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1.0 SUMMARY 

The overall aim of this project was to explore the kinds of computer-based machine 
learning algorithms (MLA) used in “gene mapping” as possible analytic platforms for advanced 
and ultimately forward-deployable patient care instrumentation capable of assisting in the 
transport, triage, and care of casualties with traumatic brain injury (TBI).  

From sequential admissions to our regional adult neuro-trauma referral center, part of the 
R Adams Cowley Shock Trauma Center in Baltimore, MD, a baseline study group of 191 adult 
(>17 years) patients was identified with TBI severe enough to require intracranial pressure (ICP) 
monitoring and continuous electronic data collection of all vital signs (VS) of interest (including 
ICP and ICP-derived indices) that was stored for at least the first 12 hours of hospital-based 
critical care.  Short-, intermediate-, and long-term outcomes were identified for these patients. 

This patient-care dataset was then further developed to 1) define patient outcomes of 
interest after severe TBI, 2) derive clinically useful VS “features” (akin to the identification of 
amino acid sequences of interest as “genes” in classic gene-mapping techniques) of potential use 
in predicting these outcomes, 3) train and test MLAs, and 4) cross-validate and finalize results.  

In the first stages of work, 588 VS features of potential utility were identified. These 
were derived from eight patient VS waveforms and digital inputs routinely collected in the 
neuro-trauma intensive care setting and linked to various established clinical thresholds, time 
frames, and other aspects of dose. These features were then sub-selected for application in the 
MLAs using three different approaches. The first approach used conventional univariate 
methodology to select VS features with potential to predict outcomes. This method is sensitive 
and commonly used, but can miss critical interactions between features. The results of this 
approach with the study data were not strong, but were published in 2012 and did suggest that 
high quality, electronically dense, continuous automated data collected in the first 12 hours of 
hospital-based critical care do have potential to predict long-term functional outcome after severe 
TBI. The second approach used multivariate logistic regression (MLR) for feature selection, 
another commonly used method. Features identified in this way produced much stronger 
correlations with prediction of functional outcome. However, feature selection using MLR often 
“overfits” the model to the dataset.  An overfitted model may not perform well when faced with 
novel, dynamic, incoming real-time data, which are characteristic of clinical data in field 
situations. Data processing and analysis platforms for field-ready instrumentation must be able to 
cope with such data, which tend to be qualitatively and quantitatively quite different from the 
static pool of patient-care data used in experimental modeling, even when appropriate “testing” 
and “training” procedures are used. The third approach explored several novel weighting 
procedures aimed at optimizing selectivity while remaining open to a wider range of potentially 
useful features than does MLR. These approaches included recursive feature elimination, greedy 
pairs algorithm, lasso for 10 features, lasso for 20 features, and elastic net. Unlike other potential 
alternative novel approaches, these approaches tend to be computationally efficient and have 
good potential for miniaturized, field-ready systems. Results using these additional approaches 
confirmed the overall results of the first two approaches and had strong correlations for early (<6 
weeks post discharge) and late (3-6 months) patient functional outcomes after severe TBI. 

We have found that MLA algorithms, particularly recursive feature elimination and 
elastic net, using weighted feature selection from the first 12 hours of continuous neuro-trauma 
intensive care monitoring can predict long-term functional outcomes after TBI and have potential 



2 
 

Distribution A:  Approved for public release; distribution is unlimited.  Case Number:  88ABW-2013-5295, 13 Dec 2013 

to be used in analytic platforms for advanced, field-ready patient care and decision-assist 
instrumentation.     

    
2.0 INTRODUCTION 
 

This report details the results of an effort to explore, develop, and test machine learning 
algorithms (MLA) of potential use as future analytic platforms for advanced, field-ready 
decision-assist instrumentation of use in the triage, transport, and monitoring of casualties with 
severe traumatic brain injury (TBI).   
 
3.0 BACKGROUND 
 
3.1 Trauma Epidemiology 

 
Traumatic brain injury is the most common cause of emergency care admission and 

trauma-related death in the U.S. civilian population [1] and a major cause of death and disability 
in combat casualties [2].  Because of the frequency of TBI and its fatality rate and profound 
impact on survivors’ quality of life, much research has focused on the development of early-
warning decision-assist systems that can maximize the potential for timely therapeutic 
interventions to improve long-term clinical outcomes. Ideally, these systems would also be 
sufficiently reliable, robust, and miniaturizable for field deployment. Such systems will depend 
on sophisticated computer-based analytic platforms. Identification and testing of such platforms 
are a priority. 
 
3.2 Machine Learning Algorithms in the Analysis of Large Patient Databases   
 

Computer-based, high-information-throughput techniques have been used for years to 
perform micro-array gene mapping and have derived useful information out of vast streams of 
data [3-5]. These techniques assess the significance of repeated sequences of amino acids in 
DNA (“genes”) in relation to tumors and tumor response to chemotherapy. These techniques 
have important potential for interpreting the huge quantities of raw, real-time, automated 
electronic clinical monitoring data generated by modern critical care—most of which is now 
wasted—and for integrating these data into individualized, real-time, valid, and useful critical 
care bedside instrumentation. 
 
3.3  Preliminary Studies 
 

The study team previously demonstrated the superiority of automated versus manual vital 
signs (VS) data collection and processing systems in providing data on patients with severe TBI 
and the power of calculating a pressure-times-time “dose” (PTD/D) of intracranial pressure (ICP) 
and cerebral perfusion pressure (CPP) [6,7].  Using receiver operating characteristic (ROC) 
techniques, prognostic algorithms were developed correlating VS-related features derived from 
routine neuro-trauma intensive care electronic monitoring with 30-day mortality and Glasgow 
Outcome Score-Extended (GOSE) [8] at 3 and 6 months. These algorithms were then 
incorporated into real-time two-dimensional graphic displays of ongoing calculations of Shock 
Index (SI=systolic blood pressure (SBP)/heart rate (HR)] and brain trauma index 
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[BTI=(CPP/ICP)*time]. This prototype patient monitoring video display system is now deployed 
on a translational basis throughout the R Adams Cowley Shock Trauma Center (STC) in 
Baltimore, MD (Figure 1, far right, upper and lower panels, respectively). 

 

 

The BTI graph in the bottom right hand corner of Figure 1 allows for the tracking and 
visual display of head-injury status. Data point clusters in the left upper quadrant (ICP<20 
mmHg and CPP>60 mmHg) are associated with the best outcomes, left lower and right upper 
quadrants with relatively poorer outcomes, and the lower right quadrant (ICP≥20 mmHg and 
CPP<60 mmHg) with significantly worse outcomes. This display allows clinicians to track and 
monitor shifts in patients’ status over the previous 12 and 24 hours in a single real-time display 
linked to predicted outcome rather than just conventional single-parameter threshold readouts. 
As well as the two indices noted, SI and BTI, VS thresholds of interest in this work were SBP, 
mean arterial pressure (MAP), HR, ICP, CPP, and oxygen saturation (SpO2). 
 
4.0 METHODS  
 
4.1 Data Sources: Patient Selection 
 

This work was undertaken as part of the protocol approved by the University of Maryland 
School of Medicine Human Research Protections Office for intensive monitoring after severe 
TBI. Included were adult patients (older than 17 years) admitted to the R Adams Cowley STC, 
Baltimore, Maryland, with Glasgow Coma Score (GCS) <9 and a clinically determined 
requirement for ICP monitoring. The nature of these patients’ injuries precluded personal 
informed consent; therefore, informed consent was secured from a legally authorized 
representative prior to study inclusion and from the patient as soon as and if that became 
possible. Patients with severe multitrauma (more than one non-head abbreviated injury score >3) 
were excluded. 

Figure 1. Real-Time Bedside and Telemetric Critical Care Monitoring Display 
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4.2 Data Sources: Patient Records  
 

The demographics, mechanism of injury, injury scoring data, admission VS, and 
laboratory data on all trauma patients admitted to the STC are recorded by our trauma registry. 
Outcome measures available through the registry include in-hospital mortality, length of stay 
(LOS) in the hospital and intensive care unit (ICU), and discharge disposition (home with or 
without additional services or various levels of extended care). At 3 and 6 months, GOSE of 
survivors was assessed in structured phone interviews by an experienced trauma clinical research 
coordinator. A GOSE score between 1 and 4 was defined as a “poor functional outcome,” while 
a GOSE of 5-8 was considered a “good functional outcome.” All outcome data were reviewed 
and assessed by the principal investigator. 
 
4.3 High-Resolution Automated Data Collection 
 

VS data collection for this project was initiated when an ICP monitoring device was 
placed in either the trauma resuscitation unit or the ICU. The analyses for this study—feature 
selection, modeling, and cross-validation steps—were done using National Cancer Institute free 
software BRB-ArrayTools, Version 4.2. Details of the electronic data capture, storage, and data-
point assembly procedures used in general by this study team to construct vital signs signal 
sequences for analysis have been published previously [9] and are summarized here.  All ICU 
patient monitors at the STC are networked to capture incoming electronic data every 6 seconds. 
Data are then compressed and transferred to a centralized VS data recorder server through a 
secured intranet. Potential artifacts and defined extreme outliers are filtered via a moving median 
window process. ICP readings distorted by periodic drainage are corrected using the piecewise 
cubic Hermite interpolation method (Matlab 7.7 R2008b, Mathworks, Natick, MA). Together, 
these processes discard less than 1% of data points. Five- minute means are calculated as noted 
above. Data are reviewed by a physician to ensure clinical validity. 
 
4.4 Identification of Critical Time-and-Threshold Vital Signs Signal Sequences  
 

The general approach to the use of advanced MLA for this work was similar to that used 
for microarray studies. However, the source data for feature selection (“gene” identification) 
were not the kinds of biomolecular samples addressed by the current MIAME (Minimum 
Information About a Microarray Experiment) standards, but were virtual constructs from 
electronic data points summarized from routine ICU VS monitoring. From electronic VS data, 
recorded, compressed, filtered, and stored as above, we developed machine learning “features,” 
potential discriminator vital signs signal (VSS) sequences, via the following steps. 
We focused on the following categories of VS, as previous work noted above suggested they 
would prove most useful: 
 

• Brain trauma/vascular-pressure-related: ICP, CPP, SBP, MAP, BTI  
• Cardiac/shock-related: HR, SBP, Shock Index  (SI=HR/SBP) 
• Perfusion-related: SpO2 
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These VSS were then characterized via conventional clinical thresholds: ICP>20 and >30 
mmHg; CPP<50, <60, and >100 mmHg; SBP<90, <100, <110, and <120 mmHg; MAP<60 and 
<70 mmHg; BTI<1.67, <2.0, and <3.0; HR>100, >110, and >120 bpm; SI>0.7, >0.8, >0.9, and 
>1.0; and SpO2 <88% and <90%. Maximum, minimum, and mean ICP and CPP PTD/Ds were 
also characterized. Finally, the various threshold sequences were linked to time, that is, periods 
and proportions of time for VS and index segments above or below defined limits:  greater than, 
less than, or equal to 5, 10, 15, 20, 25, 30, 45, and 60 minutes (Figure 2).   

 
To quantify this link, an episode was defined as one count when a value or an index of a 

VS remained above or below a pre-set threshold for a certain duration. For example, every 
interval in the first 12 hours of VS data collection where SpO2 remained at or below 92% for 10 
minutes or more was counted as one episode. 

This identification and sorting process yielded 588 time-and-threshold variables that 
could be evaluated for their potential utility as “features” in algorithms examining outcome 
prediction over  the first 12, 24, and 48 hours after ICP monitor placement. 

  
4.5 Feature Selection for Class Prediction 
 

In classic structured machine learning algorithms, features are the variables selected to 
construct the algorithms. In preliminary testing, features are selected that appear to have the 
greatest likelihood, when used in the actual algorithm, of supporting correct prediction of 
selected binary outcomes. They are then reassessed within the algorithm for performance when 
faced with novel data. Feature selection is often viewed as more important than the specific class 
prediction model used [10,11]. In the work reported here, three approaches to feature selection, 
univarite selection, logistic regression, and the “elastic net” method [12], were assessed for 
performance in supporting the correct prediction of outcome and for potential utility in field 
applications. 
 

Figure 2. Schematic of Feature Design 
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4.5.1 Univariate Feature Selection. A common approach to feature selection is univariate 
testing of differences in the ability of each variable to correctly identify the outcome classes 
compared with each other variable. For this work, these outcomes were life or death; being in-
hospital at 14 days or in ICU at 14 days, yes/no; and good/bad GOSE at 3 and 6 months. For 
each outcome, a random variance t-test [3] was used to sequentially compare the performance of 
the mean representing each potential feature against the mean representing each other potential 
feature in correctly identifying  the selected outcomes, with a p-value of <0.05. This sifting 
process demonstrated that several of the threshold variables and/or groupings under 
consideration were not workable. Specifically, 6-month GOSE scores were not available for 
sufficient numbers of study subjects at the time when this stage of work was undertaken to use 
these as outcome class labels. Likewise, the first 12 hours after ICP placement provided the 
earliest potentially clinically useful information (for example, identified increased risk of death 
well in advance of the event rather than immediately before it occurred).  

Using this subset of VSS time-and-threshold variables identified as critical features for 
the class prediction analysis, six different prediction models were built: compound covariate 
predictor, linear discriminant analysis, one-nearest-neighbor classifier, three-nearest-neighbor 
classifier, nearest-centroid classifier, and support vector machines [4,13,14]. 
 
4.5.2 Logistic Regression Feature Selection. Using conventional ROC area under the curve 
(AUC) for prediction of good/bad outcome at 6 weeks and 3, 6, and 12 months after discharge 
and the pool of features described above, a logistic regression model was built. To test the ability 
of the regression model to absorb the accrual of new data, training and testing were carried out 
using a classic, 10-fold-times-10 procedure and 75% of the data as the training set and 25% of 
the data as the testing set.  
 
4.5.3  Feature Selection Using Various Weighting Methods. The recursive feature elimination 
(RFE) [15] technique uses a support vector machine as the training algorithm and recursively 
eliminates irrelevant variables, as measured by certain score functions [11]. The greedy pairs 
algorithm evaluates genes in pairs and assesses how well a pair in combination distinguishes two 
experimental classes [16].  (In genetics, these “gene” features are amino acid sequences derived 
from subject nucleic acids. In our work, as discussed above, these features are time/threshold 
sequences identified from clinical electronic VS recordings.) The “lasso” method was proposed 
by Tibshirani to achieve sparse solutions for feature selection [17]. This adds an l-1 penalty term 
expressed as 
 

𝜆||𝑤||1                                                                                        
 
which weights the coefficients of the less useful potential features toward zero. In our work with 
the lasso method, we set our parameters to identify no more than 10 features (L10) or 20 features 
(L20). However, Zou and colleagues [12] have shown that the lasso method is limited in that it 
tends to select one feature from each group of highly correlated variables. These researchers 
proposed to add an l-2 norm penalty term to avoid such limitation. This method is known as “the 
elastic net” and is expressed as  
 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =  𝛼1||𝑤||1 + 𝛼2||𝑤||22 
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It has the effect of compromising between the overselectivity of the lasso method and the 
occasional inclusion of physiologically impossible variable coefficients. 

For the RFE and greedy pairs algorithms, we used the BRB-ArrayTools [13], a 
comprehensive analysis tool for microarray. For other feature selection methods, we used the R 
packages. 

For analytic purposes, at this point in the overall project, the baseline study group (which 
then comprised all eligible patients admitted from January 2008 – December 2010) was then 
subgrouped by hospital survival as Group 1, all of whom survived to discharge, and Group 2, all 
patients except those who died in-hospital after their families elected to withdraw care). This was 
done as an attempt to distinguish feature characteristics of those who survived to discharge and 
on into long-term follow-up and those who did not.  
 
4.6 Cross-Validation of Prediction Models 
 

The literature on methods for developing multivariate predictors of class membership 
(yes/no membership in an outcome class) is a large one [18,10,11], but the goal is to construct a 
classifier, the mathematical tool, that will accurately classify incoming individuals not involved 
in creation of the prediction rule. Estimation of the prediction error of each model requires an 
approach that will avoid the overfitting inherent in using the same set of data to develop a 
predictive model and then to test its predictive accuracy—the model will always work best for 
the data from which it was built. To avoid this tautology and because our sample size was 
relatively small for this kind of work, we chose cross-validation via a leaving-one-out technique 
[5]. In this process, the selected testing data for each individual patient are sequentially omitted 
from the calculations. For each training set with one individual omitted, feature selection is done 
de novo. From these features, predictive models are built that assess the influence of individuals 
in the model. Then each model is rated as either correct or incorrect in predicting the outcome 
class of each individual. This procedure is repeated for each individual, and the mean percentage 
of correct classification is determined as an assessment of the overall validity of the model. 
 
5.0 RESULTS 
 
5.1 Using Univariate Feature Selection 
 

At the time we did this work, 52 patient datasets were available for analysis. These 
yielded a total of 589 ICP monitor hours or 353,600 x 6 seconds of continuously collected VS 
records, which in turn permitted identification of the baseline time-and-threshold features of 
potential use in prediction of mortality, length of stay, and GOSE at 3 months. (As noted above, 
although much more data were potentially available, the fields for GOSE at 6 months were 
insufficiently populated to provide useful features, and the first 12 hours of ICP monitoring 
appeared to be the most clinically useful.) Of the 588 features that we constructed from these 
data, univariate analysis associated correct identification of any given outcome with as many as 
76 features to as few as 4. In general, those representing ICP or BP over or under given 
thresholds over time (e.g., ICP >20 mmHg for 20 minutes) provided the best discrimination for 
outcome. As examples of the information being processed in the prediction analyses, Tables 1 
and 2 list the features elected by the univariate analyses for the class prediction modeling for two 
outcomes—the ability to predict, by 12 hours into care, 3-month GOSE and mortality—and 
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which provided the best results in the subsequent cross-validation study. In both of these sets of 
features, cerebral and vascular pressure measurements and indices were more useful in 
predicting class—outcome—than were measurements of oxygen saturation. 

 
      Table 1. Features Selected by Univariate Analysis as Most Likely to 
               Provide Useful Information at 12 Hours into Care  
               Regarding Eventual Outcome = Death 
 

VSS VSS Threshold Featuresa 

VSS A 01 mean ICP ≥30 mmHg, total number of episodes ≥1 h 

VSS A 02 mean CPP ≤50 mmHg, PTD/D per day 

VSS A 03 mean CPP ≥100 mmHg, total number of episodes = 25-30 min 

VSS A 04 mean BTI ≤1.67, total number of episodes ≥1 h 

VSS A 05 mean SBP ≤110 mmHg, total number of episodes = 10-15 min 

VSS A 06 mean SBP ≤120 mmHg, total number of episodes ≥1 h 

VSS A 07 mean HR ≥120 bpm, total number of episodes = 45-60 min 

VSS A 08 mean SPO2 ≤92%, total number of episodes ≥10 min 

VSS A 09 mean SPO2 ≤92%, total number of episodes = 10-15 min 

VSS A 10 mean MAP ≤60 mmHg, total number of episodes = 10-15 min 

VSS A 11 mean SI ≥0.9, total number of episodes = 45-60 min 
      amean = 5-min means of every 6-s data collection; BTI = CPP/ICP dose 
       (pressure-times-time); SI = SBP/HR. 
 
 
 
      Table 2. Features Selected by Univariate Analysis as Most Likely to 
               Provide Useful Information at 12 Hours into Care  
               Regarding Eventual Outcome = GOSE at 3 Months  

 
VSS VSS Threshold Features 

VSS B 01 mean CPP ≤50 mmHg, total number of episodes = 25-30 min 

VSS B 02 mean CPP ≤50 mmHg, total number of episodes = 30-45 min 

VSS B 03 mean MAP ≤60 mmHg, total number of episodes = 15-20 min 

VSS B 04 mean SIa ≥0.8, total duration of episodes = 20-25 min 
        aSI = SBP/HR. 

 
Table 3 summarizes the results of the leave-one-out cross-validation using the six 

prediction models.  
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     Table 3. Mean Percent of Correct Classification Using Various Methods 
              and a Sequential “Leave-One-Out” Strategy 
 

Predicted 
Outcomes 

Compound 
Covariate 
Predictor 
Percent 
Correct 

Diagonal 
Linear 

Discriminant 
Analysis 
Percent 
Correct 

1-Nearest 
Neighbor 
Percent 
Correct 

3-Nearest 
Neighbors 
Percent 
Correct 

Nearest 
Centroid 
Percent 
Correct 

Support 
Vector 
Machines 
Percent 
Correct 

3-mo GOSE <5 52 54 38 40 52 58 
4 days 62 60 56 63 63 62 
ICU LOS ≥14 days 71 67 62 71 77 71 
Mortality 69 75 87 88 69 81 
 
5.2 Using a Logistic Regression Model 
 

Complete data were available for analysis at the various outcome periods on 113-116 
patients. ROC AUC for the logistic regression model were 0.85 at 6 weeks (n=113), 0.88 at 3 
months (n=116), 0.90 at 6 months (n=115), and 0.92 at 12 months (n=113). Results for the 
training run were essentially the same as using all data, but results for the incoming “new” data 
were reduced by 5 to 10%.   
 
5.3 Using Various Weighting Techniques in Feature Selection 
 

By the time this portion of the work was done, the baseline study group comprised 191 
patients. The subgroups for analysis comprised 148 patients in Group 1 and 176 patients in 
Group 2. Table 4 summarizes the demographic, admission, and hospital LOS for these patients 
by group. 
 
       Table 4. Demographic and Basic Admission Injury Scoring Data for 
                All Patients and Patients Grouped by Outcomea 
 

Demographic/Admission Datab All Group 1 Group 2 
Age (yr), mean (±SD) 41.7 (18.5) 40.4 (18.0) 39.2 (17.2) 
Males, n (%) 149 (78.0) 90 (72.0) 118 (76.6) 
Admission GCS, mean (±SD) 6.9 (3.7) 6.9 (3.6) 7.1 (3.7) 
Neuro GCS, mean (±SD) 6.8 (2.7) 6.9 (2.6) 7.0 (2.8) 
LOS, total days, median (IQR) 15.8 (14.2) 15.6 (14.0) 15.8 (14.0) 
Marshall, mean (±SD) 2.6 (0.8) 2.6 (0.8) 2.5 (0.8) 

     aGroup 1 excluding all hospital deaths and Group 2 excluding only  
      those deaths that occurred after a family decision to withdraw care. 
     bSD = standard deviation; IQR = interquartile range. 
 
 Figure 3 summarizes modeling and cross-validation results for Group 1 (excluding all 
hospital deaths, n=148) and Group 2 (excluding only deaths due to familial decision to withdraw 
care, n=176) using univariate selection and the various weighting procedures. The model 
prediction performance shows significant difference between RFE in the univariate 
discrimination-based selection method and the multivariate, feature-weighting selection methods. 
With multiple variable logistic regression, multivariate selection methods give more favorable 
selections by combining features to optimize multivariate performance.   The five multivariate 
feature selection methods generated different subsets of features, with sizes ranging from 9 to 36. 
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With those selected features, we built simple logistic regression models with respect to GOSE 
outcomes of <6 weeks (early), 6 weeks to 3 months (mid), 3-6 months (late), and >6 months 
(long). The overall prediction performances ranged from 0.60 to 0.90, expressed as AUROC. For 
the lasso-based methods, the AUROCs located compactly between 0.70 and 0.85. 
 
 

 
 
 

 

 

As examples of the information being processed in this and in the univariate prediction 
analyses, Tables 5 through 8 list the five features most frequently selected by all of the selection 
methods for the four GOSE assessment periods. Again, cerebral and vascular pressure 
measurements and indices appear to be the most useful in predicting outcome. 

 

Testing AUROC 
for Group 1 data 

Uni-V: univariate 
 Testing AUROC 

for Group 2 data 

Figure 3. Performance of Selected Features in Logistic Model 
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    Table 5. Five VS Features Most Frequently Selected by All Feature Selection 
           Methods in Predicting Early (<6 Weeks Post Discharge) GOSE Using 
           the First 12 Hours of Data 
 

No. Featurea 
1 0 – 12, SI mean, ≥0.9, Episode of 20-25 min 
2 0 – 12, CPP mean, ≥100, Episode of 20-25 min 
3 0 – 12, SI mean, ≥0.8, Episode of 20-25 min 
4 0 – 12, MAP mean, ≤60, Episode of 5-10 min 
5 0 – 12, MAP mean, ≤60, Episode of 5 min 

         aMean = 5-min means of every 6-s data collection;  
          CPP = MAP - ICP; SI = HR/SBP. 

 
 

  Table 6. Five VS Features Most Frequently Selected by All Feature Selection 
           Methods in Predicting Mid-Term (6 Weeks to 3 Months after 
           Discharge) GOSE Using the First 12 Hours of Data 
 

No. Featurea 
1 0 – 12, MAP mean, ≤60, Episode of 5-10 min 
2 0 – 12, SBP mean, ≤90.00, PTD/D 
3 0 – 12, SI mean, ≥0.7, Episode of 30-45 min 
4 0 – 12, MAP mean, ≤60, Episode of 5 min 
5 0 – 12, CPP mean, ≤50, Episode of 30-45 min 

         aMean = 5-min means of every 6-s data collection;  
                CPP = MAP - ICP; SI = HR/SBP. 
 
 
  Table 7. Five VS Features Most Frequently Selected by All Feature Selection 
           Methods in Predicting Late (3 to 6 Months after Discharge) GOSE 
           Using the First 12 Hours of Data 
 

No. Featurea 
1 0 – 12, CPP mean, ≤50, Episode of 30-45 min 
2 0 – 12,  BTI mean, ≤3, Episode of 45-60 min 
3 0 – 12, SI 5 mean, ≥0.8, Episode of <30 min 
4 0 – 12, SI 5 mean, ≥0.7, Episode of 30-45 min 
5 0 – 12, ICP mean, ≥20, Episode of 15-20 min 

              aMean = 5-min means of every 6-s data collection;  
               CPP = MAP - ICP; BTI = CPP/ICP; SI = HR/SBP. 
 
 
  Table 8. Five VS Features Most Frequently Selected by All Feature Selection 
           Methods in Predicting Long-Term (6 Months or More after Discharge) 
           GOSE Using the First 12 Hours of Data 
 

No. Featurea 
1 0 – 12, ICP mean, ≥20, Episode of <10 min 
2 0 – 12, BTI mean, ≤3, Episode of 45-60 min 
3 0 – 12, CPP mean, ≥100, Episode of 30-45 min 
4 0 – 12, SI mean, ≥0.8, Episode of 30-45 min 
5 0 – 12, SI mean, ≥0.8, Episode of <45 min 

              aMean = 5-min means of every 6-s data collection;  
               CPP = MAP - ICP; BTI = CPP/ICP; SI = HR/SBP. 
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6.0 DISCUSSION 
 
 The work described here demonstrates the utility of machine learning algorithms for the 
modeling of long-term patient outcomes after severe TBI and explores the contributions of 
various methods for feature selection. The univariate methodology provided general support for 
the notion that features with reasonable clinical relevance can contribute to these models, that the 
outcomes with which they can be correlated are also clinically relevant, and that data very early 
in the course of neurocritical care after severe TBI are able to provide information about long-
term outcome. 
 Although logistic regression modeling using these same features probably contributes the 
least to the long-term goal of optimizing an analytic platform for advanced clinical 
instrumentation, this modeling step did confirm the utility of the features themselves. 
 Of the three feature selection methods tested, the various techniques that allow for 
weighting of selections (Figure 3) provided the most promising results both in terms of 
predictive power and likelihood of utility as part of an analytic package for translation of this 
body of work into field-ready clinical tools.  
 Of interest in reviewing the five features most frequently selected by all of the feature 
selection methods is that, for the earlier follow-up periods, up to the first 3 months after 
discharge, vascular (and by inference, vascular volume) features predominate. In contrast, for the 
later follow-up periods, although vascular features are still “popular,” those dependent on ICP 
move to the fore. Any form of inference based on this work is premature, but those findings are 
at least clinically plausible and are worth keeping in mind as this work progresses and as 
techniques to assess and monitor ICP noninvasively, including during extraction and transport, 
develop, are proven, and become available.        
 
7.0 CONCLUSIONS 
 

Classic machine learning tools have utility for modeling long-term clinical outcomes 
after severe TBI and have good potential as analytic platforms for field-deployable advanced 
patient monitoring and decision-assist instrumentation, particularly when coupled with 
appropriate feature selection software.   

We have already integrated the analytic functions developed in this work into the video 
display system shown in Figure 1. In addition, we are using the findings of this work to focus 
selection of relevant VS features for four additional projects funded by or in consideration by the 
U.S. Air Force. “Fit to Fly” (FA8650-12-2-6D09) is examining the correlation between 
biomarker cytokines and intracranial hypertension and other adverse VS-related events in 6-hour 
intervals from the time of admission through the first 72 hours. “Noninvasive Intracranial 
Pressure Monitoring Using Advanced Machine Learning Techniques” (FA8650-11-2-6D06) is a 
transition step study toward development and testing of a field-ready noninvasive ICP monitor. 
“Comparison of Automated and Manual Recording of Brief Episodes of Intracranial 
Hypertension and Cerebral Hypoperfusion and their Association with Outcome after Severe 
Traumatic Brain Injury” (FA8650-11-2-6142) is a closely related study. It aims to identify any 
consequences of negative exacerbations of ICP and CPP occurring in the 60-minute 
“unmeasured” intervals between manual recordings of ICP and CPP in patients with free-
draining cerebral catheters. A third closely related study that builds on this work and on the three 
projects discussed in this section, “A Prospective Study of the Use of First 12-Hour Intracranial 
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Pressure Data to Provide Long-Term Prognosis after Severe Traumatic Brain Injury,”  is under 
review at the 711th Human Performance Wing. This study will test the algorithms developed in 
the current work against the prospective incoming data from the “Fit to Fly” project described 
above.  
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LIST OF ABBREVIATIONS AND ACRONYMS 
 
AUC  area under the curve   

BTI  brain trauma index 

CPP  cerebral perfusion pressure 

GCS  Glasgow Coma Scale 

GOSE  Glasgow Outcome Scale-Extended 

HR  heart rate 

ICP  intracranial pressure 

ICU  intensive care unit 

IQR  interquartile range 

LOS  length of stay 

MAP  mean arterial pressure 

MLA  machine learning algorithm 

MLR  multivariate logistic regression 

PTD/D pressure-times-time dose 

RFE  recursive feature elimination 

ROC  receiver operating characteristic 

SpO2  oxygen saturation 

SBP  systolic blood pressure 

SD  standard deviation 

SI  shock index 

STC  Shock Trauma Center 

TBI  traumatic brain injury 

VS  vital signs 

VSS  vital signs signals 
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