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ABSTRACT 

One of the most important basic cognitive tasks of military operators the processing of spatial 

information. Soldiers involved in urban warfare need to be aware of the locations of red and blue forces. 

Local restrictions resulting from the topography of the urban battle space are taken into consideration 

when planning the next actions to complete a mission. Within a command and control system a number of 

tools exist to support the operator in processing spatial information. For the prospective design of human-

machine interfaces of these tools in an engineering process, core principles of human performance need to 

be formulated into a computational theory. The proposed contribution will present a framework we 

developed to model human spatial information processing within a symbolic architecture of cognition. 

Within a sub-symbolic layer, spatial relations are represented as probability density functions modelling 

the uncertainty of their cognitive representation. Reasoning about spatial relations perceived from an 

external graphical display and their relation to internal cognitive spatial relations is reflected within the 

framework by the principle of Bayesian inference. In this way the cognitive processes of the human 

operator interacting with the visually perceived spatial information from an operational picture can be 

modelled and the graphical representation within the human-machine interface can be optimized. This 

contribution will discuss the theory for an application in an Anti-Air Warfare (AAW) scenario. 

1.0 MODELING HUMAN SPATIAL COGNITION 

Spatial perception and the geometry of visual space have been studied for more than a century. In the early 

days, scientists were interested in identifying a single geometry that maps Euclidean physical space into 

perceived visual space [1,2]. Later, the focus shifted to investigating the memorial space [3, 4, 5, 6]. 

Whereas detailed mathematical descriptions of the visual geometry have been developed for visual 

perception [2, 7, 8, 9], mostly normative models exist for cognitive maps. For instance, [6] proposed that 

locations are memorized in egocentric and allocentric coordinate systems. Allocentric coordinate systems 

define locations with respect to objects in the environment, which is consistent with the view that humans 

process spatial information in a mostly sequential fashion. The visual system scans and encodes a scene 

using a number of sequentially performed attention shifts, and the locations are recalled by sequentially 

retrieving spatial relations from memory that are related to the location in question. Therefore, it is 

reasonable to assume that spatial relations that shape the mental model are acquired during attention shifts. 

We believe that shifts of attention between several locations in space define the reference axes and planes 

of local allocentric coordinate systems within which the spatial relations are encoded. This assumption is 

consistent with the idea that locations are encoded by intrinsic frames of references [10, 11, 12, 13]. These 

intrinsic reference frames would result naturally from salient landmarks of the scene that attract attention. 

It should be possible to obtain a mathematical description of these spatial relations within the allocentric 

reference systems. In general, locations are described mathematically by scalar values. Since the neural 

system can only represent noisy values of scalar dimensions, it is reasonable for the cognitive system to 
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memorize a location in the dimensions of a coordinate system by storing the values that are most suitable 

for an expected task. If locations in the vicinity of a landmark location need to be encoded with greater 

precision, the dimensions of a spherical coordinate system are a rational choice. This assumption is 

consistent with the fact that humans think about visual space in terms of distances and angles. In the 

following we describe a framework that is able to integrate the numerical mathematical description of 

spatial relations into a symbolic architecture of cognition. We used this framework already to model 

phenomena related to memorizing object locations in graphical structures [14] and for symmetry detection 

[15]. 

Symbolic Architectures of Cognition 

Symbolic architectures of cognition describe cognitive processes by distinct steps. The current state of the 

environment and the cognitive system activates a rule that describes the actions and the state transitions of 

the cognitive system. ACT-R [16] is a popular architecture of cognition. Its essential feature is a sub-

symbolic layer which influences the activation processes of rules and the state transitions of the cognitive 

system. The values of the parameters of the sub-symbolic process are variable and might adapt during the 

cognitive process, which enables the cognitive system to learn. The most elaborated module of ACT-R is 

the memory module. The memory is assumed to be a collection of symbolic entities d
(i)

 called chunks. The 

probability of a successful retrieval and the retrieval time are determined by the activation of the memory 

chunks, which is calculated by a formula taking into account the time spans in which a chunk has already 

been retrieved, the strength of its association with the current goal and the similarity of the attributes in a 

request to the values in the attributes of a memory chunk. This central equation of ACT-R is given by: 

 
j k

kikjijii muswtbta )()(         (1) 

The base activation bi(t) decays logarithmically over time and increases each time the memory chunk is 

retrieved. The parameters sji reflect the frequency of how often chunk d
(i)

 has been retrieved if the 

symbolic value of attribute jg of the goal was identical to the current value. The parameter mki is the 

similarity parameter, and we think it could best be interpreted as the log-probability mki =ln(P(kx = ki)) 

that the value in attribute kx in the request x is identical to the value in the attribute ki of the chunk d
(i)

. 

Because in this case the ACT-R equation for the probability that a memory chunk will be retrieved 

factorizes to: 
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The product in the factorized version expresses the probability that all attributes are equal to the attributes 

in the request. The parameters wj and uk are weighting factors reflecting the importance of a single 

attribute. To decide during a simulation which chunk will be retrieved from memory, noise is added to (1), 

and the random variable Ai = ai(t) + X + Y (2) is considered. The random variables X and Y are 

independent normal distributed with a mean of zero and a standard deviation X; Y. The value of the first 

random variable X is added when the chunk has been created. And the second one Y is added when ai(t) is 

re-evaluated. The memory chunk with the highest activation will be retrieved. If the activation of no 

memory chunk exceeds a threshold a a failure will be retrieved. Because of the decaying of the base 

activation a memory chunk will be forgotten unless it is not frequently retrieved. The time needed for a 

successful recall also depends on the activation by the relation t ~ e
-A

. The higher the activation, the faster 

a memory chunk can be recalled.  

To model the variability of reproduced spatial relations from human memory such a sub-symbolic layer is 

also needed for a visual spatial module. Visual information is acquired by single shifts of attentions. 
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Reference Systems 

The location of an object can only be identified within a frame of reference. In experimental psychology it 

is a well accepted procedure to divide the frames of references into two categories: An egocentric 

reference system, which specifies the location of an object with respect to the observer and an 

environmental (allocentric) reference system, which specifies the location of an object with respect to 

elements and features of the environment. According to Mou & McNamara [10] humans also use 

reference systems concerning the intrinsic axis of the object configuration. E.g. two salient objects on a 

plane create an axis that is used to specify the location of other objects. The most natural way to integrate 

this into the concept of attention is to consider the last two attended objects as an axis of reference. 

However, creating object-location memory chunks in this “semi-allocentric” reference system is less effort 

to the visual module because it only needs to keep track of two objects, whereas in the case of the pure 

allocentric reference system three objects are needed. Therefore in some situations the production system 

might be forced to use spatial memory chunks in the semi-allocentric system. In three dimensions three 

locations are needed to define a pure allocentric reference system. Three locations define a reference 

plane, whereby the cross-product of the two linear independent vectors that can be defined by the three 

locations determine a third axis for a right handed reference system. In general these three axes can be 

used to define the spatial relation of a fourth object to one of the three objects. Semi-allocentric reference 

systems for a three-dimensional spatial relation can be defined by replacing one of or both of the intrinsic 

reference axes with the viewing axis or the up-vector of the egocentric reference system. We think that 

humans represent, in their mental model, a spatial relation by its angle and the fraction of its length to the 

reference axes. This can be deduced by measuring the structure of the variability of reproduced object 

locations [16, 17, 18]. The introduction of object-relations based on three (four) objects is important for 

three reasons: First, it fits well with the concept of intrinsic axis in the object configuration as reported by 

Mou & McNamara [10]. Second the concept of angles is essential to most cognitive operations in 

geometric tasks. Third, it is the simplest percept for spatial memory chunks that allows reconstructing 

object locations, also if the whole configuration is rotated. The distance dimension is crucial, since there is 

no universal scale like for angles where any angle can be seen in relation to a complete rotation around 

360°. The distance can be represented in respect to the length of the reference axis or in respect to the field 

of view. The representation in respect to the length of the reference axis is scale invariant and can later 

also be applied to a scaled environment (e.g., the screen is farther away). Representations of distances in 

respect to the field of view are considered in a semi-allocentric reference system. A semi-allocentric 

reference system is considered to use one location as the origin but to interpret direction and distance of a 

location relative to this point in an egocentric reference system. In our understanding, a distance is not 

perceived directly, but as a dimension of a location in one of these allocentric reference systems. For the 

model described in the following section it needs to be emphasized that if the distance is considered in the 

pure-allocentric reference system, the visual system needs to shift attention three times to assess a 

location—and therefore a relative inter-object distance. However, if the distance is represented in the 

semi-allocentric reference system only two attention shifts are needed (taking the attention shift to the first 

reference object into account).  

The variances in recalled object-locations require the scalar values of a spatial relation to be noisy. To 

integrate noise into the location information of memory chunks the first question is how object-locations 

in different reference systems are represented in memory. [16] showed among other things, that the 

distribution of recalled locations supports the assumption that subjects imagine object-locations on a plane 

relative to a center in polar coordinates. We generalized this to use spherical coordinates in respect to 

model spatial cognition in three dimensions. This assumption has also some interesting implications on the 

representation of locations on a screen. Spherical coordinates are a system of curvilinear coordinates that 

are natural for describing positions on a sphere or spheroid. Generally  is defined to be the azimuth angle 

around the polar axis, which is normally the up-vector,  to be the zenith angle from the polar axis and r to 

be distance (radius) from a point to the origin. In the case of an allocentric reference system on a two 

dimensional screen this means, that if the three points p-2, p-1, p0 were attended and p0 has to be 
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represented in a local allocentric reference system, the point p-1 defines the origin, the polar axis is given 

by (p-1, p-2), and the local spherical y-axis points orthogonal into the screen. For the semi-allocentric 

reference system on a screen, again p-1 is the origin, but the polar axis is parallel to the vertical axis of the 

screen and the x-axis is parallel to its horizontal axis. The next question is, if , and r should be 

considered as single, independent memory chunks. Because it is impossible to imagine a distance without 

a direction and an angle without corresponding lines, it is reasonable to combine distance and angle as one 

percept in one memory chunk. Because of this argument, also in the case of the actual allocentric reference 

system the egocentric orientation of the reference system should be stored into the same memory chunk. 

This does not imply that the angle or the different dimensions of one chunk can not be separated later. In 

spatial reasoning often two angles have to be compared. But this can be handled as commands to the 

visual module of the cognitive system. Then, timing issues can also be considered, e.g. for the mental 

rotation of an actual allocentric reference system. In principle the spatial information of the semi-

allocentric reference system is now also present in the chunk of an actual allocentric reference system. 

This might suggest discarding memory chunks of the semi-allocentric reference system. But as mentioned 

above, creating object-location memory chunks in this semi-allocentric reference system is less effort to 

the visual module and therefore in some situations needful. 


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Figure 1: Different reference systems. The objects are attended in the order (p-3, p-2, p-1, p0). 

Noise 

Finally a spatial location is represented by D(r,,r′′′,ers), where r, ,  are the spherical coordinates 

as described above, ers indicates in which reference system r, ,  have to be interpreted, and r′, ′′ are 

additional attributes for the actual allocentric reference system and additionally hold the polar and azimuth 

angle in the semi-allocentric reference system. The values of the spherical coordinates in the memory 

chunk are interpreted as random numbers distributed according to a truncated normal distribution 

N(x, x0, x), with standard deviations (r  ) corresponding to each dimension. The scalar value in the 

slot of the memory chunk indicates the mean x0 of the distribution. Independent of whether the distance is 

measured compared to the field of view or to the length of the reference axis the ability of humans to 

discriminate them should obey the Weber-Fechner Law. Therefore, the noise r should scale linearly with 

r0. For later calculations it is easier to consider the quantity fr = r/r0 to specify the probability distribution. 

The noise model of fr is again simply normally distributed with mean at 1 and a specific standard deviation 

fr. In this way the noise r is scale invariant. Therefore, if no scale transformations are to be considered 

the physical measurements of a distance can be used in the calculations. This is true regardless of whether 

the distance is represented as a fraction of the reference axis or as a fraction of the field of view.  
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Every time a location is to be encoded, it is decided if the perceived values for the location correspond to 

an already existing memory chunk. The posterior probability PDi=P(Di=d
(i)

|Fx) that the location of a 

feature Fx belongs to a memory chunk Di and the probability P0 that no appropriate memory chunk already 

exists, are given by  
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The parameter V
-1

 describes the weight of a noisy background and it is assumed that single dimensions of 

the spatial relation are not correlated. 
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On the other hand, if an object-location is requested based on a memory chunk d(r,,r'',',ers), the 

values are set to random values x according to (5). After the noise has been added to the location request, 

it is decided if the values are latched on possible features in the display. Therefore, the object-locations of 

all features Fi(rii,i,ri'i',i') in question are calculated in the current local reference system 

corresponding to the reference system in the request. The probability PFi, that the location request is 

caught by feature Fi and the probability P0 that it is not, are given similarly to (3) by  
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These equations express the posterior probability PFi=P(Fi|x) that if a noisy location x from memory is 

given it results from the feature Fi. The likelihood probability functions P(x|Fi) are the probability density 

according to if the feature Fi would have been the stimulus and are similar to (4). This process of encoding 

and reconstructing a location into a random number in memory is illustrated in Figure 2.  
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Figure 2: Perception, representation and reconstruction of a location. 

The presented noise model has two interesting properties. First, because the truncated logistic distribution 

is asymmetric, the expected report of an object-location is biased away from the reference axis. This is the 

same effect as has been reported about categorical boundaries [16]. Second, for object-locations on a flat 

screen the values of ′ are discrete ′=(/2,0,-/2) and encode whether the object-location in question 

is on the left side, on the right side, or aligned, when facing into the direction of the reference axis. This is 
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consistent with the assumption of interpreting the reference axis as a categorical boundary, where  

encodes the category. 

From the results of our experiments we calculated for the noise parameter fr = 0.11, which means that the 

length of a spatial relation can be reproduced by a human with a standard deviation of 11%. For the angle 

we got  = 6.3°, which is 1.75% of 360° and  = 11.3° which is 3.1% of 360°. In general we try to use 

the same values for both allocentric reference systems. These values were measured for one specific view 

in 3D, where the viewing axis was along the reference axis. The experiments suggested that the values in 

3D strongly depend on the view. In compromise with other data we suggest to use in the 2D case fr = 0.1 

and  = 8°. However, all values show that directions can be memorized more efficiently than length. 

This is an aspect which could be an important design criterion of graphical displays. One example will be 

discussed below. 

Visual Indexing 

It is evident that subjects browsing a graphical layout structure encode environmental characteristics of 

object-locations, e.g. if an object is located on the border of a matrix. To encode such environmental 

features the cognitive system needs to attend objects nearby. The crucial point is that after some objects in 

the environment have been attended, attention needs to return to the object in question. If this return would 

depend on noisy spatial memory chunks, the strategy to encode environmental features might be highly 

counterproductive. At this point the concept of visual indexing, or FINST - FINger INSTantiation, [20] is 

needed. According to this theory the cognitive system has “access to places in the visual field at which 

some visual features are located, without assuming an explicit encoding of the location within some 

coordinate system, nor an encoding of the feature type”. Experiments suggest that the number of FINSTs 

in the visual system is limited to 4 to 5. In the visual module of ACT-R the concept of FINST is used to 

decide if an object has already been attended. Whenever an object is attended, a FINST is created. 

Because the number of simultaneously existing FINST is limited, any time a new visual object is attended 

the oldest FINST is removed to create a new FINST for the currently attended object. To implement 

environmental scan patterns, FINST needs to provide, additionally to the information that an object has 

already been attended, also information for accessing its location without, or at least with only minimal 

noise. In the visual module interface described below this has been accomplished by determining a visual 

index through the sequential position in the chain of attended locations. This index can be used in visual 

module commands to return (or avoid to return) attention to a particular location in the chain of attended 

locations.  

2.0 MODELING EXAMPLES 

In the following we will give some examples on how human spatial information processing can be 

modelled within the proposed framework.  

Modeling State Assessment from Graphical Displays 

The Fraunhofer FKIE developed a Tactical Situation Display (TDS) for Anti Air Warefare (AAW) 

scenarios with some innovative display elements (Witt et al. 2009). One of these new unconventional 

display elements is the polar display for fast survey over the track attributes. The polar displays were used 

to constitute in integrated form the track attributes that are crucial for threat classification, such as distance 

to the ownship (DST), altitude (ALT), speed (SPD), course (CRS), IFF-information (IFF) and ESM-

emissions (ESM). For a single track attribute the polar display generates display proximity between the 

current attribute value and – taking into account predefined identification criteria – an un-critical attribute 

value on the attribute’s parameter beam. 
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A symmetric figure represents the a priori defined scenario knowledge. For instance, it is known in 

advance which friendly, neutral (civil) and hostile radar emissions (ESM emissions) are to be expected. 

Similar friendly and neutral IFF (identification friend foe) codes are defined a priori. If potentially 

threatening attribute values are detected the respective value indicator breaks the symmetry within the 

figure. The normal range of kinematic attributes like speed or altitude is defined in advance as a tolerance 

area. By connecting the current indicator values of single attributes in a polar diagram a figure is generated 

which integrates the single pieces of information on a higher level of abstraction. This figure by means of 

symmetry or a-symmetry forms a so-called emergent feature which helps to transfer the interpretation of 

information content to the perception phase of human information processing, i.e. direct perception: A 

symmetric figure indicates an un-critical airborne contact.  In contrast, an easy to perceive a-symmetry 

emphasizes the criticality of the contact. The most relevant advantage of polar displays, in spite of the 

graphical aggregation of individual attributes, is that they assure that the single pieces of information are 

better noticeable and perceivable. Thus, in contrast to classical alarm displays polar displays are alarming 

and diagnostic at the same time, because the possibly symptomatic characteristic of a single parameter 

value can be noticed easily. Furthermore, under different parameter constellations the figure-forming 

aggregation of single attributes allows for the direct derivation of higher-level task-related manifestations. 

In contrast, the notification about several pieces of information on separated displays as mentioned above 

requires multiple mental transformations and comparisons. 

a) b)

 

Figure 3: (a) The usage of polar display in a tactical situation picture of an AAW interface; 
(b) Comparison of the polar display to a linear display. 

However, also alternative designs of displays exist that integrate the values of attributes into a figure. 

Figure 3 on the right shows the comparison of the same attributes displayed in two different designs for a 

graphical display. Both designs constitute figures that can directly be perceived and interpreted by the 

user. However, considering equally distributed values for the attributes, the characteristics of the figures 

that are constituted differ in both designs. The question is which design produces the more salient features 

that can be recognized more easily from figures stored in memory. This question can be discussed within 

the proposed framework, by examining the emergent angles and fractions of distances within the figures. 

These angles and fractions of distances are restricted by the design of the display (see Figure 4).  
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Figure 4: Illustration of the restrictions the design of the displays  
put on values of attributes of spatial relations. 

In case of the linear display the angle ranges [2∙tan
-1

(1/(n-1)),180°] within peaks and dips, where n is the 

number of axes in the diagram. In a polar display the ranges differ between peaks and dips. The angle 

within a peak can theoretically become zero as a minimum and 180°-360°/n as a maximum. For peaks 

pointing inward (dips) the smallest angle that can emerge is 2∙360°/n. Therefore the ranges of angles for 

peaks and dips are [0,180°-360°/n] and [720°/n, 180°]. For the fraction of distances of one arm to another 

in a linear display the range is [(n-1)√(1+(n-1)
-2

), 1/((n-1)√(1+(n-1)
-2

))]. In case of the polar display 

theoretically the fraction of length can range from 0 to infinity. However, we assume here that it is 

bounded by the r = 10, and we think that also fr = 0.1 only holds for r smaller than 10 or larger than 1/10. 

Figure 5 visualizes the ranges of angles and fractions of lengths. As can be seen from Figure 5 the linear 

display provides a larger range of angles, especially if the number of axes in both displays is low. For the 

fraction of length the polar display provide a larger range of fractions that could emerge and could be 

discriminated by an operator. 
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Figure 5: Comparison of the ranges for the values of the  
spatial attributes between polar and linear display. 

In a common task an operator needs to classify an alert that is signalled by the constituted figure within a 

display. For this he needs to compare the figure perceived with the figures from memory. The operator 

will extract salient features from the figure and will try to recall a figure possessing this salient feature 

from memory. These salient features are spatial relations in nature. As discussed above humans are limited 

in recalling spatial relations and this process is noisy. To identify a figure he will compare different 

features to come to a decision, about the meaning of the displayed alert. If one salient feature is very 

important for the characteristics of one figure he might have stored this by more than one single spatial 
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relation. We will not discuss a complete model here. The differences in performance between both display 

designs result from the different ranges of spatial relations that can occur in the figures displayed. As 

shown above, these ranges depend on the number of axes, and the linear display seems to be advantageous 

for less number of axes. However, the noise from memory is different for different attributes of the spatial 

relations and this needs to be considered within the assessment of both display types. To get a first model 

based assessment for both display types we consider the step in recalling the first salient feature of a 

displayed figure. For this two spatial relations are needed: one for the shape of the salient feature and one 

for its position within in the display. Both spatial relations are shown for both display types in Figure 6. 

 

Figure 6: Encoded spatial relation for the relative location  
for one salient feature in the two different displays. 

As a measure of performance we calculate the mean probability that the shape of the salient feature can be 

recalled from memory successfully and if the associated position which is recalled from memory will 

correctly be recognized. Actually the performance in both steps depends on how well the spatial relations 

can be discriminated from other spatial relations that are associated with figures in the display. The overall 

performance will be a weighted sum of the performance in both steps. Both steps could also be merged 

into one single recall for one memory chunk holding both relations, for the shape and its location. In this 

case, again the overall performance would be a weighted sum of the ability to discriminate the spatial 

relations from others. In fact we are not sure on how the weights have to be chosen or if they could be 

concluded from the ACT-R theory. However, the separation into these two steps clarifies the different 

contributions of the shape of the feature and its location. 

For the first step we consider that only this salient feature is in memory and it only needs to be 

distinguished from the background noise. The expected probability P(DFx = d
(Fx)

|Fx) that the framework 

will propose the salient feature Fx perceived to be equal to the same noisy salient feature d
(Fx)

 in memory 

can be calculated by integrating eq. (3) over all possible attributes of the spatial relations that constitute 

the feature within the display. 

xx

Fx Fxx

Fxx
D dF)P(F

DFPV

DFP
P

Fx
 

)|(

)|(

)(

1


 
 ,       (6) 

To simplify calculations we consider that the displayed attributes on the axes are distributed in a way, that 

the probability density functions is uniform P(Fx)=1/(Fx), which can also be interpreted as the 

background noise V
-1 

= P(Fx). Furthermore, it is assumed that exactly the same spatial relation has to be 

retrieved from memory that has been stored previously. Now the conditional probability density functions 

within the integral only depends on the standard deviation as a parameter. 

)(),,()|( 00 xxFx gxxNDFP
x

          (7) 
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The variable which is in the 2D case discrete, determines if the feature is a peak or a dip. We assume 

that there is no noise in the cognitive system about the categorization of a feature into a dip or a peak. 

Therefore, the consideration of causes (7) to be separated into a weighted sum of two integrals: one for 

the peaks and one for the dips. For the linear display the ranges of spatial attributes are the same for peaks 

and dips, as is also the probability of their occurrence. For the polar display it must be considered, that 

there are only dips for n > 4 and that the ranges of the attributes differ between dips and peaks. In the polar 

display the probability of the occurrence of peaks and dips differ and correlate with the ranges of the 

angles. In the same way should the probability mass of the fractions of distances be equally distributed on 

the interval [1/n, 1] and [1, n]. This is achieved by taking the logarithm of r, which has also already been 

done in Figure 5 for illustration purposes. Putting it all together results in Figure 7. It shows the mean 

probability that the shape of one salient feature can be discriminated from the background noise and can 

successfully be recalled as a function of the number of axes. As can be seen an increasing number of axes 

improves the recall probability of the shape of the salient feature. The linear display shows, in this aspect, 

a better performance than the polar display which reflects the larger range of angles. However, it should be 

stressed, that in a real ACT-R simulation this probability also depends on the base activation level for the 

memory chunk. Furthermore, we omitted by this calculation, that in a polar display the direction of the 

peak might inherently be encoded within one memory chunk, because the allocentric reference system 

have different orientations depending on which axis the peak is. This is not the case for the linear display, 

where the orientations of the allocentric reference systems are always the same and aligned with the 

egocentric up-vector. 
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Figure 7: Predicted performances for the recall of the feature’s shape  
and for the recognition of its relative position within the figure. 

After the memory chunk of one salient feature has been retrieved successfully it is plausible to assume that 

the cognitive system has stored an associated memory chunk for the position of the salient feature within 

the figure. The cognitive system will than validate this position of the salient feature with the perceived 

position. The probability that the correct position of the salient feature will be accepted can be calculated 

within the framework by: 
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The integral ‘simulates’ the noise that is added to the spatial attributes stored in the memory chunk. The 
possible features on which the location from the memory chunk could be latched are the discrete locations 
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on the axes and therefore are given by: ),,()|( 00 xix xxNFxP
i

 . Again it is assumed that the correct 
feature spatial relation has been recalled from memory: ),,()|( 0

)0(
0 xxxNdDxP  . The resulting 

predicted performance is shown in Figure 7 on the right side. For the recognition of the position of the 
feature within the display the polar display clearly outperforms the linear display. This can be explained 
by the fact that the standard deviation of the noise for angles is smaller than for distances. The linear 
display strongly decreases with a higher number of axes, while in the polar display it seems to stay 
constant up to twelve axes.  

Modeling the Assessment of the Operational Picture from Different Views 

To make tactical decision the operator needs an operational picture. In general he needs to know where 

different entities are located in relation to the ranges of effectors and sensors and how these locations will 

change in time. The operator needs answers to questions like: which entity will be next within reach of the 

effectors; which sensors and effectors will I be able to use; where is the best location to hit the enemy 

aircraft without endanger civilian entities in the proximity. All these questions can be answered by 

algorithms implemented in the combat computing system with high accuracy. However, as long as the 

operator needs to make these queries sequentially or has to read the answers of the system in form of lists, 

performance in making the right decisions will be hampered. An external visualisation of the spatial layout 

of the operational picture should enable the operator to get answers to some of his queries that refer to 

spatial relations and time evolution intuitively by perception. To handle all spatial relations numerically in 

a list is impossible, because the number of possible spatial relations increase strongly (~ n
2
) with the 

number of entities in the operational picture. However, also the derivation of spatial relations from a 

spatial layout can be biased and can only be derived by humans up to certain level of accuracy. 

top view
3D view (stereoscopic)side view

 

Figure 8: Scenario: Decide if the aircraft will enter the range  
volume of a specific sensor if continued its course. 

The physical parameters of sensors, effectors and tracks are three dimensional in nature. The choice of the 

views on the operational picture strongly influences performance of different cognitive tasks the operator 

needs to perform to extract the information he needs for his decision-making process. By modelling the 

process of information acquisition from the display, not only different visualization approaches can be 

compared prospectively, but the model can also give clues about how a single interface design can be 

improved. One short example on how a certain view can be assessed by the proposed framework is 

illustrated in Figure 8 and will be discussed in the following. 

One basic question an operator is interested in to query from the operational picture is, if an aircraft will 

come into the range of one specific effector. This information can only be retrieved if the spatial relations 

are imagined in three dimensions. To simplify argumentation we assume in the example of Figure 8 that 

the shape of the range-volume is a pyramid standing on its top. To infer if the aircraft will enter or pass the 

volume, the edge in proximity to the projected flying path is critical. One solution to decide if the flight 
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path crosses the volume is to derive if the flight path runs in front or behind the edge, when the scene is 

looked at from a viewpoint where the edge in question points towards the observer. To do so, the speed 

vector of the aircraft is projected in its length beyond the edge. Then, an arbitrary location on the edge is 

attended and the attention is directed back to the location of the aircraft afterwards. In this way an 

allocentric three dimensional reference system has been created by two axes. As explained in the theory 

section a third “up”-axis is inherently defined by both these axis. Now the cognitive system simply needs 

to decide if this inherently created “up”-axis of the local reference system has an up or a down component. 

More generally the operator could also compare the “up”-axes of this local reference system with the 

“up”-axes of the reference system that can be constituted by the edges at the base of the pyramid. This is 

illustrated in Figure 9. 
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Figure 9: Cognitive steps to decide if the aircraft will enter the volume of the radar range. 

The imaginary picture might be constituted from a stereoscopic 3D-visualization or multiple 2D views. In 

a stereoscopic 3D view the operator only needs to project the flight path by extending the speed vector in 

his imaginary picture. All other locations needed to constitute the reference system can be retrieved by 

perception. If the operator uses multiple 2D views he needs to memorize one spatial relation and to 

transform it into a second view. There are two drawbacks if a spatial relation needs to be reconstructed 

from memory. Beside that its reconstruction is noisy it possibly needs to be retrieved multiple times, if the 

number of FINSTs are not sufficient to keep one of it constantly on the constructed location. Whenever 

this FINST is needed, the spatial relation needs to be retrieved from memory again, which is time-

consuming. In the example above the operator could memorize from the top view the relative location of 

the aircraft to the center axis of the volume. To construct this location of the aircraft in the side view, he 

than attends in the side view one location on the center axes in the height of the aircraft and add the rotated 

spatial relation from memory to this location. This imaginary location he needs to memorize, since he 

needs to perform another rotational task and he will not be able to keep attention constantly on this 

imaginary location. The other rotation task is needed to reconstruct the imaginary edge in the three 

dimensional space of the side view. Only if both imaginary spatial relations have been created by 

transforming them from memory, they can be tested as described above. As can be seen by this brief 

model description one query to multiple 2D views needs a chain of multiple noisy steps to perform the 

task. It is even arguable, if the number of FINSTs is sufficient to complete the task. However, a detailed 

analysis by a detailed model is ongoing work. But this short discourse shows how the framework might 

help to asses the limits of an operator to perform such geometric tasks. In a stereoscopic 3D view the task 

can be completed, because for some of the locations that are needed to constitute the reference systems, 

attention is caught by the real stimulus and variability of the attended locations are lower. But some steps 

are still noisy and this produces inaccurate responses. The probability of inaccurate responses in 

dependence on the operational picture and the viewpoint could be predicted by the model. 
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3.0 CONCLUSIONS & OUTLOOK 

This article proposes a framework to model human performance for spatial reasoning tasks. However, 

even for simple tasks the modeller needs to make some assumptions about how operators guide their 

attention to encode the visual space into memory. However, if it is true that operators are equally restricted 

as it is described within the framework, special expertise in spatial reasoning tasks can be trained by 

learning to chose the appropriate reference system for one specific environment. The framework could be 

used in future work to analyse how experts solve specific problems in spatial reasoning and transfer the 

knowledge to novices.  

Overall we feel that more basic research is needed to confirm the parameters for the noisy representation 

of basic spatial relations in memory. The measurement of these basic variability parameters is difficult, 

because it is difficult to control which reference locations participants will use to encode one spatial 

location within a laboratory environment. For example any dot represented within a display could be 

encoded by using any of the corners of the screen. Also an unsolved question is, if or how the noise of 

basic spatial relations increases in time. Actually, performance in recalling locations or an operational 

picture decreases in time. But this does not necessarily mean, that noise of one spatial relation in a single 

memory chunk increases. It could also be explained by a model in which the accuracy of a single spatial 

relation is relatively stable in time, but some of multiple memory chunks of spatial relations that were used 

to encode the location of one single object could not be retrieved anymore. Because some spatial relations 

to refine the spatial location of one object are missing, accuracy in reconstructing the object location 

decreases  

Finally, we think that the proposed framework will be useful to understand limitations of humans in 

processing spatial information. In the first stage this will bring attention to possible problems in 

visualizing such information. In a second stage it could also be used for a model based assessment of 

different HMI designs. 
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