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Abstract
This paper presents the concept of adaptive programs, whose com-
putation and communication structures can morph to adapt to envi-
ronmental and demand changes to save energy and computing re-
sources. In this approach, programmers write one single program
using a language at a higher level of abstraction. The compiler
will exploit the properties of the abstractions to generate an adap-
tive program that is able to adjust computation and communication
structures to environmental and demand changes.

We develop a technique, called StreaMorph, that exploits the
properties of stream programs’ Synchronous Dataflow (SDF) pro-
gramming model to enable runtime stream graph transformation.
The StreaMorph technique can be used to optimize memory us-
age and to adjust core utilization leading to energy reduction by
turning off idle cores or reducing operating frequencies. The main
challenge for such a runtime transformation is to maintain con-
sistent program states by copying states between different stream
graph structures, because a stream program optimized for different
numbers of cores often has different sets of filters and inter-filter
channels. We propose an analysis that helps simplify program state
copying processes by minimizing copying of states based on the
properties of the SDF model.

Finally, we implement the StreaMorph method in the StreamIt
compiler. Our experiments on the Intel Xeon E5450 show that using
StreaMorph to minimize the number of cores used from eight cores
to one core, e.g. when streaming rates become lower, can reduce
energy consumption by 76.33% on average. Using StreaMorph to
spread workload from four cores to six or seven cores, e.g. when
more cores become available, to reduce operating frequencies, can
lead to 10% energy reduction. In addition, StreaMorph can lead to
a buffer size reduction of 82.58% in comparison with a straight-
forward inter-core filter migration technique when switching from
using eight cores to one core.

1. Introduction
Real-time streaming of media data is growing in popularity. This
includes both capture and processing of real-time video and audio,
and delivery of video and audio from servers; recent usage number
shows over 800 million unique users that visit YouTube to watch
over 3 billion hours of video each month [1]. As a result, YouTube
data centers consume huge amounts of energy. Given that traffic
from mobile devices to YouTube tripled in 2011, energy-efficient

stream computing is increasingly important, especially since bat-
tery life is a big concern for mobile devices. In addition, as comput-
ing devices are often now equipped with high-resolution displays
and high-quality speakers, streaming quality is expected to rise ac-
cordingly. Processing high-quality streams requires proportionally
higher computing energy. While several efforts [15, 22] aim at us-
ing parallel computing to meet the demand of stream computation,
not much attention has been paid to energy-efficient parallel stream
computing. These efforts mainly focus on devising scalable compi-
lation techniques to speed up stream computation. While multicore
can address the rising computing demand for stream computation,
it also can result in an unnecessary waste of energy due to low core
utilization when more cores are used than needed at low streaming
rates.

In this paper, we present StreaMorph, a programming method-
ology that exploits the high-level abstractions of stream programs
to generate runtime adaptive ones for energy-efficient executions.
Based on one single specification of a stream program, the com-
piler exploits domain-specific knowledge to generate an adaptive
program that is able to adjust its occupied computing resources,
processors, memory and so on, at runtime. Such adaptive pro-
grams help reduce energy consumption by adapting their com-
puting power to demand changes at runtime. This programming
methodology comes from our new perspective on stream programs.
The previous work on stream compilation assumes stream pro-
grams are isolated entities. This assumption misses an important
optimization opportunity. As isolated entities, stream programs are
set to run as fast as possible by using as much resources as pos-
sible. Running stream programs aggressively may result in a con-
siderable waste of energy. In contrast, we treat stream programs
as integrated components within certain systems. For example, an
MPEG2 encoder/decoder does not need to run faster than its cam-
era/display frame rates. Digital signal processing (DSP) programs,
such as Radar, FM radio, and Vocoders, do not need to run faster
than their input signals’ sampling rates. Because using more cores
than needed for certain input rates to run these programs will waste
energy due to static energy leakage and inter-core data communi-
cation overhead, it is beneficial to find the minimal number of cores
required for a specific workload rate to reduce energy consumption.

Determining the optimal number of cores used for a stream pro-
gram at compile-time is often not possible due to several factors.
These factors include varied processor speed used to run stream
programs, users’ control on stream quality and speed, varied run-
time signal rates, etc. As a result, compiled stream applications are
necessary to be able to adapt computing speed accordingly to exter-
nal changes at runtime to save energy. Expressing stream programs
as synchronous dataflow (SDF) [24] models presents an opportu-
nity for such an energy optimization. In SDF, a program is decom-
posed into multiple autonomous filters connected using FIFO chan-
nels. As a result, stream programs can dynamically relocate filters



and channels between cores at runtime to minimize the number of
cores used while maintaining required throughput demands. Using
fewer cores reduces leakage energy as well as inter-core communi-
cation energy overhead.

A prior inter-core filter migration technique, the one imple-
mented in Flextream [17] by Hormati et al. in the context of chang-
ing processor availability, can adjust the number of cores used, but
it is not optimal as it does not adjust memory usage accordingly. In
cloud computing as well as in multicore embedded systems, pro-
cessors are not the only resource that applications share. In these
computing environments, it is also desirable to reduce the mem-
ory usage of each application to improve the overall utilization of a
whole system [11, 12].

To improve inter-core filter migration technique, our StreaMorph
technique not only migrates filters between cores but also trans-
forms stream graphs, thereby adjusting the set of filters, inter-filter
channels and the number of cores used. Runtime stream graph
transformation entails mapping and transferring data on inter-filter
channels of different stream graph configurations. This process is
non-trivial because the inter-filer channel states become compli-
cated when stream programs execute through several stages such
as initialization and software pipelining [14].

We tackle the problem by proposing an analysis that helps re-
duce the number of tokens copied between optimized configura-
tions of a single stream program. The main idea of the proposed
analysis is to derive sequences of filter executions to drain tokens
on channels as much as possible. This StreaMorph scheme helps
optimize energy consumption in several ways. Either minimizing
the number of cores used at a fixed frequency or lowering operating
voltages and frequencies of processors by using more cores to han-
dle the same workload rates can help reduce energy consumption.
In addition, high processor temperatures due to running at high uti-
lization for long periods can degrade processors’ performance and
lifespan [6, 13]. As a result, increasing the number of cores used
to lower core utilization, thereby reducing processor temperatures,
can mitigate the problem.

We apply the StreaMorph scheme to a set of streaming bench-
marks [15] on the Intel Xeon E5450 processors. The results show
that, on average, using StreaMorph to minimize the number of
cores used whenever possible from eight cores to four reduces en-
ergy consumption by 29.90%, and from eight cores to one reduces
energy consumption by 76.33% on average. Using StreaMorph to
spread workload on more cores when they become available from
four cores to six or seven cores and applying DVFS can reduce en-
ergy consumption by 10%. Our StreaMorph scheme also leads to
an 82.58% buffer size reduction when switching from an eight-core
configuration to one compared to Flextream.

This paper makes the following contributions
• We present the concept of adaptive programs that are beneficial

in cloud computing and embedded systems. Our work demon-
strates a case for employing high-level abstractions to design
programs that adapt to demand and resource changes at run-
time.

• We identify an energy optimization opportunity by taking into
account external settings, e.g. input data rates or the number of
available cores, of stream programs with a task-level program
transformation technique.

• We present an analysis that helps simplify program state copy-
ing processes when switching between configurations.

• We implement the method in the StreamIt compiler and demon-
strate experimentally the effectiveness of the method using a set
of StreamIt benchmarks.

• We also derive an approximate energy model analysis for
stream programs on multicore and experimentally validate the

model. The model can serve as a guidance for finding optimal
energy-efficient configurations.

2. Adaptive Stream Programs
Stream programs are often compiled to maximize speed [15, 22] as-
suming fixed numbers of cores. This approach implicitly assumes
that sources/sinks of data for stream programs can always pro-
duce/consume data. This assumption is not often true in practice.
For example, an audio source cannot produce data faster than its
sampling rate. A sink, e.g. a monitor, does not consume faster than
its designated frame rate. To understand this situation better, we
discuss where stream programs fit into external settings.

Figure 1 shows a general structure of DSP systems. In the fig-
ure, the analog-to-digital converter (ADC) samples analog signals
at a sampling frequency f and outputs digital signals to the DSP
module, which executes stream programs. The DSP module ma-
nipulates digital signals and subsequently feeds processed digital
signals to the digital-to-analog converter (DAC). The DAC converts
input digital signals to analog signals at a conversion frequency g.

This general structure of DSP systems suggests DSP modules
need not process more slowly than sampling f and/or conversion g
frequencies. It is generally not possible to get ahead of the source
of data, when that source is a real-time source, and it is generally
not necessary to get ahead of the sink. Even with real-time sources
and sinks, there may be some benefit to getting ahead, because
results can be buffered, making interruptions less likely in the
future when there is contention for computing resources. However,
getting ahead produces no evident benefit unless such contention
occurs, and it comes at an energy cost. When both the source
and the sink are operating in real time, it also comes at a cost in
latency. Having more cores than necessary can waste energy due to
static energy leakage when idle. In addition, inter-core data transfer
overhead when using more cores than needed can be another source
of energy inefficiency. Even when buffering is used, in steady state,
it is beneficial for processing speed to match IO rates, otherwise
buffers will overflow or underflow.

We identify two scenarios that can lead to the mismatch between
IO rates and processing speed.
• Varied IO rates at runtime: Users can use fast forward func-

tionality to quickly browse through a video or audio file.
Graphic applications need to render at faster/slower frame
rates. When users want to increase/decrease songs’ tempos
in Karaoke systems, sound synthesis engines have to adjust
accordingly. Sampling rates are increased/decreased to alter
quality.

• Different processor speeds: Even though compilers can match
between processing speed and certain IO rates at compile time,
this optimization can only be done for specific processor mod-
els. Processors of the same instruction set architecture can vary
in several dimensions such as clocking frequencies, microarchi-
tecture, fabrication processes. These variations lead to wildly
varied execution times of a single program on different proces-
sors with the same instruction set.

2.1 Energy Optimization
To get the energy benefits of matching processing speed to IO
rates, two common techniques are: 1) To consolidate tasks by
relocating tasks to fewer cores to improve core utilization and
enable turning off idle cores [2, 31]; 2) To vary processing speed by
applying dynamic voltage and frequency scaling(DVFS) [3, 9, 16,
35] or processor composition [8, 21] or heterogeneous processors
of different speeds [23, 26, 36].
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2.1.1 Task Consolidation
Especially for stream programs, task consolidation can help re-
duce inter-core communication overhead. However, applying the
task consolidation technique to stream programs optimized for
speed is not straightforward. For example, in the left of Figure 2,
a stream program is composed of three tasks T1, T2 and T3 con-
nected through two FIFO channels. Suppose that each task resides
on a separate core in a quad-core processor and utilizes 60% of its
core at current IO rates. Relocating normally one of the three tasks
to another occupied core will overload the core. Consequently,
the processing system cannot guarantee the program’s required IO
rates. Instead, the program should switch to a different configura-
tion composed of two tasks T1’ and T2’; each utilizes 90% of its
residing core as in the right of Figure 2.

This configuration switching is complicated because the two
configurations may be composed of different sets of filters and
channels due to speed optimization techniques that depend on the
number of cores used. For example, the configuration composed
of T1, T2 and T3 is optimized for 3 cores, while the configuration
composed of T1’ and T2’ is optimized for 2 cores.

2.1.2 Task Decomposition
Task consolidation is necessary as discussed in the previous sec-
tion, however, there are a number of scenarios where it is useful to
decompose tasks.
• Suppose that running T1’ and T2’ on cores 1 and 2 at 90%

utilization drastically increases those cores’ temperatures [13,
25]. At this point, we want to run 2 tasks on 3 cores to reduce
utilization as in Figure 2, and thereby consequently reducing
the cores’ temperatures.

• If the processors posses a DVFS capability, and there are more
cores available because some other applications terminated,
decomposing two tasks T1’ and T2’ into three tasks T1, T2 and
T3 and reducing the operating frequencies of the processors can
lead to energy reduction; power is proportional to the cube of
frequency.

2.2 Adjusting Shared Resources Proportionally
Section 2.1 suggests that inter-core filter migration to adjust pro-
cessor utilization and speed can help reduce energy consumption.
While the inter-core filter migration implemented in Flextream [17]
can adjust the number of cores used at runtime, it is not optimal,
because the technique does not reduce memory usage accordingly.
This limitation reduces the value for cloud computing, where appli-
cations are allocated cores, memory, networking bandwidth, and so
on, proportionally [11, 12]; for example, one application using two
cores is allocated 4GB of memory while another application using
four cores is allocated 8GB. As a consequence, just adjusting the
number of cores used by relocating filters between cores without
adjusting memory usage as in Flextream [17] is no longer suffi-
cient. In particular, reducing memory usage is crucial in embedded
systems where memory is scarce.

In contrast to Flextream [17], our StreaMorph technique adjusts
both the number of cores used and memory usage simultaneously.

We illustrate the difference using an example. To speed up stream
computation, stateless filters are often replicated as in Figure 3(b) to
utilize available cores, where filters B1, B2, D1 and D2 are duplicated
from the respective ones in the original stream graph in Figure 3(a).
Duplicating filters is necessary when stream IO rates are high
and we need to use more cores to handle such high IO rates.
When IO rates become low, a Flextream inter-core filter migration
technique retains the stream graphs in Figure 3(b) and relocates
filters to reduce the number of core used. For example, originally
the application in Figure 3(b) runs on two cores, but now the input
rate is lowered and one core can handle the workload. In this case,
the filters are relocated in Figure 3(b) and the stream graph is
not modified. In contrast, our StreaMorph technique modifies the
stream graph into the one in Figure 3(a). As a result, our technique
would be more memory-efficient because it eliminates the buffers
between filters Split, B2, D2, and Join. In addition, we will show
that our technique also reduces the buffer sizes of the other buffers.

3. StreaMorph: Designing Adaptive Programs
with High-Level Abstractions

Section 2 suggests that adapting stream programs to external
changes can lead to energy and resource reduction. In this section,
we will show how to attain such adaptivity by exploiting stream
program abstractions.
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Figure 3. Stream graph transformation

3.1 Stream Abstractions and Data Parallelism
3.1.1 Model of Computation
The SDF [24] model of computation is often used to model ex-
ecutions of stream programs [33]. This abstraction enables sev-
eral compiler optimization techniques [15, 22] for buffer space,
scheduling and mapping to underlying architecture. In the SDF
model of computation, a stream program is given as a graph com-
posed of a set of actors, called filters in this paper, communicating
through FIFO channels. Each filter has a set of input and output



ports. Each channel connects an output port of a filter to an input
port of another actor. Each filter consumes/produces a fixed number
of tokens from each of its input/output port each time it executes.

Figure 3(a) shows an example of an SDF stream graph. Filter
A has two output ports. Each time A executes, it produces 2 tokens
on its left port and 1 token on its right port. Filter B consumes 1
and produces 2 tokens each time it executes, and so on. The theory
of the SDF programming model provides the algorithm to compute
the number of times each actor has to execute within one itera-
tion, of the whole stream graph, so that the total number of tokens
produced on each channel between two actors is equal to the total
number of tokens consumed. In other words, the number of tokens
on each channel between actors remains unchanged after one itera-
tion of the whole stream graph. For example, in one iteration of the
stream graph in Figure 3(a), filters A, B, C, D, E have to execute 3,
3, 2, 2, 2 times respectively. Repeating this basic schedule makes
the number of tokens on each channel remain the same after one
iteration of the whole stream graph. For instance, in the channel
between B and D, in one iteration, B produces 3× 2 tokens while D
consumes 2× 3 tokens.

3.1.2 Sliding Windows
The StreamIt language [33] is a language for writing stream ap-
plications extending the SDF model of computation with a sliding
window feature, in which filters can peek (read) tokens ahead with-
out consuming those tokens. As a result, many states of programs
are stored on channels in the form of data tokens instead of being
stored internally within filters. Consequently, many filters become
stateless and eligible for the filter replication technique to speed
up computation as in Section 3.1.3. As many states of programs
are stored on channels, it is easier for compilers to migrate states
between different configurations during the morphing process.

3.1.3 Data Parallelism Exposed by Stream Abstractions
In this section, we will discuss how the stream abstractions in the
previous section can help adjusting parallelism in stream programs,
thereby adjusting computing speed. To speed up a stream applica-
tion, we can replicate stateless filters so that multiple instances of
one stateless filter execute in parallel. This filter replication tech-
nique is feasible because each filter in an SDF application con-
sumes/produces a known numbers of tokens whenever it executes
at each of its input/output port. As a result, after replicating filters,
the compiler knows how to distribute/merge data tokens to/from
each replicated filter.

Let us take the example in Figure 3(a) to illustrate the problem.
Suppose that B and D are stateless, as a result, we can duplicate
the filters to obtain the configuration in Figure 3(b). Because B
consumes one token and D produces one token each time they
execute, we can distribute data tokens to each duplicated B and
collect data tokens from each D evenly in a round-robin fashion
using Split and Join filters in Figure 3(b). With this duplication,
we can get 2x speed-up for the computation of the two filters.
Stateless filter replication is a popular technique that has proved to
achieve significant speed-up for several StreamIt benchmarks [15,
22]. Stateless filters can be replicated many times to fill-up all
available cores, consequently, this technique is dependent on the
number of cores used.

Execution Scaling: The filter replication technique may require
changing the number of times each filter executes within one iter-
ation. For example, A, C, and E in Figure 3(b) now execute 6, 4,
and 4 times respectively in one iteration. This means those filters
now execute twice as often within one iteration. This effect is called
execution scaling.

3.2 Implementing Adaptive Stream Programs
In the previous section, we discussed how the stream abstractions
can help improving stream program speed by exploiting data par-
allelism. However, switching between configurations optimized for
different numbers of processors is complicated by several compi-
lation techniques applied to stream programs [14]. We will show
how to mitigate the complication in this section.

3.2.1 Execution Stages
Initialization Stage: As downstream filters can peek tokens with-
out consuming them, upstream filters have to execute a number of
times initially in the initialization stage to supply more tokens to
downstream peeking filters. For example, suppose that filter B in
Figure 3(a), each time it executes, peeks ahead 3 tokens and con-
sumes only the first one of the 3. Consequently, it requires at least 2
additional tokens on the channel between filters A and B. To satisfy
this requirement, A has to execute twice in the initialization stage
to load the channel with two tokens.

Software Pipelining: Gordon et al. use software pipelining to ad-
dress a drawback of hardware pipelining [15]. In hardware pipelin-
ing, only contiguous filters should be mapped onto one core, e.g.
in Figure 3(a), filters A and D should not be mapped into a core
when filter B is mapped to another core. This mapping restriction
can potentially lead to unbalanced allocation. Software pipelining
allows mapping any filters to any core, e.g. filters A and D can be
mapped into a core even when filter B is mapped to another core.
This is done by constructing a loop prologue in which each filter ex-
ecutes a certain number of times to make data tokens available for
downstream filters to run in one iteration. In other words, within
one iteration, filters do not communicate directly to each other, in-
stead, they output tokens into buffers that will be read by down-
stream filters in the next iteration. Figure 4(a) shows how the pro-
logue stage is executed and its transition to the steady-state stage.
In the steady-state stage, filters execute one stream graph iteration
forming a steady-state repetition. Each filter is able to execute com-
pletely independently within one steady state repetition without the
need for waiting for upstream filters to produce data in that repe-
tition. For example, for the model in Figure 3(a), in order for E to
execute 2 times independently, C and D have to execute twice. Con-
sequently, B and A have to execute 3 times. Similarly, for C and D
to execute twice independently, B and A have to execute 3 times.
Finally, for B to execute 3 times independently, A has to execute 3
times. Adding up, in the prologue stage, A executes (3+3+3) = 9
times, B executes (3+3)=6 times, C and D execute 2 times. After the
loop prologue A, B, C, D, E can execute independently within one
steady-state repetition.

3.2.2 Deriving Reverse Sequences
Normally, a compiled program repeatedly executes its steady-state
repetitions regardless of external environment changes as in Fig-
ure 4(a). This conventional execution model may no longer be ef-
ficient in cloud computing, mobile computing and cyber-physical
systems where applications run in various environments or have to
interact with physical environments. For example, let us consider
the situation when there are more cores becoming available in the
system because some other applications terminated. One possible
way to save energy is to utilize the newly available cores to process
a part of the workload of the running application at lower frequen-
cies to save energy. Suppose utilizing the available cores would re-
quire the application to switch from configuration C1 in Figure 3(a)
to the configuration C2 in Figure 3(b). This transition takes place
at the end of a repetition in the C1’s steady-state stage. Note that,
in software pipelining, the prologue stage fills the channels of C1
with tokens, for example, the channel between B and D contains 6
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Figure 4. Execution strategies for stream programs

tokens; the channel between D and E contains 2 tokens. As B and D
are duplicated, determining how to copy and distribute those tokens
on the corresponding channels in Figure 3(b) is complicated. It is
even more problematic to derive from such a state of C2 a sequence
of filter executions such that, after executing such a sequence, filters
in Figure 3(b) can execute in a software pipelining fashion. Deriv-
ing such a switching procedure for each pair of configurations may
be costly.

We simplify the switching process using the strategy in Fig-
ure 4(b). Instead of deriving complicated inter-configuration token
copying procedures, we use an epilogue stage to reduce the number
of copied tokens. The epilogue stage is derived to undo the effect of
the prologue stage. As a result, we only need to copy the fixed and
known number of tokens across the configurations produced by the
initialization stage. If there is no peeking filter, only initial tokens
and states of stateful filters may still require copying.

DEFINITION 1. Sequences of executions that undo the effect of
the program’s current configuration’s prologue stage are called
reverse sequences.

Let ~VC be the vector of the number of tokens on each channel
of configuration C right before its prologue stage.

DEFINITION 2. States of a configuration C, whose vectors of the
numbers of tokens on the channels are equal to ~VC , are called C’s
pre-prologue states.

Note that, for any configuration C, from a pre-prologue state, if
each filter executes the same number of iterations, C is again in a
pre-prologue state. As a result, a reverse sequence can be derived
by finding dA, ∀A ∈ C, the additional number of times each filter
has to execute more so that all the filters will have executed the
same number of iterations. Suppose that number of iterations is J ,
counting from C’s first pre-prologue state (right before executing
C’s first prologue stage). Suppose that C has n filters Ai where
i = 1, . . . , n, and each filter Ai executes pAi and sAi times in its
prologue stage and one iteration respectively. We have:

pAi +XI sAi + dAi = JsAi ∀Ai ∈ C (1)
where I is the current repetition of the steady-state stage and X is
the execution scaling factor. From equation (1), since X , I , and J
are all integers, pAi + dAi has to divide sAi . Let αAi be an integer
such that pAi + dAi = αAisAi. Equation (1) becomes:

αAisAi +XI sAi = JsAi
⇔ αAi = J −XI (2)

Note that equation (2) holds ∀Ai ∈ C. Expanding the equation for
all actors in the configuration C, we arrive at: αA1 = αA2 = . . . =

αAn . Because αAi =
pAi+dAi
sAi

=
dAi+(pAi mod sAi)

sAi
+ b pAi

sA1
c, then:

dA1+(pA1 mod sA1)

sA1
+ b pA1

sA1
c = . . . =

dAn+(pAn mod sAn)

sAn
+ b pAn

sAn
c (3)

As it is desirable to switch between configurations as soon as
possible, we find the smallest dAi ≥ 0 satisfying equation (3) by
finding the j such that:

j = argmax
i∈[1..n]

(
pAi mod sAi

sAi
+ b pAi

sAi
c
)

(4)

Because αAi is an integer and αAi =
dA1+(pA1 mod sA1)

sA1
+

b pA1
sA1
c, we can conclude that (dAj + (pAj mod sAj)) mod sAj ≡

0. Hence,
• If pAj mod sAj = 0, we find the smallest dAj = 0.
• If pAj mod sAj > 0, we find the smallest dAj = sAj −
(pA1 mod sA1). It is easy to prove that dAj ≥ 0.
Now we derive other dAi from equation (3) as follows:

dAi =
(
dAj+(pAj mod sAj)

sAj
+ b

pAj
sAj
c − b pAi

sAi
c
)
sAi − (pAi mod sAi) (5)

=

(
dAj + (pAj mod sAj)

sAj
+ b

pAj
sAj
c
)
sAi − pAi (6)

As
dAj+(pAj mod sAj)

sAj
is equal to either 0 or 1, from equation

(6), it is easy to prove that dAi is an integer. Now we need to prove
dAi ≥ 0 ∀i = 1, . . . , n. From (3) and (4):

b
pAj
sAj
c − b pAi

sAi
c ≥ pAi mod sAi

sAi
−
pAj mod sAj

sAj
(7)

Plugging into equation (5), we arrive at:

dAi ≥
(
dAj+(pAj mod sAj)

sAj
+

pAi mod sAi

sAi
−

pAj mod sAj

sAj

)
sAi − (pAi mod sAi)

≥
dAj sAi

sAj
≥ 0 (8)

Being able to find dAi does not necessarily mean that reverse
sequences always exist; there may be additional data dependency
constraints. Within the SDF literature, even if we can find numbers
of times filters execute within one iteration, it is still possible that
the stream graph is not schedulable, e.g. when the stream graph
has loops forming circular dependencies. The following theorem
implies that it is always possible to undo the effect of prologue
stages.

THEOREM 1. A reverse sequence always exists for a configuration
C if the configuration has prologue and steady-state schedules (an
executed stream graph).

Proof: We prove this by contradiction. Suppose that we cannot
derive a concrete reverse sequence based on the values dAi found
as above. The only reason would be because of data dependency
between the executions of the filters. Let Aei denote the eth execution
of filter Ai from the beginning right before the prologue stage.
There exist two possible cases:

1) There exists a data dependency loop between filter executions
A
ej1
j1
≺ A

ej2
j2
≺ . . . ≺ A

ejm
jm

≺ A
ej1
j1

of m filters. As the



existence of this dependency loop depends solely on the property
of C, consequently, the execution of C will be stalled due to the
dependency loop. This contradicts with the fact that C can be
repeated in the steady-state stage forever.

2) Some filter B is at its bth execution and has not completed
dB executions of its epilogue stage to reach its execution (JsB)

th;
in other words, b < JsB . B cannot proceed further because it
requires more data tokens from its upstream filter A, while A has
completed dA executions in its epilogue stage to reach its (JsA)th

execution. This implies that A, having executed J iterations, still
does not produce enough tokens for B to execute J iterations.
This contradicts the property of SDF that the number of tokens
A produces in one iteration is equal to the number of tokens B
consumes in one iteration. �

We now need to derive concrete reverse sequences based on
dAi. It is desirable to use current buffers without increasing buffer
sizes for executing reverse sequences. As each buffer is large
enough to store tokens from the upstream filter for the downstream
filter to execute at least one iteration even if the producing filter has
not produced any more tokens, it is safe to execute upstream filters
for at most one iteration continuously. After that, downstream fil-
ters have to execute to free up buffers. Algorithm 1 derives reverse
sequences when stream graphs do not contain loops. However,
most of the stream benchmarks do not contain loops [33] and all
the benchmarks used in [15, 22] are loop-free. When stream graphs
have loops, the classical symbolic execution method of SDF [24]
can be used. The classical method may yield more complicated
sequences as it randomly selects filters to execute. This random ex-
ecution ordering can cause severe performance degradation during
configuration switching due to losing cache locality. To mitigate
the potential negative effect of the classical symbolic execution
method, the following algorithm seeks to execute each filter sev-
eral times in a row by traversing filters in dataflow order.

Data: reverseMap: Map from filters to numbers of reverse executions
schedule: containing prologue and steady-state schedules
Result: reverseSeq: reverse sequence of filter executions
reverseSeq ← new List()
filters← getFiltersInDataflowOrder()
while reverseMap.size()> 0 do

thisStepMap← new Map()
for f ∈ filters do

nReverseExes← reverseMap.get(f)
nIterExes← schedule.getNumberExesInOneIteration()
m = min(nReverseExes, nIterExes)
thisStepMap.put(f, m)
nReverseExesLeft← nReverseExes−m
if nReverseExesLeft > 0 then

reverseMap.put(f,nReverseExesLeft)
else

reverseMap.remove(f)
end

end
reverseSeq.add(thisStepMap)

end
return reverseSeq

Algorithm 1: Deriving reverse execution sequences when stream
graphs are loop-free.

3.2.3 Illustrative Example
We illustrate the analysis method using the configuration in Fig-
ure 3(a). For the program: pA=9,pB=6, pC=pD=2, pE=0; sA=sB=3,
sC=sD=sE=2; X= 1. As pA mod sA

sA
+ b pA

sA
c=3 is max and pA

mod sA ≡ 0, we set dA = 0. Finally, from (6), we find dB=3,
dC=dD=4, dE=6. Readers can verify that condition (1) is satisfied.
Now, applying Algorithm 1, we find that, in the first reverse step,
B, C, D, E execute 3, 2, 2, 2 times respectively. B has executed all
its reverse executions, so it is removed from the reverseMap. In

the second step, C, D, E execute 2, 2, 2 times respectively, and C,
D are removed from the reverseMap. In the last step, only E ex-
ecutes 2 times and is removed from the reverseMap. Now the
reverseMap is empty so the algorithm terminates. Applying the
reverse sequence will drain all the tokens on the channels from B to
D and from D to E. Figure 4(b) displays how the reverse execution
sequence is executed.

3.2.4 Peeking Token Copying
As reverse sequences can undo the effect of prologue stages, if
stream programs do not contain peeking filters, then after epilogue
stages, the effect of respective prologue states is undone. As a
result, we only need to copy filter states, which are small, and
initial tokens, which often do not exist. When peeking filters exist,
for example, B peeks 3 tokens and only consumes 1 each time it
executes, the channel between A and B will always contain tokens
after the initialization stage. Copying those peeking tokens requires
further elaboration about how stream graphs with peeking filters are
optimized.

Efficient Sliding Window Computation: Gordon, in his PhD the-
sis [14], presents a method to reduce inter-core communication that
degrades performance in SMP and Tilera machines for applications
with peeking filters. We will use an example to illustrate Gordon’s
method.

Consider the configuration in Figure 3(b), where filter B is
duplicated into B1 and B2. Because B peeks tokens, it is necessary
to send more tokens to the input channels of replicating filters B1
and B2 than the number of tokens B1 and B2 consume. A fine-
grained data parallelism approach where B1 and B2 alternatively
consume tokens from A at the step size of 1 will double the amount
of communication between A and B as in Figure 5(a). For example,
suppose that in one iteration A produces 2n tokens on its output
channel, and there are 2 more tokens, numbered 1 and 2, produced
by A in the initialization stage. B1 consumes token 1 and reads
tokens 2 and 3; B2 consumes token 2 and reads tokens 3 and 4;
B1 consumes token 3 and reads tokens 4 and 5; and so on. At the
end of the iteration in the steady-state stage, B2 consumes token 2n
and reads tokens 2n + 1 and 2n + 2. As a result, both B1 and B2
require 2n+ 1 tokens out of 2n+ 2. The total amount of traffic is
therefore 4n + 2 tokens in comparison with 2n + 2 tokens for the
original stream graph. This communication overhead may degrade
performance significantly for applications with peeking filters in
SMP and Tilera machines [14].

To reduce the communication overhead, a coarse-grained data
parallelism approach [14] is used instead as in Figure 5(b). Now B1
consumes the first n tokens and reads tokens n+1, n+2; B2 con-
sumes tokens from n+1 to 2n and reads tokens 2n+1 and 2n+2.
As a result, A only needs to send n + 2 tokens to both B1 and B2
within one iteration of the steady-state stage. The amount of com-
munication is therefore 2n + 4 tokens in comparison with 2n + 2
tokens for the original graph. If n is large, the overhead becomes
insignificant. As 2n is the number of tokens A produces within
one iteration, we can scale up the number of times each filter exe-
cutes within one iteration to increase n. Note that in Figure 5(a)(b)
and (c), colored tokens are peeked only and never consumed. This
coarse-grained data parallelism approach does not increase out-
put(joining) buffer sizes over the fine-grained one because there are
no duplicated produced data. As a result, this coarse-grained data
parallelism approach also does not change the real-time behavior
of a program as it does not requires additional buffer space.

Copying Peeking Tokens: The StreamIt compiler enforces an ad-
ditional constraint [14] that the number of tokens on the input chan-
nel of a replicated filter right after the initialization stage has to be
smaller than the number of tokens the filters will consume within
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Figure 5. Peeking token copying in sliding window computation. Each cell denotes a token. Colored tokens are peeked only and never
consumed. (a) Data token distribution in fined-grained interleaving execution when B is replicated by 2; (b) Data token distribution in coarse-
grained interleaving execution when B is replicated by 2; (c) Data token distribution in coarse-grained interleaving when execution B is
replicated by 3; (d) Copy peeking tokens when switching configurations.

one iteration. This can be achieved by scaling up the same num-
ber of times each filter executes in one iteration. This constraint
implies that, in pre-prologue states, only the input channels of the
first replicated peeking filters contain tokens regardless of config-
urations. As a result, after applying reverse sequences to bring a
configuration to a pre-prologue state, we only need to copy tokens
from the input channel of the first replicated filters in the current
configuration to the input channel of the respective first replicated
filters in the incoming configuration. For example, only the tokens
in the input channel of B1 need to be copied to the input channel of
B∗1 as in Figure 5(d). The tokens on the channel between A and C,
due to the executions of A in the initialization stage, only need to
be copied if the two configurations contain different versions of A
and C or the channel between A and C needs to be reallocated for
a larger buffer size. As the number of peeking filters and the num-
ber of peeking tokens are small [33], it would take an insignificant
amount of time to copy.

4. Task Decomposition for Low-Power
As discussed in Section 2.1.2, when more cores become avail-
able because some other programs terminated, if processors possess
DVFS capability, we can reduce energy consumption by decompos-
ing tasks, thereby spreading workload on more cores, and lowering
operating voltages and frequencies. We will derive an analysis that
helps justify the hypothesis supported by the experimental results
in Section 5.2.

We employ the energy model for one CPU from [29]:

Pcpu = Pdynamic + Pstatic = (CeV
2
cpufcpu) + (α1Vcpu + α2) (9)

Based on equation (9), the dynamic energy consumption Pn if
computation is spread on n cores is:

Pn ≈

(
n∑
i=1

Ci

)
V 2
n fn (10)

If we assume that inter-core communication consumes very lit-
tle energy in comparison with computational energy or the same as
intra-core communication, spreading stream graphs on more cores
enables lowering operating frequencies and voltages, although it in-
creases

∑n
i=1 Ci. Suppose that we can run a stream application at

a specific IO rate with two configurations of n and m cores, where
n > m. From equation (10), we arrive at:

Pn
Pm
≈ n

m

(
Vn
Vm

)2
fn
fm

(11)

Note that the n-core configuration is supposed to be as fast as the
m-core configuration. As a result, it requires that the number of
instructions delivered by n cores in one second be equal to that
of m cores: nfnIPCavg ≈ mfmIPCavg , where IPCavg is the

average number of instructions per cycle and it should be the same
for the two configurations because both configurations run the same
workload targeting the same IO rates. Equivalently, n

m
≈ fm

fn
.

Plugging into (11), we arrive at:

Pn
Pm
≈
(
Vn
Vm

)2

(12)

From [18], frequencies relate to voltages as follows:

f ∝ (Vcpu − Vt)γ

Vcpu
(13)

where Vt is the threshold voltage of transistors and γ depends
on the carrier velocity saturation and lies between 1.2 to 1.6 for
the current technologies. As a result, running on more cores with
lower frequencies can reduce energy consumption. For example,
m < n⇒ fn < fm ⇒ Vn < Vm ⇒ Pn < Pm.

Note that this is a simplified energy model for stream applica-
tions on multicore machines. This model assumes that computation-
communication ratios are large enough to approximately ignore
inter-core communication energy or inter-core communication con-
sumes the same amounts of energy as intra-core communication.
The first assumption depends on benchmarks’ characteristics while
the second assumption is often not true in practice. This approxima-
tion analysis serves as a predictive model to explained the results
in Section 5.2. In addition, using more cores would increase over-
all static power and reduce operating voltages. Because reducing
operating voltages lowers static energy consumption as in equation
(9), as a consequence, when taking both static and dynamic power
into account, we need to make sure that the static power increment
due to additional used cores is lower than the static and dynamic
power saved by lowering voltage and frequency. A detailed proces-
sor power model can help determine optimal configurations.

5. Evaluations
We implement the StreaMorph scheme in the StreamIt com-
piler [14]. To model input data token streams controlled externally
at certain rates, we instrument code of source filters with the token-
bucket mechanism [32]. Whenever a source filter wants to send out
a number of data tokens, it has to acquire the same number of rate
control tokens in a bucket. If the bucket does not have enough rate
control tokens, the thread of the source filter will sleep and wait
until there are enough rate tokens in the bucket. A timer interrupt
periodically fills the bucket with rate control tokens at rate r and
wakes up the waiting thread. Our coarse-grain level implementa-
tion of this mechanism has a negligible effect on performance.

We run our experiments on a server with two Intel Xeon E5450
quad-core CPUs operating at two frequencies 2GHz and 3GHz. We
use a power meter to measure the power consumption of the whole



system. The system has a typical idle power consumption Pidle ≈
228 watts. For each benchmark, we measure the dynamic power
consumption, Pload, computed using the following equation:

Pload = Pmeasure − Pidle (14)
We use the same set of benchmarks in other papers [15, 22].

Most of the benchmarks are in the DSP domain. Each benchmark
is compiled into a program composed of several configurations,
where each configuration is specific to a number of cores.

5.1 Energy Reduction by Task Consolidation
In this section, we evaluate the effectiveness of the task consolida-
tion scheme using the StreaMorph technique. Suppose that when
the IO rates of a stream program are reduced, the processors be-
come under-utilized. As a result, we can morph the stream graph
of the application to minimize the number of cores used to reduce
Pload; cores are run at 3GHz. Figure 6(a) and Figure 6(b) show
the effectiveness of consolidating tasks using StreaMorph to min-
imize the number of cores used to one and four cores respectively
when input rates become low enough. Concretely, morphing from
eight cores to four cores reduces energy consumption by 29.90%
on average. Morphing from eight cores to one core reduces energy
consumption by 76.33% on average.

5.2 Energy Reduction by Task Decomposition
This section demonstrates experimentally the effectiveness of the
task decomposition scheme with StreaMorph. When there are more
available cores in the system, because some other program termi-
nates, the analysis in Section 4 suggests we should transfer a part
of the workload to the newly available cores to lower operating
voltages and frequencies of all the cores to save energy. For each
benchmark, we use the workload rate that can be handled by 4 cores
at 3GHz. We use the StreaMorph technique to switch each appli-
cation to a new configuration using more cores, such that the new
configuration can still handle the same workload rate at a lowered
frequency, say 2GHz. Figure 7(a) shows the measured energy con-
sumptions and Figure 7(b) shows the energy reduction percentage
gained by task decomposition. On average, the energy reduction
percentage is around 10%.

Our experiment also shows that this method is only effective
for the benchmarks that have high computation-communication ra-
tios [14]; in this experiment, the ratio is greater than 100. The rea-
son for this result is that the benchmarks with small computation-
communication ratios would incur significant inter-core communi-
cation energy overhead compared to computational energy.

5.3 StreaMorph vs. Flextream Task Migration
In the previous sections, we demonstrated how StreaMorph can
help save energy. However, how is StreaMorph compared to the
straightforward filter migration scheme implemented in Flex-
tream [17] by Hormati et al.? Figure 8 shows the advantage of
StreaMorph over a Flextream filter migration scheme in reduc-
ing buffer sizes when switching from multiple cores to one core.
For example, when switching from eight cores to one core, be-
cause StreaMorph transforms the stream graph structures of ap-
plications, it reduces the buffer sizes by 82.58% on average over
Flextream, which does not modify the stream graph structures.
Even when switching from two cores to one core, StreaMorph can
help reduce buffer sizes by 57.62%. Especially, for benchmarks
ChannelVocoder, FMRadio, FilterBank, StreaMorph can help
reduce buffer sizes more substantially, while it is not useful in
the case of TDE because TDE does not require the filter-replication
technique even for eight cores.

In addition, Flextream does not allow the optimizations depen-
dent on the number of cores as described in Section 3.1.3. Further-

more, in Flextream, filters are not fused to allow fine-grain filter
migration to avoid the situation in Figure 2, while filter fusion is
beneficial to reduce synchronization and communication between
filters [15]. As a consequence, Flextream suffers around 9% per-
formance penalty from the optimal configurations [17]. Our exper-
iment comparing the performances of StreaMorph and the Flex-
tream filter migration technique for switching from five cores to
three cores also result in the same result. To save space, we do not
present the result here.

5.4 Switching Time
We have shown that switching between configurations can help
reduce energy consumption of multicore systems. However, if it
takes too long to switch between configurations, QoS of stream
programs may suffer. It is desirable to measure the switching time
of the system. A configuration switch is composed of three steps:
the epilogue stage of the current configuration, state copying, and
the prologue stage of the incoming configuration. The following
equation shows how switching time is broken down:

tswitching = tepilogue + tstate−copying + tprologue (15)

Prologue time (µs) Epilogue time (µs) Copy size (bytes)
Benchmarks Max Average Max Average Token State
BitonicSort 716 126 27 22 0 4
ChannelVocoder 2999 2477 45703 39271 8820 252
DCT 28 21 104 68 0 4
DES 210 153 148 115 0 4
FFT 52 38 37 31 0 4
FilterBank 1442 1121 12385 7217 1984 508
FMRadio 1582 988 56575 26974 492 508
MPEG2Decoder 116 75 176 125 0 4
Radar 123 104 347 305 0 1032
Serpent 2303 853 648 548 0 0
TDE 5 3 770 361 0 4

Table 1. Switching time statistics.

We run each benchmark and measure tepilogue and tprologue
on 1 to 8 cores. To save space, we only report the maximum
and average measured values for each benchmark in Table 1. As,
tstate−copying ≈ 0, it is often too small to measure exactly, we
instead report the number of bytes to copy for each benchmark in
Table 1. We can use the data from the table to compute maximum
amounts of time to switch from one configuration to another con-
figuration. For example, for the DES to switch from 3 cores to 7
cores, tepilogue for 3 cores is bounded by 148µs and tprologue for
7 cores is bounded by 210µs, and tstate−copying = 0 because there
is no token that needs to copy. The total switching time is smaller
than or equal to 148 + 0 + 210 = 358µs for DES. We can see that
switching times are small enough not to degrade user experience.

In addition, note that during the configuration switching pro-
cess, processors still do useful work such as running epilogue and
prologue stages, and as a result, the overall performance would not
be affected too much.

6. Lessons Learned
Designing the StreaMorph scheme, we realized a number of prin-
ciples for designing adaptive programs:
• Modularity: Applications should be decomposed into subpro-

cesses to allow task migration between cores.
• Functional subprocesses: Ideally, the subprocesses should be

designed to be stateless to expose parallelism, e.g. by replicat-
ing stateless processes.

• Internal state exposure: States of programs should be exposed
by storing on external queues instead of within subprocesses to
facilitate state migration while morphing programs.
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(a) Energy consumption when input rates saturate one core.
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Figure 6. Energy reduction by task consolidation.
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Figure 8. Buffer reduction.

• Predictable inter-process communication rates: This property
eases program state transferring processes, e.g. by reducing the
amount of copied state.

These principles point to other domains for adaptive programs. We
find we can apply the adaptive program concept to programming
models such as the Cilk [10], PetaBricks [4] and SEDA [34].

7. Related Work
The Hormati et al.’s Flextream [17] work is closely related to our
work. Hormati et al. present a method that can efficiently reparti-
tion stream programs to adapt dynamically to environment changes
such as the number of available cores. The major drawback of the
Flextream is that it does not reduce memory usage proportionally
when reducing the number of cores used as shown in Section 5.3
as well as 9% performance degradation. In addition, we not only
present a method enabling the above adaptations but also show how
to use the method to reduced energy consumption of stream pro-
grams by putting stream programs into external settings. Aleen et
al. [2] propose a method to dynamically predict running times of
portions of streaming programs based on input values. Portions of
programs are dynamically relocated across cores based on predic-
tion results to balance workload on multicore. Task consolidation
has been deployed in the Linux kernel to reduce energy consump-
tion by relocating workloads to fewer cores to allows other cores to
turn into deep sleep states [31]. Besides the task consolidation tech-
nique, adjusting processors’ speed using the DVFS capability to
computation demands is another popular technique. Choi et al. [9]
present a method to reduce energy consumption of a MPEG de-
coder program by adapting processor frequencies to MPEG video
frame rates. The dynamic knobs framework [16] dynamically ad-
justs processor frequencies based on QoS requirements to save en-
ergy. In [5], Baek and Chilimbi present a framework that compile

programs into adaptive ones that can return approximate results
based on QoS requirements to reduce energy consumption.

Hardware energy-efficient research has been focusing design-
ing processors that can adapt themselves to QoS requirements. Ex-
ecuting code regions of certain characteristics to suitable cores in
heterogeneous multicore systems composed of cores with different
points of energy/performance sharing the same ISA to save energy
has been explored in [23, 26, 36]. Another approach to energy-
efficient computing is to exploit the DVFS capability of modern
processors [3, 35]. Burger et al. proposed an Explicit Data Graph
Execution (EDGE) architecture [8] to reduce energy consumption
by getting rid of complicated speculation circuits inside modern
processors and using compiler techniques instead.

Our work is also related to the fair multiple resource sharing
problem [11, 12] in cloud computing. Our StreaMorph scheme,
when reducing the number of cores used, also reduces memory us-
ages accordingly. This feature makes our StreaMorph scheme more
suitable for cloud computing than the Flextream approach [17].

In [28], Parhi and Messerschmitt present a method for find-
ing multiprocessor rate-optimal schedules for data flow programs.
Rate-optimal schedules help programs achieve minimal periods for
iterations given an infinite number of cores. Renfors and Neuvo’s
framework [30] focuses on determining the minimal sampling pe-
riods for a given digital filter structure assuming the speed of arith-
metic operations is known and the number of processing units is
infinite. This line of work is different from our work in the sense
that, they assume static streaming rates and applications are opti-
mized for specific hardware platforms while in cloud computing,
mobile computing and cyber-physical systems, applications run on
a wide variety of underlying hardware.

Finally, our work derives from the work by the StreamIt com-
piler group [14, 15, 33]. However, we focus on the energy-efficient
aspect instead of speed optimization [15, 22]. Our analysis de-



pends on the static properties of the SDF to derive sequences of
filter executions that drain tokens on channels. Deriving such re-
verse sequences for more expressive stream models of computa-
tions such as Kahn process networks [19] is problematic due to
unknown traffic patterns between processes. Although this work
is within the SDF domain, the process migration technique to im-
prove core utilization and reduce energy consumption is applicable
to other streaming languages as well [7, 20, 27].

8. Conclusion
We have made a case for exploiting high-level abstractions to de-
sign adaptive programs by presenting our StreaMorph technique
for stream programs. We have shown that high-level abstractions
can help design adaptive programs. The concept of adaptive pro-
grams proposed in this paper is important in cloud computing, mo-
bile computing, and cyber-physical systems when applications can
be dynamically deployed and migrated on a wide variety of envi-
ronments. Morphing programs can also help isolate performance of
applications, thereby improving QoS of applications.

This work can be extended in several directions. Our next step
would be predicting the number of cores necessary for a given IO
rate. We plan to apply the adaptive program concept to applications
with implicit parallelism with multiple algorithm choices, e.g. in
PetarBricks [4], so that applications can execute adaptively under
fair-multiple-resource constraints [11, 12].

Our evaluations use Intel Xeon processors, it would be more
interesting if our evaluations are done using multimedia processors,
however, at the time the paper is written, we do not have a multicore
multimedia processor platform at hand. We also have not explored
the idea of using configuration switching to lower core utilization
to protect processors from overheating.
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