The patie patients be offer an endering backets the particle patients participation parting and participation participatind	REPORT DOCUMENTATION PAGE			Form Approved OMB NO. 0704-0188					
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE: Trial Report 3. DATES COVERED (From - To) 1-Sep-2012 - 31-May-2013 4. TITLE AND NUMETITLE Ultracompact Electro-Absorption Modulators Based on Indium-Tin-Oxide" 5a. CONTRACT NUMBER "pelion-Rear-Zero Material and Electro- Based on Indium-Tin-Oxide" 5b. GRANT NUMBER - AUTHORS 5c. PROGRAM ELEMENT NUMBER Zhaolin 1a - Sc. PROGRAM ELEMENT NUMBER - AUTHORS - Sc. TASK NUMBER Zhaolin 1a - Sc. TASK NUMBER - Rechester Institute of Technology - Sc. TASK NUMBER 14 Londo Memorial Drive - Sc. TASK NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACKONYM(S) ADDRESSES New Rechester NW 10. SPONSOR/MONITOR'S ACKONYM(S) ADDRESSES - SPONSOR/MONITOR'S ACKONYM(S) ADDRESSES 11. SPONSOR/MONITOR'S ACKONYM(S) ARD - SUBSTRIBUTION VALLIBILITY STATEMENT - SPERFORMING ORGANIZATION REPORT NUMBER(S) - SUBSTRIBUTION VALLIBILITY STATEMENT - SPERFORMING SPERFORT NUMBER(S) - SUBSTRIBUTION VALLIBILITY STATEMENT - SPERFORMING SPERFORT - SUBSTRIBUTION VALLIBILITY STATEMENT - SPERFORMING SPERFORT - SUBSTRIBUTON VALLIBILITY STATEMENT - SPERFORMING SPERFORT - SUBS	The public repr searching existir regarding this Headquarters S Respondents sho information if it do PLEASE DO NOT	orting burden for t ng data sources, g burden estimate o iervices, Directorate buld be aware that es not display a curre RETURN YOUR FO	this collection of in athering and mainta or any other aspect for Information notwithstanding any ently valid OMB control RM TO THE ABOVE A	formation is estimated to aining the data needed, t of this collection of Operations and Reports other provision of law, no number. DDRESS.	o avera and co informa s, 1215 person	ge 1 hour pe ompleting and tion, including 5 Jefferson D shall be sub	er res revie g sug avis ject t	sponse, including the time for reviewing instructions, awing the collection of information. Send comments ggesstions for reducing this burden, to Washington Highway, Suite 1204, Arlington VA, 22202-4302. o any oenalty for failing to comply with a collection of	
21-08-2013 Final Report 1-Sep-2012 - 31-May-2013 4. TITLE AND SUBTITLE 5m. CONTRACT NUMBER Materials(1): 5m. CONTRACT NUMBER Materials(1): 5m. CONTRACT NUMBER Standard State 5m. CONTRACT NUMBER W911NF-12-1-0451 5m. CONTRACT NUMBER State Indum-Tin-Oxide" 5m. CONTRACT NUMBER 6. AUTHORS 5m. CONTRACT NUMBER Zhaolin La 5m. CONTRACT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 5m. CONTRACT NUMBER Rochester Institute of Technology 14623 - 5603 9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESSES 11. SPONSOR/MONITOR'S REPORT <td>1. REPORT D</td> <td>ATE (DD-MM-YY</td> <td>YYY)</td> <td>2. REPORT TYPE</td> <td></td> <td></td> <td></td> <td>3. DATES COVERED (From - To)</td>	1. REPORT D	ATE (DD-MM-YY	YYY)	2. REPORT TYPE				3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE Ultracompact Electro-Absorption Modulators Based On Novel Materials(1): "Epsilon-Near-Zero Material and Electro-Absorption Modulation Based on Indium-Tin-Oxide" 6. AUTHORS Zhaolin Lu 6. AUTHORS Zhaolin Lu 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES Rechester Institute of Technology 141 Lomb Memorial Drive Rochester, NY 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Amy Research Office N.S. SUPPLEMENT RK 2007 142 Lomb Memorial Drive NUMBER 14. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Amy Research Office N.S. SUPPLEMENT RK NC 27709-2211 12. DISTRIBUTION AVALIBILITY STATEMENT Approved for Public Release, Distribution Unlimited 13. SUPPLEMENT RK NC 27709-2211 13. SUPPLEMENT RK NC 27709-2211 14. ABSTRACT Indum-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that TTO and other transparent conducting oxides can work as novel metametrialis supporting highly confineal supporting highly confineal supplications. We also investigated the Amy position, of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT WUM	21-08-2013	,		Final Report				1-Sep-2012 - 31-May-2013	
Ultracompact Electro-Absorption Modulators Based On Novel Materials(1): "Fpsilon-Near-Zero Material and Flectro-Absorption Modulation Based on Indium-Tin-Oxide" 6. AUTHORS Zhudin Lu 6. AUTHORS Zhudin Lu 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES Rechester Institute of Technology 141 Lomb Memorial Drive Rochester Institute of Technology 141 Lomb Memorial Drive 8. SPERFORMING ORGANIZATION NAMES AND ADDRESSES Rechester Institute of Technology 141 Lomb Memorial Drive 9. SPONSOURG-MONITORING AGENCY NAME(S) AND ADDRESS(ES) 9. SPONSOURG-MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORMONITOR'S ACRONYM(S) ADDRESS(ES) 11. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(ES) 12. DISTRBUTION AVAILIBILITY STATEMENT Approved for hubic Release: Distribution Unlimited 13. SUPJEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should into contrued as an official Department of the Amp position, policy or decision, anless so designated by other documentation. 14. ABSTRACT 15. SUPJEMENTARY NOTES 16. SECURITY CLASSIFICATION OF 15. SUBJECT TERMS Metamaterials. Epsion-near-zero, (ENZ), which may find numerous applications. We also investigated the applications of ITO re cletro-optic modulation. When applying gate voltage 15. SUBJECT TERMS Metamaterials. Epsion-Near-zero, Electro-Optic Materials, Electro-Absorption Modulation, Indum-Tim-Oxide, ITO) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. SUBJECT TERMS Metamaterials. Epsion-Near-zero, Electro-Optic Materials, Electro-Absorption Modulation, Indum-Tim-Oxide, ITO) 19. NUMBER 19. NAME OF RESPONSIBLE PERSON 19. TELEMPONEN NUMBER 19. NAME OF RESPONSIBLE PERSON 19. TELEMENTOR NUMBER 19. NAME OF RESPONSIBLE PERSON 19. NUMBER 19. NAME OF RESPONSIBLE PERSON 19. TELEMENDEN NUMBER 19. NAME OF RESPONSIBLE	4. TITLE AN	O SUBTITLE	•			5a. CO	NTR/	ACT NUMBER	
Materials(I): Sb. GRANT NUMBER "Epsilon-Near-Zero Material and Electro-Absorption Modulation Sc. PROGRAM FLEMENT NUMBER Based on Indium-Tin-Oxide" Sc. PROGRAM FLEMENT NUMBER 6. AUTHORS Sc. PROGRAM FLEMENT NUMBER 2haofin La Sc. TASK NUMBER 5c. WORK UNIT NUMBER Sc. TASK NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES S. PERFORMING ORGANIZATION REPORT Rochester Institute of Technology 140. 141 Lonb Memorial Drive Sc. WORK UNIT NUMBER 9. SPONSORINGMONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(IS) 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(IS) 11. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(IS) 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(IS) 11. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(IS) 11. SPONSOR/MONITOR'S REPORT VD. Box 2211 Research Triangle Tark, NC 27709-2211 52580-EL-ILI 12. DISTRIBUTION AVALLIBILITY STATEMENT Approved for Yubic Release, Debatoria Unlimited 13. SUPPLEMENTARY NOTES 13. SUPPLEMENTARY NOTES The views, opinions and/or finding: contained in this report are those of the author(s) and should not contrued as an official Department of the Army positon, policy or decision, unlesis o designate	Ultracompac	t Electro-Absor	ption Modulator	s Based On Novel	W911NF-12-1-0451				
"Epsilon-Near-Zero Material and Electro-Absorption Modulation Based on Indium-Tin-Oxide" 6. AUTHORS Thuplin Lu 6. AUTHORS Thuplin Lu 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES To WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES Rochester Institute of Technology 141 Lomb Memorial Drive Rechester, NY 14623 -5603 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESSES U.S. Army Research Office 9. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESSIES) 15. SUBJECT TRUBER 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESSIES) 15. SUBJECT TRUBER 11. SPONSOR/MONITOR'S ACRONYM(S) ADDRESSIES) 15. SUBJECT TRUBER 11. SPONSOR/MONITOR'S ACRONYM(S) ADDRESSIES) 15. SUBJECT TRUBER 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 19. NAME OF RESPONSIBLE PERSON 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 19. NAME OF RESPONSIBLE PERSON 19. ABSTRACT 10. SPONSOR/BER INDER 19. NAME OF RESPONSIBLE PERSON 15. SUBJECT TRMS 15. SUBJECT TRMS 15. NUMBER 19. NAME OF RESPONSIBLE PERSON 15. SUBJECT TRMS 15. NUMBER 19. NAME OF RESPONSIBLE PERSON 15. SUBJECT TRMS 15. NUMBER 19. NAME OF RESPONSIBLE PERSON 15. SUBJECT TRMS 15. NUMBER	Materials(I):		-			5b. GR	ANT	NUMBER	
Based on Indium-Tin-Oxide"	"Epsilon-Ne	ar-Zero Materia	l and Electro-Ab	sorption Modulation					
6. AUTHORS 611102 2. AUTHORS 5d. PROJECT NUMBER Zhaolin Lu 5d. PROJECT NUMBER 5f. WORK UNIT NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT Rochester Institute of Technology 141 Lomb Memorial Drive Rochester Institute of Technology 14623 -5603 9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(ES) ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(ES) US Army Research Office 11. SPONSOR/MONITOR'S ACRONYM(S) ACDDRESS(ES) Research Triangle Park, NC 27709-2211 02580-EL-I.I.I 12. DISTRIBUTION AVAILIBILITY STATEMENT ARD Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should hot contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indiangle contained in this report are those of the author(s) and should hot contrued as an official Department of the Army position, policy or decision, unless or designated a novel optical material supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material supporting highly confined surface plasmons. In this project, based on ITO we dem	Based on Inc	lium-Tin-Oxide	"			5c PRC)GR /	AM ELEMENT NUMBER	
6. AUTHORS Zhaolin Lu 5d. PROJECT NUMBER Zhaolin Lu 5d. PROJECT NUMBER Se. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT Rochester Institute of Technology 14623 -5603 9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) VI S. Army Research Office 11. SPONSOR/MONITOR'S ACRONYM(S) PO. Box 12211 NUMBER Research Triangle Park, NC 27709-2211 10. SPONSOR/MONITOR'S REPORT VI S. Army Research Office 11. SPONSOR/MONITOR'S REPORT NUMBER (S) 62580-EL-II.1 12. DISTRIBUTION AVAILIBILITY STATEMENT 62580-EL-II.1 Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES The views, opinions and/or finding: contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-t-in-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material wit						61110	2		
Zhuolin Lu 5c. TASK NUMBER 5c. TASK NUMER	6. AUTHORS					5d. PRO	DJEC	T NUMBER	
Sc. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES Rochester Institute of Technology 141 Lomb Memorial Drive Rochester Institute of Technology 141 Lomb Memorial Drive Rochester, NY 0. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) US. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army postion, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that TTO and other transparent conducting oxides can work as novel metanterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel metanterial supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely cepsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of TTO for electro-optic modulation. When applying gate voltage through electrolyte gel on an	Zhaolin Lu								
5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES Rochester Institute of Technology 141 Lomb Memorial Drive Rochester, NY 14623 -5603 9. SPONSORING/MONTORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Office P. O. Box 12211 Research Triagle Park, NC 27709-2211 12. DISTRIBUTION AVAIL/BIL/TY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES The view, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO or electro-optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION						5e. TAS	SK NI	UMBER	
7. PERFORMING ORGANIZATION NAMES AND ADDRESSES Rochester Institute of Technology 141 Lomb Memorial Drive 8. PERFORMING ORGANIZATION REPORT NUMBER Rochester Institute of Technology 141 Lomb Memorial Drive 14623 -5603 10. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARO US. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 62580-EL,-II,1 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 62580-EL,-II,1 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES The view, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indiana conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 17. LIMITATION OF ABSTRACT 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON Zhaolin Lu 19. AREPORT b. ABSTRACT C. THIS PAGE UU 17. LIMITATION OF ABSTRACT <t< td=""><td></td><td></td><td></td><td></td><td></td><td>5f WO</td><td>RKU</td><td>INIT NUMBER</td></t<>						5f WO	RKU	INIT NUMBER	
7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT Rochester Institute of Technology 141 Lomb Memorial Drive Rochester, NY 14623 -5603 9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Research Office NUMBER P.O. Box 12211 SPONSOR/MONITOR'S REPORT Research Triangle Park, NC 27709-2211 NUMBER(S) 12. DISTRIBUTION AVAILIBILITY STATEMENT NUMBER(S) Approved for Public Release; Distribution Unlimited Statibution Unlimited 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-Tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO or electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS IS. NUMBER Iga. NAME O									
NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARO U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO or electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS METERMSIN	7. PERFORM	IING ORGANIZA	TION NAMES AN	D ADDRESSES			8. 1	PERFORMING ORGANIZATION REPORT	
141 Lomb Memorial Drive Rochester, NY 14623 -5603 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARO U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 62580-EL-II.1 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 62580-EL-II.1 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Internative index significantly smaller than unit, namely epsilon-near-zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: uUU I.7. LIMITATION OF UU I.5. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Zhaoin Lu 19b. TELEPHONE NUMBER S200 4/20 G I.5. 200 4/20 G <	Rochester Ins	stitute of Technolog	gv				NUMBER		
Rochester, NY 14623 - 5603 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARO U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 62580-EL-II.1 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 62580-EL-II.1 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indum-Tin-Oxide, ITO 19. NAME OF RESPONSIBLE PERSON Zhaolin Lu 196. TELEPHONE NUMBER of PAGES 194. NAME OF RESPONSIBLE PERSON Zhaolin Lu 195. TELEPHONE NUMBER Zhaolin Lu 195. TELEPHONE NUMBER	141 Lomb M	emorial Drive							
Rochester, NY 14623 - 5603 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARO U.S. Army Research Office P.O. Box 12211 11. SPONSOR/MONITOR'S REPORT NUMBER(S) Research Triangle Park, NC 27709-2211 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION AVAILIBILITY STATEMENT 62580-EL-II.1 13. SUPPLEMENTARY NOTES 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: a. REPORT UU 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Zhaolin Lu 19b. TELEPHONE NUMBER (25 220 AU20)									
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARO 11. SPONSOR/MONITOR'S ACRONYM(S) ARO 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 62580-EL-II.1 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU U U U U U U U U U U U U U U U U U	Rochester, N	Y	14623	-5603					
U.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT P.O. Box 12211 NUMBER(S) Research Triangle Park, NC 277/09-2211 62580-EL-II.1 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON Zhaolin Lu 19b. TELEPHONE NUMBER 19b. TALEPHONE NUMBER 19b. TELEPHONE NUMBER	9. SPONSOR ADDRESS(ES	ING/MONITORIN 5)	NG AGENCY NAM	IE(S) AND			10. A	SPONSOR/MONITOR'S ACRONYM(S) RO	
P.O. Box 12211 Research Triangle Park, NC 27709-2211 NUMBER(S) 62580-EL-II.1 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 62580-EL-II.1 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 15. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Zhaolin Lu 19b. TELEPHONE NUMBER CDP 2020 (2020)	U.S. Army Research Office					Γ	11. \$	SPONSOR/MONITOR'S REPORT	
Research Triangle Park, NC 27/09-2211 62580-EL-II.1 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: u 17. LIMITATION OF a. REPORT b. ABSTRACT UU UU 15. NUMBER UU UU 17. LIMITATION OF a. REPORT b. ABSTRACT CTHIS PAGE	P.O. Box 12211 Descent Triangle Dark, NC 27700 2211					NUN	ABER(S)		
12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: UU 17. LIMITATION OF ABSTRACT UU 19. ABSTRACT UU 19. NAME OF RESPONSIBLE PERSON Zhaoin Lu 19b. TELEPHONE NUMBER 505 202 0020	Kesearch Triangle Park, NC 27/09-2211					62580-EL-II.1			
Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT UU UU UU UU UU 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON 2haolin Lu 19b. TELEPHONE NUMBER 19b. TELEPHONE NUMBER 19b. TELEPHONE NUMBER 19b. TELEPHONE NUMBER	12. DISTRIBU	TION AVAILIBI	LITY STATEMEN	Г					
 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE UU UU UU 	Approved for l	Public Release; Dis	stribution Unlimited						
The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT UU UU UU UU	13. SUPPLEN	IENTARY NOTE	S						
14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT UU UU UU UU UU UU UU UU 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON Zhaolin Lu 19b. TELEPHONE NUMBER 200 200	The views, opi	nions and/or findir	ngs contained in this	report are those of the a	uthor(s)) and should 1	not co	ontrued as an official Department	
14. ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT UU UU UU UU UU UU UU UU UU UU	of the Army po	osition, policy of de	ecision, unless so de	esignated by other docum	ientatio	n.			
Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT UU UU UU UU	14. ABSTRAC	CT							
ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE UU UU UU UU UU UU UU a. REPORT b. ABSTRACT c. THIS PAGE UU UU UU UU UU UU UU UU UU UU IT. LIMITATION OF ABSTRACT IT. LIMITATION OF ABSTRACT IT. LIMITATION OF ABSTRACT IT. DU UU	Indium-tin-o	xide (ITO) is w	idely used as trai	nsparent electrode in	solar o	cells and di	spla	ys. Recent work showed that	
plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT c. THIS PAGE UU UU UU UU UU	ITO and othe	er transparent co	onducting oxides	can work as novel n	netamt	erials supp	ortin	g highly confined surface	
smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an 15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT UU UU UU UU	plasmons. In	this project, ba	sed on ITO we d	emonstrated a novel	optica	l material v	vith	refractive index significantly	
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 10. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NAME OF RESPONSIBLE PERSON 10. UU UU UU 19a. NAME OF RESPONSIBLE PERSON 20. Security CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 10. UU UU UU 19a. NAME OF RESPONSIBLE PERSON 20. ADDITION OF: 19. ABSTRACT 19. TELEPHONE NUMBER 20. ADDITION 20. ADDITION 20. ADDITION	smaller than	unit, namely ep	silon-near-zero (ENZ), which may fin	nd nun	nerous appl	licati	ions. We also investigated	
15. SUBJECT TERMS Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT UU UU UU UU	the application	ons of ITO for e	electro-optic mod	lulation. When apply	ing ga	te voltage t	hrou	igh electrolyte gel on an	
Metamaterials, Epsilon-Near-Zero, Electro-Optic Materials, Electro-Absorption Modulation, Indium-Tin-Oxide, ITO 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT UU UU UU UU	15. SUBJECT	Γ TERMS							
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF PAGES Zhaolin Lu UU UU UU UU 585 220, 4020	Metamaterials	, Epsilon-Near-Zer	ro, Electro-Optic Ma	aterials, Electro-Absorpt	ion Mo	dulation, Indi	um-T	Fin-Oxide, ITO	
a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT UU UU UU UU UU SPAGES Zhaolin Lu 19b. TELEPHONE NUMBER 585 220, 4020	16. SECURIT	Y CLASSIFICATI	ON OF	17. LIMITATION OF	-	15. NUMBE	R	19a. NAME OF RESPONSIBLE PERSON	
UU UU UU 19b. TELEPHONE NUMBER	a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	0	OF PAGES		Zhaolin Lu	
	UU	UU	υυ	UU				19b. TELEPHONE NUMBER	

Report Title

Ultracompact Electro-Absorption Modulators Based On Novel Materials(I): "Epsilon-Near-Zero Material and Electro-Absorption Modulation Based on Indium-Tin-Oxide"

ABSTRACT

Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an ITO-based structure, electric double layers are formed at the interfaces of ITO and electrolyte gel, which can significantly alter the optical properties of ITO. Two different structures are investigated, and modulation depth up to 38.8% has been achieved in the attenuated total reflection configuration. Preliminary result is presented for the real time response of an ITO/electrolyte gel/doped Si modulator.

Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

Received

TOTAL:

Number of Papers published in peer-reviewed journals:

Paper

		(b) Papers published in non-peer-reviewed journals (N/A for none)
<u>Received</u>	<u>Paper</u>	
TOTAL:		
Number of Papers p	oublished in r	non peer-reviewed journals:

(c) Presentations

 Z. Lu, "Active Plasmonic Metamaterials and Greatly Enhanced Light Absorption by Monolayer Graphene (invited)", Frontier in Optics 2013, Plasmonics and Nanophotonics, Orlando, Florida, USA.
 Z. Lu, K. Shi, and, R. R. Haque, "Nanoplasmonic waveguides and modulators for advanced optical interconnects (invited)", SPIE Photonics West 2014, San Francisco, CA, USA.

3. K. Shi, W. Zhao and Z. Lu, "Epsilon-Near-Zero-Slot Waveguides and Their Applications in Ultrafast Laser Beam Steering", SPIE Photonics West 2014, San Francisco, CA, USA (submitted).

4. R. R. Haque, W. Zhao, R. Zhao, K. Shi, and Z. Lu, "Active plasmonic metamaterial based on transparent conducting oxide", SPIE Photonics West 2014, San Francisco, CA, USA (submitted).

5. K. Shi, W. Zhao, and Z. Lu, "Novel Approaches to Enhance Graphene Absorption and Electro-Optic Property", SPIE Photonics West 2014, San Francisco, CA, USA (submitted).

Number of Presentations: 5.00

	Non Peer-Reviewed Conference Proceeding publications (other than abstracts):
Received	Paper
TOTAL:	
Number of Non Peer-	-Reviewed Conference Proceeding publications (other than abstracts):
	Peer-Reviewed Conference Proceeding publications (other than abstracts):
Received	Paper
TOTAL:	
Number of Peer-Rev	iewed Conference Proceeding publications (other than abstracts):
	(d) Manuscripts
Received	Paper

TOTAL:

Books

 Received
 Paper

 TOTAL:
 Patents Submitted

 Patents Submitted

 Patents Awarded

 Graduate Students

 Graduate Students

 NAME

Total Number:	4	
FTE Equivalent:	1.00	
Riaz Haque	0.10	
Kaifeng Shi	0.20	
Amanpreet Kaur	0.20	
Wangshi Zhao	0.50	

Names of Post Doctorates]	Names	of Post	Doctorates
--------------------------	---	-------	---------	-------------------

NAME	PERCENT SUPPORTED	
FTE Equivalent: Total Number:		

Names of Faculty	y Supported
------------------	-------------

NAME	PERCENT_SUPPORTED	National Academy Member
Zhaolin Lu	0.20	
FTE Equivalent:	0.20	
Total Number:	1	

Names of Under Graduate students supported

PERCENT SUPPORTED

FTE	Equivalent:
Tota	I Number:

Student Metrics This section only applies to graduating undergraduates supported by this agreement in this reporting period The number of undergraduates funded by this agreement who graduated during this period: 0.00 The number of undergraduates funded by this agreement who graduated during this period with a degree in science, mathematics, engineering, or technology fields:..... 0.00 The number of undergraduates funded by your agreement who graduated during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:..... 0.00 Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale): 0.00 Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education, Research and Engineering: 0.00 The number of undergraduates funded by your agreement who graduated during this period and intend to work for the Department of Defense 0.00 The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: 0.00 Names of Personnel receiving masters degrees NAME Mohammed Kaleem

Saptarshi Banerjee		
Total Number:	2	
	Names of personnel receiving PHDs	
NAME		
Wangshi Zhao		
Total Number:	1	
	Names of other research staff	
NAME	PERCENT SUPPORTED	
FTE Equivalent:		
Total Number		

Sub Contractors (DD882)

Inventions (DD882)

Scientific Progress

See the attached PDF file.

Technology Transfer

Ultracompact Electro-Absorption Modulators Based On Novel Materials (I):

"Epsilon-Near-Zero Material and Electro-Absorption Modulation Based on Indium-Tin-Oxide"

Sponsor: United States Army (Grant No. W911NF-12-1-0451)

Final Project Report October, 2012 - May, 2013

Zhaolin Lu Microsystems Engineering, Kate Gleason College of Engineering Rochester Institute of Technology 168 Lomb Memorial Drive, Rochester, NY 14623 Phone: 585-475-2106; Fax: 585-475-6879

Abstract

Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides can work as novel metamterials supporting highly confined surface plasmons. In this project, based on ITO we demonstrated a novel optical material with refractive index significantly smaller than unit, namely epsilon-near-zero (ENZ), which may find numerous applications. We also investigated the applications of ITO for electro-optic modulation. When applying gate voltage through electrolyte gel on an ITO-based structure, electric double layers are formed at the interfaces of ITO and electrolyte gel, which can significantly alter the optical properties of ITO. Two different structures are investigated, and modulation depth up to 38.8% has been achieved in the attenuated total reflection configuration. Preliminary result is presented for the real time response of an ITO/electrolyte gel/doped Si modulator.

This report covers the work done in support of the United States Army (Grant No. W911NF-12-1-0451). Contributors to this effort include Prof. Zhaolin Lu, graduate students Wangshi Zhao, Amanpreet Kaur, Kaifeng Shi, Riaz Haque, Runchen Zhao, Bingyin Zhao, Mohammed Kaleem, and Saptarshi Banerjee. PhD student Wangshi Zhao has graduated and taken positions in industry in US.

Most of the research results will be published in journal or conference papers. Accordingly, this report only contains milestone data of research. In brief summary, we have passed the following milestones during this year.

1. Epsilon-Near-Zero Material Based on Transparent Conducting Oxide

Research on metamaterials has shown that the dielectric constant of materials can be engineered to be almost any arbitrary value (positive, zero, or negative). One example is epsilon-near-zero (ENZ) (or low-index, index-near-zero in literature) materials, which have attracted significant interest and found applications in squeezing electromagnetic energy through very narrow channels, reflectionless sharp bends, design of matched zero-index materials, zero-index resonators, enhancing optical nonlinear effect, as well as shaping the radiation pattern. Recent works on the optical and electro-optic (EO) properties of transparent conducting oxides (TCOs) in the near infrared regime (NIR) provide a new insight into the fabrication of ENZ materials. The dielectric constant of a TCO is determined by its free carrier concentration. With a suitable doping and a fabrication process, the dielectric constant of a TCO can be engineered very close to zero.

The effect of free carriers on an optical material can be approximated by the Drude model, $\varepsilon = \varepsilon_{\infty} - \frac{\omega_p^2}{\omega(\omega + f\Gamma)}$, where ε_{∞} is the high frequency dielectric constant, ω_p is the plasma frequency, and Γ is the electron damping factor. Thus, the ENZ effect can be seen in many materials at $\omega \approx \omega_p / \sqrt{\varepsilon_{\infty}}$. For example, tungsten at λ_0 =48.4 nm with $|\varepsilon(W)| = 0.483$, and aluminum at λ_0 =83 nm with $|\varepsilon(AI)| = 0.035$. The magnitude of their dielectric constant can be significantly smaller than 1, i.e. "epsilon-near-zero". However, the plasma frequencies of most metals are located in the ultraviolet regime due to their high carrier concentration. To make ENZ located in the near infrared (NIR) regime, the carrier concentration should reduce to $10^{20} \sim 10^{22}/\text{cm}^3$, which coincides that of TCOs. In this project, we were able to, for the first time, experimentally verify the feasibility of fabrication of TCOs as ENZ materials.

Because TCOs are non-stoichiometric compounds, their optical properties largely depend on the growth/deposition processes and annealing conditions, including the temperature and ambient gasses. To explore the TCOs for ENZ applications, we have done two experiments based on the attenuated total reflectance (ATR) method (Kretschmann configuration) as shown in Fig. 1(a).

Figure 1. (a) Attenuated total reflectance setup. (b) Attenuated total reflectance measurement of the optical properties of a 25-nm ITO film on glass substrate. The inset illustrates the Kretschmann configuration used in the measurement.

The ITO film to be tested was sputtered on a float glass slide and pressed against an N-BK7 glass cylindrical lens (functioning as a coupling "prism"). Index matching liquid is filled between the sample and lens. The light polarization can be either TE or TM. We found that TM-light is more sensitive to the index change. Thus, all tests were performed based on TM polarization. The complex dielectric constant of the thin film at a given wavelength can be measure by curve-fitting of R- θ relation as illustrated in Fig. 1(b). The Drude dispersion relation can be established after the film is measured at different wavelengths, from 1260nm to 1620nm in our case.

We found that the carrier concentration and hence optical properties of ITO films are very sensitive to substrate temperature during RF magnetron sputtering. With different fabrication temperature values, the cross-over wavelength can shift in a large range. In particular, we investigated the dielectric constant of ITO sputtered at 350°C. The following table shows the measured complex dielectric constant at different working wavelengths. As can be seen, the minimum achieved dielectric constant is min{ $|\epsilon|$ }=0.12 at λ =1260nm. Note 60% of power is absorbed at θ =46° within the 25-nm ITO sample. This measurement illustrates that ENZ can really be realized by TCOs. Optimization of the processes may further reduce the magnitude of the dielectric constant at ENZ.

λ (nm)	Re{ε}	lm{ε}	3				
1260	0.0617	0.0998	0.12				
1350	-0.1004	0.1203	0.16				
1440	-0.4352	0.2106	0.48				
1520	-0.8764	0.1909	0.90				
1620	-1.6136	0.1936	1.63				

Table 1. The measured dielectric constant as a function of working wavelength.

2. ITO-based Multilayer Electro-Optical Modulation

The high carrier concentration enables guiding surface mode at the interface of ITO and dielectric materials, for example air, which has a great potential in the applications of electrooptic (EO) modulators. In a previous work done by Feigenbaum and co-works, they have experimentally showed that unity-order index change in ITO can be achieved in a metal-oxidesemiconductor (MOS) structure by a thin layer (~5nm) of voltage-induced accumulation charge formed at the interface of the ITO and SiO₂.

In this project, we employ a similar structure like MOS but using a new material called electrolyte gel to replace the sandwiched oxide material and form simple multilayer modulators based on ITO. Electrolyte has been used as gate insulators in organic field-effect transistors in 2005 by Nilsson *et. al.* The interface between a metal (or heavily-doped semiconductor) and electrolyte is of interest in most electrolyte applications, where two parallel layers of positive and negative charges called an electric double layer (EDL) are formed. Another advantage of using electrolyte as the gating material is, the device behavior can be conveniently controlled by varying the concentration of chemical compounds in the electrolyte. In our experiments, a commercially available electrolyte Redux[®] Gel is used to fabricate the ITO-based multilayer modulators. Sodium chloride (NaCI) is the main chemical compound in the electrolyte gel that makes it highly conductive.

Figure 2. Illustration of proposed multilayer ITO modulators: (a) Heavily-doped Si/electrolyte gel/ITO/transparent substrate. (b) ITO/electrolyte gel/ITO. (c) Experimental setup for ATR measurement.

The fabrication of the modulators starts from ITO film deposition on a transparent glass slide, by the method of physical vapor deposition (PVD) process using a $(In_2O_3)_{0.9}(SnO_2)_{0.1}$ weight percentage target at room temperature and 7.3mTorr pressure within the chamber. During deposition, argon is the only gas used. The thickness of ITO film is measured in the range of 22-25nm with a 12mins deposition time. Without the post-deposition annealing process, the sheet resistance of ITO film is measured around $3000 \sim 4000\Omega/\Box$. After applying a thin layer of electrolyte gel on the surface of ITO, a heavily doped (resistivity as low as $0.001-0.002\Omega \cdot cm$) silicon chip or another identical ITO sample with the ITO side facing the electrolyte gel is tightly pushed toward the substrate ITO to form the multilayer modulator, as shown in Fig. 2(a) and (b), respectively. In order to test the modulation performance of the two ITO-based modulators, we used an ATR setup in the Kretschmann configuration, as illustrated in Fig. 2(c).

Figure 3. Reflectance as a function of angle for the heavily-doped Si/electrolyte gel/ITO on glass slide modulator with different applied voltages. Inset: illustration of the modulation.

During the experiment, the ITO-based modulators were mounted on the back of the hemicylindrical BK7 prism. To avoid a thin air gap between the prism and the modulator, a BK7 index matching liquid is applied between them. In all the experiments, the reflectance of the modulators was measured in a sequence of: (1) without externally applied voltage, (2) with an externally applied voltage V_P , and (3) with an externally applied voltage which has reversed polarity but the same magnitude. We firstly focused on a simple structure, as shown in Fig. 2(a), which includes only one active ITO layer. The measured reflectance of the modulator with different applied voltages, as a function of θ_1 with a *p*-polarized incident light beam at λ =1520nm is shown in Fig. 3. With an applied voltage, an EDL is formed at the interface of the electrolyte gel and the ITO. Here we assumed there is a 5nm-thick depletion layer (with positive voltage V_P =10V, illustrated in Fig. 3), or accumulation layer (with negative voltage - V_P =-10V) formed in ITO at the interface. The modulation depth, $M(\theta_1)$, as a function of angle θ_1 at a given wavelength can be defined as:

$$M(\theta_1) = \frac{|R_{V_{\rm P}} - R_{V_{\rm P}}|}{R_0},$$
(3)

where R_0 is the experimentally measured reflectance without applied voltage, $|R_{V_P}-R_{-V_P}|$ is the magnitude of the difference of the two reflectance with applied voltages. From Fig. 3, the modulation depth at a specific angle of θ_1 =70° can be calculated as $M(70^\circ)$ =20.7%. We attribute the modulation to the change of the free carrier concentration in either the 5nm-thick depletion layer or accumulation layer in ITO at the interface, which is assisted by the redistribution of the ions in electrolyte gel induced by the applied voltage. The charge distribution at the interface and electric potential (*V*) at a stable status with the applied voltage is schematic illustrated in the inset of Fig. 3.

The measured reflectance of the ITO modulator is numerically fitted by calculating the reflectance through the multilayer structure based on the transfer matrix method (TMM). In this experiment, the film stack can be treated as BK7/ITO/electrolyte gel/heavily-doped Si. In order to simplify the fitting, we used the permittivity of the 5nm depletion layer or accumulation layer in ITO (both real and imaginary parts), and the thickness of the electrolyte gel as the variables to

model the measured reflectance data. The permittivity of the electrolyte gel is determined by a separate ATR measurement, which is $\varepsilon_{gel} \approx 1.80$ at $\lambda = 1520$ nm. In the numerical fitting, the BK7 medium has a refractive index of n=1.50 at $\lambda=1520$ nm. The result turns out that the dielectric constant of ITO film $\varepsilon_{ITO}=3.7+j^*1.0$ at $\lambda=1520$ nm without applied voltage, and the thickness of the electrolyte gel $t_{gel} \approx 5.22 \mu$ m. With an applied voltage of $V_P=10V$, the permittivity of the 5nm depletion layer of ITO is fitted as $\varepsilon_{ITO-dep}=4.23+j^*0.5$. When the polarity is reversed, the permittivity of the 5nm accumulation layer of ITO is $\varepsilon_{ITO-acc}=-0.47+j^*4.9$. Combining Eq. (1) and (2), the carrier concentration in ITO can be estimated as: $N(0V)=9.82\times10^{20}$ cm⁻³, $N(10V)=5.34\times10^{20}$ cm⁻³ for the 5nm depletion layer, and $N(-10V)=4.75\times10^{21}$ cm⁻³ for the 5nm accumulation layer, and the 5nm accumulation layer.

Figure 4. Ionic relaxation effect of the electrolyte gel, at an angle of θ 1=65°.

The switching speed of the modulator is directly influenced by the relaxation of the ions in the electrolyte gel. For the modulator structure shown in Fig. 2(a), another experiment is carried out to test this relaxation effect, where two rectangular voltage pulses are excited by a DC power supply. The first pulse is 30s wide with a height of +20V applied on ITO, after 120s the second pulse is excited with the same width but an opposite polarity, as illustrated by the blue curve in Fig. 4. The incident light beam is at λ =1310nm with *p*-polarization.

The response of the ITO-based modulator to the applied voltage pulses as a function of time is measured at a specific angle θ_1 =65° and the reflectance is shown in Fig. 4. When there is no applied voltage, the reflectance *R* is at its baseline level. When the voltage pulses are applied on the ITO (at time t_1 and t_2), EDLs are immediately formed at the interface of the electrolyte gel/ITO. The induced change of the reflectance is similar as we observed in the first experiment shown in Fig. 3, and the modulation depth is around 12.4%. When both the rectangular pulses vanished, the reflectance of the modulator either decreases or increases toward its baseline level, respectively. However, it is clearly seen that for both the situations, the modulator needs a long time to recover to its baseline level. With the positive voltage pulse, the recovery time is even longer. The phenomenon could be caused by the different mobility of the major carriers in the 5nm region in ITO at the interface. The response of the ITO modulator under high-frequency

AC signals needs further investigation. Both the ions in electrolyte gel and the free carriers in ITO needed to form the electric double layer will probably limit its applications at high frequency.

Figure 5. Reflectance as a function of angle for the ITO/electrolyte gel/ITO modulator with different applied voltages. Inset: illustration of the modulator.

The modulation depth can be further enhanced when the electrolyte gel sandwiched between two identical ITO samples. To make the measurement result accurate, we used a glass deflector on the other side of the modulator, to avoid any light reflected back and collected by the detector. When applying a voltage to the double-ITO modulator, there will be an EDL formed at each electrolyte gel/ITO interface, as shown in Fig. 5. The double EDLs result a higher modulation depth, which is $M(70^\circ)$ =38.8%, at a specific angle of θ_1 =70° with *s*-polarized light at λ =1520nm. This result also shows that the ITO-based multilayer modulator is not sensitive to the polarization of the incident light beam.

To summarize, we have experimentally demonstrated (1) ENZ material based on ITO, and (2) modulation effect with easily fabricated multilayer modulators based on ITO. The modulation depth is around 21.7% with only one ITO active layer, and this result can be further enhanced to 38.8%, where there are two ITO active layers. The real time response of the ITO-based modulator needs further investigation, which is determined by the relaxation of the ions in electrolyte gel and the free carriers in ITO.

3. List of Education activities:

- (1) Four PhD students and four master students have been supported by this program to some degree.
- (2) The research results have been incorporated in two courses: Optoelectronics and Integrated Optics.
- (3) Two lectures were given in the Introduction of Microsystems and Nanotechology based on the results of this program.

4. Training and Development:

- (1) The students involved in this research have been exposed to an R&D environment and participate in technology development while learning advanced techniques. These include: Nanophotonic and Electromagnetic Device design and simulation, Nanofabrication, and Characterization of nanoplasmonic devices.
- (2) Two students have been sent to NSF Nanofabriation facilities at Cornell.
- (3) The experience the students obtained has helped their future work in job market.

5. List of Contributions:

- (1) The first demonstration ITO as epsilon-near-zero materials for near-infrared applications.
- (2) <u>Demonstration of electro-optic modulation based on ITO-electrolyte structures.</u>

6. List of Publications for this Effort

Journal Papers

[1] W. Zhao and Z. Lu, "ITO-based Multilayer Electro-Optical Modulator", in preparation.

Conference Papers/Presentations

- [2] Z. Lu, "Active Plasmonic Metamaterials and Greatly Enhanced Light Absorption by Monolayer Graphene (invited)", Frontier in Optics 2013, Plasmonics and Nanophotonics, Orlando, Florida, USA.
- [3] Z. Lu, K. Shi, and, R. R. Haque, "Nanoplasmonic waveguides and modulators for advanced optical interconnects (invited)", SPIE Photonics West 2014, San Francisco, CA, USA.
- [4] K. Shi, W. Zhao and Z. Lu, "Epsilon-Near-Zero-Slot Waveguides and Their Applications in Ultrafast Laser Beam Steering", SPIE Photonics West 2014, San Francisco, CA, USA (submitted).
- [5] R. R. Haque, W. Zhao, R. Zhao, K. Shi, and Z. Lu, "Active plasmonic metamaterial based on transparent conducting oxide", SPIE Photonics West 2014, San Francisco, CA, USA (submitted).
- [6] K. Shi, W. Zhao, and Z. Lu, "Novel Approaches to Enhance Graphene Absorption and Electro-Optic Property", SPIE Photonics West 2014,San Francisco, CA, USA (submitted).