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1. Introduction 

Aerodynamic prediction of dynamic stability derivatives is critical to the design of ballistic and 

missile weapons. Dynamic stability derivatives are a measure of how the in-flight forces and 

moments acting on a flight body change in response to changes in flight states, such as angle of 

attack and velocity. The main dynamic stability derivatives are the pitch damping force, pitch 

damping moment, roll damping moment, Magnus force and Magnus moment. These dynamic 

stability derivatives are used to conduct flight stability analyses as projectiles undergo complex 

pitch-roll-yaw motions. This ensures stable yet maneuverable airframe designs for precision 

projectile munitions. 

Computational fluid dynamics (CFD) is recognized as an efficient and cost-effective tool for 

predicting aerodynamic forces and moments, and often complements free-flight ballistic range 

tests, wind-tunnel experiments, and semi-empirical analytical estimation. In this study, 

Reynolds-Averaged Navier−Stokes (RANS) CFD techniques and linear flight mechanics theory 

were used to compute the pitch damping force (PDF) and pitch damping moment (PDM) for a 

finned projectile using two methods, viz, the “transient planar pitching” method (1−11), and the 

“steady lunar coning”
 
method (12–21). Most studies have independently used these two methods, 

but the methods were not directly compared, and were mostly applied to supersonic flight. 

DeSpirito et al (11) applied both methods to an axisymmetric spinner rocket, but not to a finned 

projectile. This study presents the first combined application of these methods for finned 

projectiles in which these methods were quantitatively assessed and directly compared for 

accuracy and efficiency in predicting the pitch damping dynamic stability derivatives across the 

full Mach number regime, viz, subsonic, transonic and supersonic. Detailed investigations were 

conducted for each method to determine modeling sensitivities and limitations with respect to 

numerical and aerodynamic modeling parameters. These included the effect of fin cant and 

computational grid density on the numerical solutions. 

Transient planar pitching (PP), for the purpose of this study, is the motion whereby the projectile 

harmonically oscillates about its center of gravity in rectilinear flight. This is numerically 

achieved via a forced sinusoidal motion. This motion is time-dependent, and therefore time-

accurate CFD methods were used to compute the flow solution. Linear mechanics theory relates 

the pitch damping force and moment (PDF/M) to the normal force and pitching moment as the 

projectile oscillates, allowing the PDF/M to be calculated (22–24). In addition to the effect of fin 

cant and grid density, investigations included dependence on the timestep and inner iterations of 

the RANS time integration scheme, and dependence on the oscillation amplitude and frequency. 

Steady lunar coning (LC) is the motion whereby the projectile flies at a constant angle with 

respect to the freestream velocity vector while undergoing a constant angular rotation about a 

line parallel to the freestream velocity vector and passing through the projectile’s center of 
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gravity. This coning motion is comprised of two time-dependent orthogonal pitching motions 

plus a time-dependent spinning motion. However, the combination of these motions is time-

independent, allowing the use of steady-state (SS) CFD methods to compute the flow solution 

(20). Linear mechanics theory (15, 19) relates the PDF/M to the side force and moment, side 

force, and moment angle of attack derivatives, and the Magnus force and moment derivatives 

during the coning motion, allowing the PDF/M to be calculated. Previous studies have assumed 

the Magnus force and moment to be negligible for finned projectiles undergoing lunar coning 

motion (16, 20) resulting in approximated pitch damping solutions. This study computed the 

Magnus components of lunar coning via separate transient axial roll simulations to theoretically 

obtain more accurate pitch damping force and moment predictions. In addition to the effect of fin 

cant and grid density, investigations included dependence on the coning rate and coning angle. 

The projectile flowfields for the prescribed dynamic motions were computed using CFD++ (25), 

a commercial fluid flow solver by Metacomp Technologies. The three-dimensional, 

compressible RANS equations of fluid dynamics were solved, from which the aerodynamic 

forces, moments and stability derivatives were calculated. 

The computations were performed for two basic finned projectiles, viz, the Army-Navy Basic 

Finner (ANF) and the Air Force Modified Finner (AFF). These projectiles have been used as 

reference projectiles for many years and have been extensively tested in aeroballistic free-flight 

ranges and wind tunnels (26–29). Data were obtained for validation of CFD results from 

experiments conducted at Defense Research and Development Canada (DRDC) Valcartier 

Aeroballistic Range and Trisonic Wind-Tunnel Facilities (26–28) in Quebec, Canada, and the 

U.S. Air Force Research Laboratory (AFRL) Aeroballistic Research Facility (ARF) (29) at Eglin 

Air Force Base in Florida. 

 

2. Theoretical Basis 

The total forces and moments acting on the projectile with respect to (w.r.t.) the projectile-fixed 

coordinate reference frame were obtained from the RANS solution. These total forces and 

moments were nondimensionalized using freestream density, freestream velocity, and a reference 

area—the cross-sectional area of the projectile at the center of gravity location—to obtain the 

total force and moment coefficients (standard aerodynamic procedures). The data were then 

manipulated using linear flight mechanics theory to compute the PDF/M dynamic stability 

derivatives, defined as (22–23) 

      
 

 
      

  

   
       

   

   
     

                (1) 
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where   and    are the pitch rate and angle of attack rate (also called the plunge rate), 

respectively.      and     
 are pitch and plunge derivative coefficients, respectively. Because it is 

usually difficult to experimentally and numerically compute the individual components     and 

    
, the coefficient sum            

  is instead computed; this is consistent with current practice. 

The terms “PDF/M” and “PDF/M sum” are therefore used interchangeably in the remainder of 

this report. 

The pitch damping force is often small in comparison to the pitch damping moment and is 

therefore often neglected. In fact, there were no pitch damping force experimental data to 

compare to in this study. However, CFD pitch damping force results are still presented herein for 

completeness. The pitch damping moment can have a significant impact on stability and should 

be negative for dynamically stable flight.   

The following sections describe how the PDF/M coefficients were obtained using two different 

methods, viz, (1) transient planar pitching and (2) steady lunar coning. All forces and moments 

were measured w.r.t. the projectile-fixed coordinate system whose x-axis is positive “nose-to-

tail,” z-axis is positive “up” and whose origin is at the center of gravity of the projectile. 

2.1 Transient Planar Pitching Method 

Transient planar pitching (also referred to as the forced planar pitching or forced oscillation 

method) is the motion whereby the projectile harmonically oscillates about its center of gravity 

in rectilinear flight. This motion is time-dependent and requires time-accurate/unsteady RANS to 

numerically compute the flow solution. For this motion, first-order Taylor series expansion of in-

plane forces and moments, represented by    as a function of time,  , results in (22–24) 

                      

     

   
     

      

   
             (2) 

 

where     is the zero-angle of attack static coefficient and     is the angle of attack derivative 

coefficient. 

Forced planar pitching is numerically achieved by imposing a small-amplitude oscillation about 

a mean angle of attack,   , defined by the sinusoidal function 

                 (3) 

where A is the amplitude of the pitching motion (typically <1°),   is the angular velocity, and   

is the pitch angle relative to the body-fixed reference frame at time t. For this study, the PDF/M 

were computed at zero angle of attack, therefore   =0. For forced planar pitching, the pitch rate 

and angle of attack rate are equal, that is 

      (4) 
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For simplification, and consistency with current literature, a reduced pitch frequency, k, is 

defined as 

  
  

   
  (5) 

The PDF/M can be calculated via two approaches as described below. 

2.1.1 Approach I: Integrating Over a Period of Oscillation 

This approach is more generalized and has been used by Park et al. (6, 7) and McGowan et al. 

(3), among others. For small amplitude oscillation, the PDF/M can be assumed constant. 

Integrating equation 2 w.r.t.  , and combining with equation 4, yields 

          
 

   

 

           
           

        
  (6) 

The integrals of    
 and     over one period of motion is zero, and equation 6 simplifies to 

          
 

   
 

        

        
 (7) 

Substituting equations 3 and 5 into equation 7, the following is obtained for the PDF/M 

                
 

   
   

          
    

 
  

 

 

               (8) 

The variation of    with time over a period of oscillation is obtained from the RANS simulation, 

and the integral in equation 8 can be solved using the trapezoidal rule, as follows: 

     

 

 

   
 

 
            

   

   

                (9) 

where  

              
    

 
   (10) 

and N is the number of numerical timesteps per period of oscillation used for solving the RANS 

equations. 

2.1.2 Approach II: Solving at the Mean Angular Displacement Position 

This approach has been used by Sahu (8), DeSpirito et al. (11) and Bhagwandin et al. (1, 2), 

among others, for generic projectile and missile configurations. Figure 1 shows a sample 

pitching moment history (a similar plot can be shown for the normal force history) about a mean 

angle of attack    = 30° for the ANF. The forced oscillation produces a hysteresis variation with 

 . For most munition projectiles, this variation is quasi-steady and symmetric about   . The 
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PDF/M can thus be computed using just the two points during an oscillation where the projectile 

passes through   . Let the subscripts “+” and “–“ represent the pitch-up and pitch-down motions, 

respectively. Then, evaluating equations 2–5 at   =    results in 

           
 
    

      
        

       

  
                   (11) 

 

where n represents every half oscillation, and     is the value of    when   =   . equation 11 can 

be used to calculate the PDF/M, where    
 and     can be determined via a steady-state static 

RANS solution at  =  . However, the symmetric nature of the pitch-up and pitch-down motions 

leads to the following simplification: 

 

 

Figure 1. Sample pitching moment history as a 

function of angle of attack for α0 = 30°. 

For the planar pitching motion, the nominal chosen pitch amplitude, A, was 0.25° and reduced 

pitch frequency, k, was 0.1. The formulations in both approaches imply that the normal force and 

pitching moment must vary linearly with   and  . This linear dependence was investigated at 

sample Mach numbers of 0.9 and 4.5, the results of which are presented in section 4.2.3. The 

pitch frequency,  , and period of oscillation,  , can be calculated from 

 

 

The nominal number of integration timesteps per oscillation, N, used to solve the RANS 

equations was 200. The numerical integration timestep,   , (also referred to as the global or 

physical timestep) was therefore determined as  

                 
 
  

 
       

   
              (12) 

  
 

 
 

   

  
  (13) 
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Several values of N were tested to determine its effect on numerical convergence, the results of 

which are presented in section4.2.2. 

2.2 Steady Lunar Coning Method 

Murphy (24), Schiff (15, 16), Tobak and Schiff (17, 18) and Tobak et al (19) have theoretically 

examined the aerodynamics of bodies undergoing coning motion. Weinacht et al (20–21), among 

others, later applied Navier−Stokes numerical techniques to solve the flowfield of projectiles 

undergoing coning motion in order to calculate the PDF/M. For the purpose of this study, steady 

coning is the motion whereby the projectile flies at a constant angle,  , with respect to the 

freestream velocity vector while undergoing a constant angular rotation,     about a line parallel to 

the freestream velocity vector and passing through the projectile’s center of gravity. In this case,   

is therefore the total angle of attack, that is, the magnitude of the vector sum of the vertical and 

horizontal angles of attack. This coning motion is a comprised of two time-dependent orthogonal 

pitching motions plus a time-dependent spinning motion. However, the combination of these 

motions is time-independent, allowing the use of steady-state RANS to numerically compute the 

flow solution (20). For this coning motion, as derived from the general case of arbitrary motion 

(14), the side moment,   , is related to the Magnus moment derivative,     
, pitch damping 

moment sum,          
, and the side moment angle of attack derivative,    

, as follows (20–

21): 

     
   

  
      

              
       

  (15) 

 

A nondimensional angular coning rate,  , can be defined as 

  
   

   
  (16) 

From equations 15 and 16, for linear variations of    with    

 

    
  

   

  
 

       

 
        

              
    (17) 

 

For small coning angles,         . Therefore, from equation 17, the PDM coefficient sum 

can be expressed as 

                
    

       

  
     

  (18) 

 

   
 

 
 

  

    
  (14) 
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As stated, equation 17 assumes that    varies linearly with  . To satisfy this linear assumption, 

several coning rates were tested for select Mach numbers, the results of which are presented in 

section 4.3.2. For a symmetric finned projectile without fin cants or bevels,      when    , 

and only a single coning computation at some nonzero   within the linear range is required to 

compute       . For a finned projectile with fin cants or bevels, since     , then simulations 

at two independent coning rates (which may include zero coning rate) are required to determine 

       (20). 

The formulation in equation 18 also indicates that the PDM is independent of the coning angle 

for linear variations of     
        with  . The limits of this linear dependence were 

investigated using several coning angles at select Mach numbers, the results of which are also 

presented in section 4.3.2. The side force,   , due to the coning motion can also be derived from 

the general case of arbitrary motion as (20–21) 

     
   

  
      

              
         (19) 

 

By similar deduction, the PDF coefficient sum can be derived as 

                
    

       

  
     

  (20) 

 

2.2.1 Transient Roll 

The Magnus force and moment that arises during coning results from unequal fluid pressures on 

opposite sides of the projectile body. The Magnus force and moment derivatives,     
 and     

, 

cannot be determined directly from the coning simulation. Because the Magnus effect arises only 

from the spin component of the coning motion, then a separate “transient rolling” simulation was 

performed. Rolling, in this case, is the motion whereby the projectile flies at a constant angle,  , 

with respect to the freestream vector while rotating about its body-fixed  -axis with constant 

angular velocity,  . This time-dependent spinning motion is intended to replicate the spin 

component of the coning motion. Therefore, the rolling motion was executed such that (20) 

             (21) 

 

       
    

 
  (22) 

 

This method is not discussed or investigated in as much detail as the previous methods. It is only 

used to quantify the Magnus effect during coning. A future study will utilize this method to 

compute the roll damping stability derivatives and Magnus effect, where more detailed 

investigations will be provided. 
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For the rolling simulations, the projectile was spun for two full rotations completing 720° using a 

nominal N = 1440 numerical timesteps per rotation [based on tested values in references (8, 30)], 

equivalent to spinning the projectile 0.25° every timestep. The timestep,   , was therefore 

computed as 

   
 

 
 

  

  
  (23) 

 

where T is the period of rotation. The side force and moment,    and   , were then averaged 

from the final rotation. Assuming a linear variation of    and    with   and  , then the Magnus 

force and moment derivatives,     
 and      

, were computed as 

    
 

      

  
  (24) 

 

    
 

      

  
  (25) 

 

where     and    
 are the side force and moment, respectively, at zero spin rate and are mainly 

due to fin cants/bevels.     and    
 were computed via separate steady-state RANS simulations. 

The Magnus force and moment computed via equations 24 and 25 should be the equivalent 

Magnus force and moment generated during the coning motion, and are thus substituted into 

equations 20 and 18, respectively. 

 

3. Geometry and Computational Methodology 

3.1 Projectile Configurations and Experimental Data 

Two finned projectiles were used as test models, viz, the ANF and the AFF. Figure 2 shows the 

geometry details of the ANF. The ANF had a diameter of 0.03 m (1 caliber), and consisted of a 

10° cone that was 2.84 calibers long, followed by a 7.16 caliber cylindrical body. There were 

four 1 × 1 caliber fins with sharp leading edges and thicknesses of 0.08 calibers at the trailing 

edge. CFD data for fin cants of   = 0° (baseline case) and   = 2° were used for comparison with 

experiment. The center of gravity of the ANF was located 5.5 calibers from the nose tip. The 

mass of the model was 1.5894 kg. The axial and transverse moments of inertia were 1.924 × 10
-4 

kg∙m
2
 and 9.874 × 10

-3
 kg∙m

2
, respectively. 
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Figure 2. ANF (27), dimensions in calibers, one caliber = 0.03 m. 

Figure 3 shows the geometry details of the AFF. The AFF also had a diameter of 0.03 m (one 

caliber) and consisted of tangent ogive nose that was 2.5 calibers long followed by 7.5 caliber 

cylindrical body. There were four clipped-delta fins with sharp leading and trailing edges. 

Although canted fin data were available, only the 0° fin cant experimental data were used for 

comparison with CFD. The center of gravity of the AFF was located 4.8 calibers from the nose 

tip. The mass of the model was 0.6643 kg. The axial and transverse moments of inertia were 

7.197 × 10
-4 

kg∙m
2
 and 4.857 × 10

-3
 kg∙m

2
, respectively. 

 

 

Figure 3. AFF (28), dimensions in calibers, one caliber = 0.03 m. 

For comparison with CFD results, experimental data for both the ANF and AFF were obtained 

mainly from free-flight (FF) tests conducted at DRDC-Valcartier Aeroballistic Range (26–28). 

Nominal pressure and temperature flight conditions were PS = 01325 Pa and TS = 293.15 K, 

respectively. Test Mach numbers ranged from 0.5–4.5 for the ANF and 0.5–2.5 for the AFF. The 

Reynolds number, based on projectile length, ranged from 4.1 × 10
6
 to 30.0 × 10

6
. Models with 

fin cants of   = 0, 2, and 4° were also tested. The aerodynamic coefficients were reduced from 

the free-flight trajectory data (time, position, and orientation) using fixed-plane, six-degree-of-

freedom (6-DOF) numerical integration analysis. Single-fit (SF) and multiple-fit (MF) data sets 

were obtained. The MF procedure simultaneously fits several flight data sets, including multiple 

fin cants, to a common set of aerodynamics to theoretically produce more 
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accurate aerodynamic coefficients. The quoted Mach number for each data set was the midrange 

Mach number for the SF data, and the average midrange Mach number for the multiple-fit data. 

For the moment aerodynamic coefficients, the moment reference center was located at the center 

of gravity of the projectile.  

Additional static aerodynamic data for the ANF were also obtained from DRDC wind-tunnel 

(WT) tests (27).
 
The wind-tunnel Reynolds number ranged from 1.4 × 10

6
 to 2.9 × 10

6
 for Mach 

numbers in the range 0.5–4.5. The static aerodynamic coefficients were obtained by least-square 

fitted polynomials through measured experimental data. 

Additional experimental data for the AFF were obtained from free-flight tests conducted by 

AFRL ARF (29). The test model in this case was a scaled down version of the one used in the 

DRDC tests. The diameter of this model was 0.01905 m. The model was launched at 

atmospheric conditions similar to that of the DRDC tests at Mach numbers in the range 0.6–2.5. 

SF and MF aerodynamic coefficients were obtained by a similar reduction process as that used in 

the DRDC tests. 

3.2 Computational Domains and Boundary Conditions 

The baseline 0° fin cant computational grids for the ANF and AFF consisted of 17 and 15 M 

structured hexahedral cells, respectively, both constructed in Pointwise V16.03R4 (31) and both 

exported in double precision format (see figure 4). The grids were extended ~60 calibers in the 

radial direction to form spherical farfield boundaries, where a characteristics-based 

inflow/outflow boundary condition was applied. The first two cell layers from the farfield 

boundaries was set as absorbing layers, where a damping source term was added in CFD++ to 

prevent possible numerical wave reflections which may contaminate the flow solution. The 

projectile walls were designated viscous adiabatic walls and utilized a solve-to-the-wall strategy 

where the initial grid spacing normal to the walls was 0.0005 mm, satisfying the y
+
 ≤ 1 criteria 

for adequate boundary-layer resolution across all Mach numbers. A 20% stretching factor was 

used between successive grid points off the projectile walls. The 2° fin cant grid for the ANF 

was the same as that of the 0° fin cant grid, except for minor modifications near the fins to 

accommodate the fin cants.
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Figure 4. Computational grids (  = 0°) for ANF (left) and AFF (right): (a–b) whole grid on symmetry plane, (c–d) 

nearfield grid on symmetry plane and on projectile surface, and (e–f) grid detail between fins. 

For the ANF projectile, dependence of the results on grid resolution was investigated using three 

grid levels at specific Mach numbers, viz, 0.5, 0.9, 1.1, 2.5, and 4.5. The aforementioned 17 M 

cell grid was the baseline grid and was labeled as the fine grid. The medium and coarse grids 

were obtained by reducing the number of grid points in each i, j, k direction by factors of 3/4 and 

1/2, respectively. The resulting medium and coarse grids thus consisted of 6 M and 2 M cells, 

respectively. The initial grid spacings normal to the walls of the projectiles were increased by the 

same factors. For the AFF, only a single grid level was used. 
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The ANF and AFF grids were decomposed to facilitate parallel computation on 120 and 96 

processors, respectively. The computations were performed on “Harold” – a SGI Altix ICE 8200 

supercomputer consisting of 1344 compute nodes, 2 quad-core Intel Xeon Nehalems per node, 

24 GB memory per node, and 4X DDR Infiniband interconnect. Harold is housed and managed 

by the ARL DOD Supercomputing Resource Center (ARL DSRC) at Aberdeen Proving Ground, 

Maryland. 

3.3 Numerics 

The flow solution at a given flight condition was computed using CFD++ v10.1 (25), a 

commercial CFD solver by Metacomp Technologies, Inc. CFD++ is a finite volume, 

unstructured solver capable of a wide range of aerospace applications and extensively used by 

ARL for projectile aerodynamic design and analysis. In this study, CFD++ was used to 

numerically solve the three-dimensional, compressible, RANS equations in order to compute the 

total aerodynamic forces and moments acting on the projectile, from which the static and pitch 

damping derivative coefficients were calculated. Double precision format was used for all 

computations. The following sections first describe general numerical attributes for the steady-

state and time-accurate simulations, followed by a summary of the planar pitching, lunar coning, 

and rolling simulation procedures. 

3.3.1 Steady-State Simulations 

For all steady-state RANS simulations, the solution was advanced towards steady-state 

convergence using a point-implicit time integration scheme with local time-stepping, defined by 

the Courant−Friedrichs−Lewy (CFL) number. A linear ramping schedule was used to gradually 

increase the CFL over the first few hundred iterations, after which a constant CFL was 

maintained until convergence. The maximum CFL was usually between 10 and 100, depending 

on the freestream Mach number. The multigrid W-cycle method with a maximum of four cycles 

and a maximum of 20 coarse grid levels was used to accelerate convergence. Implicit temporal 

smoothing was applied for increased stability.  

The spatial discretization function was a second-order, upwind scheme using a Harten−Lax−van 

Leer−Contact (HLLC) Riemann solver utilizing Metacomp’s multi-dimensional Total-Variation-

Diminishing (TVD) flux limiter. For freestream Mach numbers 1.5 and above, first-order spatial 

discretization was used for the first few hundred iterations, after which blending to second-order 

occurred over the next 100 iterations, and thereafter remained fully second-order.  

The turbulence model employed was Metacomp’s realizable k-ε model (25, 32), which solves 

transport equations in conservative form for the turbulent kinetic energy (k) and turbulent 

dissipation rate (ε). The freestream turbulence intensity was set at 2% and the turbulent-to-

laminar viscosity ratio at 50. Metacomp’s wall-bounded compressibility correction was applied 

to realize diffusive mixing in the turbulent regions that would otherwise be underpredicted in 

compressible flows. 
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Reductions of five orders or more of the magnitudes of the cell-averaged residuals of the RANS 

equations were typically achieved within a few hundred iterations (for lower Mach numbers) to a 

few thousand iterations (for higher Mach numbers). However, the total force and moment 

coefficients converged relatively faster, usually within a few hundred iterations. Some cases did 

demonstrate relatively small pseudo-steady oscillations in the total aerodynamic coefficients. 

Therefore, for all steady-state cases, the coefficients were averaged over the final 100–200 

iterations. 

3.3.2 Time-Accurate Simulations 

For the time-accurate/unsteady RANS simulations, the dual-time step method was employed 

with the point-implicit time integration scheme, utilizing an outer/physical/global timestep and 

an inner timestep. The inner timestep is a local nonphysical timestep used to converge the RANS 

equations at each physical timestep. For the inner iterations, the multigrid W-cycle method and 

implicit temporal smoothing was applied. Nominally, i = 20 inner timesteps were used for the 

time-accurate simulations, usually resulting in 0.5–1 order of magnitude reduction in the cell-

averaged “inner” residuals of the RANS equations. Other values were tested for convergence, the 

results of which are presented in section 4. The spatial discretization scheme and turbulence 

model used in the time-accurate simulations were the same as that used in the steady-state 

simulations. 

3.3.3 Transient Planar Pitching Procedure 

First, a static steady-state solution at a given Mach number was generated at an angle of attack 

  =    = 0°. This steady-state solution was then used as the initial condition for the time-accurate 

planar pitching simulation. The planar pitching oscillation was defined by the sinusoidal function 

in equation 3 about a mean angle of attack    = 0° with a chosen nominal amplitude and reduced 

frequency of A = 0.25° and k = 0.1, respectively. A total of three oscillations/pitch cycles were 

run with a nominal N = 200 timesteps per oscillation. Initial numerical transients were typically 

mitigated well within the first oscillation, after which a quasi-steady cyclical convergence of the in-

plane total forces and moments was obtained. The histories of the total normal force and pitching 

moment coefficients,    and   , for the final two oscillations were used to determine the PDF/M 

using equation 8 for approach I, and equation 12 for approach II, respectively (see section 2.1). 

3.3.4 Steady-State Lunar Coning Procedure 

With the velocity vector parallel to the inertial x-axis, the projectile (and grid) was rotated to the 

nominal coning angle   = 0.5°. The projectile was then made to rotate about an axis parallel to 

the velocity vector and passing through the projectile’s center of gravity at a constant angular 

velocity,   , calculated based on a chosen nominal nondimensional coning rate of   = 0.0025. 

The steady-state converged values of the total side force and moment coefficients,    and   , 

were then used to compute the PDF/M via equations 20 and 18, respectively. For the 2° canted 
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fin ANF, the side force and moment  -derivative coefficients,     and    
, were calculated from 

steady-static simulations at   = 0° and 0.5°. The Magnus terms in these equations were obtained 

from the transient rolling simulations, described below. 

3.3.5 Transient Rolling Procedure 

The objective of the rolling simulations was to obtain the equivalent Magnus force and moment 

acting on the projectile due to the spin component of the coning motion. Because the nominal 

coning angle was   = 0.5°, the steady-state static solution at   = 0.5° was thus used as the initial 

condition for the transient rolling simulations. For the rolling simulations, the projectile was 

made to rotate about its body-fixed x-axis at angle of attack,  , w.r.t. the freestream velocity 

vector with constant angular velocity,  , such that equations 21 and 22 were satisfied. The 

projectile was spun for two rotations completing 720° or 4π
c
. Initial numerical transients were 

typically mitigated well within the first rotation. The total side force and moment coefficients,    

and   , were averaged over the final rotation. The Magnus force and moment coefficients,     
 

and     
, were then computed via equations 24 and 25, respectively. For the 2° canted fin ANF, 

the zero-spin side force and moment coefficients,     and    
, were obtained from the steady-

state static simulations at   = 0.5°. 

 

4. Results 

Section 4.1 briefly presents results for prediction of static aerodynamic coefficients for the ANF 

and AFF. Sections 4.2 and 4.3 show the dependence of the planar pitching and lunar coning 

methods, respectively, on various numerical and physical modeling parameters. These 

parametric studies were conducted only on the ANF and only for the PDM. The PDF is often 

ignored in aerodynamic analyses since it does not affect flight stability. In fact, there were no 

experimental data to compare to for the PDF. For these reasons, all PDF results are deferred to 

section 4.4. Section 4.4 finally compares the planar pitching and lunar coning methods for both 

the ANF and AFF. 

4.1 Steady-state Static Results for ANF and AFF 

Figure 5 compares the static aerodynamic coefficients, viz, the axial force, normal force slope, 

and pitching moment slope coefficients at zero angle of attack, that is,    
,       and     

, for 

Mach numbers in the range 0.5–4.5.       and     
 were calculated using a linear fit between 

steady-state static solutions at 0 and 1° angles of attack. This is consistent with current practice 

because these coefficients tend to vary linearly at low angles of attack. Although these 

coefficients were not required for computing the pitch damping coefficients, they serve as a 

check of accuracy of the static steady-state RANS solutions, which were used as initial 

conditions for the dynamic time-accurate simulations. The CFD numerical data generally show 
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excellent agreement with free-flight and wind-tunnel tests across the full Mach number regime; 

for the ANF the agreement is slightly better with the free-flight data than with the wind-tunnel 

data at some Mach numbers. CFD data for the 2° canted fin ANF are also shown. There is no 

significant difference between the canted and uncanted results. This is expected because these 

coefficients do not typically vary with fin cant. 

 

 

Figure 5. Static coefficient prediction at zero angle of attack as a function of Mach number for the ANF (left) and 

AFF (right). Shown here are axial force (    ), normal force derivative (     ), and pitching moment 

derivative (    
) coefficients at zero angle of attack. 

 

ANF AFF 
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The       experimental data for the AFF, however, show much scatter. The DRDC standard 

deviation errors for this coefficient were much higher than that of the other coefficients. 

Supersonically, although the DRDC single-fit and AFRL multiple-fit data match reasonably 

well, the DRDC multiple-fit data are predicted to be much higher at Mach 2.2. According to 

DRDC, the source of this discrepancy is undetermined. The CFD data appear to pass through the 

average of the experimental data points up to Mach 1.2, then slightly underpredicted between 

Mach 1.2 and 2.0; then at Mach 2.0 and 2.5 there is excellent agreement with the DRDC single-

fit and AFRL multiple fit data points. Because the CFD predictions of     
for the AFF are in 

good agreement with experiment, then this is usually an indication that the CFD predictions of 

     is also good. It is likely therefore that the DRDC multiple-fit data for the AFF are incorrect. 

Figure 5 also compares the effect of grid resolution on static coefficient prediction for the ANF 

at specific Mach numbers, viz, 0.5, 0.9, 1.1, 2.5, and 4.5. Three grid levels were compared, viz, 

fine, medium, and coarse, as previously discussed. Figure 5 shows that the results are relatively 

grid-independent, except for some small differences in the subsonic/transonic region for    
, 

where the difference reaches a maximum of 14% at Mach 0.5. Overall, the fine grid was deemed 

to be adequate for grid independent solutions, and was thus retained as the baseline grid. 

Figure 6 provides a synopsis of typical static steady-state flowfields for the ANF and AFF at zero 

angle of attack. Shown are Mach number contours on the symmetry plane at representative 

freestream Mach numbers of 0.9 and 2.0. Typical flow features are observed, such as the 

formation of shock waves on the nose and fins and low speed flows at the base of the projectiles. 

 

 

Figure 6. Mach number numerical flowfield on x-z symmetry plane for the ANF (left) and AFF (right). Results are 

from steady-state static simulations at   = 0. 

 

M 0.9 
M 0.9 

M 2.0 M 2.0 

ANF AFF 
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4.2 Transient Planar Pitching Parameter Study for the ANF 

4.2.1 General Trend, Grid Dependence and Effect of Fin Cant 

Figure 7 shows the PDM sum,           
, for Mach numbers in the range 0.5–4.5 computed 

via the planar pitching simulations. Two approaches were described in section 2.1 for 

postprocessing the CFD data to calculate the PDF/M. Approach I (using integration over a period 

of oscillation, represented by the dashed green circles) and approach II (using two points in time 

at the average angular displacement position, represented by the red circles/red line) compare 

almost exactly in figure 7. Because the latter approach is simpler, it was used for all remaining 

calculations of the PDF/M using the planar pitching method for both the ANF and AFF. 

 

 

Figure 7. PDM as a function of Mach number, ANF planar pitching parameter study. 

The coarse, medium and fine (baseline) grid results show excellent agreement at Mach 0.5, 0.9, 

1.1, 2.5, and 4.5 (see figure 7 and table 1). The maximum percent differences occur at Mach 1.1 

reaching 2.3% for the PDM between the fine and medium grids. The results indicate that the 

coarse grid may have provided adequate accuracy for PDF/M predictions using the planar 

pitching method. However, most simulations were performed prior to the grid resolution study. 

As a result, the fine grid was retained as the baseline grid. 
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Table 1. Planar pitching predictions: percent differences between grid levels for ANF. 

Mach 

No. 

Planar Pitching 

Difference Between Fine and 

Medium Grids 

Difference Between Fine and 

Coarse Grids 

PDF 

(%) 

PDM 

(%) 

PDF 

(%) 

PDM 

(%) 

0.5 0.01 0.09 0.51 0.76 

0.9 0.03 0.01 0.08 0.01 

1.1 1.82 2.28 0.63 0.92 

2.5 0.02 0.14 0.14 0.42 

4.5 0.45 0.03 0.18 0.21 

 

Figure 7 shows no significant difference between the canted fin (  = 2°) and uncanted fin (  = 

0°) numerical results, except near Mach 1.0 where the difference reaches about 5%. 

Compared to DRDC free-flight data, the PDM CFD data are about 115% larger in magnitude at 

Mach 0.766 (first free-flight multiple-fit data point in figure 7). Through the transonic region, 

0.9<M<1.3, there is much scatter in the free-flight data with very large standard deviation errors 

in the vicinity of Mach 1.0. In this region, the CFD PDM data appear to pass through the average 

of the experimental data points. The accuracy of the free-flight data in the subsonic and transonic 

regions is suspect, especially when multiple experimental data sources for the AFF are compared 

later in section 4.4. Additional test data would be required to determine the accuracy of the CFD 

predictions in this region. Above Mach 1.3, the CFD data generally show very good agreement 

with the free-flight data. 

4.2.2 Inner Iteration and Timestep Dependence 

The planar pitching simulations were time-dependent. As previously discussed, the dual-timestep 

method was used where the physical/global timestep,   , was calculated based on a chosen 

N=200 timesteps per oscillation, and the inner timestep was calculated based on a chosen i = 20 

inner iterations per global iteration. Figures 8 and 9 show the effect of increasing i and N, 

respectively. This study was performed only for the ANF at representative freestream Mach 

numbers of 0.9 and 4.5. For these cases, the amplitude and reduced frequency of the oscillations 

were A = 0.25° and k = 0.1, respectively (the baseline values). 

Varying i from 5–25 in increments of 5, figure 8 shows that the PDM for the Mach 0.9 solutions 

readily converge by i = 10 for both N = 100 and 200. For the Mach 4.5 cases, the PDM shows an 

asymptotic convergence, where for i > 15 the PDM successively decreases by only ~1%. For 

consistency and accuracy, i = 20 was thus chosen as the nominal number of inner iterations at all 

Mach numbers. 
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Varying N from 100–400, the PDM shows asymptotic decrease in figure 9. For i = 20, increasing 

N from 200 to 400 decreased the PDM by only 1.5% at Mach 0.9 and 2% at Mach 4.5. Thus, 

sacrificing only little accuracy for a large gain in computing efficiency, N = 200 was deemed a 

reasonable nominal choice at all Mach numbers. 

 

Figure 8. Effect of inner iterations on PDM at Mach 0.9 (left) and Mach 4.5 (right). ANF, A=0.25°, k=0.1. 

 

 

Figure 9. Effect of global iterations per cycle on PDM at Mach 0.9 (left) and Mach 4.5 (right). ANF, A=0.25°, k=0.1. 

4.2.3 Amplitude and Frequency Dependence 

Figure 10 shows the “pitching moment difference,”        , as a function of pitch amplitude, 

A, and pitch frequency, k, for the ANF at Mach 0.9 and 4.5. The line plots are linear 

approximations using least squares linear regression fits. The regression correlation coefficient, 

  , values are indicated on the charts and are all very nearly equal to 1, indicating excellent 

linearity. According to equation 12, this implies that the PDF/M does not vary with pitch 

amplitude and frequency for the range of values tested herein. Similar results can be shown for 

the normal force difference,        . The nominal choices of A = 0.25° and k = 0.1 used for 

all other simulations clearly lie within the linear range. 
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Figure 10. Effect of pitch amplitude, A, (left) and pitch frequency, k, (right). ANF, N = 200, i = 20. 

Section 2.1 indicated that the normal force,   , and pitching moment,   , describe quasi-steady 

hystereses as function of angle of attack during the planar pitching oscillation. Figure 11 shows 

the effect of varying the amplitude on    at Mach 0.9 and 4.5 for the ANF. As a function of 

angle of attack, increasing the amplitude produces increasingly large concentric hysteresis curves 

all centered about (  ,    ) = (0,0). As a function of time, increasing the amplitude produces 

sinusoidal waves of the same frequency, but increasing wave amplitude. It is observed that initial 

transients are mitigated within a quarter of an oscillation, after which the solution becomes 

quasi-steady. Similar results can be shown for the    history as a function of amplitude. 

Figure 12 shows the effect of varying the frequency on    for the ANF at Mach 0.9 and 4.5 for 

the ANF. As a function of angle of attack, increasing the frequency produces hysteresis curves 

with decreasing eccentricity all centered about (  ,    ) = (0,0). As a function of time, 

increasing the frequency increases the frequency and amplitude of the resulting sinusoidal 

waves. Again, it is observed that initial transients are mitigated within a quarter of an oscillation, 

after which the solution becomes quasi-steady. Similar results can be shown for the    history as 

a function of frequency. 
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Figure 11. Effect of pitch amplitude, A, on pitching moment,   , as a function of angle of attack, α, (left) and time, 

t, (right). ANF, k = 0.1, N = 200, i = 20. 
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Figure 12. Effect of reduced pitch frequency, k, on pitching moment,   , as a function of angle of attack, α, (left) 

and time, t, (right). ANF, A = 0.25, N = 200, i = 20. 

The results generally show that the nominal choices of A = 0.25° and k = 0.1 provide adequate 

perturbation for computing the pitching damping derivatives while still satisfying the linear 

assumptions of the planar pitching method. 

4.3 Steady Lunar Coning Parameter Study for ANF 

4.3.1 General Trend, Grid Dependence, Effect of Fin Cant and Magnus Effect 

Figure 13 shows the PDM sum,           
, for Mach numbers in the range 0.5–4.5 computed 

via the lunar coning simulations for the ANF. Several numerical studies were conducted. The 

baseline case had coning angle  =0.5°, coning rate  =0.0025, fin cant  =0°, utilized the fine 

grid, and is represented by the red circles/red line in figure 13. Compared to DRDC free-flight 

data, baseline PDM values at subsonic velocities are about 102% larger in magnitude at Mach 

0.766 (first free-flight multiple-fit data point). As previously discussed in section 4.2.1, the 
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source of the subsonic discrepancy is undetermined. Through the transonic region, 0.9<M<1.3, 

the CFD baseline predictions agree very well with the free-flight multiple-fit data points, except 

at Mach 1.105 where the free-flight multiple-fit data drops to -600. Above Mach 1.3, the CFD 

data generally show good to excellent agreement with the free-flight data. 

 

 

Figure 13. PDM as a function of Mach number – ANF lunar coning parameter study. 

Figure 13 also shows the baseline case, but with a fin cant of   = 2° ( represented by the purple 

Xs). The   = 2° CFD data only slightly differ from the   = 0° CFD data, except near Mach 1.1 

where the difference reaches ~40% and between Mach 2.5 and 3.0 where the difference reaches 

~25%. 

As discussed in section 2.2, the Magnus force and moment components of the lunar coning 

motion in equations 18 and 20 were calculated via separate transient roll simulations. To 

investigate the significance of the Magnus terms using the lunar coning method on the pitch 

damping predictions, figure 13 shows the PDM for the baseline case with the Magnus moment 

assumed negligible, that is, with     
=0 (blue circles/dashed blue line). In this case, it is 

observed that the magnitude of the PDM is overpredicted by ~20% in the subsonic region (0.5 ≤ 

M ≤ 0.9), ~150% at M = 1.105 and ~10%–30% in the supersonic region (1.3 ≤ M ≤ 4.5). The 2° 

canted fin results also show similar overpredictions of  the PDM magnitude when the Magnus 

moment was assumed negligible (green +s). Except at Mach 1.105, the error differences between 

lunar coning with and without Magnus correction still lies within generally accepted error 

margins for free-flight experimental data. However, these error differences appear to be 

significantly larger for the finned projectiles studied herein than that suggested by some previous 

studies for axisymmetric projectiles (11).
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Figure 13 and table 2 show the effect of grid resolution on the PDM predictions at specific Mach 

numbers of 0.5, 0.9, 1.1, 2.5, and 4.5. Note that the coarse grid (yellow squares) and medium 

grid (yellow triangles) results do not have the Magnus correction, and are thus compared to the 

fine grid baseline case without Magnus correction (blue circles/blue line). Except at Mach 2.5, 

the maximum difference between the fine and medium grid results is 3.3%. At Mach 2.5 the 

difference is 10.3%. Compromising between accuracy and computing efficiency, the fine grid 

was deemed acceptable for the lunar coning simulations. 

Table 2. Lunar coning predictions: percent differences between fine, medium and coarse 

grid for ANF. 

MACH 

NO. 

LUNAR CONING 

Difference Between Fine & 

Medium Grids 

Difference Between Fine & 

Coarse Grids 

PDF 

(%) 

PDM 

(%) 

PDF 

(%) 

PDM 

(%) 

0.5 0.23 1.15 3.12 3.03 

0.9 1.46 2.33 0.96 2.47 

1.1 2.63 3.28 1.56 1.63 

2.5 10.30 11.71 6.27 4.98 

4.5 0.64 0.18 3.34 2.24 

 

4.3.2 Coning Rate and Coning Angle Dependence 

The formulations presented in section 2.2 assumed that the side force and moment,    and   , 

vary linearly with nondimensional coning rate,  . To determine a suitable range of   for which 

this linear assumption is satisfied   was varied as 0.001, 0.0025, 0.005, and 0.01. Figure 14 

shows the variation of    with   for the uncanted ANF for Mach 0.5, 1.0, and 4.5 and nominal 

coning angle   = 0.5°. The solid line plots are linear approximations using least-squares linear 

regression fits. For Mach 0.5 and 4.5, the regression correlation coefficient,   , values are nearly 

1, indicating that    varies very linearly with   for   up to 0.01. For Mach 1.0, the solid green 

line was fitted only to the first three data points at which   = 0.001, 0.0025, and 0.005. This solid 

green line was then extrapolated for visual comparison with a second-order polynomial 

regression approximation to all four   values (dashed green line). This was done to demonstrate 

the nonlinear variation of    with   for   beyond 0.005 at Mach 1.0. Similar trends can be 

shown for the variation of side force,   , with  . Based on these results, a nominal coning rate of 

 =0.0025 was chosen in order to satisfy the linearity assumptions for computing the PDF/M.  

Note that in figure 14, the ordinate intercepts for the three Mach numbers are approximately zero 

– an intuitive outcome for a symmetric uncanted/unbeveled finner. This allows the computation 

of        and        in equations 20 and 18 as simply      and     , respectively. This 

also implies only a single simulation at a single coning rate within the linear range is needed to 

calculate the PDF/M given by equations 18 and 20 for a given freestream Mach number. For a 

canted finner, the ordinate intercept would be nonzero, and at least two simulations at two 
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different coning rates would be required to compute        and         In this study, for the 

2° canted ANF, the second coning rate was chosen as   = 0, which equates to a static steady-

state computation at a fixed angle of attack equal to the coning angle. 

 

 

Figure 14. Variation of side moment,   , with coning rate,  , for the ANF,   = 0°. 

The formulation of equations 18 and 20 implied that the side force and moment coning angle 

derivatives,     
 and     

, vary linearly with  , where   is the sine of the coning angle, that is, 

      . Figure 15 shows the variation of     
 with   for Mach 0.5, 1.0, and 4.5, and nominal 

coning rate   = 0.0025 for the uncanted ANF. The coning angle was varied as   = 0.25, 0.50, 

1.0, 2.0, and 3.0°.  The solid line plots are linear approximations using least-squares regression 

fits. For Mach 0.5 and 4.5, the R
2
 values are very nearly 1, indicating that     

 varies very 

linearly with   for   up to 3° (  ≈ 0.0523). For Mach 1.0, the solid green line was fitted only to 

the first three data points for which   = 0.25, 0.50, and 1.0° (i.e., up to   ≈ 0.0175). This solid 

green line was then extrapolated for visual comparison with a third-order polynomial regression 

approximation to all five   values (dashed green line). This was done to demonstrate the 

nonlinear variation of     
 with   for   beyond 1.0° at Mach 1.0. Similar trends can be shown for 

the variation of the side force derivative,     
, with  . Based on these results, a nominal coning 

angle of   = 0.5° ( ≈0.00873) was chosen in order to satisfy the linearity assumptions for 

computing the PDF/M.  
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Figure 15. Variation of side moment slope,     
, with sine of the coning angle,  , 

for the ANF. 

Based on these results, the critical Mach regime for determining coning angles and coning rates 

in the linear range for the lunar coning method appears to be the transonic regime. 

4.4 Final Pitch Damping Results for ANF and AFF: Comparing Planar Pitching and 

Lunar Coning Methods 

The pitch damping force and moment results across the full Mach number regime for the ANF 

and AFF are compared below. These results were obtained using nominal modeling parameters. 

For the planar pitching simulations, nominal modeling parameters were as follows: inner 

timestep iterations   = 20, physical timestep iterations per pitch oscillation   = 200, pitch 

amplitude   = 0.25° and reduced pitch frequency   = 0.1. For the lunar coning simulations, 

nominal modeling parameters were as follows: nondimensional coning rate   = 0.0025 and 

coning angle   = 0.5°. 

Figure 16 compares the PDM between that obtained via the planar pitching and lunar coning 

CFD methods and DRDC free-flight data for the ANF. The 0° fin cant CFD data are considered 

first. Generally, both the planar pitching (red circles/red line) and lunar coning (blue 

diamonds/blue line) methods produce comparable results, except near Mach 1.1 and at Mach 2.5 

and 3.0. Subsonically, for M < 0.9, there is a ~7% difference between the two CFD methods, 

however, as previously noted, both methods show a significant difference (>100%) from the 

DRDC free-flight data. Transonically, at M=0.934, both CFD methods compare very well with 

the multiple-fit free-flight data. At M=1.077, the lunar coning method matches the multiple-fit 

free-flight data, whereas the planar pitching method produces a ~50% larger magnitude. At M = 
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1.105, none of the three data sets match. As previously stated in section 3, the source/s of the 

discrepancies in the subsonic and transonic regions are undetermined, and additional free-flight 

data may be needed to validate the CFD methods. In the supersonic regime, above M > 1.3, both 

CFD methods generally compare very well with the free-flight data, however, there is a ~17% 

and ~25% difference between the two CFD methods at Mach 2.5 and 3.0, respectively. 

 

 

Figure 16. PDM sum variation with Mach number for ANF. 

In the transonic regime, there is much scatter in the DRDC free-flight data with larger than 

normal standard deviation errors. The fluctuations/discrepancies in the free-flight data possibly 

indicate a dynamic instability. Based on a dynamic stability analysis, DRDC (26)
 
suggested that 

a Magnus dynamic instability occurs in the transonic regime (0.9 < M < 1.3) and that the 4° fin 

cant models, and to a lesser extent the 2° fin cant models, were subject to this instability. Recall 

that the DRDC tests included fin cants of   = 0, 2, and 4°. In figure 16, the DRDC single-fit data 

include all three fin cants, whereas the multiple-fit data were derived from multiple data sets that 

included multiple fin cants; therefore any dynamic instabilities for the canted-fin models would 

be represented in figure 16. 

The 2° canted fin CFD results computed via the planar pitching (green Xs) and lunar coning 

(purple +s) methods match more closely with each other than the 0° canted fin CFD results, with 

the largest difference being ~10% at Mach 1.105. Except in the vicinity of Mach 1.1 and to a 

much lesser extent at Mach 2.5 and 3.0, the canted and uncanted PDM results are only slightly 

different. 
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Figure 17 compares the PDF between the planar pitching and lunar coning CFD methods for the 

ANF. No experimental data were available for comparison. For the uncanted fin, again, the two 

CFD methods (red and blue lines) are comparable, except in the vicinity of Mach 1.1 (~34% 

difference) and to a lesser extent at Mach 2.5–3.0 (~17%–27% difference). Like the PDM 

results, the 2° canted fin results for the two methods (green Xs and purple +s) match more 

closely with each other, and, except in the vicinity of Mach 1.1, generally only slightly differ 

from the uncanted fin results.  

Also shown in figure 17 are lunar coning PDF predictions without the Magnus correction for the 

uncanted and canted fins (pink dashed line and orange triangles, respectively). As observed in 

the PDM results of figure 13, figure 17 also demonstrates that ignoring the Magnus effect results 

in an overprediction of the PDF magnitude when using the lunar coning method; the difference is 

~5% in the subsonic regime, ~117% at Mach 1.105, and ~10%–30% in the supersonic regime. 

 

 

Figure 17. PDF sum variation with Mach number for ANF. 

Figure 18 compares PDM results for the AFF obtained via the planar pitching and lunar coning 

CFD methods with DRDC and AFRL free-flight experimental data. In general, the planar 

pitching and lunar coning methods (red and blue lines) compare very well with each other 

particularly in the subsonic regime; between Mach 1.0 and 2.0 the disagreement is more notable 

where it reaches a maximum of ~30% at Mach 1.1; at Mach 2.5 the agreement is again very 

good. 
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Figure 18. PDM sum variation with Mach number for AFF. 

In the transonic and supersonic regimes above Mach 0.9, the AFRL data show a higher PDM 

magnitude than the DRDC multiple-fit data, reaching a difference of ~30% at Mach ~1.65. In 

these regimes, the lunar coning method generally matches the DRDC data better, whereas the 

planar pitching method (except at Mach 1.05) generally matches the AFRL data better.  

In the subsonic regime below Mach 0.9, the PDM predicted by both CFD methods is larger in 

magnitude than the AFRL data, reaching a difference of ~60% at Mach 0.6. Between Mach 0.65 

and 1.0, the DRDC data are grossly different from the AFRL and CFD data. In fact, the DRDC 

single-fit data point at Mach ~0.7 and multiple-fit data point at Mach ~0.8 show positive pitch 

damping, indicating dynamically unstable flight. According to DRDC (28), neither resonance nor 

Magnus effects were responsible for the pitch damping instability. Although the cause was 

therefore undetermined, it was conjectured to be damage to the test projectile, possibly on the 

fins. Note that for this AFF case, two different experimental data sets, viz, DRDC and AFRL, 

show very different pitch damping results in the subsonic region. The extent of the variability in 

the free-flight data sets in the subsonic and low transonic regions further supports the 

aforementioned conclusion that the accuracy of the CFD in this Mach number range is still 

inconclusive and additional experimental data are required. 

Figure 18 also shows the lunar coning PDM results without the Magnus correction (dashed green 

line). As noted in results for the ANF, if the Magnus effect is ignored, the PDM magnitude is 

generally overpredicted; the difference is ~12% at Mach 0.7 and ~52% at Mach 1.5. There is one 

exception that occurs at Mach 0.9 where the PDM magnitude is underpredicted by ~10% without 

the Magnus correction. 
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Figure 19 compares the PDF between the planar pitching and lunar coning CFD methods for the 

AFF. No experimental data were available for comparison. Between Mach 0.6 and 1.0, the two 

methods (red and blue lines) show significant disagreement, reaching 24% difference at Mach 

0.9. Above Mach 1.0, the disagreement is much less, reaching 12% at Mach 2.5. Considering all 

previous results, the disagreement in the subsonic region was higher than expected. 

 

 

Figure 19. PDF sum variation with Mach number for AFF. 

Also shown in figure 19 are lunar coning PDF results without the Magnus correction (dashed 

green line). Above Mach 1.0, the PDF magnitude without Magnus correction is overpredicted as 

expected, reaching ~12% difference at Mach 1.3. However, unlike previous trends, the PDF 

magnitude without Magnus correction is underpredicted below Mach 1.0, reaching ~25% 

difference at Mach 0.9. This behavior is yet to be further investigated. 

5. Conclusion 

RANS CFD and flight mechanics theory were used to compute the pitch damping dynamic 

stability derivatives via two distinct numerical techniques, viz, the time-accurate planar pitching 

method and the steady-state lunar coning method. The pitch damping force and moment were 

computed across the full Mach number regime for two basic finned projectiles, viz, the ANF and 

the AFF. Solution dependence on several aerodynamic and numerical modeling parameters was 

investigated. Numerical results, where available, were compared against free-
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flight aeroballistic range data, as well as some wind-tunnel data, from Defense Research and 

Development Canada Valcartier Aeroballistic Range and Trisonic Wind-Tunnel Facilities in 

Quebec, Canada, and the U.S. AFRL ARF at Eglin Air Force Base, Florida. 

For the planar pitching method, the pitch damping derivatives were shown to be related to the 

normal force and pitching moment for forced sinusoidal oscillation of the projectile. The pitch 

damping predictions were demonstrated to be fairly independent of the pitch amplitude and pitch 

frequency for linear variations of the normal force and pitching moment with amplitude and 

frequency. These linear variations were shown for amplitudes up to 1° and nondimensional 

frequencies up to 0.2 for the Army−Navy Finner. The limits of these linear variations will 

depend on projectile geometry and flight conditions, such as Mach number. The quasi-steady 

hysteresis variation of the normal force and pitching moment with angle of attack during the 

planar pitching motion was also demonstrated. The accuracy of the pitch damping predictions 

depended on the choices of physical timestep and inner iterations of the dual-timestep integration 

scheme used for solving the RANS equations. It was observed that the sensitivity of this 

dependence increases at higher freestream Mach numbers. Two hundred physical iterations per 

pitch cycle and twenty inner iterations were deemed sufficient for the computations herein, 

sacrificing only little accuracy for significant increases in computational efficiency. The 

Army−Navy Finner 2° fin cant appeared to have little or no effect on the pitch damping 

predictions computed via planar pitching. There was also little sensitivity of the planar pitching 

results to the three grid sizes tested herein for the Army−Navy Finner. 

For the lunar coning method, the pitch damping derivatives were shown to be related to the total 

side force and moment, Magnus force and moment, and in the case of canted fins, to the side 

force and moment angle of attack derivatives. The pitch damping predictions were demonstrated 

to be independent of the coning angle and coning rate for linear variations of the side force and 

moment with coning rate and coning angle. These linear variations were investigated for coning 

angles up to 3° and nondimensional coning rates up to 0.01 for the Army−Navy Finner. The 

linear assumptions degenerated at smaller coning angles and coning rates for the transonic Mach 

regime than for the subsonic and supersonic regimes. The Magnus effect as a result of the lunar 

coning motion on the pitch damping predictions was shown to be significant for both finned 

projectiles, particularly in the transonic Mach regime. Assuming the Magnus effect to be 

negligible usually resulted in an overprediction of the pitch damping force and moment 

magnitudes, except for the pitch damping force for the Air Force Finner below Mach 1.0. The 

Magnus terms were determined via separate time-dependent axial roll simulations. Since no 

parametric studies were conducted for the latter, the accuracy of the Magnus computations is yet 

to be verified – an exercise left for a future study. The Army−Navy Finner 2° fin cant appeared 

to have little effect on the pitch damping predictions computed via lunar coning, except in the 

transonic regime where the difference was more notable. Except at one supersonic Mach number, 

the lunar coning results were shown to be fairly grid-independent of the three grid levels tested. 
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Generally, the two numerical techniques—planar pitching and lunar coning—yielded fairly 

comparable results across most of the Mach number range. The largest differences between the 

two techniques occurred in the transonic regime, particularly for the Army−Navy Finner. 

Compared to free-flight test data, both techniques generally show good agreement in the high 

transonic and supersonic regimes, but poor agreement in the subsonic and low transonic regimes. 

In the subsonic and low transonic regimes, the accuracy of the free-flight test data was uncertain 

due to instances of large scatter, large standard deviation errors and different data sources 

showing significantly different results. The variability of the free-flight data therefore 

necessitates additional experimental data to validate the numerical methods. 

Regarding computational effort, the planar pitching method requires only a single time-accurate 

oscillatory computation, whereas the lunar coning method requires a steady-state coning 

computation plus a time-accurate rolling computation to account for the Magnus effect. Because 

the Magnus effect during coning can be significant even for a finned projectile, the planar 

pitching method offers a more efficient method of computing the pitch damping derivatives than 

the lunar coning method. Also, the Magnus effect can be difficult to compute accurately for 

some projectiles at subsonic and transonic speeds—a source of error that the planar pitching 

method does not inherit. However, if full aerodynamic characterization of a projectile is needed, 

the time-accurate rolling computations would have to be conducted regardless to compute the 

roll damping and Magnus derivatives, in which case either planar pitching or lunar coning to 

compute the pitch damping derivatives may equally suffice. 
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Appendix. CFD Pitch Damping Data
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Table A-1. CFD results – pitch damping vs. Mach number, Army-Navy basic finner (fine grid). 

M 

Planar Pitching, A=0.25, k=0.1 a
Lunar Coning,  =0.5°,  =0.0025 

 =0°  =4°  =0°  =4° 

PDM PDF PDM PDF PDM PDF PDM PDF 

0.50 –427.81 141.90 –432.03 142.63 –392.14 144.71 –422.55 139.55 

0.77 –480.28 152.95 –482.34 153.36 –449.81 157.15 –467.60 155.59 

0.93 –494.30 151.21 –498.69 152.54 –463.48 153.81 –490.93 158.17 

1.08 –478.35 144.87 –457.47 139.75 –319.49 102.79 –443.04 135.57 

1.11 –454.43 138.48 –431.57 133.53 –339.80 110.48 –393.84 125.95 

1.29 –440.19 132.62 –441.68 133.01 –447.12 135.09 –461.24 139.33 

1.50 –419.52 123.33 –422.17 124.15 –445.80 130.95 –430.73 125.61 

2.00 –341.93 95.02 –343.28 95.46 –344.75 97.97 –353.99 100.01 

2.50 –288.89 73.99 –289.96 74.39 –339.60 88.23 –309.31 81.38 

3.00 –249.34 57.65 –250.70 58.16 –323.06 75.61 –258.11 62.44 

3.50 –219.92 45.13 –220.43 45.42 –216.74 46.43 –214.55 46.89 

4.00 –192.52 34.48 –196.60 35.41 –179.19 33.06 –189.72 34.90 

4.50 –173.53 26.52 –177.05 27.47 –143.24 20.38 –175.08 24.96 

 

Table A-2. CFD results – pitch damping vs. Mach number, Air Force modified finner. 

M 

Planar Pitching, A=0.25, k=0.1 a
Lunar Coning,  =0.5°,  =0.0025 

 =0°  =0° 

PDM PDF PDM PDF 

0.60 –297.42 98.54 –280.74 115.45 

0.70 –307.85 100.53 –301.66 116.78 

0.80 –323.72 102.98 –320.50 124.79 

0.90 –355.21 107.59 –397.20 137.17 

0.95 –337.55 102.11 –297.70 106.60 

1.00 –338.09 101.77 –244.68 99.40 

1.05 –339.05 101.31 –271.70 102.84 

1.10 –331.43 98.98 –281.05 101.53 

1.30 –339.94 97.14 –274.58 100.75 

1.50 –342.18 93.62 –270.38 94.59 

1.75 –333.02 87.01 –284.81 87.86 

2.00 –319.02 79.69 –283.53 73.53 

2.50 –288.64 65.69 –280.74 115.45 
a
Pitch damping data for lunar coning results includes Magnus correction. 
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List of Symbols, Abbreviations, and Acronyms 

   arbitrary force or moment coefficient,  =          

    arbitrary force or moment coefficient at zero angle of attack or zero spin rate 

   
 arbitrary force or moment coefficient derivative with respect to k, k= ,   ,      

    
 arbitrary force or moment coefficient derivative with respect to k at zero angle of  

 attack 

          
 pitch damping force coefficient sum, or PDF 

          
 pitch damping moment coefficient sum, or PDM 

    normal force coefficient at mean angle of attack during planar pitching-up motion 

    normal force coefficient at mean angle of attack during planar pitching-down 

 motion 

    pitching moment coefficient at mean angle of attack during planar pitching-up  

 motion 

    pitching moment coefficient at mean angle of attack during planar pitching-down 

 motion 

    
 Magnus force coefficient due to coning motion 

    
 Magnus moment coefficient due to coning motion 

  angle of attack/coning angle, rad or deg 

   mean angle of attack during planar pitching motion, rad or deg 

   time rate of change of angle of attack or plunge rate, rad/s 

  time rate of change of pitch or pitch rate, rad/s 

  pitching amplitude, rad or deg 

  planar pitching angular frequency, rad/s 

  pitching frequency, Hz 

  nondimensional/reduced pitching frequency 

  time, s
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  period of pitch/roll cycle, s 

   transient global/physical timestep, s 

  global iterations per pitch cycle 

i number of inner iterations per global iteration 

n integer count for each half of a pitch cycle 

   angular coning rate, rad/s 

  nondimensional coning rate 

p angular roll rate or spin rate, rad/s 

  freestream density, kg/m
3
 

M freestream Mach number 

  freestream velocity, m/s 

PS static pressure, Pa 

TS static temperature, K 

k turbulent kinetic energy, m
2
/s

2
 

ε turbulent dissipation rate, m
2
/s

3
  

D projectile base diameter = 1 caliber, m 

  reference surface area =      , m
2 

  fin cant angle 

y+ nondimensional wall distance 

  sine of angle of attack = sin   

  cosine of angle of attack = cos   

R least squares regression correlation coefficient 

 

Subscripts 

  axial force 

  side force 

  normal force 
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  pitching moment 

  side moment 

 

Abbreviations 

6-DOF six-degree-of-freedom 

AFF Air Force Modified Basic Finner  

AFRL U.S. Air Force Research Laboratory 

ANF Army−-Navy Basic Finner  

ARF Aeroballistic Research Facility 

ARL U.S. Army Research Laboratory 

CFD computational fluid dynamics 

CFL Courant−Friedrichs−Lewy 

DRDC Defense Research and Development Canada 

FF free-flight 

HLLC Harten−Lax−van Leer−Contact 

HPCMP High Performance Computing Modernization Program 

LC lunar coning 

MF multiple-fit (free-flight data) 

PDF pitch damping force 

PDF/M pitch damping force and moment 

PDM pitch damping moment 

PP planar pitching 

RANS Reynolds-Averaged Navier−-Stokes 

SF single-fit (free-flight data) 

SS steady-state 

WT wind tunnel 
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