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Abstract A Normal Mode Analysis of the Chesapeake
Bay has reached the phase of performing time-series anal-
ysis. Prior attempts using generalized eigenfunctions ob-
tained from COMSOL have led to extraction of power
spectra using a partial domain extraction and a wavelet-
like correction to the result. A new approach has been de-
veloped which effectively solves the spatial equivalent of
the Initial Value Problem. By taking data sets at a limited
number of points (about 10) over extended periods of time,
the Chesapeake Bays flow vector field can be extracted
from the power spectra. This method combines the spa-
tial modes derived from COMSOL with the generalized
basis set for time. By overlaying windows of the spectra
obtained, a progression of the spectral components is ob-
tained for the lowest 100 eigenmodes. This progression
can exhibit smooth behavior which allows for prediction
of the modal behavior to take place, effectively predicting
the flow across the entire Bay while only sampling the Bay
at 10 locations.

Keywords Normal Mode Analysis · Harmonic Analysis ·
EOF · NMA · Chesapeake Bay · COMSOL MultiPhysics

1 Introduction

The study of vector flow fields for fluids has a rich his-
tory. A study of the Chesapeake Bays flow has been un-
derway for several years by many different parties. Tra-
ditional approaches involve modeling the Bay in terms of
fluid models coupled with geophysical effects such as the
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Coriolis force. The approach taken by the authors is not
to model the Chesapeake Bays flow, merely to character-
ize its signal properly so that a model may emerge from
the data. By changing the emphasis from model validation
to data-driven signal characterization, a more focused ef-
fort is being made to understand the specific problems the
data presents, irrespective of what physical models may
or may not be relevant. The method of choice has been to
calculate Normal Modes using COMSOL. For a historical
review of Normal Mode Analysis (NMA), please refer to
the work based on [Eremeev et al. 1992][1] [2] and [Lip-
phardt et al. 2000][3].

As a brief reminder, the two studies leading up to the
Chesapeake Bay analysis were presented at COMSOL ’05
and the World Congress on Computing CSC’06 confer-
ences showing the Dirichlet [6], [9] and Neumann [7], [9]
solutions computed via COMSOL as well as a finite dif-
ference in-house code. The numerical aspects of this paper
were motivated by a method for completing surface cur-
rent velocity fields called Normal Mode Analysis (NMA)
[Eremeev et al. 1992][1] [2],[Lipphardt et al. 2000][3].

In each of the former cases studied using NMA the end
goal was to be able to use Normal Modes to“fill in” vector
fields where data is not present and to extract power spec-
tra in order to search for time-dependent features. When
strong time-dependent features are present, short-term pre-
diction may be employed. Eremeev et al. studied the Black
Sea, collecting data from autonomous drifting buoys (ADB).
Lipphardt et al. used this same method to fill in gaps of ve-
locity fields for Monterey Bay using HF radar for the data
set. The Black Sea is a closed water body roughly in the
shape of a kidney. Monterey Bay is open to the Pacific
Ocean and has a shore roughly hemispherical. Lipphardt’s
group extended the NMA by adding a mode to account
for the flow between Monterey Bay and the Pacific. The
Chesapeake Bay has 11,684 miles of shoreline but is only
189 miles long by 30 miles wide, giving it a jagged shore,
almost fractal, compounded by a large opening to the At-
lantic Ocean at its southern end. The length of the Chesa-
peake Bay allows for both fresh water as well as salt water
to exist within its boundary. As a result, the Chesapeake
Bay represents a difficult system to model. Figures 1, 2
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Fig. 1 The Black Sea compliments of NASA World Wind.

Fig. 2 Monterey Bay from NASA World Wind. The open boundary
with the Pacific clearly visible.

and 5 illustrate the varying levels of complexity that have
been solved using NMA.

The basic unit of calculation used throughout this pa-
per is the normal mode. Like the modes of a guitar string
or an organ pipe, systems obeying the Helmholtz equation
and Dirichlet or Neumann boundary conditions will res-
onate in states referred as ”normal modes”. For the Chesa-
peake Bay, the modes calculated are energy potentials whose
gradients and curls of gradients correspond to the vector
current fields found in fluid mechanics (−→u ).

Fig. 3 Chesapeake Bay from NASA World Wind. The Atlantic
ocean open at the southern end, allowing in salt water. The north
end dominated by fresh water.

Briefly, the formulation leading to the calculation of
fluid flow stems from the realization that the vector fields
can be derived from two scalar fields, which are the solu-
tions to the Helmhotz equation under Dirichlet and Neu-
mann boundary conditions [4].

−→u = ∇× [(n̂Ψ)+∇× (n̂Φ)]. (1)

Here Ψ is the stream potential where,

−→u D = (u,v)D =
(
−∂Ψ

∂y
,

∂Ψ
∂x

)
, (2)

and Φ is the velocity potential where,

−→u N = (u,v)N =
(

∂Φ
∂x

,
∂Φ
∂y

)
, (3)

with (u,v) representing the surface current velocities in
the x and y directions respectively. The total velocity field
is composed:
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−→u (x, t) =
∞

∑
n=0

[
a(t)n

−→u D,n +b(t)n
−→u N,n

]
+−→u Source. (4)

The non-conserving flow of mass across the boundary,
−→u Source, is model or experimental data of the fluid veloc-
ity at the boundary. The source term requires input from
an external reference, in this case, the work of Tom Gross
at NOAA was employed where source currents were pro-
vided from the QUODDYfinite element model of the Bay.
Although QUODDY is a model of the Chesapeake Bay’s
currents, it draws data from multiple sets collected near
the mouth of the Bay (the Atlantic ocean interface) as well
as selected points from the interior of the Bay’s geometry.
For a recent review of efforts by NOAA and Tom Gross,
see reference [5].

2 Time Series Analysis

The Galerkin method is used to calculate the amplitude
for a given normal mode. A key point to this analysis is
that the technique requires knowledge of the data over the
full domain. The source term will be subtracted from the
outset, eliminating it from this analysis. Only focusing on
the x-component of the vector flow field, u(x, t), and as-
suming a data set exists which spans the entire x-domain,
u(x, t)data ,

u(x, t) =
∞

∑
n=0

[
a(t)n u(x)D,n +b(t)n u(x)N,n

]

a(t)m =
∮

u(x, t)data u(x)D,m dΩ

a(t)m =
∮ ∞

∑
n=0

[
a(t)n u(x)D,n +b(t)n u(x)N,n

]
u(x)D,m dΩ

a(t)m =
∞

∑
n=0

[
a(t)n

∮
uD,n uD,m dΩ +b(t)n

∮
uN,n uD,m dΩ

]

a(t)m =
∞

∑
n=0

[a(t)n δnm +b(t)n ø]

a(t)m = δnma(t)n .

a(t)n =
∮

u(x, t)datau(x)D,n dΩ

similarly, for the Neumann coefficients, bn, coefficients
are calculated by integrating with the Neumann solutions,
u(x)N,n over the domain.

Central to the theme of this derivation is the applica-
tion of orthonormality of the basis sets. The common rea-
son for not applying this technique is that full knowledge
of the vector field is required over the entire domain in or-
der to obtain the coefficients a(t)n and b(t)n . For a water-
way like the Chesapeake Bay, it is impractical to assume

that the entire vector flow field can ever be obtained at any
one time. Satellite data may be able to provide information
related to vector flow, however, in order to extract use-
ful time series would require long-term surveillance of the
area in question. Satellite data is simply too expensive. At
the COMSOL 2006 conference, a partial domain Galerkin
method was investigated and found to yield wavelet-like
responses in the spectral domain if the data did not cover
100% of the domain. This effect is partially correctable,
but unwanted. In the worst case scenario, the results are
unusable [8]. Figure 2 shows the response of the power
spectrum for the 15th mode when only 50% of the domain
has data. For a delta function, the response is similar to the
function sinc(k x) = sin(k x)

k x , prevelant in wavelet theory.
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3 Normal Mode Analysis

Taking a step back, in solving a 1D wave-like problem
with both spatial and temporal boundary conditions may
reveal a different approach. Consider a guitar string of
length, L. Held at both ends, clearly a Dirichlet problem.
Using the wave equation:

c2∇2F(x, t) =
∂ 2

∂ t2 F(x, t), F(x, t) = f (x) g(t). (5)

Rearrangement of the equation leads to a separation of
variables:

∂ 2

∂x2 f (x)g(t) =
1
c2

∂ 2

∂ t2 f (x)g(t). (6)

fxx

f (x)
=

gtt

c2g(t)
= −λ . (7)

leading to the two separate Helmholtz equations:

f (x)xx = −λ f (x). (8)

g(t)tt = −c2λg(t). (9)

After applying boundary conditions

∇2 f (x) = −λ f (x)|∂ D
. (10)
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f (x)D,n =
√

2
L sin(kn x), kn = 2 π

λn
= nπ

L (11)

where λ represents the eigenvalue and λn is the wave-
length. Similarly for time:

∂ 2

∂ t2 g(t) = −c2 λg(t)|∂ D
, c =

L
T

. (12)

g(t)D,n =
√

2
T sin(ωn t), ωn = c kn (13)

This formulation leads to the well-known ”Initial Value
Problem (IVP)” from standard differential equation books.
Namely, if a function is known completely across the x-
axis at t = 0 ≡ t0 and its time-derivative is also known for
all x at t0 , the complete Fourier spectra can be determined
for all time. To illustrate this solution, consider the case
when there are mixed boundaries in both space and time.
Under those circumstances, the general solution is formed
by allowing both Dirichlet and Neumann solutions to ex-
ist. The basis functions, f (x) and g(t) are known from the
underlying differential equations. In this case, the general
solution takes the form (neglecting any source terms):

F(x, t) =
∞

∑
n=0

[
Ang(t)D,n +Bng(t)N,n

][
Cn f (x)D,n +Dn f (x)N,n

]

F(x, t0) =
∞

∑
n=0

[
ACng(t0 )D,n f (x)D,n +BCng(t0)N,n f (x)D,n

]
+

+
[
ADng(t0)D,n f (x)N,n +BDng(t0)N,n f (x)N,n

]

αm =
∮

F(x, t0)data f (x)D,m dΩ

αm =
∞

∑
n=0

∮ [
ACng(t0)D,n f (x)D,n

]
f (x)D,m dΩ +

+
∮ [

BCng(t0)N,n f (x)D,n

]
f (x)D,m dΩ +

+
∮ [

ADng(t0 )D,n f (x)N,n

]
f (x)D,m dΩ +

+
∮ [

BDng(t0 )N,n f (x)N,n

]
f (x)D,m dΩ

αm =
∞

∑
n=0

[
ACng(t0 )D,n +BCng(t0)N,n

]∮
fD,n fD,m dΩ

+
[
ADng(t0)D,n +BDng(t0 )N,n

]∮
fN,n fD,m dΩ

αm =
∞

∑
n=0

[
ACng(t0 )D,n +BCng(t0)N,n

]
δnm +

+
[
ADng(t0)D,n +BDng(t0 )N,n

]
ø

αn =
[
ACng(t0)D,n +BCng(t0)N,n

]

αn =
∮

F(x, t0) f (x)D,n dΩ

similarly for the Neumann term:

βm =
∮

F(x, t0)data f (x)N,m dΩ

t

1

t 2

F(x,t)

x
t

Fig. 4 Dual Time Problem: at two times, t1 and t2, the function
F(x,t) is completely known along the x-axis.

βm =
∞

∑
n=0

∮ [
ACng(t0)D,n f (x)D,n

]
f (x)N,m dΩ +

+
∮ [

BCng(t0)N,n f (x)D,n

]
f (x)N,m dΩ +

+
∮ [

ADng(t0)D,n f (x)N,n

]
f (x)N,m dΩ +

+
∮ [

BDng(t0)N,n f (x)N,n

]
f (x)N,m dΩ

βm =
∞

∑
n=0

[
ACng(t0)D,n +BCng(t0)N,n

]∮
fD,n fN,m dΩ

+
[
ADng(t0)D,n +BDng(t0)N,n

]∮
fN,n fN,m dΩ

βm =
∞

∑
n=0

[
ACng(t0)D,n +BCng(t0)N,n

]
ø +

+
[
ADng(t0)D,n +BDng(t0)N,n

]
δnm

βn =
[
ADng(t0)D,n +BDng(t0)N,n

]

βn =
∮

F(x, t0) f (x)N,n dΩ

The problem with using mixed boundaries becomes ap-
parent quickly. There are four unknowns, ACn, BCn, ADn,
and BDn, yet only two equations of constraint coming from
the initial conditions, namely from F(x, t0), we get αn and
βn. Two more equations are needed in order to fully de-
termine the amplitudes of the basis functions. The Ini-
tial Value Problem uses knowledge of two pieces of in-
formation, F(x, t0) and ∂

∂t F(x, t|t0). To set up the problem
attempted on the Chesapeake Bay, the IVP is altered to
a new form, namely, the “Dual Time Problem”, (DTP),
where a second time is introduced instead of using ∂

∂t F(x, t|t0).

4 Dual Time Problem

Given complete knowledge of a function in x at two times,
F(x, t1) and F(x, t2), four quantities are defined, αn, βn, γn,
and ∆n. From these four, the spectral components are fully
determined.
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2

1
t

t

Fig. 5 Once the coefficients have been calculated, the solution may
be moved forward in time, allowing for prediction.

αn =
∮

F(x, t1)data f (x)D,n dΩ

βn =
∮

F(x, t1)data f (x)N,n dΩ

γn =
∮

F(x, t2)data f (x)D,n dΩ

∆n =
∮

F(x, t2)data f (x)N,n dΩ

αn =
[
ACng(t1)D,n +BCng(t1)N,n

]

βn =
[
ADng(t1 )D,n +BDng(t1)N,n

]

γn =
[
ACng(t2)D,n +BCng(t2)N,n

]

∆n =
[
ADng(t2 )D,n +BDng(t2)N,n

]

(
αn γn
βn ∆n

)
=

(
ACn BCn
ADn BDn

) (
g(t1)D,n g(t2)D,n

g(t1)N,n g(t2)N,n

)

(
ACn BCn
ADn BDn

)
=

(
αn γn
βn ∆n

) (
g(t1)D,n g(t2)D,n

g(t1)N,n g(t2)N,n

)−1

Several important things to note about this result. This is
really just the IVP masked over two times. The stablity
of the solution depends on having good data covering the
whole x-domain. Because the last matrix in the derivation
must be inverted, it cannot be singular or close to singu-
lar. As a result, it is important to pick two times t1 and
t2 that are not on any nodes for the temporal basis func-
tions. Provided these conditions are met, the coefficients
obtained should allow the function F(x, t) to be projected
ahead (or behind) in time. Finally, because the basis set
was chosen in time to be sines and cosines, there is tem-
poral repetition on the time scale of T = L / c. Outside
of this time window, the temporal components repeat, pre-
venting prediction further.

5 Dual Position Problem (conjugate to time problem)

The DTP is not new, nor is it controversial; it is simply an
extension of the IVP. The goal of this paper is to present

t

1
x

2
x

F(x,t)

x

Fig. 6 Dual Position Problem: at two locations, x1 and x2, the func-
tion F(x,t) is completely known along the t-axis.

the Dual Position Problem (DPP). Although a simple trans-
formation from the time axis to the spatial axis, the re-
sults are contentious. Simply put, by collecting data at
two spatial locations over a long enough time window,
∆ t >= ∆xmax / c , the spectral components are determined
and applied to the spatial domain, allowing spatial predic-
tion.

F(x1 , t) =
∞

∑
n=0

[
ACng(t)D,n f (x1)D,n +BCng(t)N,n f (x1)D,n

]
+

+
[
ADng(t)D,n f (x1)N,n +BDng(t)N,n f (x1)N,n

]

αm =
∮

F(x1, t)datag(t)D,m d t

αm =
∞

∑
n=0

∮ [
ACn f (x1 )D,n g(t)D,n

]
g(t)D,m d t +

+
∮ [

ADn f (x1)N,n g(t)D,n

]
g(t)D,m d t +

+
∮ [

BCn f (x1)D,n g(t)N,n

]
g(t)D,m d t +

+
∮ [

BDn f (x1)N,n g(t)N,n

]
g(t)D,m d t

αm =
∞

∑
n=0

[
ACn f (x1)D,n +ADn f (x1)N,n

]∮
gD,n gD,m d t

+
[
BCn f (x1 )D,n +BDn f (x1 )N,n

]∮
gN,n gD,m d t

αm =
∞

∑
n=0

[
ACn f (x1)D,n +ADn f (x1)N,n

]
δnm +

+
[
BCn f (x1 )D,n +BDn f (x1 )N,n

]
ø

αn =
[
ACn f (x1 )D,n +ADn f (x1 )N,n

]

αn =
∫

F(x1, t)datag(t)D,n dt

βn =
∫

F(x1, t)datag(t)N,n dt

γn =
∫

F(x2, t)datag(t)D,n dt

∆n =
∫

F(x2, t)datag(t)N,n dt

Excerpt from the Proceedings of the COMSOL Conference 2007, Boston



t
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x 2

x

F(x,t)

x

Fig. 7 Once the coefficients have been calculated, the solution may
be used to solve across the entire spatial domain.

αn = ACn f (x1)D,n +ADn f (x1)N,n

βn = BCn f (x1)D,n +BDn f (x1)N,n

γn = ACn f (x2)D,n +ADn f (x2)N,n

∆n = BCn f (x2)D,n +BDn f (x2)N,n

(
αn γn
βn ∆n

)
=

(
ACn ADn
BCn BDn

) (
f (x1)D,n f (x2)D,n

f (x1)N,n f (x2)N,n

)

(
ACn ADn
BCn BDn

)
=

(
αn γn
βn ∆n

) (
f (x1)D,n f (x2)D,n

f (x1)N,n f (x2)N,n

)−1

Similar to the DTP, several important things to note
about this result. This is really just the DTP in space, not
time. The stablity of the solution depends on having good
data covering the whole t-domain. Because the last matrix
in the derivation must be inverted, it cannot be singular or
close to singular. As a result, it is important to pick two
locations x1 and x2 that are not on any nodes for the spa-
tial basis functions. Provided these conditions are met, the
coefficients obtained should allow the function F(x, t) to
be projected in space. Finally, because the spatial basis
set was computed in COMSOL, confidence in the solu-
tion is paramount. The whole derivation is hinged on or-
thonormality, so when COMSOL computes a “tight” set
of functions, this method should work. For most complex
boundaries, it is not practical to extend the solution be-
yond the stated spatial boundaries, however, by choosing
a time window long enough to span the largest extant of
the spatial domain, this issue should not be a problem.

6 Results and Conclusions

The coefficients computed in spectral domain are assumed
to be constant in both space and time for the windows un-
der consideration. Nature, however, is not static. By con-
tinuing to take data at spatial locations over time, overlap-
ping time windows may be employed to re-calculate the
coefficients. In the new time window, the coefficients will
still be constants, however, they will represent the aver-
age spectral coefficients for that specific timing window.

1

AC(n)

n

t
t4

t3
t2

t

Fig. 8 By calculating overlapping windows in time, the spectra cal-
culated are shown to exhibit time-dependence.

By successively overlapping time windows and comput-
ing spectral components, a time series for the spectra is
obtained, as illustrated in figure 8. From this process, time
prediction may be achieved by fitting the spectral time
variation to traditional functions, polynomials, sinusoid,
exponential, etc...

Working with a toy model shed some light on this
problem. The goal was to take a user-defined function at
two times along the x-axis, use the DTP to calculated the
coefficients so that the solution could be calculated along
the time axis. Once solved along the time axis, the test
would be to extract the solution along two spatial loca-
tions, x1 and x2, and re-calculate the spectra using the DPP.
If the solution is robust, the original user-defined functions
should be reproducable using the DPP spectra to recon-
struct along the spatial domain. Early attempts to perform
this robust test of these methods failed.

Careful inspection of the reconstructed results revealed
that the methods begin to falter as the solution is pro-
jected towards the edges of the domains, both time and
space. The reason stems from the fact that the correct so-
lution requires a summation over all modes, from n = 1
up to n = ∞. When fewer modes are used, taking Nmax
from the Nyquist limit, the solution begins to fail in its re-
construction as it approaches the far edges of the domain.
Further preventing the solution from matching predictions
beyond the windows is the fact that harmonic functions
repeat outside of thier stated domains, so a fucntion that
would normally increase linearly in time, becomes a saw-
tooth function, suddenly dropping as t approaches its lim-
its. This abrupt change in the solution prevents the toy
model from easily tranferring spectra from the time do-
main to the spatial domain and then accurately transform-
ing back to the time domain, for validation. To address this
issue about crossing the domain windows, a linear term is
added to both the time and space functions. The end re-
sult is 16 terms, requiring 8 spatial locations to fully solve
for the spectral coefficients. In order to avoid a singular
matrix inversion, by choosing 10 spatial locations instead
of 8, when a particular matrix is close to being singular,
the spectra obtained tend to vary significantly. Rather than
throw out these results, for the set of 10 locations, every
set of 8 locations is used to calculate the spectra, giving
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Fig. 9 Realistically, more than two positions will be used to fully
calculate the coefficients, leading to better prediction in both time
and space.

a set of results for the coefficients of size 1
2N!/8! = 45,

where N is the total number of locations taken. Taking the
mean of the spectral results prevents any one result from
skewing the data set.

F(x, t) =
∞

∑
n=0

[
Ang(t)D,n +Bng(t)N,n +Ent +Fn

]

×
[
Cn f (x)D,n +Dn f (x)N,n +Gnx+Hn

]

F(x1 , t) =
∞

∑
n=0

[
ACng(t)D,n f (x1)D,n +BCng(t)N,n f (x1 )D,n

]
+

+
[
ADng(t)D,n f (x1 )N,n +BDng(t)N,n f (x1 )N,n

]
+

+
[
ECn t f (x1)D,n + EDn t f (x1 )N,n

]
+

+
[
AGn x1 g(t)D,n + BGn x1 g(t)N,n

]
+

+
[
FCn f (x1)N,n + FDn f (x1)N,n

]
+

+
[
AHn g(t)D,n + BHn g(t)N,n

]
+

+[EGn x1t + EHn t + FGn x1 + FHn]

αm =
∮

F(x1, t)datag(t)D,m d t




αn γn . . .
βn ∆n

...
. . .

(4x4)
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ACn ADn
BCn BDn

. . .







f (x1)D,n f (x2)D,n

f (x1)N,n f (x2)N,n

. . .







ACn ADn . . .
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. . .
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αn γn
βn ∆n

. . .







f (x1)D,n f (x2)D,n

f (x1)N,n f (x2)N,n

. . .




−1

The Chesapeake Bay remains, and will so for a while,
a work in progress. This latest revelation, that one can
use a small number of locations to monitor the entire Bay
by taking sufficient time windows presents a hopeful out-
look for future signal characterization of the Bay. The util-
ity to the COMSOL community is more towards appli-
cation. By using a high-performance computing applica-
tion like COMSOL, scientists are capable of producing

results which are pushing our traditional approaches to
older problems, such as signal processing. Problems en-
countered with the Chesapeake have simply been unprece-
dented in the past due to a lack of confidence in the so-
lutions computed for the spatial domain. Through COM-
SOL, one must re-think the entire avenue set down by the
one dimensional (time-based) signal processing commu-
nity.
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