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Abstract: The paper addresses a class of 
problems for determining the acoustic 
interaction of time harmonic plane waves 
impinging upon submerged elastic plates 
(fluid backed or void backed), that are of 
infinite in extent. The plates can have 
repeated equally spaced inclusions (voids, 
solids, ribs etc.), and also can be 
constructed from orthotropic and/or isotropic 
layers that can have a frequency dependent 
loss factor for the modulus data (e.g.  E= 

E’(1+iηΕ ), and ν= ν’(1+iην), where ηΕ and ην  
are the corresponding loss factors for 
Young’s modulus and Poisson’s ratio for 
example. Since the plates are infinite in 
extent, the issue of dealing with the infinite 
domain of fluid must be dealt with and is 
treated through the application of PML 
(Perfectly Matched Layers) boundary 
conditions, for absorbing the reflected 
acoustic waves and transmitted acoustic 
waves when the plates are fluid backed. The 
physical quantities of interest are typically 
the reflected acoustic waves and transmitted 
acoustic waves, however detailed 
information of how the elastic stress waves 
propagate through and around the 
inclusions are often of interest as well.  
Keywords: Fluid Structure Interaction, Acoustic 

Transparency 

 

1. Introduction 
The paper treats a general class of problems 

as encountered in structural acoustics, involving 

a submerged elastic plate that is subject to an 

incident harmonic plane wave of the 

form
)(
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,where{kx ky kz }are the acoustic wave number 

components defining the direction n
r
  of 

propagation (i.e. zyx kkkjkin
rrrr

++= ) and  ω is 

the frequency in rad./sec . The thrust of this 

paper is to compute the acoustic transparency 

|ptr/po| and acoustic reflection |prf/po|, which are 

defined as the fractions of the incident pressure 

po that are transmitted and reflected from the 

plate respectively. Further, we are interested in 

the case where the plate is not necessarily 

homogenous in the plane of the plate, but rather 

has some sort of repeated anomaly, such as the 

model configuration shown in Fig. 1 . 

 
Figure 1.. Typical Repeated inclusion Submerged 

Structure Model Subject to Incident Plane Wave 

(with PML Wave Absorbing Layers)  

 

The paper will pass through a sequence of 

increasingly difficult problems which illustrate 

the application of the periodic boundary 

condition, starting with: 

(a) a simple free field block of fluid (e.g. Fig. 2) 

(b) a homogenous submerged elastic plate with 

no inclusions, (e.g. Fig 1 case but with the softer 

surrounding matrix material set equal to the 

stiffer inclusion material) 

(c) a submerged plate with periodic inclusions 

for the problem type shown in Fig. 1 . 

 Each of these problems has a specific point  

to illustrate, namely: problem (a) shows the 

enforcement of the periodic boundary condition 

in the cleanest form (no fluid structure 

interaction to deal with), and employs the perfect 

(exact in this case) impedance boundary 

condition to terminate the far field; problem (b) 

illustrates the setup for fluid structure interaction 
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boundary conditions, absorbing radiation 

boundaries, and the issue of using the scattered 

pressure formulation, along with validation 

against an exact solution, and finally problem (c)  

solves the problem of main interest, where 

inclusions are distributed in a periodic pattern.  

 

1.1 Past Work 

The motivation for this work stems from the 

need to evaluate the acoustic transparency of 

various kinds of submerged plates and shells, 

and in particular, when acoustic sensors are 

placed behind these structures and their 

performance depends on the strength of the 

transmitted signal |ptr/po|.The closer this ratio is 

to 1.0, the better the transparency and therefore 

the better the performance. There is a related 

problem of target strength (but will not be 

covered herein), where it is desired to keep the 

reflected pressure |prf/po| small, usually through 

energy absorption via large loss factors in the 

material elastic constants. For either the 

transparency or target strength application, the 

methodology addressed herein can be used to 

attack these problems. References [1-4] treat the 

general issue of acoustic transparency from a 

materials point of view and references [5-7] 

employ three FEM based computer codes 

(NASTRAN, ATILA, and STARS3D 

respectively) that have been used to solve for the 

acoustic response of submerged periodic 

structures.  

 

2. Governing Equations  

The governing equations for the total 

pressure p in the acoustic domain and 

displacement vector, ju , in the solid domain (for 

tie ω  time harmonic type response) are given by:   
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where c, cd and cs are the acoustic wave speed, 

complex solid dilatational wave speed  and 

complex solid shear wave speed respectively. 

The live index j takes on values j=1,2,3 and 

repeated indices sum over 1 to 3.  We write the 

governing equations in this form, in order to: (a) 

illustrate the similarity of the form of the solid 

and acoustic media, and (b) illustrate how wave 

speeds appear as primary coefficients in the 

harmonic field equations. The concept of 

acoustic transparency in the simple case of say a 

normal incident plane wave, Eq(1), impinging on 

a homogenous elastic plate without loss, is 

treated in Ref [8]. The normal incident wave will 

completely pass through the plate if the 

impedance ratio ccZ ds ρρ /=  =1.0, where 

ρ and sρ  are the fluid and solid plate mass 

density respectively. Therefore when selecting 

material parameters for a plate, where acoustic 

transparency is desired, one usually strives to 

make the plate materials have impedance ratios 

in the neighborhood of 1.0 . In the case of non 

normal incidence, and/or the case where the 

matrix material of the plate has elastic inclusions 

imbedded within the plate and/or has nonzero 

loss factors, other kinds of waves are present in 

the dynamic response, and then having 0.1≈Z to 

achieve transparency is only used as a guideline. 

 

2.1 Elastic Material Constants  

 The complex wave speeds can be expressed in 

terms of primed real wave speeds and loss 

factors in the form: 
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Where ηd and ηs are the dilatational and shear 

loss factors. Complex wave speeds can also be 

expressed in terms of complex E modulus and 

complex Poisson’s ratio ν in the form: 
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Say we are given the two real primed wave 

speeds and two associated loss factors ηd and ηs 

(which are typically different for rubber like 

materials). Upon equating the corresponding like 

complex wave speeds of Eqs(2a) Eqs(2b), we  

can easily solve for complex E and complex ν in 
terms of   dc' , 

s
c' , ηd and ηs  . In COMSOL, the 

isotropic elastic data is entered via E and 

ν , where one can enter the complex E and ν in 
the form E=E’ + i* E” and ν=ν’ + i* ν”. The 
COMSOL program has a feature in the acoustics 

module that permits the user to work with the 

scattered (reflected) pressure formulation, ps, 

rather than the total p formulation. However the 

formulation used here still uses the structure of 

the total pressure equations, where the loading of 

the incident field enters via the boundary loading 
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at the incident side fluid structure interface. We 

start by substituting p = pinc+ ps into the original 

time harmonic pressure pde to get: 

  

02)2/22/22/2(2 =+∂∂+∂∂+∂∂ spzspyspxspc ω

 

and since pinc is a solution to the original 

homogenous pde, it drops out after the 

substitution, leaving the new form of the pde in 

terms of  ps which has the same appearance as 

the original.  

 

2.2 Fluid Solid Interface Boundary Conditions 

The pinc term enters the problem via the fluid 

structure interface. On the solid interface,  (pinc+ 

ps)= the total pressure is applied, and similarly at 

the fluid interface, both the interface plate 

acceleration and incident fluid acceleration are 

loaded. For example: 

On incident side  interface: 

 inward normal acceleration fluid loading: 

nx_acpn*u_tt_acpn+ny_acpn*v_tt_acpn+p_i_ac

pr*i*(nx_acpn*kx+ny_acpn*ky)/rhow 

normal pressure loading 

-p*ny_acpn-p*nx_acpn-p_i_acpr*ny_acpn-

p_i_acpr*nx_acpn 

 

On transmitted side   interface: 

 inward normal acceleration fluid loading: 

nx_acpn*u_tt_acpn+ny_acpn*v_tt_acpn 

normal pressure loading 

-p*ny_acpn-p*nx_acpn 

 

 Where p_i_acpr = Eq(1) without e
iωt
; rhow = ρ  

po=1.0, kx=-kosin(θ), ky=kocos(θ), kz=0  ko=ω/c . 
 

2.3 Radiation Boundary Conditions 

The mesh termination at the top of the incident 

side fluid and bottom of the transmitted side  

fluid must include some sort of radiation 

absorbing boundary condition. Three types were 

considered: 

a) COMSOL’s built in plane wave radiation 

absorber (don’t need acoustics module) 

b) COMSOL’s built in PML (Perfectly Matched 

Layer), as indicated by the extra PML zones 

shown in Fig.1 above ( need acoustics module). 

c) User defined Impedance (Z=ps/vn) radiation 

condition , where for plane waves impinging at 

angle θ (see Fig. 1), on one or more completely 

submerged homogenous elastic layers and using 

Snell’s law, ref.[9], we have Z=ρf c/cos(θ) as an 

exact radiation boundary condition at both 

incident side mesh termination and transmitted 

side termination. This same impedance condition 

can be used for the non-homogenous plate (e.g. 

with inclusions), however in this case, the 

condition is approximate and the degree of 

success depends on how close the solution field 

is to a plane wave structure, at the fluid domain 

truncation cut (don’t need acoustics module). 

 

2.4 Periodic Boundary Conditions 

Here we are concerned about the boundary 

condition at the left cut vertical faces and right 

cut vertical faces (line x=0 and line x=L in Fig. 

1. The response at the left cut say, plcut, and 

response at the right cut prcut, is not known in 

advance, however we do know a relationship 

between them, namely: 
Lik

lcutrcut
xepp = , therefore plcut and prcut are not 

independent unknowns. This type of condition is 

used in refs.[5-7] for example, and will not 

elaborate on them further. Applying this 

condition in COMSOL is awkward and not 

intuitive. There are two issues: a) when applying 

the periodic boundary involving a complex 

multiplier condition, the user applies variable p 

on the left and 
Lik xep

−
 on the right (the 

conjugate of Lik xe  ) and b) when using the solve 

parameters advanced settings, one must 

(according to COMSOL staff), check the box 

engaging “Use Hermitian transpose of constraint 

matrix).  

The treatment for the application of the periodic 

boundary condition for the solid follows exactly 

along similar lines, (where upon defining 

displacement components as u≡u1 and v≡u2) we 

have  Lik
lcutrcut

xeuu =    and Lik
lcutrcut

xevv =  with 

{ lcutu , lcutv , rcutu , rcutv } as the left and right cut 

displacement component values, analogous to 

the pressure left and right cut values. The 

displacements are enforced similar to enforcing 

p, but instead in terms of COMSOL variables 

{u,v}. Thus {u,v} are applied at the left cut, and 

{u
Lik xe , v

Lik xe }are applied at the right cut. 

 

2.5 Mesh sizing 

For harmonic steady state problems, the mesh 
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size is set according to the shortest wave length 

expected during the event. For example, if New is 

the number of elements/wave length required for 

accurate modeling and Cmin is the slowest wave 

speed, and fmax the largest frequency experienced 

in a frequency sweep,  then the mesh can be 

sized with ∆min =  Cmin / (New fmax  ), (e.g. New =6 

for quadratic element shape functions and New = 

10 for linear element shape functions). When 

rubber like materials are employed, the shear 

wave speed, sc' , is typically the smallest and 

governs the mesh size needed in the solid.. 

 

2.6 Post Processing Pressure Fields 

When the scattered formulation is employed as 

used in this paper, while plotting the pressure on 

the incident side, the basic COMSOL variable 

p_t_acpr will actually represent the scattered 

component, ps, even though it is labeled as total 

in the post processing output list. The actual total 

can be obtained (if needed) by simply adding 

back the incident pressure, Eq(1), (without e
iωt
). 

The pressure on the transmitted side is also post-

processed via COMSOL via the variable 

p_t_acpr. 

When the plate is homogenous, the phase of the 

reflected and transmitted pressure vary with 

space, however the magnitudes of these fields 

are constant over the domain. Therefore, one can 

sample |ptr/po| , or |prf/po| anywhere in the field to 

get a representative value of the acoustic 

transparency and reflectivity. However in the 

case of the presence of a repeated inclusion, like 

in the Fig.1 model, one needs a strategy for 

computing the transmitted and reflected pressure. 

One simple measure would be to compute 

integrated pressure at the far field mesh 

boundary (but not inside the PML zone if 

present), thus getting: 

dx
p

xp

p

p L

o

tr
Lavg

o

tr ∫=
0

1 )(
||                              

dx
p

xp

p

p L

o

rf

Lavg
o

tr ∫=
0

1
)(

||                            Eqs(3)                                                                                                              

where integration along x is at y=constant (the 

fluid mesh boundary). 

 Next, we consider an alternate method to 

process a representative transparency pressure in 

a variable spatial field, namely by computing the 

power flow across the y=constant cut boundary, 

and then convert the power into an equivalent 

pressure we shall call p~ ≡“pseudo pressure”. 

The power flow can be computed by integrating 

the work done over one time cycle, (e.g. as in 

Ref.[10]), and then integrating that power/area 

result over the top (or bottom ) boundary cut 

surface of the finite element mesh, getting 

dx

L

*)pvRe(
2

1
n

0

∫=Π  ,where v*n denotes the 

complex conjugate of the velocity normal to the 

surface . The power of the incident wave is given 

by )/()cos()2/1( 2
foinc cLp ρθ=Π and is used to 

form the normalized power ratio for transmitted 

and reflected fields, which we defined as 

 inctrtr ΠΠ=Π /  and incrfrf ΠΠ=Π /  .       Eqs(4) 

These expressions can be used to compute the 

pseudo pressure ratio  otr pp /|~| , by equating the  

normalized power trΠ , to the normalized power 

in a pseudo plane wave (i.e. 

incftrtr cLp Π=Π /)/()cos(~)2/1(
~

2 ρθ ), and solving 

for the transmitted pseudo pressure (and 

similarly the reflected value), we obtain 

 trotr pp Π=/|~|   rforf pp Π=/|~|  .       Eqs(5) 

When the plate is homogenous, the reflected and 

transmitted waves are plane with constant 

amplitudes, then Eqs(3) and Eqs(5) yield the 

same value for normalized pressure. 

 

The power relations of Eqs(4) have an alternate 

use, namely for checking the consistency of the 

FEM solutions. Power levels can’t be created 

greater than the input normalized incident power 

level of incΠ =1, hence the following inequality 

must be met: 

       +Πtr rfΠ ≤ incΠ =1.0   .                       Eq(6) 

The strict equality sign is used when all the plate 

loss factors are zero. When the plate loss factors 

are not zero, the inequality is used due to 

material energy dissipation, where Eq(5) then 

infers that the transmitted plus reflected 

normalized power is less than the normalized 

free field incident power (i.e. 1.0). When 

computing power with Eq(4) at the fluid-PML 

interface, the vn quantities must be computed 

with one sided shape function data (in the regular 

acoustic side), by using the down(vy_acpr) 

option for the reflected side fluid and 

up(vy_acpr) option for the transmitted side fluid. 

Otherwise accurate surface velocities will not be 

obtained. 
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3. Applications  
Here we give examples of the three problem 

types (a,b,c) outlined in the introduction section. 

 

 3.1 Free Field Propagation Through a Simple 

Fluid Block 

The purpose of this demonstration is to illustrate 

the enforcement of the periodic boundary 

conditions, with out the additional complications 

of PML absorbers, and fluid structure interaction 

boundary conditions. The model is shown in Fig. 

2, where the bottom is driven with Eq(1) 

(without e
iωt
 since it is suppressed throughout the 

harmonic solution), with kz=0 and ko=ω/c, where 
positive kx and ky values send the wave in the 

direction shown in Fig. 2. 

In this special example we work directly with 

total pressure p, since there is no issue of 

reflections in the solution. Further, the model is 

terminated with the perfect impedance absorber 

Z=ρfc/cos(θ), so there is no need for PML 

absorbers here.  

The left and right boundary conditions are 

treated by two methods: 

(i) a direct Dirichlet type b.c. where the left 

and right cuts are directly driven with Eq(1) 

at x=0 for the left cut and with Eq(1) with 

x=L at the right cut (without e
iωt
). 

(ii) a periodic boundary condition was 

employed to the left and right vertical cuts, 

and since there is no characteristic period 

length, L can be set as anything, thus a 

nominal L=1.0” was selected. The left and 

right cuts were driven by the method 

explained in section 2.4, with strict attention 

to the issues (a) and (b) mentioned therein.    

A 1”x 6” block of fluid was modeled, and driven 

at a frequency f=10000 Hz, at an angle θ=60o. 
The water wave speed was c=60000 in/sec and 

the mass density ρf=.000096  sec-lbf/in
4
 and the 

mesh size was set via section 2.5 . 

 

 The solutions for the (i) and (ii) methods of 

driving the vertical faces were the same, thus 

validating the procedure for enforcing the 

periodic boundary condition. The solution for the 

(ii) case is shown in Fig.3 and perfectly checks 

out against the exact solution (i.e. the |p| 

magnitude should be 1.0 in the entire field, and 

the direction of wave propagation should be 

along straight lines that are at angles θ =θ =θ =θ =60o to 
the y axis, where it is noted that these lines are  

 
Figure 2. FEM model Zone (dashed) for Free Field 

Propagating Plane Wave Traveling θ Degrees to 
the y Axis. 

 

perpendicular to the lines of constant phase wave 

fronts. This clean simple demo validates the 

procedure for enforcing the periodic boundary 

condition.
 

 
Figure 3. FEM Pressure Magnitude and Phase for 

Free Field Propagating Plane Wave Traveling 

θ =60θ =60θ =60θ =60 o  to the y Axis.  
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3.2 Homogenous Submerged Elastic Plate 

with No Inclusions (with and without loss) 

This example is selected in order to validate the 

solution in the more complicated case, where in 

addition to the periodic boundary condition, the 

issue of dealing with an elastic plate (with and 

without loss) is treated. The model setup is 

shown in Fig. 1, except the softer surrounding 

matrix material set equal to the stiffer inclusion 

material), thus ending up with a single (all 

orange) material plate. 

Since the elastic layer is now simply flat and 

homogenous, we can directly compare the FEM 

solutions to an exact solution of the same 

problem taken from Ref.[9] . The model consist 

of  a 5.5” wide x 6” long front and back side 

fluid, truncated with an optional PML zone of 

5.5”x 4” . The water properties are the same as 

the previous problem and the drive frequency is 

f=11,000 Hz. The solid properties have a 

dilatational wave speed magnitude in the general 

vicinity of water, but still has a substantial shear 

modulus, hence a substantial shear wave speed. 

More specifically, the for the plate we have: 

dc' = 80000 in/sec,  
s
c' =20000 in/sec,               

ηd =0.01,  ηs = 0.10 ,  and ρs=.00011 sec-lbf/in
4
,  

where upon using the relations explained in 

section 2.1, corresponds to direct COMSOL 

domain input E= 129,090 +i*126250 and 

ν=0.46665 −i ∗0.031999 . This material has an 

impedance mismatch ratio of ccZ ds ρρ /= =1.52 

, which is well away from the ideal 1.0 and 

therefore it is expected that unwanted reflections 

appear as will be shown later in Fig.4 . When 

entering this modulus and Poisson’s ratio data, 

we skip COMSOL’s built in loss mechanism 

input which assigns the same loss (unwanted 

here) to both dilatation and shear. Instead, we 

enter the data directly as MATLAB like syntax 

entries. The frequency is held constant and swept 

over a range of angles of incidence  0≤θθθθ≤60o. 
The same problem was solved for three radiation 

boundary absorbers described in section 2.3 and 

FEM solutions are compared to the exact 

solution (for transmitted pressure, reflected 

pressure and Power). The simpler Eqs(3) were 

used to process pressure across the mesh 

truncating fluids faces, and Eqs(4) for the power. 

The comparisons in Fig 4. are excellent for both 

the PML and the Z=ρfc/cos(θ) absorbers. Note: 

in all plots, “MPL” labels imply PML absorbers.  

 

 
Figure 4. Exact vs. FEM Solution for Three 

Different Radiation Boundary Conditions (With 

Loss , f=11 KHz). 

 

The same problem was solved for no loss in the 

solid (setting the imaginary parts of E and  

 
Figure 5. Exact vs. FEM Solution for Three 

Different Radiation Boundary Conditions (With 

No Loss, f=11 KHz). 
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ν equal to zero), where the results are shown in 
Fig. 5 . We note that since the loss is zero, the 

total power, via Eq(6), should be conserved (i.e. 

be equal 1.0 all angles). However as in the 

previous plot, the power computed with the 

COMSOL plane wave absorber, drifts off the 

exact solution of 1.0 for 30
o
 ≤θ≤ 60

o
 . 

 

3.3 Non-homogenous Submerged Elastic Plate 

With Periodic Inclusions (with and without 

loss) 

The model is the same as the Fig.1 sketch (drawn 

to scale), except the matrix material is a rubber 

like material, and a centered 1”x 1” inclusion 

made of the same material as the previous 

homogenous plate example. The matrix material 

(green), is given as: dc' = 65000. in/sec,  

s
c' =10000., ηd =0.03,  ηs = 0.30  , ρs=.000105 

sec-lbf/in
4
, which upon using the relations 

explained in section 2.1, corresponds to direct 

COMSOL domain input E= 31265 +i*9302.8 

and ν=0.4878 −i ∗0.0033502.  This matrix 

material has an impedance mismatch ratio of 

ccZ dsmatrix ρρ /= =1.18 , which is near the ideal 

1.0, however the stiffer inclusions 

( inclusionZ =1.52 ) are expected to somewhat 

degrade the overall transparency performance. 

 
                    3.3.13.3.13.3.13.3.1 Baseline  case: The resulting solution is 
shown in Fig 6, where note that results using  

 
Figure 6. FEM Solution for Three Different 

Radiation Boundary Cond. (With Loss, f=11 KHz) 

 

the PML and Z impedance absorbers are in good 

agreement, however the COMSOL plane wave 

absorber solution drifts away for 30
o
 ≤θ≤ 60

o
. 

 

Next we consider the same solution, except the 

loss terms are turned off for both the matrix 

material and the inclusion. The resulting solution 

is shown in Fig. 7, where this no loss case is 

included in order to illustrate how the Eq(6) 

power inequality checks the solution accuracy. 

Thus for the  COMSOL built in plane wave 

absorber, the power sum does not always add up 

to 1.0, whereas with both the PML and the Z=ρf 
c/cos(θ) absorbers, it does nicely add up to 1.0 

across the entire angle sweep, even when the 

solution encounters the spikes in the response. 

 
Figure 7. FEM Solution for Three Different 

Radiation Boundary Cond. (No Loss, f=11 KHz). 

 

The color contour plots in Fig. 8, illustrate how 

the transmitted and reflected pressures vary with 

the spatial x,y field ,and how phase wave fronts 

exist in the transmitted side and reflected side 

within the fluid domain at θ= 60
o
. 

 

                    3.3.3.3.3.3.3.3.2 2 2 2  Variation of  Baseline Case  for three 
Inclusion Stiffnesses: 

In this demonstration, we illustrate how the 

transmitted pressure is affected by the stiffness 

of the inclusion. The stiffnesses are changed via 

the solid dilatational wave speeds. The without   

inclusion case is run first for comparison 

purposes, where the entire plate is made of the 

matrix material (red curve solution). This is used 

as a yardstick reference, for measuring the 
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Figure 8. FEM Amplitude and Phase Solution for  

PML Radiation Boundary Conditions (With No 

Loss, f=11 KHz, at θ= 60o). 

 

without inclusion solution against the with 

inclusion solution. The blue curve represents the 

with inclusion base line case for the case, dc' = 

80000 in/sec (Fig.6 repeat), and the green curve 

for the stiffest inclusion with dc' = 160,000 

in/sec (keeping all other material parameters the 

same as the baseline case). The sequence of 

inclusion stiffnesses for the (Fig.9 red blue green 

curves) are Z ={1.0, 1.18, 3.05}. As expected, 

Fig.9, illustrates that the stiffer the inclusion 

material, the worst the acoustic transparency.  

 

 
Figure 9. Variation of  Baseline Case  for Three 

Inclusion Stiffnesses (With Loss, f=11 KHz). 

                    3.3.3.3.3.3.3.3.3 3 3 3  Variation of  Baseline Case  for Two 
Fluid Domain Lengths and Two Pressure Post 

Processing Techniques: 

In this example, we examine the effect of the 

fluid length on the accuracy of the FEM solution 

for the baseline case without loss and also the 

effect of average vs. pseudo pressure post-

processing as shown in Fig.10. We purposely 

zero out the loss portion of the material 

constants, since there is a richer profile of 

response vs. θ in order to better examine the    

 
Figure 10. Variation of  Baseline Case  for Two 

Fluid Lengths and Two Post-processing Methods 

(No Loss, PML absorber at f=11 KHz ). 

 

pressure post-processing techniques under more 

severe spatial distribution conditions. The curves 

labeled MPL LONG refer to the 6“ length  front 

and back side fluid domains, and the curves 

labeled MPL SHORT refer to a 0.60” length 

front and back side acoustic domain. The 

detailed pressure contours (not shown here), 

indicated that the shorter fluid domain cuts are 

now in the near field, where the solution pressure 

amplitude vary with x more substantially than 

the long model, and thereby provide a good 

opportunity to compare average pressure, Eq(3), 

vs.  pseudo power based pressure ,Eq(5), post-

processing. The results in Fig. 10, illustrate the  

pseudo pressure of the short model and the long 

model produce the same measure of transmitted 

pressure and reflected pressure, implying one can 

employ a shorter model (and hence less DOF in 

the event core memory is an issue for higher 

frequency models). However, the average 
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pressure from Eq(3), (dashed red) of the shorter 

model reflected pressure does not completely 

track the corresponding long model pseudo 

pressure, missing at peak θ=24
o
  and valleys 

θ=32
o
, 37

o
 . This illustrates that the pseudo 

pressure post-processing is a more general 

procedure for evaluating the transparency and 

reflectivity of panel type materials with 

inclusions, and that it produces results for short 

length models that are  consistent with the longer 

(larger DOF) models. 

 

Finally we consider the same long-short model 

comparison, except now the loss factors are 

turned on for both materials, resulting in the 

solution shown in Fig. 11. Unlike the previous 

Fig.10 no loss case, we have essentially 

complete agreement, across the entire θ sweep, 

between the LONG, SHORT model solutions, 

and also agreement between the method of post-

processing. The one exception is a relatively 

small reflected pressure blip (red dashed curve), 

near normal incidence using Eq(3) pressure 

averaging.  

 

 
Figure 11. Variation of  Baseline Case  for Two 

Fluid Lengths and Two Post-processing 

Techniques (With Loss, PML Absorber at f=11 

KHz ). 

  

4. Conclusions 
The results in this paper illustrate how 

COMSOL could be used to solve for the 

transmitted and reflected pressure in totally 

submerged plates, having periodically spaced 

inclusions. Although we have emphasized the 

issue of transparency with simple inclusions, the 

methodology could be applied to ribbed plates, 

where the periodically spaced ribs would play 

the same role as the different material inclusions 

considered herein. Also we have shown another 

method for post-processing a variable spatial 

distributed pressure field, by computing a pseudo 

pressure, derived from the amount of power 

flowing across the cuts in the fluid domain outer 

boundaries. The power flow calculations also 

provide a measure ,via Eq(6), of the accuracy of 

the FEM model solution . Violations of Eq(6), 

provide a red flag that something is wrong with 

the model (e.g. coarse mesh, bad absorbing 

boundary, some  unknown  user error).  
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PAPER OVERVIEWPAPER OVERVIEW

• The paper addresses a class of problems for determining the 
acoustic interaction of eiωt time harmonic plane waves impinging 
upon submerged elastic plates (fluid backed or void backed), that 
are of infinite in extent. 

• The plates can have repeated equally spaced inclusions (voids, 
solids, ribs etc.), and also can be constructed from orthotropic 
and/or isotropic layers 

• Materials can have a frequency dependent loss factor for the 
modulus data (e.g.  E= E’(1+iηΕ ), and υ= υ’(1+iηυ), where ηΕand ηυ
are the corresponding loss factors for Young’s modulus and 
Poisson’s ratio for example. 

• THE ACOUSTIC TRANSPARENCY : I.E. INSERTION 
LOSS=MAG(PTR/PINC) , is the main physical quantity of interest

• Transparency is of great interest when sonar devices operate 
behind protective dome enclosures (“ acoustic windows”)
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PAPER OVERVIEW cont.PAPER OVERVIEW cont.

• Since the plates (and surrounding fluid) are infinite in extent, the 
issue of dealing with the infinite domain of fluid must be dealt with 
and is treated through the application of wave absorbing 
boundary conditions for absorbing the reflected and transmitted 
acoustic waves

• Three absorbing boundary conditions are examined                
(1) COMSOL’s PML (Perfectly Matched Layers) boundary 
conditions                                                      
(2) Impedance  boundary condition                               
(3) COMSOL’s plane wave absorbing boundary condition

• Only a unit cell of the repeating structure, including a small part of 
the surrounding fluid domain has to be modeled, by applying the 
the Bloch-Floquet theorem based boundary condition in the 
direction of the repeat pattern
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acoustic waves
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(1) COMSOL’s PML (Perfectly Matched Layers) boundary 
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direction of the repeat pattern



FIG. 1_Typical Repeated inclusion Submerged Structure Model Subject
to Incident Plane Wave (with PML Wave Absorbing Layers)
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Past Work on repeated discontinuities using periodic 
structures

• Ref-1 “Plates with regular stiffening in acoustic media: 
Vibration and radiation”, Mead D.J., 1990, J. Acoustic Society of 
America, 88 (1), July 1990. 

This important paper treats plates and cylindrical shells with 
regular and identical stiffening that constitute “spatially periodic 
structures”.Specially convenient methods of vibration analysis 
are considered for these cases, some of which are suitable for 
the inclusion of the effects of fluid loading from adjacent 
acoustic media. 

The paper outlines the nature of free wave motion in periodic 
structures stiffened either in one or two orthogonal directions.
In our application, we could view the stiffened sections say due
to ribs for example, as unstiffened -or-weakened stiffness 
sectors, like the failed region LF we illustrated earlier.
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Past Work on repeated discontinuity using periodic structures cont.

• Ref-2 “Steady state solutions to dynamically loaded periodic 
structures”,Kalinowski A.J. 1979, NASA Conference Publication 2131, 
Eight NASTRAN User’s Colloquium.

This was an early application of periodic structures applied to acoustic 
scattering and transmission of acoustic structure interaction problems 
having one way periodicity based early Mead papers predating his
general Ref-29 paper. DMAP matrix operations in the NASTRAN FEM 
code were used for performing matrix manipulations needed to extract 
acoustic solutions. The beauty of this approach is that one can interact 
with the inner workings of the NASTRAN FEM code without having to 
have access to the source code. This is a rare feature not readily found 
in today’s large scale FEM codes.
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Past Work on repeated discontinuity using periodic structures cont.

•Ref-3 “Analysis of the scattering of a plane acoustic wave by a 
periodic elastic structure using the finite element method: Application 
to compliant tube gratings”, Hennion A.C., Bossut R. and Decarpigny
J.N., 1990, J. Acoustic Society of America, 87 (5), May 1990.

A mathematical model has been developed to analyze the scattering of 
plane acoustic waves from an infinite, uniform, plane grating of
compliant tubes. It relies upon the FEM method and uses the ATILA 
FEM code (see Ref 30). Only a unit cell of the repeating structure, 
including a small part of the surrounding fluid domain has to be
modeled, by relying on the Bloch-Floquet theorem, and the effects of 
the remaining fluid domain are accounted for by matching the pressure 
field in the finite element model with the simple plane wave expansions 
of the on going and outgoing waves.
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Past Work on repeated discontinuity using periodic structures 
cont.

• Ref-4 “Analysis of the scattering of a plane acoustic wave by a 
doubly periodic structure using the finite element method: 
Application to Alberich anechoic coatings”, Hlady-Hennion A.C., 
andDecarpigny J.N., 1991,Dec, J. Acoustic Society of America, 
90 (6). 

Ref-5”Computation of Acoustic Transmission Loss Through 
Doubly-Periodic 3D Elastic Panels”, Dey S. and Shirron J.,
Proceedings of IMECE 2006 ASME 2006 International 
Mechanical Engineering Congress & Exposition,

(Nov. 2006) .
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TECHNICAL ISSUES

• Any signal processing and acoustic beam forming 
operations strongly depend on the incident wave 
front remaining relatively undistorted in the 
presence of a protective window

• Guide to Perfect Transparency: Let the (solid 
material Impedance) (ρcD)sol ≈ (ρc)wat (water 
impedance ):  ρ=density ; c=sound speed , with zero 
solid shear modulus G

• …NOT POSSIBLE! SOLID SHEAR MODULUS “G” IS 
ALWAYS >0

• Therefore different kinds of structural waves can be 
excited during the fluid-solid interaction 
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Governing Equations:

We treat a general class of problems as encountered in 
structural acoustics, involving a submerged elastic plate 
that is subject to an incident harmonic plane wave of the 
form

Eq(1) 

Where {kx ky kz }are the acoustic wave number 
components defining the direction  of propagation

and  ω is the frequency in rad./sec . 

The thrust of this paper is to compute the acoustic 
transparency |ptr /po| and acoustic reflection | prf /po|



Governing Equations cont.:

The governing equations for the total pressure p in the 
acoustic domain and displacement vector uj ,  in the solid 
domain (for eiωt time harmonic response) are given by:

and

where c, cd and cs are the acoustic wave speed, complex solid 
dilatational wave speed  and complex solid shear wave speed 
respectively. 

The live index j takes on values j=1,2,3 and repeated indices 
sum over 1 to 3. 



MATERIAL CONSTANTS  WITH LOSS FACTORS:

• The complex wave speeds can be expressed in terms of         
primed real wave speeds and loss factors in the form:

Where ηd and ηs are the dilatational and shear loss factors.

• Complex wave speeds can also be expressed in terms of 
complex E modulus and complex Poisson’s ratio ν as :

• Upon equating the corresponding like complex wave speeds 
we  can easily solve for complex E and complex ν in terms of  
c’D ,c’S , ηd and ηs . In COMSOL, the isotropic elastic data is 
entered via E and ν (in MATLAB syntax format) , 

• Thus one can directly enter the complex E and ν in the form   

E= E’ + i* E” and ν= ν’ + i* ν”.



Governing Equations cont. (SCATTERED FORMULATION):

• COMSOL has a feature in the acoustics module that permits 
working with the scattered (reflected) pressure formulation, ps, 
rather than the total pressure p formulation

• However the formulation used here still uses the structure of 
the total pressure equations, where the loading of the incident 
field now enters via the boundary loading at the incident side 
fluid structure interface. 

•We start by substituting p = pinc+ ps into the original total form 
time harmonic pressure pde to get:

• Since pinc is a solution to the original homogenous pde, it 
drops out after the substitution, leaving the new form of the pde
in terms of  ps which has the same appearance as the original in 
terms of total  p.



Governing Equations cont. (BOUNDARY CONDITIONS):

•On the solid interface,  (pinc+ ps)= the total pressure is applied, 
and similarly at the fluid interface, both the interface plate 
acceleration and incident fluid acceleration are loaded.

•On incident side  interface:

inward normal acceleration fluid loading:

nx_acpn*u_tt_acpn+ny_acpn*v_tt_acpn+p_i_acpr*i*(nx_acpn*k
x+ny_acpn*ky)/rhow

normal pressure loading:

-p*ny_acpn-p*nx_acpn-p_i_acpr*ny_acpn-p_i_acpr*nx_acpn

On transmitted side   interface:

inward normal acceleration fluid loading:

nx_acpn*u_tt_acpn+ny_acpn*v_tt_acpn

normal pressure loading:

-p*ny_acpn-p*nx_acpn

Where p_i_acpr = Eq(1) DRIVER without eiωt; rhow = po=1.0, 
kx=-kosin(θ), ky=kocos(θ), kz=0  ko=ω/c .



Governing Equations cont. (RADIATION BOUNDARY CONDITION):

The mesh termination at the end of the fluid domain must 
include some sort of radiation absorbing boundary 
condition. 

a) COMSOL’s built in plane wave radiation absorber
(don’t need acoustics module)

b) COMSOL’s built in PML (Perfectly Matched Layer), as 
indicated by the extra PML zones shown in Fig.1 above
(do need acoustics module).

c) User defined Impedance (Z=ps/vn) radiation condition , 
where for plane waves impinging at angle θ, on one or 
more completely submerged homogenous elastic layers 
and using Snell’s law, we have Z= ρfc/cos(θ) as a 
radiation boundary condition at both incident side mesh 
termination and transmitted side termination. (don’t need 
acoustics module).



Governing Equations cont. (FLUID PERIODIC BOUNDARY CONDITIONS):

• Consider next the boundary condition at the left cut vertical 
faces and right cut vertical faces (line x=0 and line x=L in Fig. 1.

• The response at the left cut say, plcut , and response at the 
right cut prcut , is not known in advance, however we do know a 
relationship between them, namely:

•Therefore plcut and prcut are not independent unknowns. This is 
a “Bloch-Floquet theorem” type condition and is is used in 
refs.[5-7] .

• Applying this condition in COMSOL is not intuitive. There are  
two quirky issues:

a) when applying the periodic boundary involving this complex 
multiplier condition, the user applies variable p on the left cut 
and p*exp(-ikxL) on the right cut  (the conjugate of p*exp(+ikxL) ) 

b) when using the solve parameters advanced settings, one 
must (according to COMSOL staff), check the box engaging 
“Use Hermitian transpose of constraint matrix). 



Governing Equations cont. (SOLID PERIODIC BOUNDARY CONDITIONS):

• The treatment for the application of the periodic boundary 
condition for the solid follows exactly along similar lines, 
(where upon defining displacement components as u≡u1 and 
v≡u2) we have 

as the left and right cut displacement component values, 
analogous to the pressure left and right cut values. 

•The displacements are enforced similar to enforcing p, but 
instead in terms of COMSOL variables {u,v}. 

•Thus {u,v} are applied at the left cut, and {u*exp(ikxL, 
v*exp(ikxL} are applied at the right cut.



Post Processing Pressure Fields

• For the scattered formulation employed here, on the 
incident side, the basic COMSOL variable p_t_acpr will 
actually represent the scattered component, ps , even 
though it is labeled as total in the post processing output 
list.

• The actual total can be obtained (if needed) by simply 
adding back the incident pressure, Eq(1), (without eiωt). 

•in the case of the presence of a repeated inclusion, like 
in the Fig.1 model, one needs a strategy for computing 
the transmitted and reflected pressure.

• One simple measure would be to compute integrated 
average pressure at the far field mesh boundary (but not 
inside the PML zone if present), thus getting:



Post Processing Pressure Fields  (continued)

•Next, consider an alternate method to process a representative 
transparency pressure in a variable spatial field, namely by 
computing the power flow across the y=constant cut boundary

• The power flow can be computed by integrating the work done 
over one time cycle, and then integrating that power/area result
over the top (or bottom ) boundary cut surface getting

• After normalizing by the incident wave power, can be used to 
compute the “pseudo pressure ratio”, by equating the  
normalized power , to the normalized power in a pseudo plane 
wave (i.e. ), and solving for the transmitted pseudo pressure 
(and similarly the reflected value), we obtain:

•The power relations can be used for checking the consistency 
of the FEM solutions. Power levels can’t be created greater than 
the input normalized incident power level hence 



Scope of Applications:

We pass through a sequence of increasingly difficult 
problems which illustrate the application of the periodic 
boundary condition, starting with:

(a)  a simple free field block of fluid (no plate)

(b) a homogenous submerged elastic plate but with no 
periodic inclusions

(c)  a submerged plate with periodic inclusions

for the problem type shown in Fig. 1 .



Free Field Propagation Through a Simple Fluid Block

•The purpose of this demonstration is to illustrate the 
enforcement of the periodic boundary conditions, with 
out the additional complications of PML absorbers, and 
fluid structure interaction boundary conditions.

• The model is shown

here, where the bottom

is driven with Free Field

Plane wave pressure 

Eq(1) with kz=0 and ko=ω/c,

where positive kx and ky

values send the wave in

the direction shown



Free Field Propagation Through a Simple Fluid Block (Cont.)

•The solution is shown here and perfectly checks out against 
the exact solution. 

• The |p| magnitude

should be 1.0 everywhere,

and the direction of wave

propagation should be

along straight lines that

are at angles θ =60o to the

y axis

• Where it is  noted 

that these wave direction

lines are perpendicular to the

lines of constant phase wave

fronts



Plane Wave  Propagation Through a Simple Flat Plate

•The purpose of this example is to validate acoustic-structure 
interaction with loss with the enforcement of the periodic 
boundary conditions, with 3 different radiation boundary 
conditions, in a case where we have the exact solution.

• The model is shown below.

except the inclusion and matrix

material of the plate are equal

•This is basically a uniform plate

where there is no characteristic

x direction  length , so L=any



STARS3-D VALIDATION (EXACT VS FEM)
FOR TRANSMITTED PRESSURE

(WITH LOSS FACTOR AND NO LOSS FACTOR )

COMPARE

COMPARE

EXACT SOLUTION STARS3-D SOLUTION



COMSOL VALIDATION (EXACT VS FEM)
FOR TRANSMITTED PRESSURE

(NO LOSS FACTOR  CASE)

COMPARE

EXACT SOLUTION

|Pr/Pinc|

|Ptr/Pinc|

COMSOL SOLUTION



Propagation Through a Flat Plate With Periodic Inclusions

•The purpose of this example is to demonstrate acoustic-
structure interaction for plates with periodic inclusions, 
with 3 different radiation boundary conditions, for the   
no loss  model .

• The FEM  model is shown below

except the inclusion and matrix

plate material are not equal

•This is non-homogenous plate

has a  characteristic period in

the  x direction  length , of L=5.0”



Propagation Through a Flat Plate With Periodic Inclusions

•Here we show the amplitude and phase of the spatial 
field distributions (no loss  model) in the front and back 
side fluid

• Lines of constant phase 

illustrate the wave fronts

•The magnitude plots 

illustrate the expected 

Non-uniform nature of the

pressure field at the solid

fluid interface



Propagation Through a Flat Plate With Periodic Inclusions

•The purpose of this example is to demonstrate acoustic-
structure interaction for plates with periodic inclusions, 
with 3 different radiation boundary conditions, for the 
with loss  model .

• The FEM  model is shown below

where the inclusion and matrix

material of the plate are not equal

• Note that the sharp peaks are

now smoothed through the intro-

duction of loss (damping)



Propagation Through a Flat Plate With Periodic Inclusions

•The purpose of this example is to demonstrate acoustic-
structure interaction for plates with periodic inclusions, 
for a variation in the inclusion stiffness (with loss)

• 3 different inclusion stiffnesses

(i.e. via wave speed cD, changes),

are compared

• The stiffer (bigger cD) the inclusion,

the worse the transparency, and

the greater the reflection



Propagation Through a Flat Plate With Periodic Inclusions

•The purpose of this example is to demonstrate acoustic-
structure interaction for plates with periodic inclusions, 
for a variation in the fluid length &post processing of p

• 2 different fluid model lengths

“Long” (inset below) vs.

“Short” (i.e. Long/10) are compared

• 2 different pressure measures

are compared, PAVG vs PPSUDO

• Short model PPSUDO consistent

with Long model PPSUDO



THE END


