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The problem: Understanding intent is a critical aspect of communication among people and for many 
biological systems. While people are very good at recognizing intentions, endowing an autonomous 
system (robot or simulated agent) with similar skills is a more complex problem, which has not been 
sufficiently addressed in the field. The issue of intent recognition is particularly important in situations 
that involve collaboration among multiple agents or assessment of potential threats. In the former case 
collaboration can be greatly enhanced, while in the latter case dangerous situations can be detected before 
any harmful actions can be finalized. In this project, we propose to develop methodologies for intent 
understanding, with specific focus on autonomous systems for naval and collaborative robotics 
applications. The main research problems we will address in this project are to: 1) develop tools for 
understanding the high-level intentions of groups of agents, 2) develop algorithms for intent 
understanding based on contextual information, 3) develop vision-based techniques for learning of 
contextual information, and detection and identification of objects of interest. 
Proposed solution: We propose to extend our work on HMM-based intent recognition in two main 
directions. First, we plan to incorporate extensive contextual information in order to provide effective 
detection of the agents’ intent. Based on our preliminary research we found that the type of activity being 
performed, coupled with the context in which the activity is executed are the major components indicative 
of the performing agent’s intent. There are numerous contextual parameters that provide valuable 
information regarding the underlying intent of actions being performed. In this work we propose to 
integrate information such as location, time, object affordances, and history (past activities, past 
trajectories) and we will seek to identify any other factors that are significant to detecting intent. These 
factors will be incorporated using a probabilistic model that takes into account many possible contexts. 
The probability distributions of these contexts will be learned from existing databases on common sense 
knowledge and from the agents’ own experience. The second extension is to scale up the intent 
recognition approach to systems with large number of agents. This research will be based on using an 
interaction space that determines the agents who are potentially interacting. For these agents, pair-wise 
intent recognition will be performed for the agents’ intent with respect to each other. To further detect 
group intentions, we will develop a method based on common-sense knowledge and closeness centrality, 
to group together agents that have a potentially common intent.
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1. Technical Report 

a. Scientific and Technical Objectives  

Understanding intent is a critical aspect of communication among people and for 
many biological systems. This is particularly important in situations that involve 
collaboration among multiple agents or assessment of potential threats. During the 
recent years, there has been an increased interest in using robotic technologies for 
security and defense applications, in order to reduce the danger for the people 
involved. In the context of these applications, being able to automatically detect any 
threatening situations is of critical importance. This reduces to the problem of 
understanding the intent of other agents, from their current actions, before any 
attack strategies are finalized. 

The primary objective of this work is to design an effective and robust system for 
intent understanding that will provide reliable detection of intended activities for 
autonomous systems in both naval and service robotics applications. Specifically, we 
will work toward the following objectives: 

• Develop tools for understanding intentions in large-scale systems 

• Design algorithms that rely on extensive use of contextual information for 
intent understanding  

• Develop vision-based techniques for learning of contextual information, and 
detection and identification of objects of interest 

• Integrate the above capabilities into two prototype systems that will be tested 
under naval-type mission scenarios and a collaborative robot scenario. 

b. Approach  

Our approach to reaching our goals consists of the following main steps: 

1) Develop a unified framework for intent understanding. The proposed approach 
relies on the use of extensive contextual information in order to identify the correct 
intentions of agents in naval and robot domains. This contextual information will be 
incorporated both at a low level (for detection of basic intentions) and at a high-level 
(for the detection of complex intentional activities). The main sources of contextual 
information we will consider are: object affordances, history, domain knowledge, 
general (space, time, etc.) and the actor’s beliefs, perceptions, desires or 
personality. The framework includes four key components, described in detail below. 

2) Develop techniques for the detection and tracking of relevant agents and or 
objects in the environment. Once detected, their 3-D positions, trajectories and 
speed are determined, in order to provide this information to the intent recognition 
module. We will leverage our current work in this area and extend our system’s 
capabilities for a wide range of situations: different perceptual requirements 
depending on the particular scenarios, as well as different assumptions (moving vs. 
static cameras, moving vs. static objects of interest, generic detection of 
people/classes of objects vs. recognition of specific persons/objects, availability of 



	
  

	
  

pre-learned models). We will also incorporate additional sensor data, such as 3D 
information from stereo cameras or laser rangefinders into our techniques for 
detection and tracking. 

c. Concise Accomplishments  

During the last reporting period we worked in the following research directions: 
 
1) We refined a distributed architecture for intent recognition, based on activation 
spreading. Within this architecture, the hierarchical structure of activities and 

contextual information is represented in an interconnected network of nodes passing 
messages to each other (Figure 1).  
 
 
2) We refined our infrastructure for the naval simulation domain to enable detection 
of threats posed by coordinated groups of boats. Our work consists of: i) updated 
models for detection of low-level intentions, ii) new classifiers for detecting an 
“intercept” behavior, iii) integration of the distributed architecture with the naval 
simulator, and iv) quantitative evaluation of the system’s performance in various 
experimental scenarios. 
 
3) We applied our work to a naval simulation domain. In this research, we 
demonstrated the ability to recognize coordinated attacks by multiple boats, using 
the distributed activation spreading architecture. 
 

d. Expanded Accomplishments  

During this reporting period we made progress in the following directions: 
 
 

Figure 1. Intent recognition using activation spreading. 

Context (locations and times, objects, 
mental states and beliefs) 

High-level activities 

Low-level actions 

Environment 



	
  

	
  

1) Intent Recognition using an activation spreading architecture. 
 
As a part of this work we refined our previous distributed architecture prototype that 
uses the principle of activation spreading in interconnected networks. Similar to 
Anderson’s spreading activation theory of memory, we assume that information 
regarding activities (such as their temporal or hierarchical structure) as well as 
related contextual information (such as locations, time, objects present in the visual 
field, mental states, beliefs) is represented as an interconnected network. The 
observation of certain states or basic actions in the environment increases the 
strength of corresponding nodes in the network, which begin to send activation to 
nodes that represent related activities. Activities that accumulate the highest level of 
activation are considered most likely to be those actually performed by the agent. 
Using the known temporal structure of the activities we can predict potential future 
actions of the agent before they are achieved. 
 
During this period, we redesigned the basic structure of the architecture using the 
latest version of Scala, a functional and object-oriented language. Scala provides 
actor concurrency for distributed and asynchronous message passing, as needed for 
our network. We used a graph language to represent the structure of our network: 
each node in the graph is an actor and an edge from A to B indicates that A sends 
activation messages to B. The messages sent are activation messages that contain a 
single real number (the strength of activation passed on to neighbors and a type. 
The type can be “input” for low-level intentions and context or “internal” for high-
level intentions. 
 
2) Refined naval simulator infrastructure.  
 
We previously developed a 3D, physics-based simulation engine, which provides the 
following features and capabilities:  

• Large set of boat models, ranging from small cigarette boats and fishing 
boats, to aircraft carriers and destroyers 

• Ability to run scenarios with a large number of boats (80 to 100) 
• Ability to create individual controllers for each boat using a GUI, based on a 

set of basic boat behaviors 
• Ability to generate and store multi-boat scenarios, with each boat 

automatically running its own controller 
 
We extended our infrastructure for the naval simulation domain to enable detection 
of threats posed by groups of coordinated boats. Our extensions consist of:  
 

i) updated models for detection of low-level intentions. We have re-structured 
and retrained models for all the low-level intentions that we have 
previously developed: approach (one boat gets closer to another), follow 
(one boat keeps a constant distance and bearing with respect to another), 
overtake (pass in front of another boat, coming from behind, going in the 
same direction), and pass (go by another boat, coming from opposite 
direction). 

ii) new classifiers for detecting an “intercept” behavior. In order to implement 
the new scenarios, we modeled and trained a classifier for an “intercept” 
behavior. A boat is considered to be intercepting another, if it follows a 
course that will intersect with the course of the other boat at some point 
in the future. 



	
  

	
  

iii) integration of the distributed intent recognition architecture with the naval 
simulator. The distributed architecture has been previously used solely in 
the robotic domain. During this period, we integrated it with the naval 
simulator, which allows us to test its performance in the naval domain. 

iv) quantitative evaluation of the system’s performance in various experimental 
scenarios.  To test the baseline accuracy of the HMM-based approach to 
low-level intent recognitions, we trained models for 5 different intentions: 
approach, pass, overtake, follow, and intercept.  We then generated 200 
two-agent scenarios, resulting in 40 test scenarios for each of the trained 
intentions.  All of our statistics represent the average performance of the 
intent recognition system over the 40 relevant scenarios.  For a 
quantitative analysis of the intent recognition system, we used three 
standard measures for evaluating HMMs: 
• Accuracy rate: the proportion of test scenarios for which the final 

recognized intention was correct 

• Average early detection: 
1
N

ti
!

Tii=1

N
" , where N is the number of test 

scenarios, Ti is the total runtime of test scenario i, and ti
* is the 

earliest time at which the correct intention was recognized consistently 
until the end of scenario i. 

• Average correct duration: 
1
N

Ci

Tii=1

N
! , where Ci is the total time during 

which the correct intention was recognized for scenario i. 
 
For reliable intent recognition, we want accuracy rate and average correct 
duration to be close to 100%, and average early detection to be close to 
0%.  The results of our experiments are shown in Table 1.   
 

 
Table 1. Quantitative evaluation of low-level intent recognition module 

 
As can be seen, the intent recognition system performs well in terms of 
early detection for the approach, intercept, and follow behaviors, 
recognizing them consistently within the first 12% of the completion of the 
action.  These results are consistent with the current state of the art for 
single-agent intent recognition methods.   
 



	
  

	
  

 
Figure 2. The average correct detection of pass over time. 

 
Figure 3. The average correct detection of overtake over time.  

 
Figure 2 and Figure 3 provide an explanation for the poor performance of 
the pass and overtake behaviors.  These figures show the percent 
accuracy of each intention over the duration of the run.  For instance, if 20 
out of the 40 runs correctly recognized pass 50% of the way through a 
scenario, then the value of the graph in Figure 1 at t=50 will be .5.  From 
this analysis, we can see that both pass and overtake are correctly 
recognized for the majority of the duration of each scene (as borne out in 
Table 1), but consistently fail to be recognized when the agents have 
drawn abreast of each other.  This is likely due to a lack of distinguishing 
evidence variables at this time.  Given the evidence variables discussed 
above, the only difference between pass and overtake at this point would 
be “change in angle from target agent to acting agent,” which is likely not 
enough to result in a distinct classification.   
 
We also evaluated the effectiveness of parallelizing the intent 
recognition process. Toward this end, we implemented both serial and 



	
  

	
  

parallel versions of the intent recognition algorithm and ran them on 
scenes containing varying numbers of agents. We then recorded the 
average frame rate over each scene (with one frame defined as a single 
iteration of the intent recognition algorithm, from symbol generation to 
selection of most likely intent), with the results shown in Figure 4. We can 
see that while the performance of the serial implementation of the intent 
recognition process quickly drops below an acceptable frame rate for real-
time systems, the parallel implementation maintains a speed of about 40 
frames per second, which is definitely adequate for performing in real-
time. The intent recognition problem as presented in this thesis has a 
computational complexity of O(n3) (intentions must be calculated for each 
pair of agents, from the perspective of each agent). Thus, we can expect 
that the intent recognition system will continue to perform in the 
neighborhood of 40 fps as long as n < m3 , where n is the number of 
agents and m is the maximum number of threads provided by the GPU. 
On our system (which uses the Tesla C2050), this means that we should 
be able to continue performing intent recognition in real-time as long as n 
< 30,000. 
 

 
Figure 4. Performance of serial implementation of intent recognition vs. 

parallel implementation. 
 

  
 
 
3) Intent recognition for the naval domain. 
 
We created 6 different scenarios in our simulator in which naval vessels needed to 
recognize potentially hostile intentions (approach and intercept) as enemy ships 
maneuvered to attack.     
In the Straits of Hormuz scenario, a convoy of naval vessels is attempting to traverse 
the straits.  As they do so, a pair of other ships pass close by the convoy, creating a 
distraction.  Shortly after this, more ships break free of a group of trawlers, and 
begin a suicide run towards the convoy in an attempt to damage it.  The San Diego 
scenario is constructed similarly.  Here, a group of naval vessels is attempting to exit 



	
  

	
  

the San Diego harbor.  As they travel towards the harbor mouth, a ship that had 
been behaving like a fishing boat comes about and begins a run towards the navy 
vessels.  In hide, the naval vessels are traveling through a channel, while passing 
some container ships.  As this happens, a small boat accelerates to a position behind 
one of the container ships and hides there until it is abreast of the navy vessels.  At 
this point, it breaks from hiding and attacks the navy vessels.  Blockade and 
Hammer and anvil are examples of some scenarios in which more complex intentions 
(in which agents must cooperate to perform a task) may occur.  In blockade, a naval 
vessel is attempting to pass through a channel when some other ships emerge from 
hiding behind nearby islands and intercept it, forming a blockade. Hammer and anvil 
begins similarly, but once the channel is blocked by the blockading ships, an 
additional pair of ships approaches from behind the naval vessel in order to attack 
and cut off escape. In order for these techniques to work, we must also be able to 
accurately recognize the low-level intentions (intercept and approach) which make 
up the overall attacks.   In performing a quantitative analysis of the more complex 
scenarios, we first define key intentions as those intentions that make up actions, 
which are threatening to the naval vessels in the scene.  For instance, in the hide 
scenario, the container ships may have the intention of passing the naval vessels, 
but this would not be a key intention.  However, the aggressive ship must overtake a 
container ship in order to hide behind it, and must approach the navy vessels in 
order to attack them, and both of these would be considered key intentions.  For the 
purposes of determining the performance of the intent recognition in the complex 
scenes, we will focus on the average early detection for key intentions in each scene, 
and the accuracy rate for those key intentions as well.   The accuracy rate for our 
system is 100% for key intentions in the complex scenarios. In each of the 5 
scenarios all of the key intentions were correctly identified.  In addition, it can be 
seen in Table 2 that the early detection rate for the key intentions is below 13%.  In 
every case, the key intentions were recognized almost as soon as they began. 

 
Table 2. Intent recognition in complex scenarios. 

 
 

e. Work Plan  

This is the last year of the project. We plan to further extend our work as a part of a 
recently started ONR project. 

f. Major Problems/Issues 

N/A. 

 

 



	
  

	
  

g. Technology Transfer 

Our physics based 3D naval simulator is currently used every day at SWOS for 
training exercises with the Full Mission Bridge.  

h. Foreign Collaborations and Supported Foreign Nationals 

N/A. 
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