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Information in Sensor FusionInformation in Sensor Fusion

• Combining information from two or more 
sensors

• Combining information from different modes of a 
single sensor

• Fuse information from different algorithms



MotivationsMotivations

• Limits of performance for single sensorsLimits of performance for single sensors 
can be pushed only in small increments
Multisensor integration MAY LEAD TO• Multisensor integration MAY LEAD TO  
improved detection and identification with 
significantly lower false alarmssignificantly lower false alarms

• More data - potential for improved 
information from measurements



Multisensor IntegrationMultisensor Integration
• Sensors designed to operate independently: 

i t ti i “ ft th ht”integration is an “after thought”
• Fusion approaches have been system and function 

specificspecific  
• Conventional techniques, models assume identical 

sensor statistics, equal thresholds, high SNRs, and 
l t d i fi ld l R duncorrelated sensor noise fields - example Radar 

PDI
• Issues remain in integrating dissimilar sensorsIssues remain in integrating dissimilar sensors 

collecting data asynchronously and communicating 
to central processor with different time delays



18th Century Information Fusion

1786: Condorcet - Democracy Models: 1786: Condorcet - Democracy Models: 
Each individual has probability p of making correct 
decision:
What is the probability of democracy making the correct What is the probability of democracy making the correct 
decision ?

Democracy Model

p: individual probability of making correct decision;p: individual probability of making correct decision;
n: number of  members of democracy
P_n:  probability of democracy making correct decision?

If p > ½ then P n > p > ½ P n  approaches 1 as  n  growsIf p > ½ then P_n > p > ½ P_n  approaches 1 as  n  grows
p < ½ then P_n < p < ½ P_n  approaches 0 as n grows
p=1/2 then P_n=p=1/2

I f ll  d  ill d  ll Informally, democracy will do well 
if p >1/2 and will do bad if p<1/2



Information Fusion in Twentieth Century
1956,  Reliability: Von Neumann showed how to build 

a reliable system using unreliable components 
under independent failuresunder independent failures.

1962, Pattern Recognition: Chow showed optimal 
threshold fuser for multiple independent classifiersthreshold fuser for multiple independent classifiers.

1969, Forecasting: Bates and Granger, “better” 
f t b d b bi i diff tforecasts can be made by combining different 
forecast methods rather than picking one of them

Importance of “fusing” rather than picking the “best” 
has been demonstrated in a number of disparate 
disciplinesdisciplines



Information Fusion in Late Twentieth Century

Advances in Computing and Complex Engineering systems 
posed new challenges:
– Distributed Detection: Bayesian methods for object detection using 

measurements from different detectors
– Sensor Fusion: Multiple sensors became essential to many 

i i t f i i t f th bl ifi tiengineering systems – fusion is part of the problem specification
– Mixture of Experts: Function and regression estimation can benefit by 

combining multiple estimators
Multiple Classifiers: There is no single best classifier but “combined”– Multiple Classifiers: There is no single best classifier but combined  
one is better than its components

Information Fusion began taking roots as a discipline unto g g p
itself:
Office of Naval Research sponsored first workshop on Information 

Fusion in 1996, jointly with National Science Foundation and 
Department of Energy



First Workshop on Information Fusionp
Office of Naval Research was the lead sponsor, together with 

National Science Foundation and Department of Energy

Brought together scientists from:
Engineering ComputerEngineering, Computer 
Science, Mathematics, 
Econometrics, 
Bioinformatics, Statistics

This workshop launched the field 
of Information Fusion



Information Fusion Area Today
I l f di i li i l diIntegral part of newer disciplines including:

• Distributed Sensor Networks
• Cyber Data MiningCyber Data Mining
• Cognitive sensor Fusion

Dedicated International Conferences:Dedicated International Conferences:
1. International Conference on Information Fusion (13th in Edinburgh, 

2010)
2 International Conference on Multisensor Fusion and Integration2. International Conference on Multisensor  Fusion and Integration 

(Salt Lake City, UT, 2010)

J lJournals:
Information Fusion (2000)
International Journal of Distributed Sensor Networks (2005)( )
Journal of Advances in Information Fusion (2006)



Information Fusion area – last 
decade or two?decade or two?

• Rich Information Sources
– Sophisticated sensors – visual hyperspectral radiation chemicalSophisticated sensors visual, hyperspectral, radiation, chemical, 

biological, and others
– Information sensors – web crawlers, information servers, 

sophisticated databasessophisticated databases
• Advances in Computation

– Fusion problems have become complex
Po erf l comp ter hard are and algorithms ha e been de eloped– Powerful computer hardware and algorithms have been developed

• Advances in Networking
– Made access to computing and data resource easier
– Wireless networking made ad hoc deployments possible
– High-performance networks made it possible to support large data 

transport and remote control possible



NEW in September 2010Septe be 0 0

IEEE 2010 INTERNATIONAL CONFERENCE ON MULTISENSOR 
FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (IEEE MFI 
2010) SEPTEMBER 5-7 20102010), SEPTEMBER 5-7, 2010

The theme of  IEEE MFI 2010 was   The theme of  IEEE MFI 2010 was   

Here the goal of multi-sensor fusion systems is to achieve human-like 
performance in terms of perception, knowledge extraction, and situation 
assessment exploiting symbolic and/or dynamical systems approachesassessment, exploiting symbolic and/or dynamical systems approaches.
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M ti tiMotivation 
Detection of Low-level Radiation Sources

TaskTask:
• Detect the sources based on 

sensor measurements

Several underlying math problemsy g p
related to detection networks are open. 
Our work 

-addresses network-based detection 
-provides answers using statistical 
estimation and packing numbers



Difficulty of Detecting Low-level Radiation Sources
The radiation levels are only slightly above the background levels

and may appear to be “normal” background variations 
• Varied Background: Depends on local natural and man-made 

sources and may vary from area to areasources and may vary from area to area
• Probabilistic Measurements: Radiation measurements are 

inherently random due to underlying physical process –
gamma radiation measurements follow Poisson Processgamma radiation measurements follow Poisson Process

Several solutions are based on thresholding sensor measurements

Well-Studied Problem: Has been studied for decades using single orWell-Studied Problem: Has been studied for decades using single or 
co-located sensors: analytical, experimental and 

- sensor networks offer “newer” solutions but also questions

Open Mathematical Question: Q1
Is there a mathematical quantification for a network of sensors to 

achieve better performance than single-sensor detectors?



Detection of Sources amidst Background Noise

A Traditional Method for Detection:
1. SPRT to infer detection from measurements at sensors;
2. Fuse the Boolean decisions at fusion center.

Sensor  1

B l
SPRT 1 decision 1

Boolean
Fuser

Sensor  N SPRT N
decision N

fused
decision 

Specific Question: Are there methods that perform better?
Generic Question: Are there classes of detection problems that benefit 

decision N

from “fusing” measurements in place of decisions ?

Our Results:  Answer is yes to both questions under 
1 Lipschit smoothness conditions limited shielding conditions1. Lipschitz smoothness conditions – limited shielding conditions
2. Vapnik-Chenvenenkis conditions – discrete intensity drops
3. * SPRT-sequential probability ratio test



Detection Using Localization 
Ŝ

Proposed Method for Detection:
1. Estimate the source parameters using measurements - ( )ˆ ˆ ˆ; ,S S SA x y

S

2. Utilize likelihood ratio test        at the fusion center
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SPRTlocalization

measurements
fusion
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Sensor  N
detection
decision 

localization
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Ŝ



Explanation of Results

A fixed-threshold SPRT detection method optimizes the detection 
performance within a certain neighborhood of state-spaceperformance within a certain neighborhood of state-space. 

- characterized by sets ,
L H

S Sτ τ

Localization facilitates the adaptation of the threshold to estimated 
neighborhood of the state-space albeit with a certain error probability. 

Our method achieves a trading-off  between
•error probability of the localization method in estimating the 
neighborhood and needed SPRT thresholds; and 
•probability of ”uncovered” regions of fixed-threshold SPRT

By suitable trade-off one can exceed the performance of the latter.



Summary of Results
Improved detection using measurements at fusion center compared toImproved detection using measurements at fusion center compared to 
existing decision fusion methods, using robust localization, under:

General non-smooth conditions:
Sepa abilit of p obabilit atiosSeparability of probability ratios
- complex analysis and less intuitive conditions
+ valid under complex shielding of radiation sources

Smoothness conditions:
Lipschitz separable probability ratios; and
Lipschitz source intensityLipschitz source intensity
+ intuitive conditions: “bigger” parameter space is better
- valid typically under open-space environments

First mathematical proofs for this class of problems to show:
i) a network of sensors performs better than single or co-located sensors
ii) measurement “fusion” performs better than detection fusionii) measurement fusion  performs better than detection fusion
Performance improvement is characterized by the packing number

single scalar



Summary

We proposed source detection method using a network of sensors:
- utilizes localization followed by SPRT
- out-performs : under both smooth and non-smooth conditions

i l SPRT th dany single SPRT method;
majority and other fusion methods 

•For radiation point source detection:
performs better than existing decision fusion methods- performs better than existing decision fusion methods

•Shows cyber-physical trade-off: better detection at higher cyber 
cost

•lowest cost: single sensor with SPRTlowest cost: single sensor with SPRT 
•intermediate cost: SPRT at sensors and Boolean fusion
•highest cyber cost: send measurements and localization-based 
fusion 



• The University of Arizona is developing:! 
I 

Robust Bayesian channel models for ta~get recognit1ion and surveillance 
' 

Algori t hms for waveform opt imi zat ion derived from the Bayesian models 
' 

• Cognit ive Radar : 
I 

An approach to radar that closes the loop between exploitation (signal processing) 
~ nd cont ro l/optimi z~t ion of t he me~su ~ements 

Int errogate t he rada r en vi ron ment t h ro~gh smart cont rol of t he interrogat ion 
, .............................. , l'i' i"i 'ii ·.:s· rnes (i:e:; ti~~ti:m~!iting; PRF; pur~e S'fi ~ pe)=!> tiptimizeavai lableti · ,."',_.,,,..1'1 ................... . 

Adapt ive measurement cont rol : ~~ ~-tJ 
I~ .~ 

• Whe re to go, what to t ra nsmit, whe re / f 
to a im, who to cooperate wit h, ... -

Compute Wavefonns 
& Man:!UWlS 

S ign.a1 Pro:es sillg; 
Update Hypothesis 

Ensenble 

to Trarcs mitter 

' r-~·~----------~ 

I 
Fixed search pattern ; 
Includes areas where 

target un likely 

Adaptive search pattern ; 
Focus radar on important, 

but uncertain, areas 

past observations to enhance future measurements 



• Characterize t argets by t ransfer function 
and comput e variance over t he classes: 
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A measu re of ent ropy vs. frequency 
pa rameteri zed by target classes 
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• Describe target pa ra meter space as a grid ~of 

• Convert t he proba bi I istic representat ion into 
t he best beamsteering locat ion 
,.. Probability of 
~ ==--- detecting a weak 
80 target moving 

lro ! 
00 

through search 
" 50 zone; 
~ ., (500-target test) 
I JO 

20 

10 

·35 ·20 

Adaptive Control 
makes more 

efficient use of 
f I ! 



Ongoing WorkOngoing Work
• At UA:

– Computationally efficient and robust probability update procedures
• For example, how do we perform stable updates of the Bayesian probability map when 

interference/clutter have unknown pdf?
– Probability updating procedures for multiple platforms (mapping of target parameters 

to range/Doppler/angle is unique for each platform)
– Adaptive PRF selection for range-Doppler ambiguity mitigationp g pp g y g
– Practical classification algorithms and waveform constraints (e.g., constant modulus)

• Elsewhere:
– Dr. Dan Fuhrmann (now at Michigan Tech University)

• “Active-testing surveillance systems, or playing 20 questions with a radar”; 2003 ASAP 
workshop

– Proposes radar measurement optimization via probabilistic representation (closed loop system!)

– Dr. Simon Haykin, McMaster University
• “Cognitive Radar: A Way of the Future”, IEEE Signal Processing Magazine, Jan. 2006.

– Summarizes philosophy of cognitive radar and feedback from receiver to transmitter 
• Cognitive Tracking Radar; Cognitive Dynamic Systems 

(http://soma.mcmaster.ca/haykin.php)
– Dr. Arye Nehorai, Washington University-St. Louis

• Adaptive waveform parameters and radar flight path (Asilomar 2008)
• "Adaptive polarized waveform design for target tracking based on sequential Bayesian 

inference,“ IEEE Trans. on Signal Processing, Mar. 2008. 



Signal Processing for 
Networked Sensing

A majority of performance improvements in 
Sensors, Networking and Communication 
connectivity are expected to come fromconnectivity are expected to come from 

conceptualization of new systems, and through 
innovations in Signal  Processing.

Leverage developments in Signal ProcessingLeverage developments in Signal Processing 
techniques to bring about  improvements in 

sensing, target resolution,  small target 
detectability,  multi-target tracking, and 

address hard problems in sensor data fusion, 
track fusion and communications.


