic
Executor

SMT Solver

Exploit Generator
violating program trace

exploit constraint

path feasibility

path predicate

exploit

Verification
One of the chief areas of use for SMT solvers is that of software
and hardware verification (e.g., bounded model checking,
extended static checking, circuit equivalence checking, …).

SMT Solver

Models
Counterexamples

Proof hints

Context
Strategies
Formulas
QueriesProperties to (dis)prove

Proofs
Translated counterexamples

The area of cyber-physical (hybrid) systems are comprised of both
digital and physical components. Though they are challenging
systems to analyze, their correctness is critical. SMT tools have
been demonstrated already to be useful in this area, and ongoing
research in non-linear and floating point reasoning is expected to
expand their applicability to advanced analyses of these systems.

CVC4 has a dedicated, full-time R&D team working on usability,
performance, and feature improvements.
CVC4 is released under an open-source license and can be freely
studied, modified, and redistributed for any purpose.
CVC4 consists of more than 200,000 SLOC.
CVC4 has been downloaded over 1000 times since its first
official release in December, 2012.

THE CVC4 PROJECT

Visit us at cvc4.cs.nyu.edu !

PERFORMANCE
A prerelease version of CVC4 had a strong showing at the annual
SMT solver competition in 2012. Performance continued to
improve up to the final 1.0 release, and continues today.

Recent results (in King, Barrett, and Dutertre, FMCAD 2013)

Recently, CVC4 performed quite well in the FNT division of the
24th CADE ATP System Competition, despite the presence of
mature, specialized tools (www.cs.miami.edu/~tptp/CASC/24/).
CVC4 was specifically recognized for its novelty.

USE IN RESEARCH
CVC4 is designed to be a high-performance, industrial-strength
SMT solver, to support groups needing such a tool. CVC4 is also
intended to be useful within our research group as a vehicle for
our research in decision procedures and search heuristics. We
have designed CVC4 from the ground up to be flexible and
extensible, and to support rapid prototyping of new research ideas.

CVC4 has served as a basis for much of the work of our research
team, and some 50 articles (on Google Scholar) mention it, despite
being a new project with its first release less than a year ago.

Barrett, Conway, Deters, Hadarean, Jovanović, King, and Tinelli. CVC4. Computer Aided
Verification (CAV), 2011.

Hadarean, Bansal, Jovanović, Barrett, and Tinelli. A bit lazy: a lazy bit-vector DPLL(T)-
style solver. In preparation.

Jovanović and Barrett. Being careful about theory combination. Formal Methods in
System Design (FMSD), vol. 42, 2013.

Jovanović and Barrett. Sharing is caring: combination of theories. Frontiers of Combining
Systems (FroCoS), 2011.

Jovanović, Barrett, and de Moura. The design and implementation of the model
constructing satisfiability calculus. Formal Methods in Computer-Aided Design
(FMCAD), 2013. To appear.

King and Barrett. Exploring and categorizing error spaces using BMC and SMT.
Satisfiability Modulo Theories (SMT), 2011.

King, Barrett, and Dutertre. Simplex with sum of infeasibilities for SMT. Formal Methods
in Computer-Aided Design (FMCAD), 2013. To appear.

Reynolds, Tinelli, Goel, and Krstić. Finite model finding in SMT. Computer Aided
Verification (CAV), 2013.

Reynolds, Tinelli, Goel, Krstić, Deters, and Barrett. Quantifier instantiation techniques for
finite model finding in SMT. Automated Deduction (CADE), 2013.

One important feature for SMT solvers is that of producing proofs
of input formulas. With proofs, users do not need to trust CVC4,
but can validate its work with an external proof checker. Proofs
are also useful in extracting unsatisfiable cores, interpolants, and
for other applications. CVC4 has limited support for proofs at
present, but ongoing work will extend this support significantly.
A proof infrastructure in CVC4. CVC4’s infrastructure will be
extended to permit full proof support. To reach this goal, each
formula translation step and each theory implementation needs to
be instrumented to support proofs. This is a large effort, but it can
be done incrementally.
Performance. CVC4 is committed to performance, and when
proof production is off, we aim for a zero percent performance
impact. Users not requiring proofs will not pay for it. This is
important for the rapid prototyping of new problem encodings.
LFSC. CVC4 uses the LFSC proof format, with which we have
extensive experience. The format will be extended to support
theory proofs.
Translation to Coq. We will integrate CVC4 proofs with the
popular proof assistant Coq by implementing a proof script to
convert CVC4 proofs into an equivalent Coq proof.

PROOF SUPPORT

Figure 1: SMT citations

1.2 SMT-LIB

The SMT-LIB initiative was formed in 2003 to promote a standard for SMT
solvers and provide a large, common library of benchmarks for SMT solvers.
A significant update to the standard was made in 2010, and new benchmarks
are incorporated regularly. CVC4 was developed to be fully compliant with
both versions this community standard:

• CVC4 was built to support (nearly) all of the theories and combinations

3

of theories prescribed by SMT-LIB. Plans were made to address defi-
ciencies in non-linear arithmetic to extend this support to all SMT-LIB
theories.

• CVC4 was designed to support the full input language of SMT-LIB.
CVC4 supports a number of convenient extensions to the standard,
but also provides a “compliance mode” that disables these features
and strictly follows the word of the standard.

• During development, CVC4 was continuously evaluated on the SMT-
LIB benchmark library. CVC4 showed good overall performance on
these benchmarks, and it showed superior performance on some impor-
tant classes of benchmarks; Section 3 contains experimental highlights.

The above contributions furthered the goals of SMT-LIB during the course
of this project, providing a new, performant SMT solver that was largely
interoperable with other existing tools.

1.3 History

The Cooperating Validity Checker series has a long history. The Stanford
Validity Checker (SVC) [4] came first, incorporating theories and its own
SAT solver. Its successor, the Cooperating Validity Checker (CVC) [19], had
a more optimized internal design, produced proofs, used the Chaff [16] SAT
solver, and featured a number of usability enhancements. Its name comes
from the cooperative nature of decision procedures in Nelson-Oppen theory
combination [17], which share amongst each other equalities between shared
terms. CVC Lite [1], first made available in 2003, was a rewrite of CVC that
attempted to make CVC more flexible (hence the “lite”) while extending the
feature set: CVC Lite supported quantifiers where its predecessors did not.
CVC3 [5] was a major overhaul of portions of CVC Lite: it added better
decision procedure implementations, added support for using MiniSat [11] in
the core, and had generally better performance.

CVC4 is the new version, the fifth generation of this validity checker line
that is now celebrating seventeen years of heritage. It represents a complete
re-evaluation of the core architecture to be both performant and to serve
as a cutting-edge research vehicle for the next several years. Rather than
taking CVC3 and redesigning problem parts, a clean-room approach was
taken, starting from scratch. Before using any designs from CVC3, they

4

were thoroughly scrutinized, vetted, and updated. The components of CVC4
bear only a superficial resemblance, if any, to their correspondents in CVC3.
However, CVC4 is fundamentally similar to CVC3 and many other modern
SMT solvers: it is a DPLL(T) solver [12], with a SAT solver at its core
and a delegation path to different decision procedure implementations, each
in charge of solving formulas in some background theory. The re-evaluation
and ground-up rewrite was necessitated by the performance characteristics of
CVC3. CVC3 had many useful features, but some core aspects of the design
led to high memory use, and the use of heavyweight computation (where
more nimble engineering approaches could suffice) made CVC3 a much slower
prover than other tools. As these designs were central to CVC3, a new version
was preferable to a selective re-engineering.

2 The CVC4 System

CVC4 is the latest version of the Cooperating Validity Checker. A joint
project of New York University and The University of Iowa, CVC4 aims to
support the useful feature set of CVC3 and SMT-LIBv2 while optimizing
the design of the core system architecture and decision procedures to take
advantage of recent engineering and algorithmic advances. CVC4 represents
a completely new code base; it is a from-scratch rewrite of CVC3, and many
subsystems were completely redesigned.

2.1 Key features

Key features of CVC4 are previewed here, and described more fully in the
sections that follow.

Support for a variety of theories. CVC4 supports functions, linear arith-
metic, bit-vectors, arrays, and inductive datatypes. Additional theories are
currently in development.

Quantifiers. CVC4 supports quantification through heuristic instantiation
and includes a novel finite model finder.

Proofs and counterexamples. CVC4 can emit partial mathematical proofs of
proven formulas. For formulas that can be falsified, counterexamples are pro-
duced. For applications like verification, these features are crucial. A proof
can be machine-checked for correctness; CVC4 itself need not be trusted, as

5

the proof is sufficient to ensure correctness of the analysis. A counterexample
provides the ability to see exactly where the unwanted behavior is exhibited
(i.e., where the bug is).

Modularity. A modular design and well-structured internal interfaces make
it much easier to extend CVC4 than for other projects of its size and scope.

Cross-language and cross-platform support. CVC4s API can be accessed from
C, C++, Java, and OCaml, and provisions have been made to support other
languages. CVC4 can be compiled and run on various flavors of Linux, Mac
OS, and Windows. An automated build system regularly builds and tests
many different configurations on these platforms to ensure quality.

Community standards compliance. In addition to CVC4s library API, CVC4
supports standard textual input languages, such as SMT-LIB and TPTP.

2.2 Architecture

CVC4 is organized around a central core of engines (see Figure 2):

• The SMT Engine serves as the main outside interface point to the
solver. The SMT Engine has public functions to push and pop solving
contexts, manipulate a set of currently active assumptions, and check
the validity of a formula, as well as functions to request proofs and gen-
erate models. This engine is responsible for setting up and maintaining
all user-related state.

• The Prop Engine manages the propositional solver at the core of CVC4.
This, in principle, allows different SAT solvers to be plugged into CVC4.

• The Theory Engine serves as an “owner” of all decision procedure im-
plementations. As is common in the research field, these implementa-
tions are referred to as theories and all are derived from the base class
Theory.

CVC4’s Theory class serves as the basis for decision procedure implementa-
tions. A decision procedure extends this class to check consistency of con-
junctions of theory constraints, participate in preprocessing, and establish a
canonical form for theory constraints, among other purposes.

CVC4 also incorporates managers in charge of managing subsystems:

6

THE COOPERATING VALIDITY CHECKER, VERSION 4
Clark Barrett1, Cesare Tinelli2, Kshitij Bansal1, François Bobot3, Christopher Conway4, Morgan Deters1, Liana Hadarean1, Dejan Jovanović5, Tim King1, Tianyi Liang2, and Andrew Reynolds2

1New York University 2The University of Iowa 3Commissariat à l’Energie Atomique (CEA) 4Google Inc. 5SRI International

ARCHITECTURE

Prop
Engine SAT core

Theory
Engine

Theory implementations
Decision procedures

Arithmetic
(and specialized fragments)

Arrays

Inductive datatypes
Bit-vectors

Uninterpreted
functions

SMT
Engine

Input interfaces

FEATURES
Support for a variety of theories. CVC4 supports functions,
linear arithmetic, bit-vectors, arrays, and inductive datatypes.
Additional theories are currently in development.
Quantifiers. CVC4 supports quantification through heuristic
instantiation and includes a novel finite model finder.
Proofs and counterexamples. CVC4 can emit proofs of proven
formulas, and counterexamples for formulas that can be falsified.
Modularity. A modular design and well-structured internal
interfaces make it much easier to extend CVC4 than for other
projects of its size and scope.
Tactics. A new tactics subsystem is in development, which will
allow users to customize the pipeline of strategies and heuristics.
Cross-language and cross-platform support. CVC4’s API can
be accessed from C, C++, Java, and OCaml, and provisions have
been made to support other languages. CVC4 can be compiled
and run on various flavors of Linux, Mac OS, and Windows. Our
automated build system regularly builds and tests many different
configurations on these platforms to ensure quality.
Community standards compliance. In addition to CVC4’s
library API, CVC4 supports standard textual input languages, such
as SMT-LIB and TPTP.
Coming soon. By Q3 2014, CVC4 will have much improved
support for proofs and unsatisfiable cores, relevant for many
application domains.

MOTIVATION AND IMPACT
In the last decade, great advances have been made in automated
reasoning by research into Satisfiability Modulo Theories (SMT).
An SMT solver checks the satisfiability of first-order formulas
with respect to a collection of background theories. Within this
hot research area, many SMT solvers have been developed.

CVC. The Cooperating Validity Checker software series has a
long history. The Stanford Validity Checker (SVC) came first in
1996, and four versions of the Cooperating Validity Checker
(CVC) have been released since then. CVC has been quite
popular, as it supports many features that other tools do not, and it
is available for research and further development under an open-
source license. The new version, CVC4, is a complete rewrite,
now four years in the making as a joint project between New York
University and the University of Iowa. It celebrated its first public
release in December, 2012. Since then, CVC4 has been
downloaded over 1000 times.

The re-evaluation and ground-up rewrite allowed our research
team to rethink some elements of the design that proved inflexible,
and to address performance concerns. The result is a highly-
efficient, modern, industrial-strength tool for SMT solving.

0

200

400

600

800

1000

1200

1400

2005 2006 2007 2008 2009 2010 2011 2012

Articles mentioning SMT over time
(according to Google Scholar)

 Satisfiability Modulo Theories SMT solver either one

SMT competition results from 2012, with a prerelease version of CVC4

APPLICATIONS

Constraint Solving
SMT technology is increasingly being used outside of the field of
computer science as well. One example is resource scheduling.
SMT offers a flexible way to combine traditional scheduling
constraints with arbitrary first order constraints. SMT solvers can
be iterated to find optimal solutions according to an arbitrary cost
function or to incorporate other new constraints.

Automatic Exploit Generation

Binary Program

Safety PropertiesBinary Symbolic
Executor

SMT Solver

Exploit Generator
violating program trace

exploit constraint

path feasibility

path predicate

exploit

Verification
One of the chief areas of use for SMT solvers is that of software
and hardware verification (e.g., bounded model checking,
extended static checking, circuit equivalence checking, …).

SMT Solver

Models
Counterexamples

Proof hints

Context
Strategies
Formulas
QueriesProperties to (dis)prove

Proofs
Translated counterexamples

The area of cyber-physical (hybrid) systems are comprised of both
digital and physical components. Though they are challenging
systems to analyze, their correctness is critical. SMT tools have
been demonstrated already to be useful in this area, and ongoing
research in non-linear and floating point reasoning is expected to
expand their applicability to advanced analyses of these systems.

CVC4 has a dedicated, full-time R&D team working on usability,
performance, and feature improvements.
CVC4 is released under an open-source license and can be freely
studied, modified, and redistributed for any purpose.
CVC4 consists of more than 200,000 SLOC.
CVC4 has been downloaded over 1000 times since its first
official release in December, 2012.

THE CVC4 PROJECT

Visit us at cvc4.cs.nyu.edu !

PERFORMANCE
A prerelease version of CVC4 had a strong showing at the annual
SMT solver competition in 2012. Performance continued to
improve up to the final 1.0 release, and continues today.

Recent results (in King, Barrett, and Dutertre, FMCAD 2013)

Recently, CVC4 performed quite well in the FNT division of the
24th CADE ATP System Competition, despite the presence of
mature, specialized tools (www.cs.miami.edu/~tptp/CASC/24/).
CVC4 was specifically recognized for its novelty.

USE IN RESEARCH
CVC4 is designed to be a high-performance, industrial-strength
SMT solver, to support groups needing such a tool. CVC4 is also
intended to be useful within our research group as a vehicle for
our research in decision procedures and search heuristics. We
have designed CVC4 from the ground up to be flexible and
extensible, and to support rapid prototyping of new research ideas.

CVC4 has served as a basis for much of the work of our research
team, and some 50 articles (on Google Scholar) mention it, despite
being a new project with its first release less than a year ago.

Barrett, Conway, Deters, Hadarean, Jovanović, King, and Tinelli. CVC4. Computer Aided
Verification (CAV), 2011.

Hadarean, Bansal, Jovanović, Barrett, and Tinelli. A bit lazy: a lazy bit-vector DPLL(T)-
style solver. In preparation.

Jovanović and Barrett. Being careful about theory combination. Formal Methods in
System Design (FMSD), vol. 42, 2013.

Jovanović and Barrett. Sharing is caring: combination of theories. Frontiers of Combining
Systems (FroCoS), 2011.

Jovanović, Barrett, and de Moura. The design and implementation of the model
constructing satisfiability calculus. Formal Methods in Computer-Aided Design
(FMCAD), 2013. To appear.

King and Barrett. Exploring and categorizing error spaces using BMC and SMT.
Satisfiability Modulo Theories (SMT), 2011.

King, Barrett, and Dutertre. Simplex with sum of infeasibilities for SMT. Formal Methods
in Computer-Aided Design (FMCAD), 2013. To appear.

Reynolds, Tinelli, Goel, and Krstić. Finite model finding in SMT. Computer Aided
Verification (CAV), 2013.

Reynolds, Tinelli, Goel, Krstić, Deters, and Barrett. Quantifier instantiation techniques for
finite model finding in SMT. Automated Deduction (CADE), 2013.

One important feature for SMT solvers is that of producing proofs
of input formulas. With proofs, users do not need to trust CVC4,
but can validate its work with an external proof checker. Proofs
are also useful in extracting unsatisfiable cores, interpolants, and
for other applications. CVC4 has limited support for proofs at
present, but ongoing work will extend this support significantly.
A proof infrastructure in CVC4. CVC4’s infrastructure will be
extended to permit full proof support. To reach this goal, each
formula translation step and each theory implementation needs to
be instrumented to support proofs. This is a large effort, but it can
be done incrementally.
Performance. CVC4 is committed to performance, and when
proof production is off, we aim for a zero percent performance
impact. Users not requiring proofs will not pay for it. This is
important for the rapid prototyping of new problem encodings.
LFSC. CVC4 uses the LFSC proof format, with which we have
extensive experience. The format will be extended to support
theory proofs.
Translation to Coq. We will integrate CVC4 proofs with the
popular proof assistant Coq by implementing a proof script to
convert CVC4 proofs into an equivalent Coq proof.

PROOF SUPPORT

Figure 2: Architecture of CVC4.

7

• The Node Manager is one of the busiest parts of CVC4, in charge of the
creation and deletion of all expressions (“nodes”) in the prover. Node
objects are immutable and subject to certain simplifying constraints.
Further, Node objects are unique; the creation of an already-extant
Node results in a reference to the original. Node data is reference-
counted (the Node class itself is just a reference-counted smart pointer
to node data) and subject to reclamation by the Node Manager when
no longer referenced; for performance reasons, this is done lazily (see
below for performance justification).

• The Context Memory Manager is in charge of maintaining a coherent,
backtrackable data context for the prover. At its core, it is simply
a region memory manager, from which new memory regions can be
requested (“pushed”) and destroyed (“popped”) in LIFO order. These
regions contain saved state for a number of heap-allocated objects,
and when a pop is requested, these heap objects are “restored” from
their backups in the region. This leads to a nice, general mechanism
to do backtracking without lots of ad hoc implementations in each
theory; this is highly useful for rapid prototyping. However, as a general
mechanism, it must be used sparingly; it is often beneficial to perform
backtracking manually within a theory using a lighter-weight method,
to timestamp to indicate when a previously-computed result is stale,
or to develop approaches requiring little or no backtracking at all (e.g.,
tableaux in Simplex).

• The Proof Manager is charged with collecting parts of proofs and stitch-
ing them together into a proper proof in the desired output format.

2.3 Expressions

Expressions are considerably more efficient than CVC3’s expression repre-
sentation. In the latest version of CVC3, expressions maintain 14 word-sized
data members (plus pointers to child expressions). In CVC4, nodes require 64
bits plus child pointers, a considerable space savings. (In part, this savings
results from clever bit-packing. Part is in storing node-related data outside
of Node objects when appropriate.)

The expression subsystem of CVC4 has been carefully designed, and run-
time profiling data was analyzed to ensure its performance was reasonable.
On stress tests, it beat CVC3’s expression subsystem considerably [2].

8

2.4 Theories

CVC4 incorporates newly-designed and implemented decision procedures for
its theory of uninterpreted functions, its theory of arithmetic, of arrays,
of bitvectors, and of inductive datatypes, based on modern approaches de-
scribed in the literature. Performance generally was determined far superior
to CVC3’s, and competitive with other solvers on a broad range of bench-
marks. (See Section 3.)

2.5 Proofs

CVC4’s proof system was designed to support LFSC proofs [18], and was also
designed to have absolutely zero footprint in memory and time when proofs
are turned off at compile-time.

2.6 Library API

As CVC4 is meant to be used via a library API, there’s a clear division
between the public, outward-facing interface, and the private, inward-facing
one. This decision was made to provide a number of benefits to its users.
First, a CVC4 installation doesn’t require numerous, private interfaces to be
installed on a user’s machine. Outward-facing symbols (functions, classes,
globals, etc.) are marked for dynamic library export and inward-facing ones
are not. This can speed dynamic linking and library-internal function calls,
and ensures only functions intended to be public can be invoked.

Additionally, the approach ensured that public dependences cannot be-
come tangled with private ones. This clear separation also made it easy to
generate documentation only for the public API, and also to flag undocu-
mented parts of the public interface.

Further, in some cases, different classes are used in public and private
contexts for the same entity. Expressions are a “public” view of nodes, which
are slightly heavier-weight but also safer, carrying a reference back to their
owning ExprManager. This permits a client program to create two distinct
copies of CVC4 in memory safely, even sharing some expressions between
them, and the library can properly ensure that memory is correctly used and
reclaimed.

Finally, CVC4’s own parser and main command-line tool were designed
to link against the CVC4 library in the same way that any other application

9

would. This helped to ensure that the library API was complete.

2.7 Backward compatibility

CVC4 provides a new, streamlined API for accessing the core routines of
the system. However, CVC4 also exports an API identical to that of CVC3,
with the aim of achieving source-level compatibility with CVC3. Users of
the previous version therefore can benefit from the improvements in CVC4
without re-designing and re-implementing their tools.

Further, the native input language of CVC4 is backward-compatible with
CVC3’s, with minor exceptions. This has allowed CVC4 to be used as a
drop-in replacement in many places where CVC3 was used.

2.8 Theory modularity

Theory objects are designed in CVC4 to be highly modular: they do not
employ global state, nor do they make any other assumptions that would
inhibit their functioning as a client to another decision procedure. In this way,
one Theory can instantiate and send subqueries to a completely subservient
client Theory without interfering with the main solver flow.

2.9 Support for concurrency

CVC4’s infrastructure has been designed to make the transition to multipro-
cessor and multicore hardware easy, and a lemma-sharing portfolio version
of CVC4 is maintained. CVC4 shows promise as a good vehicle for other
research ideas in this area. In part, the modularity of theories (above) was
geared toward this—the absence of global state and the immutability of ex-
pression objects clearly makes it easier to parallelize operations. Similarly,
the Theory API specifically includes the notion of interruptibility, so that an
expensive operation (e.g., theory propagation) can be interrupted if work in
another thread makes it irrelevant.

2.10 Extensive documentation

A strong goal of the CVC4 development project has been to make it relatively
easy for a newcomer to extend. To realize this goal, extensive documentation
was developed, including:

10

• a developers’ wiki that evolves along with the design of the project,
serving as a log of design history and current best practices for the
team;

• meeting minutes and electronic whiteboard notes for all developers’
meetings;

• a developers’ guide with coding practices, code repository policies, de-
sign and internal API notes, and “how-to”-like sections to aid in devel-
opment.

A website for CVC4 is maintained at http://cvc4.cs.nyu.edu/.

2.11 Project summary

CVC4 aims to follow in CVC3’s footsteps as an open-source theorem prover
supporting this wide array of background theories. CVC3 supports all of the
background theories defined by the SMT-LIB initiative, and provides proofs
and counterexamples upon request; CVC4 aims for full compliance with the
new SMT-LIB version 2 command language and backward compatibility with
the CVC presentation language.

In this way, CVC4 is a drop-in replacement for CVC3, with a cleaner
and more consistent library API, a more modular, flexible core, a far smaller
memory footprint, and better performance characteristics.

The increased performance of CVC4’s (over CVC3’s) expression subsys-
tem was demonstrated in [2]; CVC4’s solving apparatus also performs better
than CVC3’s. In the 2010 annual SMT competition [3], both solvers com-
peted in the QF LRA division. CVC4 solved more than twice the benchmarks
CVC3 did, and for the benchmarks they both solved, CVC4 was almost al-
ways faster. In the most recent competition (in 2012), a prerelease version
of CVC4 entered more divisions than in the past, and performed even better
than it had before, handily placing above CVC3; a discussion is found in
Section 3.

Two main goals for the CVC4 project were to provide a better-performing
implementation of CVC3’s feature set, while focusing on flexibility so that it
can function as a research vehicle for years to come. This goal was realized for
the features that CVC4 currently supports. The second goal was met as well:
a number of internal, complicated, non-intuitive assumptions on which CVC3
rests have been removed in the CVC4 redesign. The component interactions

11

and the data structures were greatly simplified, which made it far easier
to document the internals, train new developers, and add support for new
features.

3 Experimental Results

CVC4 exhibits good performance compared to other SMT solvers. This
section provides some experimental highlights.

3.1 SMT-COMP

Between 2005 and 2012, an annual SMT solver competition was run. A
prerelease version of CVC4 performed quite well in SMT-COMP 2012, win-
ning the QF UFLRA division, which combined the theory of uninterpreted
functions and the theory of (linear) arithmetic over reals. In QF UFLIA,
which combines uninterpreted functions and (linear) arithmetic over inte-
gers, CVC4 performed well, but as it was a prerelease version, it contained
a bug that kept it from placing. A trivially-fixed version, immediately sub-
mitted to the competition panel, achieved second place (unofficially) in this
category. Other divisions (notably the divisions with quantifiers) did not get
enough entrants to run officially; however, the results showed CVC4 with
significant improvement over CVC3. This was the case in all competition
divisions where CVC3 and CVC4 both competed.

Full results for the annual SMT-COMPs are archived at http://www.

smtcomp.org.

3.2 Theorem-proving

CVC4 was also entered the CADE Automated Theorem Proving System
Competition (CASC 24) in 2013. This research community is somewhat dif-
ferent than SMT’s research community, and different standards have been
developed for these systems. Nonetheless, as an outsider, CVC4 performed
well in the two divisions of this competition that it entered—first-order for-
mulas (FOF), in which participants prove the validity of first-order logic
statements, and first-order non-theorems (FNT), in which participants re-
fute a formula’s validity by providing a counterexample.

12

The performance of CVC4 was judged to be quite good in the competition
in both divisions. In FOF, CVC4 performed in the top half of the entrants,
though it didn’t place due to its inability at the time to output full proofs of
these formulas. In FNT, CVC4 had a strong showing, placing third [20].

3.3 SMT-LIB

The SMT-LIB library consists of over 95,000 benchmarks involving arrays,
uninterpreted functions, bitvectors, linear and non-linear arithmetic over in-
tegers, reals, and mixed integers and reals, as well as many useful combi-
nations of these theories. Many categories of SMT-LIB benchmarks also
contain quantifiers. CVC4 has demonstrated very good performance on the
SMT-LIB benchmark set generally, and superior performance in some key
areas.

Notably, CVC4’s linear arithmetic component, based on Simplex and
representing four years of devoted effort, solved more problems in the linear
real arithmetic (LRA) benchmark set than any other SMT solver it was
compared to. Details are found in [15].

3.4 Model-checking

One of the key intentions for CVC4 was to serve as a back-end for the KIND
model checker [14], developed at The University of Iowa, which checks invari-
ant properties for Lustre programs. Significant efforts were made to integrate
KIND and CVC4 effectively.

KIND has traditionally used the Yices SMT solver, and could also be
configured to use CVC3. When using CVC3, KIND was never particularly
performant: it was unable to check many properties of interest, properties
that it succeeded in checking when paired with Yices. Part of this project
aimed to replace Yices as the back-end of KIND, and much progress was
made on that front.

The benchmarks in use were the standard set of benchmarks used for
KIND performance comparisons [13]. The parallel version of KIND (PKIND)
was used, and PKIND+Yices and KIND+CVC4 were compared. They
were able to solve the same set of benchmarks: 715 were solved by both
PKIND+Yices and PKIND+CVC4, and the remaining ones timed out after
1000 seconds in both cases. As in [13], simple cases were excluded, where
both were able to solve the benchmark in less than two seconds. Remaining

13

were 47 “interesting” benchmarks for the performance comparison. Of these,
PKIND+Yices was faster on 18, and PKIND+CVC4 was faster on 29.

4 Papers and Artifacts

CVC4 was designed as a high-performance, industrial-strength SMT solver,
to support teams needing such a tool. CVC4 was also intended to be useful
within research groups as a vehicle for research in decision procedures and
search heuristics. CVC4 was designed specifically from the ground up to
be flexible and extensible, and to support rapid prototyping of new research
ideas. CVC4 has served as a basis for much of the work of the research
team funded by this project, and some 50 articles on Google Scholar have
mentioned it within a year of its first public release.

4.1 Documentation and other information

The project developed a website at http://cvc4.cs.nyu.edu/. Full docu-
mentation of the API, input languages, and features, as well as tutorials and
useful examples of key features, are available.

4.2 Source code

CVC4 is open-source and consists of over 200,000 lines of source code. Full
source code is available at http://cvc4.cs.nyu.edu. The source code repos-
itory is open and available at https://github.com/cvc4/cvc4/.

4.3 Peer-reviewed publications

Barrett, Conway, Deters, Hadarean, Jovanović, King, and Tinelli. CVC4.
Computer Aided Verification (CAV), 2011.

This paper described the effort to develop CVC4 between 2009 and
2011. Some preliminary experimental results were described, and
the overall architecture of CVC4 was presented.

Jovanović and Barrett. Sharing is caring: combination of theories.
Frontiers of Combining Systems (FroCoS), 2011.

14

This paper described a new approach for solving the problem of the-
ory combination, making both theoretical and practical contribu-
tions to the field. For benchmarks combining arrays and bitvectors,
the new approach was demonstrated superior to existing techniques.

Jovanović and Barrett. Being careful about theory combination. For-
mal Methods in System Design (FMSD), vol. 42, 2013.

This was a significantly extended version of the FroCoS 2011 paper,
adding proofs for all theoretical contributions, providing additional
explanations and examples, and simplifying the presentation.

Jovanović, Barrett, and de Moura. The design and implementation
of the model constructing satisfiability calculus. Formal Methods in
Computer-Aided Design (FMCAD), 2013.

This paper extended CVC4’s core functionality, attempting a new
approach to solver design which allows the combination of recently-
developed model-based procedures. Encouraging experimental re-
sults were reported.

King and Barrett. Exploring and categorizing error spaces using
BMC and SMT. Satisfiability Modulo Theories (SMT), 2011.

This paper reported a case study in verifying a simple version of
the Traffic Collision Avoidance System (TCAS), categorizing and
reporting problematic states in that system. The paper general-
ized this experience to a methodology that can be applied in other
situations.

King, Barrett, and Dutertre. Simplex with sum of infeasibilities for
SMT. Formal Methods in Computer-Aided Design (FMCAD), 2013.

This paper described a novel decision procedure for linear arith-
metic, based on Simplex, that outperforms other approaches on
certain difficult benchmark sets. The paper makes contributions of
both theoretical and practical significance. The new approach was
implemented, and results reported.

15

Reynolds, Tinelli, Goel, and Krstić. Finite model finding in SMT. Com-
puter Aided Verification (CAV), 2013.

This paper described a way to lift a limitation of many SMT solvers
that address quantification by heuristic instantiation. A finite model
finder for CVC4 was developed and reported in this paper which al-
lows CVC4 to give an answer where it previously could not, and
where many SMT solvers cannot.

Reynolds, Tinelli, Goel, Krstić, Deters, and Barrett. Quantifier instantia-
tion techniques for finite model finding in SMT. Automated Deduction
(CADE), 2013.

This paper extends the effectiveness of the finite model finder de-
scribed by the CAV 2013 paper (above), by considering and evalu-
ating different techniques for quantifier instantiation. Experimental
evidence demonstrates that the approach is practical.

4.4 Technical reports

Technical reports are available from http://cs.nyu.edu/webapps/content/

research/technical_reports.

Jovanović and Barrett. Sharing is Caring: Combination of Theories,
TR2011-940, 2011/10

An extended version of the FroCoS 2011 paper (above), this techni-
cal report provided additional material, including proofs and work-
ing notes.

4.5 Theses and dissertations

All Ph.D. disserations are available from http://cs.nyu.edu/web/Research/

theses.html.

Jovanović. SMT Beyond DPLL(T): A New Approach to Theory
Solvers and Theory Combination. 2012.

16

This dissertation made contributions in three key areas: deciding
linear arithmetic over the integers, deciding non-linear arithmetic
over the reals, and deciding combinations of theories. In each case,
new approaches were presented, implemented, and evaluated.

Ge. Solving Quantified First Order Formulas in Satisfiability Mod-
ulo Theories. 2010.

This dissertation proposed novel techniques for solving first-order
formulas with quantifiers. Traditional approaches to the problem
employ heuristic instantiation. This work studied different heuris-
tics and introduced new ones, and identified situations where heuris-
tic quantifier instantiation can be made complete.

Conway. Tools and Techniques for the Sound Verification of Low
Level Code. 2010.

This dissertation described CASCADE, a project aimed at the ver-
ification of low-level C code. CASCADE was developed to use CVC
as a back-end solver.

References

[1] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of
the Cooperating Validity Checker. In Rajeev Alur and Doron A. Peled,
editors, Proceedings of the 16th International Conference on Computer
Aided Verification (CAV ’04), volume 3114 of Lecture Notes in Com-
puter Science, pages 515–518. Springer-Verlag, July 2004. Boston, Mas-
sachusetts.

[2] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli.
Cvc4. In Proceedings of the 23rd international conference on Computer
aided verification, CAV’11, pages 171–177, Berlin, Heidelberg, 2011.
Springer-Verlag.

17

[3] Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump.
SMT-COMP 2010: the 2010 edition of the satisfiability modulo theories
competition. http://www.smtcomp.org/2010/.

[4] Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for
combinations of theories with equality. pages 187–201. Springer-Verlag,
1996.

[5] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger
Hermanns, editors, Proceedings of the 19th International Conference on
Computer Aided Verification (CAV ’07), volume 4590 of Lecture Notes
in Computer Science, pages 298–302. Springer-Verlag, July 2007. Berlin,
Germany.

[6] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodrguez-
Carbonell, and Albert Rubio. The Barcelogic SMT solver. In Aarti
Gupta and Sharad Malik, editors, Computer Aided Verification, volume
5123 of Lecture Notes in Computer Science, pages 294–298. Springer
Berlin / Heidelberg, 2008.

[7] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzn, Alberto
Griggio, and Roberto Sebastiani. The MathSAT 4 SMT solver. In Aarti
Gupta and Sharad Malik, editors, Computer Aided Verification, volume
5123 of Lecture Notes in Computer Science, pages 299–303. Springer
Berlin / Heidelberg, 2008.

[8] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsi-
tovich. The OpenSMT solver. In Javier Esparza and Rupak Majumdar,
editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 6015 of Lecture Notes in Computer Science, pages 150–153.
Springer Berlin / Heidelberg, 2010.

[9] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis
of systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[10] Bruno Dutertre and Leonardo de Moura. The YICES SMT solver. http:
//yices.csl.sri.com/tool-paper.pdf.

18

[11] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications
of Satisfiability Testing, volume 2919 of Lecture Notes in Computer Sci-
ence, pages 333–336. Springer Berlin / Heidelberg, 2004.

[12] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras,
and Cesare Tinelli. DPLL(T): fast decision procedures. pages 175–188.
Springer, 2004.

[13] George Hagen and Cesare Tinelli. Scaling up the formal verification
of lustre programs with smt-based techniques. In Proceedings of the
2008 International Conference on Formal Methods in Computer-Aided
Design, FMCAD ’08, pages 15:1–15:9, Piscataway, NJ, USA, 2008. IEEE
Press.

[14] Temesghen Kahsai and Cesare Tinelli. PKIND: a parallel k-induction
based model checker. In International Workshop on Parallel and Dis-
tributed Methods in verifiCation, pages 55–62, 2011.

[15] Tim King, Clark Barrett, and Bruno Dutertre. Simplex with sum of
infeasibilities for SMT. In Proceedings of the 2013 International Con-
ference on Formal Methods in Computer-Aided Design, 2013.

[16] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient sat solver. In AN-
NUAL ACM IEEE DESIGN AUTOMATION CONFERENCE, pages
530–535. ACM, 2001.

[17] Greg Nelson and Derek Oppen. Simplification by cooperating decision
procedures. ACM Transactions on Programming Languages and Sys-
tems, 1(2):245–57, 1979.

[18] Duckki Oe, Andrew Reynolds, and Aaron Stump. Fast and flexible proof
checking for SMT. In Proceedings of the 7th International Workshop on
Satisfiability Modulo Theories, SMT ’09, pages 6–13, New York, NY,
USA, 2009. ACM.

[19] Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A cooper-
ating validity checker. In Ed Brinksma and Kim Guldstrand Larsen,
editors, Proceedings of the 14th International Conference on Computer

19

Aided Verification (CAV ’02), volume 2404 of Lecture Notes in Com-
puter Science, pages 500–504. Springer-Verlag, July 2002. Copenhagen,
Denmark.

[20] Geoff Sutcliffe. The CADE ATP System Competition. http://www.cs.
miami.edu/~tptp/CASC/24/.

20

