

Extremely Lightweight Intrusion Detection (ELIDe)

by Raymond J. Chang, Richard E. Harang, and Garrett S. Payer

ARL-CR-0730 December 2013

Prepared by

ICF International

7125 Thomas Edison Drive Suite 100

Columbia, MD 21046

Under contract

W911QX-12-F-0052

US ARMY RESEARCH LABORATORY

RDRL-CIN-D (RICHARD E. HARANG)

2800 Powder Mill Rd.

Adelphi, MD 20783-119

Approved for public release; distribution unlimited.

ERRATA SHEET

re: ARL-TR-6776, Extremely Lightweight Intrusion Detection (ELIDe), December 2013,
by Raymond J. Chang, Richard E. Harang, and Garett S. Payer

This is an errata sheet for ARL-TR-6776. Note: The report number has changed to
ARL-CR-0730. Please attach this sheet to the cover page of the original document.

Page Reads Should Read

Cover,
Title page, ARL-TR-6776 ARL-CR-0730

and 298

Cover,
ICF International, 7125 Thomas Edison Drive

Title page
Suite 100, Columbia, MD 21046
Under contract: W911QX-12-F-0052

Richard E. Harang

U.S. Army Research Laboratory
Computational and Information Sciences Directorate
ATTN: RDRL-CIN-D
Adelphi, MD 20783-1197

--------------- ---- ------- ------------------ --- --~ ----- -

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position

unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or

approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-CR-0730 December 2013

Extremely Lightweight Intrusion Detection (ELIDe)

Raymond J. Chang, Richard E. Harang, and Garrett S. Payer

Computational and Information Sciences Directorate, ARL

Prepared by

ICF International

7125 Thomas Edison Drive Suite 100

Columbia, MD 21046

Under contract

W911QX-12-F-0052

US ARMY RESEARCH LABORATORY

RDRL-CIN-D (RICHARD E. HARANG)

2800 Powder Mill Rd.

Adelphi, MD 20783-119

Approved for public release; distribution unlimited.

 ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2013

2. REPORT TYPE 3. DATES COVERED (From - To)

March to July 2013

4. TITLE AND SUBTITLE

Extremely Lightweight Intrusion Detection (ELIDe)

5a. CONTRACT NUMBER

W911QX-12-F-0052

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Raymond J. Chang, Richard E. Harang, and Garrett S. Payer

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-CIN-D

2800 Powder Mill Road

Adelphi, MD 20783-197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-CR-0730

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The need to provide network protection and monitoring extends beyond defending conventional wired computing

infrastructures to mobile ad-hoc networks. This need motivates the research and development of network defense

methodologies and technologies that are applicable in a tactical environment in which resources are constrained and

topologies are dynamic. The project documented by this technical report makes the contribution of prototyping a packet

analysis tool named Extremely Lightweight Intrusion Detection (ELIDe) with the capability to approximate Snort-like

signature matching against the inbound and outbound network traffic of a single host, while requiring less than 2% of the peak

memory footprint demanded by Snort. This economy of resources makes ELIDe suitable for operation in a constrained

environment, such as a tactical network that cannot support a more conventional solution like Snort.

15. SUBJECT TERMS

Network intrusion detection, hash kernel, lightweight, mobile, ad-hoc, packet analysis

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

 OF
 ABSTRACT

UU

18. NUMBER
 OF

 PAGES

24

19a. NAME OF RESPONSIBLE PERSON

Raymond J. Chang
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-1835
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

1. Background 1

2. Related Work 2

3. ELIDe Approach 4

4. Implementation and Results 5

5. Conclusion 14

6. References 15

Distribution List 17

 iv

List of Figures

Figure 1. Time required by the Python ELIDe prototype to classify 26 MB of packet data as
a function of feature hash length. ...7

Figure 2. Time required by the Python ELIDe prototype to classify 26 MB of packet data as
a function of N-gram size. ...8

Figure 3. True positive classification rate of the Python ELIDe prototype as a function of
feature hash length. ..9

Figure 4. True positive classification rate of the Python ELIDe prototype as a function of
N-gram size. ...10

Figure 5. Time required by the C++ ELIDe implementation to classify 26 MB of packet data
as a function of feature hash length. ..11

Figure 6. Time required by the C++ ELIDe implementation to classify 26 MB of packet data
as a function of N-gram size. ...12

Figure 7. True positive classification rate of the C++ ELIDe implementation as a function of
feature hash length. ..13

Figure 8. True positive classification rate of the C++ ELIDe implementation as a function of
N-gram size. ...14

 1

1. Background

Snort is a widely deployed and powerful network signature-based intrusion detection technology

(1). It boasts both a massive rule database generated and maintained by the Sourcefire

Vulnerability Research Team (more than 26,000 alert definitions as of the 3 Sep 2013 snapshot

[2]) and flexible fuzzy matching capabilities based upon Perl-compatible regular expressions.

The tradeoff for this robust functionality is that Snort has significant memory demands at

runtime. When benchmarked on a conventional computing platform (Dell Inspiron 15N laptop

running Mint Maya as the operating system, dual-core Core i5 CPU, 8 GB RAM), Snort

exhibited a peak RAM usage of approximately 1.2 GB as measured by the Massif memory

profiler within the Valgrind suite (3). While this is very reasonable for commodity computing

hardware (dedicated to running Snort) that might be found in a network operations center, it

becomes a prohibitive requirement for devices that would be more commonly found in a

dynamic tactical environment. As a point of reference, the Raspberry Pi single-chip computer

(4) is equipped with only 512 MB of RAM and would, therefore, be overwhelmed by the runtime

demands of Snort. Consequently, any packet analysis solution in the tactical requirement must

make do with significantly fewer resources than what is needed by Snort.

In addition to the resource requirement, there are other significant disparities between the

environments and use cases in which Snort is typically deployed, and a mobile tactical network.

Conventional computing environments that rely upon Snort as at least part of their intrusion

detection solution are typically quite static in terms of topology and composition, likely with

multiple gigabits per second of bandwidth available. This known and static layout permits a

small number of sensors (perhaps just one or two) equipped with Snort to reliably monitor the

entire network, while the available bandwidth is able to support periodic updates to the signature

databases used by each instance of Snort. In contrast, the mobile tactical network will have a

highly dynamic topology with substantially less available bandwidth. In order to guarantee

coverage of the entire network, the dynamic topology compels the presence of a sensor local to

every single network node. Since ad-hoc mobile networks are comprised of devices such as

smartphones, tablets, single-chip computers, and embedded hardware platforms, these nodes are

likely to be undersized in terms of processing capacity in comparison to their data center

counterparts. Updates to these sensors must be also extremely lightweight and support

asynchronous delivery to accommodate the constrained and unpredictable connectivity in this

environment. Finally, the possibility that the risk of the adversary physically appropriating

devices from the tactical network (likely to be small and portable) implies that they should

contain as little sensitive information as possible. If a standard Snort rule set file were captured

 2

in such a circumstance, the adversary would be able to exactly enumerate the network signature

and alerting capability of the tactical security system.

This adds up to the need for a network packet analysis solution that can approximate the

signature matching capabilities of Snort, drastically mitigate resource consumption and operating

load, use extremely lightweight constructs for updates, and locally obfuscate the signature

baseline. We propose the Extremely Lightweight Intrusion Detection (ELIDe) solution to meet

these needs.

2. Related Work

Previous profiling efforts [Spyros04] have identified string comparisons as the primary

bottleneck for Snort throughput, reporting that such operations consume up to approximately

70% of the total execution time and 80% of executed instructions on realistic network traffic.

Several approaches have been proposed to mitigate this bottleneck, either through moving

expensive or paralellizable computations to specialized hardware (20, 21, 23, 26), software

mitigations (22) , or a combination of the two (19).

The work of (23) proposes an n-byte “jumping window” pattern matching scheme to pre-process

lookups using ternary content addressable memory (TCAM). While this uses a similar insight to

ELIDe—that n-grams of the packet form a useful proxy for sequential dependencies—they focus

on multi-gigabit rates of deep packet inspection, and require specialized hardware (the TCAM

itself). Their use of a jumping window (rather than a sliding window such as in our application)

does significantly reduce the computational cost, but with a corresponding decrease in accuracy

due to “frame shift” errors. They also focus on use of TCAM to do direct matching from raw

payload to signatures, which does not mitigate the OpSec concerns that formed part of the design

goal of this project. The work of (19) also uses TCAM in order to generalize and accelerate

certain transitions in finite state machine (FSM) operations in signature matching. As with the

work of (23), however, it focuses on direct translation of signatures of concern into FSM

structures. The pattern-matching flexibility of TCAM is also exploited in (26) who attempts to

reduce the often significant power requirements of TCAM by use of a novel set-splitting

algorithm; their splitting allows for paralellism in matching, as well as a reduction in update cost;

it, however, still requires the use of additional hardware, and as they report, only partially

mitigates the additional cost of TCAM over standard memory.

In (20), graphics processing units (GPUs) are examined to paralellize string matching operations.

As the signature matching process is, itself, embarassingly paralellizable, it results in a

significant reduction of computational time for signature bases that can fit within GPU memory.

However, as with TCAM-based approaches, this does require additional hardware, does not meet

 3

the obfuscation design goal, and has the additional shortcoming that larger signature sets require

additional hardware to be purchased for each device. Similarly, in (21) (among many others),

field-programmable gate array (FPGA) processors are used to implement high-speed matching of

Snort rules. They develop an FPGA implementation of the “BV-TCAM” architecture,

combining a binary vectorization (BV) of the input data with TCAM emulation. Notably,

however, their (test) implementation is limited to 512 rules, with additional hardware required to

support additional rules.

Our research is differentiated from the aforementioned efforts in four significant ways. First, we

propose an algorithm that is implementable on a general-purpose computing platform, without

requiring specialized hardware to be attached to an existing device. Second, we explicitly

consider the obfuscation of signatures as a design goal, and exploit the pre-image resistance of

hashing functions to achieve this. Third, all of the methods previously described that focus

directly on emulating Snort signature matching require either storage or processing time that

scales linearly with the size of the rule database, whereas our approach (given fully trained

weight vectors) operates in constant time with respect to the size of the rule database. Finally,

we focus specifically on on-device intrusion detection for resource-constrained systems

operating in mobile, ad-hoc networks, rather than on standard fixed networks with higher

throughputs and the ability to dedicate a computer to the exclusive task of acting as a NIDS

sensor.

Kachirski and Guha have previously proposed an ad-hoc network intrusion detection structure in

which agents residing within the network nodes perform the functional tasks of monitoring the

state and traffic of the network, making decisions based upon the output of the monitoring, and

acting upon the decisions (5). Cognizant of the same resource and bandwidth environmental

limitations already discussed, their proposed structure uses a peer-election strategy to distribute

network monitoring duties amongst the participants in the network with the goal of conserving

the network’s overall computational demand. Building upon both the agent framework

characterized previously, as well as a case-based reasoning approach to network intrusion

analysis developed by Schwartz et al (6), Guha et al. (7) propose an alternative implementation

of Snort rule sets as an archive of cases with associated case features to be used as a basis for

reasoning by the network nodes that have been designated for monitoring duty. Our contribution

is differentiable from this work by proposing a scalable implementation of packet analysis that

eschews the need for selective network monitoring node designation to maximize throughput and

fault tolerance in the event one or more nodes in the ad-hoc network cease their participation.

Antrosiom and Fulp have previously proposed a strategy of continuously monitoring and

scanning both conventionally wired and wireless ad-hoc networks for vulnerabilities (8). By

periodically updating the vulnerability assessment of the network as a whole, nodes that have

recently become vulnerable or been compromised can be quarantined via logical network

 4

segmentation, mitigating their residual impact upon the other participants in the network. The

policy management and network configuration decisions in the proof-of-concept of this proposed

solution are made by a centralized network node that hosts the defense system. Once again, our

contribution is differentiable because of its emphasis upon decentralizing the network defense

functionality by distributing a lightweight approximation of the packet analysis functionality

normally provided by Snort to every node in the network.

Iland et al (9) have proposed techniques for detecting the presence of malware in ad-hoc mobile

infrastructure with specific emphasis on the Android operating system (10). The proof-of-

concept implementation of this work relies upon simulating both an ad-hoc network containing

compromised Android hosts, as well as multiple “bot-herder” hosts participating in command-

and-control traffic with the compromised hosts with a collection of virtual machines. Wireshark

(11) is then deployed for packet and protocol analysis of the captured virtual network traffic after

the conclusion of the simulation, and malware is detected by identifying distinguishable

characteristics of both the Hypertext Transfer Protocol (12) and Domain Name Service protocol

(13). Our contributions are differentiable because of the motivation for a more generalized

defensive technology that is simultaneously able to identify any malicious traffic describable as a

Snort rule regardless of the application protocol, as well as operate within a comparatively

resource-depleted mobile network environment.

3. ELIDe Approach

ELIDe is proposed as a linear machine learning classifier that relies upon a conventional Snort

implementation as its training oracle. It employs the “hash trick” of (24, 25) in order to

approximate a classifier in an extremely high-dimensional space with a lower-dimensional space,

as will be described, thus gaining most of the benefits of classification in the high dimensional

space without being forced to pay the price of performing computations in that space. The

approach begins with characterizing a network packet as a collection of N-grams (N bytes of

contiguous data from the packet). The feature vector that represents a particular packet is then

constructed by counting the number of occurrences of each unique N-gram appearing in the data

and indexing these counts with a collision-resistant hash digest (using the N-gram and an

arbitrary salt as the input). Classification is then performed by computing the dot product of the

representative feature vector with an internal weight vector (of equal size) and using the sign of

the result as the classifier’s decision. Due to the previously identified resource demands of

Snort, ideally supervised learning would take place in a more conventional computing

environment and not in the tactical network. The resulting weight vector can then be transmitted

to ELIDe instances in the field as lightweight updates.

 5

This approach has the benefit of projecting the network packet representation into a space with

highly elevated dimensionality (256
N
 possible N-grams), where performing linear classification

to separate “good” packet data from “suspicious” packet data is far more tractable. However,

operating natively in this high-dimensional space would also impose unacceptable memory and

processing requirements within the draconian constraints of a device likely to be found in a

tactical network (whose resources which will also likely be shared between the ELIDe solution

and other applications).

In practice, the N-gram features in this high-dimensional space will be extremely sparse,

particularly given the bandwidth constraints of a tactical network. The ELIDe approach,

therefore, avoids storing the native N-grams and instead represents them as the lower-order bits

of their respective hash digests. This effectively re-lowers the dimensionality of the problem

space down to the only size required to represent the hash digests (for example, 2
10

 dimensions

for 10-bit hash outputs). The length of the N-gram hash digest output becomes an

implementation detail that represents the tradeoff between resource consumption (shorter hashes

will be computed more quickly and take up less storage in memory) and accuracy (longer hashes

provide more detail and lower the likelihood of two distinct N-grams colliding with the same

hash output).

Finally, the weight vector used in the final stage of classification will be updated through

supervised learning of a training data set (a sequence of packet data). Snort will be used as the

oracle for this learning process: if an alert triggered a Snort alert, the desired outcome of the

ELIDe classifier will be positive. Otherwise, the desired outcome will be negative. This

approach also acts as obfuscation of the “signature” data in the event the device hosting the

ELIDe instance is captured. While it is theoretically possible for the adversary to reverse-

engineer the operation of ELIDe and determine its response to individual packets, it will be very

difficult to exactly enumerate the full range of packets for which ELIDe fires an “alert” with just

the weight vector alone.

4. Implementation and Results

The implementation of an ELIDe solution prototype consisted of three stages. The initial stage

took the form of a prototype implemented in CPython version 2.7.3 (14) that used the NumPy

(15) library for vector mathematics and the standard Python implementation of MD5 (16) as the

N-gram feature hashing mechanism. MD5 is not considered a cryptographically secure hashing

algorithm, but it is suitable as a hashing mechanism for the ELIDe concept since it is collision-

resistant. Snort version 2.9.4, accompanied by the February 2013 release of the Sourcefire

 6

Vulnerability Research Team (VRT) rule set, was used as ELIDe’s training oracle for all

exercises.

This implementation was able to functionally perform the required operations and achieved a

true positive rate of 99.9% for hash digest lengths longer than 8 bits (see the previous discussion

regarding the tradeoff of hash lengths). In addition, its peak memory consumption was profiled

by Massif as 196 MB, or 16.3% of Snort’s requirement of 1.2 GB. However, its runtime latency

did not compare favorably with Snort when analyzing controlled packet data and amounted to

approximately 5–20 times longer than that of Snort, depending upon the length of the hashed N-

gram features (the mean runtime of Snort to analyze a packet capture dataset of 26 MB was

approximately 30 s). After analyzing the prototype with standard Python performance profiling

tools, the bulk of the latency was represented by the process of computing MD5 hash digests.

The decision was then made to replace MD5 with the Murmurhash (17), a hashing algorithm

known to have better performance characteristics than MD5.

In order to characterize the dependency of ELIDe’s runtime performance and accuracy upon the

configurable parameters of hash length and N-gram size, the Python implementation was tested

using a data set consisting of 345320 packets captured from a synthetic virtual network known to

contain traffic that triggers alerts from the Snort VRT rule set. The classifier was exercised

using five different N-gram sizes (5 bytes, 10 bytes, 15 bytes, 20 bytes, and 25 bytes) as well as

13 different hash lengths (the inclusive range of 4 bits through 16 bits), and five trials were

executed for each distinct configuration producing a randomized sequence of 325 trials (5 N-

gram sizes x 13 hash lengths x 5 repetitions). In all cases, the response elicited from Snort for

each packet (alert vs. no alert) was used as the ground truth to supervise the learning of the

classifier.

Figures 1 and 2 visualize collected data representing the time required for the ELIDe classifier to

process and classify the data set after supervised training has been completed as a function of the

feature hash length and N-gram size, respectively. The timing data suggests the following

conclusions:

• The use of Murmurhash instead of MD5 improved ELIDe’s runtime latency to

approximately 2–3 times greater than that of Snort (previously the latency was 5 to 20

times greater than that of Snort).

• There is noticeable correlation between runtime performance and the length of the feature

hashes.

• There is NO noticeable correlation between runtime performance and the size of the N-

grams.

 7

Figure 1. Time required by the Python ELIDe prototype to classify 26 MB of packet data as a function of feature

hash length.

 8

Figure 2. Time required by the Python ELIDe prototype to classify 26 MB of packet data as a function of N-gram

size.

Figures 3 and 4 visualize collected data representing the true positive rate of the classifier as a

function of the feature hash length and N-gram size, respectively. The classification accuracy

results suggest the following conclusions:

• There is noticeable correlation between the true positive rate and the length of the feature

hashes. If the feature hash length is greater than or equal to 8 bits, the classifier achieves a

true positive rate between 99% and 100%.

• There is NO noticeable correlation between the true positive rate and the size of the N-

grams.

Further performance profiling led to the conclusion that the majority of remaining latency was

attributable to ELIDe’s materialization as a Python prototype. This led to the second major

phase of implementation that converted ELIDe to a C++ application. Murmurhash has both C++

and Python interface bindings, and was, therefore, retained as the N-gram feature hashing

 9

mechanism. The responsibility for performing vector operations was handed to the BLAS

library, which is itself the underlying engine beneath the Python Numpy library previously used

for this purpose. Profiling the memory usage of the C++ manifestation of ELIDe with Massif

indicated that it required only 17 MB, or 1.42%, of Snort’s RAM requirement. It was then

subjected to the same set of trials (325 trials over five different N-gram sizes and 13 different

hash lengths) previously executed by the Python implementation.

Figure 3. True positive classification rate of the Python ELIDe prototype as a function of feature hash length.

 10

Figure 4. True positive classification rate of the Python ELIDe prototype as a function of N-gram size.

Figures 5 and 6 visualize collected data representing the time required by the C++

implementation to process and classify the same data set with which the Python prototype was

evaluated. The results suggest that eliminating the overhead introduced by the Python interpreter

resulted in a throughput that was 30 times faster than Snort in the best case and almost identical

to Snort’s throughput in the worst case.

 11

Figure 5. Time required by the C++ ELIDe implementation to classify 26 MB of packet data as a function of feature

hash length.

 12

Figure 6. Time required by the C++ ELIDe implementation to classify 26 MB of packet data as a function of N-

gram size.

Figures 7 and 8 visualize the data collected representing the true positive rate of the C++

implementation as a function of the feature hash length and N-gram size, respectively. These

results verify that converting ELIDe into a C++ application did not adversely affect the accuracy

of its classification.

The final stage of the implementation transitioned the ELIDe application onto a resource-

constrained hardware platform more likely to be used in a mobile tactical network, and the

Raspberry Pi was chosen as that representative platform. ELIDe was successfully tested on a

Raspberry Pi, its throughput was benchmarked at approximately 8.3 megabits per second (using

hashed N-gram features that were 10 bits in length) while retaining its functional characteristics

and true positive rate.

 13

Figure 7. True positive classification rate of the C++ ELIDe implementation as a function of feature hash length.

 14

Figure 8. True positive classification rate of the C++ ELIDe implementation as a function of N-gram size.

5. Conclusion

ELIDe is the proof-of-concept for approximating the functionality of a robust network intrusion

detection tool such as Snort for use in a mobile tactical network. The spartan processing and

memory requirements make it ideal for dense coverage of every single node in a dynamic

topology, and the lightweight constructs used to update ELIDe’s signature baseline are

obfuscated and suitable for transmission to devices for which physical loss is a possibility.

 15

6. References

1. Snort intrusion prevention and detection system, http://www.snort.org

2. Snort rules, http://www.snort.org/snort-rules

3. Valgrind instrumentation framework. http://www.valgrind.org

4. Raspberry Pi single-chip computer. http://www.raspberrypi.org/

5. Kachirski, O.; Guha, R. Intrusion Detection Using Mobile Agents in Wireless Ad Hoc

Networks. Proceedings of IEEE Knowledge Media Networking Conference, KMN’02, July

2002.

6. Schwartz, D. G.; Stoecklin, S.; Yilmaz, E. A Case-Based Approach to Network Intrusion

Detection. Fifth International Conference on Information Fusion, IF'02, Annapolis, MD,

July 7–11, 2002, pp. 1084–1089.

7. Guha, R.; Kachirski, O.; Schwartz, D. G.; Stoecklin, S. A. Case-Based Agents for Packet-

Level Intrusion Detection in Ad Hoc Networks. Seventeenth International Symposium on

Computer and Information Sciences, Orlando, FL, October 28-30, 2002.

8. Antrosiom, J. V.; Fulp, E. W. Malware Defense Using Network Security Authentication. In

Information Assurance, 2005. Proceedings. Third IEEE International Workshop on, pp. 43–

54. IEEE, 2005.

9. Iland, D.; Pucher, A.; Schäuble, T. Detecting Android Malware on Network Level, 2011.

10. Android operating system. http://www.android.com/

11. Wireshark packet analyzer. http://www.wireshark.org/

12. Fielding, R.; Gettys, J.; Mogul, J.; Frystyk, H.; Masinter, L.; Leach, P.; Berneres-Lee, T.

Internet Engineering Task Force RFC 2616. http://tools.ietf.org/html/rfc2616

13. Mockapetris, P. Internet Engineering Task Force RFC 1035.

http://tools.ietf.org/html/rfc1035

14. Python programming language. http://www.python.org/

15. NumPy. http://www.numpy.org/

16. Rivest, R. Internet Engineering Task Force RFC 1321. http://tools.ietf.org/html/rfc1321

17. Appleby, A. Murmurhash. https://sites.google.com/site/murmurhash/

http://www.snort.org/
http://www.snort.org/snort-rules
http://www.valgrind.org/
http://www.raspberrypi.org/
http://www.android.com/
http://www.wireshark.org/
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc1035
http://www.python.org/

 16

18. Antonatos, Spyros; Anagnostakis, Kostas G.; Markatos, Evangelos P. Generating Realistic

Work-Loads for Network Intrusion Detection Systems. In WOSP, pages 207–215, 2004

19. Gould, Stephen, et al. Apparatus and Method for Memory Rfficient, Programmable, Pattern

Matching Finite State Machine Hardware. U.S. Patent No. 7,082,044. 25 Jul. 2006.

20. Smith, Randy, et al. Evaluating GPUs for Network Packet Signature Matching.

Performance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International

Symposium on. IEEE, 2009.

21. Song, Haoyu; Lockwood, John W. Efficient Packet Classification for Network Intrusion

Detection Using FPGA. Proceedings of the 2005 ACM/SIGDA 13th International

Symposium on Field-Programmable Gate Arrays. ACM, 2005.

22. Sourdis, Ioannis, et al. Packet Pre-Filtering for Network Intrusion Detection. Architecture

for Networking and Communications Systems, 2006. ANCS 2006. ACM/IEEE Symposium

on. IEEE, 2006.

23. Sung, Jung-Sik, et al. A Multi-Gigabit Rate Deep Packet Inspection Algorithm Using

TCAM. Global Telecommunications Conference, 2005. GLOBECOM'05. IEEE. Vol. 1.

IEEE, 2005.

24. Shi, Qinfeng, et al. Hash Kernels. International Conference on Artificial Intelligence and

Statistics. 2009.

25. Shi, Qinfeng, et al. Hash Kernels for Structured Data. The Journal of Machine Learning

Research 2009, 10, 2615–2637.

26. Yu, Fang, et al. SSA: A Power and Memory Efficient Scheme to Multi-Match Packet

Classification. Proceedings of the 2005 ACM Symposium on Architecture for Networking

and Communications Systems. ACM, 2005.

 17

 1 ADMNSTR

 (PDF) DEFNS TECHL INFO CTR

 ATTN DTIC OCP

 1 GOVT PRNTG OFC

 (PDF) ATTN A MALHOTRA

 1 US ARMY CYBER COMMAND

 (PDF) ATTN 24 C PRESSLEY

 9 US ARMY RDECOM CERDEC

(PDFS) ATTN RDER IWI G BERTOLI

 ATTN RDER IWI K BOYLE

 ATTN RDER IWI SP P ROBB

 ATTN RDER IWI SP S BLAIR

 ATTN RDER STI IS J SANTOS

 ATTN RDER STI S LUCAS

 ATTN RDER STI TN G ZIGLICH

 ATTN RDER STI TN M MAGENHEIMER

 ATTN RDER STI TN S SNYDER

 7 US ARMY RSRCH LAB

 (PDFS) ATTN RDRL CIN D B RESCHLY

 ATTN RDRL CIN D C ELLIS

 ATTN RDRL CIN D D KELLY

 ATTN RDRL CIN D J COLE

 ATTN RDRL CIN D T PARKER

 ATTN RDRL CIN S C SMITH

 ATTN RDRL CIN D L M MARVEL

 2 US ARMY RSRCH LAB

 (PDFS) ATTN RDRL SLE I A REVILLA

 ATTN RDRL SLE I D LANDIN

 17 US ARMY RSRCH LAB

 (PDFS) ATTN RDRL CIN A KOTT

 ATTN RDRL CIN D G PAYER

 ATTN RDRL CIN D H CAM

 ATTN RDRL CIN D J EDWARDS

 ATTN RDRL CIN D J WITTKAMPER

 ATTN RDRL CIN D M SHEVENELL

 ATTN RDRL CIN D O AKPAN

 ATTN RDRL CIN D P GUARINO

 ATTN RDRL CIN D R ASTROM

 ATTN RDRL CIN D R ERBACHER

 ATTN RDRL CIN D R HARANG

 ATTN RDRL CIN D R PINO

 ATTN RDRL CIN D S HUTCHINSON

 ATTN RDRL CIN D W GLODEK

 ATTN RDRL CIN S C ARNOLD

 ATTN IMAL HRA MAIL & RECORDS MGMT

 ATTN RDRL CIO LL TECHL LIB

 18

INTENTIONALLY LEFT BLANK.

