

4th Indo-US Round Table Bangalore, India 21-23 September 2010

AOARD Overview Power and Energy Emphasis

R. Ponnappan, PhD
Program Manager
AOARD
Air Force Office of Scientific Research

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of to s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE SEP 2010		2. REPORT TYPE N/A		3. DATES COVE	ERED	
4. TITLE AND SUBTITLE					NUMBER	
AOARD Overview	Power and Energy	Emphasis		5b. GRANT NUN	MBER	
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
					5e. TASK NUMBER	
				5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AE Office of Scientific	` '		8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	67. Indo-US Science nce Held in Bangalo			•		
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	SAR	27	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Presentation Outline

□ Our Organization **Our Mission** ☐ Resources & **Opportunities ■** AOARD* Project Examples Message to Researchers

Where AOARD (Tokyo) Fits

AFRL Supports International Research Efforts

Conference Support, Window-on-Science, Research Grants

AFOSR Mission

AFOSR discovers, shapes, and champions basic science to profoundly impact the future Air Force

- Identify Breakthrough Research
 Opportunities USA & Abroad
- Foster Revolutionary Basic Research for Air Force Needs
- Transition Technologies to DoD and Industry

TODAY'S BREAKTHROUGH SCIENCE FOR TOMORROW'S AIR FORCE

AFOSR Basic Research Areas

Aerospace, Chemical & Materials Sciences (RSA)

- Materials & Structures
- Chemistry
- Fluid Mechanics
- Propulsion

Physics & Electronics (RSE)

- Physics
- Electronics
- Space Sciences
- Applied Math

Math, Information & Life Sciences (RSL)

- Info Sciences
- Human Cognition
- Mathematics
- Biomimetics

AREAS OF EMPHASIS INCLUDE:

- Complex Networks
- Robust Decision Making
- Socio-Cultural Modeling

- Energy & Thermal Management
- Agile, Autonomous Flight
- Space Situational Awareness

60 Years of AFOSR Breakthroughs

1950s	1960s	1970s	1980s	1990s	2000+
Maser/Laser Stealth	The Computer Mouse Code Division Multiple Access System for GPS	Chemical Oxygen lodine Laser (Coil) Superplastics Forming	18. GaAs 20KU X128 100U 922 33198 ARL Low-Temperature Gallium Arsenide Malactic lates Fortis Withdried Pump Lase State Printe Laser State Therese States Defense States There	Self-healing Plastics Dip-pen Nanolithography	Joint Percision Airdrop System
Kalman Filter	Viterbi Decoding Algorithm	Air Fracture Mechanics Methodology	Laser Diagnostics High-Efficiency	Cycling at the speed of light? Laser Trapping	Electric Oxygen Iodine Laser Laser Propulsion

Compressor Blades

World S&T Investment 1998* to 2008**

AOARD's S&Es – January 2010

Program Management:

- Dr Ken Goretta
- LtCol Dave Sonntag
- LtCol John Seo
- Dr Pon Ponnappan
- Dr Kumar Jata
- Dr Gregg Jessen
- New (Summer 2010)
- Dr Dave Atkinson
- Dr Tom Erstfeld
- Dr Hiroshi Motoda

Scientific Advice:

- Dr Takao Miyazaki
- Dr Ken Boff
- Dr Peter Friedland
- Dr Alex Glass
- Maj Joe Tringe (USAFR)
- Maj Glenn Coleman (USAFR)

Director, Materials Science

Deputy Director, Biology & Informatics

Technical Director, Aerospace & Nanoscience

Energy, Power, Thermal & Space Sciences

Materials Science & NDE

Solid-State Physics & Electronics

Structural Sciences and Modeling

Mathematics & Information Sciences

Taiwan Nanoscience, Chemistry & Munitions

Information Sciences

Electronics, Physics & Japanese Prospector

Life Sciences

Information Sciences

Lasers & Physics

Physics, Directed Energy & Nanoscience

Aerospace Sciences & S Asia Expert

AOARD Mission

WOS <u>Lead time</u>: At least 40 days before travel start date

- AOARD invites prominent Asian scientists to USAF Labs/Centers
- Visitor (usually a non-govt scientist) provides a seminar
- Visitor engages in technical discussions with USAF S&E's
- AOARD reimburses travel expenses to WOS visitor

CSP Lead time: As early as possible

- AOARD funds (typical is \$5K) workshops and conferences in Asia
- Support paid directly to conference organizers
- Support may be for a stand-alone workshop or for an individual session within a large conference

R&D <u>Lead time</u>: Usually 60-90 days to complete the process

- AOARD funds basic research proposals in response to AFOSR BAA
- USAF S&Es evaluate the proposals
- The Proposer's Guide is on the AFOSR webpage
- Follow-on grants must be cost-shared by other USAF organization
- AOARD administers larger grants on behalf of AFOSR and AFRL

FY09 Outreach

Country	CSP	Inv Orders	R&D
Japan	11	18	24
Australia	2	18	29
Taiwan	2	18	20
United States	5	27	8
Korea	3	11	21
India	3	11	16
Singapore	3	5	10
Europe	2	3	2
Thailand	2	0	2
New Zealand	0	2	2
Malaysia	0	1	2
Canada	0	1	1
Vietnam	1	0	0
Total	34	115	137

Total
53
49
40
40
35
30
18
7
4
3 2
1
286

Portfolio Thrust

Scientific Areas

Aerospace, Chemical & Material Sciences

- Materials
- Fluid Mechanics
- Propulsion

Physics & Electronics

- Space Sciences
- Others

Areas of Enhanced Emphasis

Propulsion:

- Hypersonics, Scramjet Engine Design, Modeling

Power & Energy:

- energy production, storage, utilization
- materials for P&E
- thermal management
- scaling laws
- modeling & simulation

P&E Research Challenges

- ✓ Overlap with material/thermal sciences
- ✓ Need innovative concepts and basic research
 - ☐ High power/energy density batteries,
 - ☐ High power/energy density fuel cells
 - ☐ High efficiency solar cells
 - □ Advanced materials to enable the above
 - Novel energy storage concepts and related studies
 - Innovative energy transfer processes such as
 - energy harvesting from waste heat,
 - thermoelectric co-generation and
 - bio-inspired concepts
 - Modeling and simulation

Innovation is key to success

AOARD Funded Grants

POWER & ENERGY

Lithium-air battery research	India
Hydrogen storage in SWCNT for fuel cells	India
ZnOS nanophosphor coating for UV energy	
harvesting in Si solar cells	USA/India
Mathematical modeling and optimization	
Studies on development of fuel cells	India
Carbon- and sulfur-tolerant anodes for SOFC	Singapore
Li-rechargeable battery with ultrafast charge rate	Singapore
Magnetocaloric Cooling	Singapore
Development of high ZT	
thermoelectric materials for energy applications	Taiwan

Scientific Challenges

Evolutionary Research (Incremental Advances)

P&E Materials Including Fluids:

- Tunable thermal conductivity
- Large CTE material matching
- Nanofluids

Processes:

- Energy harvesting from waste heat
- TE/TI/Co-generation concepts
- Non equilibrium thermal process

Basic Understanding of Physics:

- Scaling laws
- Computational tools for non-homogeneous conditions
- Measurement tools for new materials

Revolutionary Research (Game Changing)

- Designer fluids
- High 'k' compliant interface
- Super-conductor/ insulator
- Solid state refrigerant
- Phonon engineering
- Thermal percolation
- Thermal transport between interfaces
- Bio-inspired concepts
- Physics of thermal percolation
- Physics of phonon scattering
- M&S: MD modeling tools

Examples of AOARD Power & Energy Projects in Asia

Lithium - Air Battery

WHY LITHIUM-ION BATTERY?

- Uses O₂ in air; no need to store O₂
- High electrochemical equivalence of 3850 mAh/g at -3.05 V Li:
- High specific energy achievable:

Li-ion battery

Li-air battery

200Wh/kg

Vs. >500Wh/kg

RESEARCH CHALLENGE:

- **Power density**
- Rechargeability
- Charge/discharge cycles

APPLICATIONS:

- Portable power
- UAV power
- Aircraft applications

Specific Energy (Wh/kg) Comparison

Anode: Li on Ni mesh

Cathode: materials tested in this study include China carbon

ACCOMPLISHMENTS:

flow of

flow of egative ions

Good results w/ china carbon electrode

Anode

Capacity 3000 mAh/g of carbon

(+)

Cathode

H₂ Storage in SWCNT for Fuel Cells

RESEARCH CHALLENGE:

- Can CNTs be functionalized to store H₂?
- What type & how?
- Desorption at near-room temp
- H₂ storage capacity > 5.5 wt% (US DOE target 2015)
- Keep H₂ binding energy range 0.2-0.4 eV
- Current technologies inadequate

SCOPE:

 Perform theoretical & experimental research on SWCNTs as H₂ storage medium

APPROACH:

- Identify different SWCNTs and directly attach metal hydrides on them
- Perform MD simulation using,
 - Density Functional Theory (DFT);
 - Vienna Ab-initio Simulation Package (VASP)

RESULTS:

(BE = Binding Energy)

HSM SWCNT	Radius, Å	System having BE in the range 0.2-0.4 eV	BE per BH ₃ , eV	BE per H ₂ , eV	Storage capacity, wt%
(5,5)	3.44	CNT(5,5)+10(BH ₃ +4H ₂)	1.22	0.24	11.5

 $CNT(5,5)+10(BH_3+4H_2)$

 $CNT(10, 0) + 20(BH_3 + 3H_2)$

DBFC Fuel Cells Modeling Study

Fuel cells — Electrochemical Engines

Chemical Energy ___ Electricity

RESEARCH CHALLENGE:

- Hydrogen-carrying fuels vs. stored-hydrogen for fuel cells
- Achieve specific energy of DBFC close to that of H₂ O₂ Fuel Cell

Specific Energy Comparison		
Energy Systems	Specific Energy kWh/kg	
Li-ion battery	0. 25	
DMFC	6.10	
DBFC - O ₂ (air)	9.30	
DBFC - H ₂ O ₂ (neutral)	12.00	
DBFC - H ₂ O ₂ (acidic)	17.00	
H ₂ - O ₂ Fuel Cell	33.00	

Schematic of Regenerative NaBH₄/H₂O₂ Fuel Cell

SCOPE:

- Develop analytical tool to screen potentially promising material systems such as metal hydrides, alanates, amides, imides of alkalis or rare earths
- Develop a generalized mathematical model for solid polymer electrolyte DBFC

PROGRESS: Delivered prototype units to US for T&E at Army and U Conn labs

Performance Enhancement of Solar Cells by Nanophosphor Coating

SCOPE:

- Increase power conversion efficiency of large-area Si solar panels from 15 to 16.8%
- Develop nanophosphor coating to down-convert solar UV to visible in an affordable manner

APPROACH:

- Determine & optimize the composition (within 2%) of nanophosphors to maximize cell efficiency
- Move the absorption from 335 nm to 440 nm by synthesizing nanoparticles to <5 nm size

Silicon Solar Cell Material	Laboratory efficiency %	Production efficiency %
Monocrystalline	24	14 - 17
Polycrystalline	18	13 - 15
Amorphous	13	5 - 7

REQUIREMENTS FOR THE NP COATING:

- Coating thickness <100 nm
- Down-conversion efficiency >70%
- Doesn't absorb / scatter visible solar-radiation
- Doesn't degrade operating life of solar cells

PROGRESS/RESULTS:

- Identified three potential nanophosphors:
- YVO₄:Eu³⁺, La₂O₂S:Eu³⁺ and ZnO_xS_{1-x}
- Film deposition and characterization in progress
- Integration with solar cell and measurements planned

Solid Oxide Fuel Cell (SOFC) Carbon- & Sulfur-Tolerant Anodes

PROBLEM:

- Use of ethanol & diesel to produce portable power
- S and C poison the catalysts in fuel cell electrodes
- Decrease operating temp down to 600-800°C

SCOPE: - Evaluate six different V- & Ti-based perovskite oxides as S-tolerant anode

- Evaluate Pd as C-tolerant high-performance anode

Three ceramic layers (anode/electrolyte/ cathode) of a SOFC

Nano-structured Pd-YSZ Electrode

PROGRESS:

- Pd nanoparticles addition significantly reduced the electrode polarization resistance for the oxidation in hydrogen, methane and ethanol fuels
- A new material system with higher activity & stability and better S-tolerance has been developed

Li-Battery with Ultrafast Charge Rate

Objective:

- Investigate 10-20x smaller nano-powder particle sizes to shorten charging rate
- Study doping transition metals into the traditional spinel cathode material

Problem:

The **traditional material** shows lower rate capability as well as poor capacity retention.

Spinel cathode

Proposed Approach: Select dopants that will ...

- Create defective structure in the lattice so that activation energy for Li transportation can be reduced and hence to **increase ionic conductivity**;
- Possess electron-rich and easy loss electrons to increase **electronic conductivity**.

Magnetocaloric Cooling System⁶

WHY MAGNEOTCALORIC? No liquid refrigerant; will eliminate CFCs and compressor; can revolutionize current refrigeration industry

Magnetic Refrigeration Principle

Magnetic Cycle Vapo

Vapor cycle

HOW IT WORKS:

Applied H orients 'magnetic dipoles' T ↑
Removal of H increases magnetic entropy... T ↓

FEATURES:

- Carnot efficiencies possible
- Uses benign heat transfer media
- Tunable Curie temperature
- Large entropy change of induced martensitic transitions

Entropy Change Vs. Temp (Fe-Co-B and Fe-Gd-Cr-B alloys)

PROGRESS: - NTU has developed Fe-(Gd)-Cr-B alloy system

- Projected cooling capacity at 342K for this alloy w/o Gd = 545 J/kg

High ZT Thermoelectric Materials for Energy Applications

PROBLEM:

SOA thermoelectric materials used for refrigeration and power generation has limitations,

- ZT < 1; Useful temp range:
- Bi₂Te₃ T~ 250-600 K; Si_{1-x}Ge_x T > 700-1300 K.
- Applications require ZT > 2, for practical use

APPROACH:

Investigate systems of ...

- surface modified nanostructured bulk CuFeSe₂ \(\Sigma\)
- one-dimensional Bi₂Te₃ nanowires
- Directional dependency of thermal conductivity

Figure of merit

$$ZT = S^2 \sigma T / (\kappa_e + \kappa_p)$$

T = Average temp; S = seebeck;

 σ = electric conductivity;

 \mathbf{K}_{e} , \mathbf{K}_{p} = electron and phonon thermal conductivity

ZT Vs Temperature Plot for known TE materials

PROGRESS:

- Employed direct write lithography to produce nanostructured devices
- Hopes to achieve super lattice of Bi₂Te₃/Sb₂Te₃ with ZT ~ 2.4

Summary Message to Researchers

AOARD seeks innovation in "FUNDAMENTAL, BASIC, SCIENTIFIC RESEARCH"

	I UNDAMENTAL, DASIC, SCIENTII IC RESEARCH
	Use AOARD's three primary vehicles
	R&D WOS CSP
70	Networking & Leveraging encouraged
	• Internal
A	- AFRL Tech Directorate(TD) S&Es
	- AFOSR and XOARD PMs
	• External
	- University/ Non-Profit Orgs (USA and Foreign)
	- Other Gov't Agencies
	With your participation, AOARD can foster basic science
	breakthroughs in India

Creating Revolutionary Scientific Breakthroughs for the Air Force

Contact Information

Dr. R. Ponnappan, Program Manager Propulsion, Power & Space Sciences Asian Office of Aerospace R&D (AOARD) 7-23-17 Roppongi, Minato-ku Tokyo 106-0032, JAPAN

Telephone: +81-3-5410-4409; Fax: +81-3-5410-4407

Email: rengasamy.ponnappan@aoard.af.mil;
Website: http://www.wpafb.af.mil/AFRL/afosr/

Thank You

