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ABSTRACT 
 
All the information available from an electromagnetic wave is contained in three variables, direction, 
wavelength and polarization. This is sufficient to completely characterize light.  If you can’t extract the 
information you want using these parameters, then you have reached the limit of what Electro-Optics 
can do for you.  Historically, optical oceanography has focused on using and analyzing color and 
directionality first both for remote sensing and in situ imaging and detection. Even though fundamental 
measurements and theoretical results on the effect of polarization have been available for many years, 
they are only now starting to be applied to real world problems. This paper will focus on some general 
principles and relationships that may be of use in both remote sensing and underwater imaging and 
attempt to demystify the effects of polarization.  
 
RELEVANT FEATURES OF SCATTERING IN WATER 
 
By far the most extensive body of work to date on polarization in scattering is in the evaluation of the 
effect of water aerosols both in liquid and solid forms. The index of refraction is approximately 1.33 
and the relevant shapes are spheres, spheroids and hexagonal crystals. The relative regularity and 
perfection (smoothness mainly due to surface tension effects) of the aerosols shapes allows one to 
effectively apply fundamental scattering theory to the problem. This is unfortunately not the case for 
hydrosols. The buoyancy and absence of surface tension effects leads to a great variability in shape and 
in very irregular or bumpy surfaces.  Hydrosols can have the general shape of spheres, spheroids, 
plates or cylinders, however almost all are far from smooth and this small-scale shape irregularity 
completely modifies the effect scattering on the polarization [1]. This effect is particularly significant 
in the backscattering direction, which is all important for imaging and visibility applications [2]. 

 
This variability in shape and the significant surface irregularities of hydrosols seriously mitigate the 
usefulness of exact codes. On the other hand, the relative index of refraction is generally less than 1.1, 
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which allows one to use approximate relationships based on the fundamental physics and build a 
relatively simple framework to evaluate and predict the effect of scattering on polarization in water. 
This paper will therefore present and develop this simple polarization model and explore its practical 
consequences to both remote sensing and imaging in natural waters.  
 
FUNDAMENTALS OF POLARIZATION 
 
Light is composed of transverse waves. This really means that if you were a very small charged 
particle, as light passed over you, you would feel pulled up and down or sideways at the frequency of 
the wave. In fact, in the more general case, the pull you feel could change direction and strength at the 
frequency of the wave. If the pull is in one direction we say that the light is linearly polarized in that 
direction. If the pull cycles around you but stays constant in strength, we say that the light is circularly 
polarized.  If we look at the most general pattern of transverse motion of this pull, we find that it can 
be represented as an ellipse at an arbitrary angle with respect to us, and around which the force vector 
rotates at the frequency of the light wave. Such a pattern can be described as resulting from the sum of 
two independent linearly polarized waves oscillating perpendicular to one another with a fixed phase 
difference between them.  It can also equally well be represented by two circularly polarized waves 
whose electric vectors rotate in opposite direction (a representation directly analogous to photon spin). 
 
Note that we can only measure the intensity of light waves, which is given by the square of the electric 
field. The real problem in working with polarization occurs because the frequency of light is so high 
that we can only measure an average over many periods. We cannot directly measure the phase 
difference between the independent waves or follow directly the transverse motion of the electric field 
vector. The first effective technique to consistently measure and describe polarized light was 
developed by George Stokes in 1840. He found that polarized light could be represented by a vector 
whose elements could all be directly measured. The first element, which he called I, is the total 
intensity of the light wave. The second element, which he called Q, is simply the difference between 
the light polarized in the horizontal direction and the light polarized in the vertical direction. The third 
element U, is simply the difference between the light linearly polarized at an angle of 45 with respect 
to the horizontal direction and the light linearly polarized at an angle of 135 with respect to the same 
horizontal direction. The final element V, is the difference between the circularly polarized light 
rotating in a clockwise direction and the circularly polarized light rotating in the counter clockwise 
direction. Using the difference between polarization states is a very clever way of handling the case 
where the incoming light is unpolarized or partially polarized. An incandescent light is an example of 
unpolarized light as all the photons are thermal in origin and emitted at random. In this case, as there is 
on average an equal amount of photons in each polarization direction, the U Q and V parameters of the 
Stokes vector would be 0. Skylight is an example of partially polarized light.  
A digression is necessary at this point to clear up some fundamental conventions which must be 
grasped very clearly and whose neglect is the reason why so many people have problems with this 
field. In general horizontal and vertical would simply refer to the laboratory frame of reference. In 
scattering theory however, one must reference all polarizations to the scattering plane which is the 
plane containing both the incoming wave and the outgoing scattered wave. In that case we refer to the 
linear polarization as parallel if the polarization vector is in the scattering plane or perpendicular if the 
polarization vector is perpendicular to the scattering plane. By convention, we assume that the 
scattering event has been measured by equipment on a laboratory table and in the horizontal plane. 
This is why in general people will refer to light polarized parallel to the scattering plane as horizontally 
polarized and light polarized perpendicular to the scattering plane as vertically polarized. A third very 



important convention is required to measure angles and define clockwise and counter-clock wise 
rotation directions. It is always assumed that clockwise and counter clockwise are defined as if you are 
looking directly into the light beam. Note that this convention implies that a beam of light reflecting 
off a perfect mirror will have light originally polarized at an angle of 45 come back at an angle of 
135 and vice-versa. It also implies that clockwise will come back as anti-clockwise. This means that a 
perfect mirror will reverse the sign of the U and V elements of the Stokes vector. Working this out is a 
worthwhile exercise as many authors and many textbooks are confused and sometimes wrong about 
their conventions [3]. What is presented here is the classic convention used by all the principal 
contributors to the field of polarization (Stokes, Chandrasekar, Mueller, Born and Wolf [4]). 
  

 
 
From our previous discussions, it is obvious that the different polarization states can all be represented 
as linear combinations of any of the independent pairs of polarization states. Almost all the 
polarization effects in scattering from medium to large size particles come from the reflections off their 
surfaces. In working with reflection it turns out to be simple and convenient to evaluate the effects of 
the surface in terms of parallel (horizontal) and perpendicular (vertical) components. Assuming right-
handed co-ordinate system with parallel polarization along the x-axis and perpendicular polarization 
along the y-axis [5], the electric field amplitudes can all be related to these components as follows. 
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Where 1e


 and 2e


 refer to the perpendicular (sometimes referred to as vertical) and parallel (horizontal) 
components respectively.  Note carefully that the scattering plane is now the horizontal plane and left-
right and clockwise-anticlockwise orientations are referred to that plane. From the equations above it is 
obvious that in general we can express the breakdown into perpendicular and parallel components of 
any polarization vector as follows:  
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It turns out that we can also transform all the polarization operators (for instance reflection from a 
surface) in terms of the corresponding parallel (horizontal) and perpendicular (vertical) operators. We 
do this later for reflection from a surface as an example, since it’s the term that controls polarization 
for large hydrosols. 
The effect of any object or device on light can be described by a matrix which relates the input Stokes 
vector to the output Stokes vector. This matrix is called the Mueller matrix [5]. It can be most simply 
and generally described by the operations required to measure it [6]. The process goes as follows. Start 
with unpolarized incoming light. Use polarizers to produce in sequence light polarized in all the six 
fundamental states of the Stokes vector. Pass the resulting light through the object or device (in our 
case this would be a scattering by a particle). For each of the input states (one unpolarized and 6 
polarized), measure the resulting unpolarized light and the 6 polarizations states.  Each element of the 
matrix can then be represented as the direct (outer) product of the combination of the operators 
required to prepare/produce the input Stokes vector by the operators required to measure the output 
Stokes vector. This is process is shown below where the input Stokes vector is laid out horizontally 
and the corresponding output Stokes vector is laid out vertically. Please note that the order of the 
operators matters and that the negative of the V component is used in the matrix for symmetry reasons. 
By convention the input operator (polarizer) is first (i.e on the left/top) and the output operator 
(analyzer) comes second (i.e on the right/bottom) in all the operator pairs.  
 

 
 
To more easily be able to discern polarization effects from changes in overall intensity, the elements of 
the Mueller matrix can be normalized by dividing them by the upper leftmost M(1,1) element which 
describes the effect of scattering on the total intensity of unpolarized light. This implies that the other 
elements of this normalized Mueller matrix will all conveniently range from a value of 1 to –1. 
 



Note that since we are assuming unpolarized light as the input to the polarizers, the polarizers reduce 
the total intensity by a factor of 2 and the amplitude of the input electric field vector by the 
corresponding factor of 
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Note also that the unpolarized light can obviously be represented as the sum of the output of a parallel 
and of a perpendicular polarizer. In order to easily use the formulas we will present below it turns out 
to be useful and simpler to express unpolarized light as this sum of the two polarized components 
operators. 

O => (H+V) 
As an example, in order to obtain expressions for all operator pairs used in the Mueller matrix in the 
case of reflection from a surface, we can follow a straightforward procedure.  
We first express the unpolarized light initially polarized by the input polarizer in terms of its parallel 
and perpendicular component. Using our previous notation, this can be written as follows: 
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It should be noted that the absolute sum of the squares of the components is always equal to 1 since we 
are dealing with unit vectors by definition.  
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We next compute the effect of the scattering on each of the two parallel and perpendicular components. 
As we are dealing here with reflection from a surface as an example, we multiply by the separate 
reflectance for each component. 
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11r  is the perpendicular (vertical) reflectance and 22r  is the parallel (horizontal) reflectance. 
This new output vector must now be passed through the analyzer. In order to do this we set a factor 
times the analyzer polarization vector as equal to the input vector modified by the scattering (in this 
case multiplied by the reflectance). To isolate the factor we take the scalar (dot) product of both sides 
of this equation by the complex conjugate of the analyzer polarization vector. As the polarization 
vector is a unit vector, the left hand side becomes simply the factor we were looking for and the right 
hand side its expression in terms of parallel and perpendicular operators (reflectances). This operation 
can be viewed as projecting the output vector from the scattering on the analyzer vector and obtaining 
its amplitude. 
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The final result is then obtained by transforming to intensities by multiplying this factor by its complex 
conjugate. At last, we take the time average of the time dependant factors over one period. This 
averaging operation is denoted by the angled brackets. This time averaging is required, as we cannot 
make any measurements at the extremely high frequencies involved when dealing with a light wave. 
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The result can be used to compute all the analyzer-polarizer pairs required to evaluate operationally the 
elements of the Mueller matrix. It should be noted that, for the sake of simplicity and clarity, we have 
not included in the formulation above any cross-terms that would transform some parallel 2e


 

polarization into perpendicular 1e


 polarization 12r  and vice-versa 21r . As we shall mention later, such 
elements only occur when dealing with multiple reflections and/or transmissions from or through the 
surfaces of a particle in a single scattering event. These terms, when required, can be incorporated in a 
straightforward manner. 
    
PHYSICS OF SCATTERING IN WATER   
 
The basic physics of scattering occur because the periodic pull of the transverse electric field of the 
light wave displaces the electron cloud around the atoms and molecule a little off center from the 
nuclei. This gives rise to an oscillating dipole. In a particle small with respect to the wavelength of the 
light, all the atomic and molecular dipoles see the same uniform field and react in phase together. This 
gives rise to the well-known Raleigh scattering for small particles where the scattered light polarized in 
the perpendicular direction is uniform as a function of angle and the scattered light with its polarization 
vector in the direction parallel to the scattering plane varies as a function of scattering angle as Cos2(). 
In water the relative index of refraction is always very close to 1. This means that the phase difference 
across the particle is small and we can still approximate the field inside the particle as uniform. If we 
then assume each element scatters in a dipole pattern and integrate over these elements, accounting for 
the relative phase differences due to different positions relative to one another, we obtain a 
generalization of the Rayleigh formulas called the Rayleigh-Gans approximation which is now valid as 
long as (m-1)x is much less than 1. In this regime, the scattering pattern becomes forward peaked for 
both polarizations but once again for the parallel polarization there is an additional Cos2() factor 
multiplying the scattering pattern common to both polarizations.  
 
THE POLARIZED SCATTERING MODEL 
 
Let me first start this section with an apology. As there is not enough space to include all the equations 
and experimental-theoretical comparisons figures, the following discussion will almost be entirely 
limited to simply describing the processes, methods and overall results obtained. 
As the particles get even larger, other factors come into play, such as the scattered field gaining 
significant amplitude internal to the particles and modifying the field seen by each volume element and 
those elements now reacting back with a time delay due to their distance from one another.  
If we assume that the particle size distributions are inverse powers   of the particle dimension, it is 
possible to compute as a function of that inverse power at what value the optical differential central 
path length (which is the key parameter controlling the region of validity of the Rayleigh-Gans 
approximation) the median of the integrand for the reflection term occurs.  
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Since from previous work, for ocean water the inverse power of the particle size has a mean of 3.65 
with a deviation of 0.12, the contribution of the large particles overwhelmingly dominate even in the 
backscatter direction.  
In water, even if the particles are large, the relative index of refraction stays close to unity and this 
allows us to assume that the rays penetrating inside the particles are not significantly deflected. This 
absence of optical ray deflection makes it easy to compute the scattering patterns. In this small index 
difference, large particle regime, it is possible to separate out the effects of diffraction around the 
particle, refraction through the particle and reflection from the surfaces of the particles. Such a model 
has been developed [1] some time ago and the concepts on which it is based will be used as the 
building blocks of this new polarized scattering model. One note of caution, as kindly pointed out to us 
by A. Gainusa-Bogdan [7] there are some typos in formulas for the reflection terms in [1] which have 
now been corrected and expanded.  
It has also been necessary to include the Fresnel-Kirchhoff obliquity factor (1+ Cos())  in the 
formulas for diffraction [8] and to use the Generalized Eikonal Approximation [9] for the refraction 
term and modify the normalization of these terms appropriately. This modification not only gives a 
better fit in the test case of spheres, but is also absolutely required in order to properly evaluate the 
Mueller matrix at the larger angles. This comes about because, in the large particle limit, the effect of 
polarization is entirely due to the reflections from the various surfaces of the particles.  Not including 
the obliquity factor for diffraction and the GEA correction to the refraction terms means they are much 
too big at moderate to large angles where the reflection terms actually dominate. These modifications 
bring the simple model much more closely in line with experimental results. 
Using the new model, which gives the correct parallel and perpendicular polarized phase function, and 
the operator transform equations given above we can derive explicit formulae for the complete Mueller 
matrix elements by simply combining the terms according to their operational definitions.  
If we only consider the reflection terms from our model, we obtain a matrix whose only non-zero 
elements are exactly the same as those found to be significant by Voss and Fry [10] in their classic sets 
of measurements of the Mueller matrix of ocean water. That the only significant terms are the same is 
an extremely strong piece of evidence in favor of reflection as the dominant factor.  
 
COMPARISON WITH EXPERIMENT  
 
The one element from this first level model which is significantly in error, is the M(2,2) element. This 
occurs because on a single reflection there is no possibility of inducing a rotation of the polarization 
vector, which would be required to transfer part of the parallel component into the perpendicular 
component and vice-versa. In order to induce such a rotation of polarization, we have found that we 
need to take into consideration either two reflections or one reflection and one transmission by surfaces 
that do not scatter in the same plane. A simple example is the standard two-mirror beam director one 
uses on a lab bench to send a beam from a fixed source in any desired direction. It has the property of 
changing the polarization. As a matter of fact, a little thought will make it obvious that when the beam 
is rotated at 90 degrees, the parallel polarization has been completely turned into perpendicular 
polarization. For randomly oriented pairs of surfaces, the effect is not as marked but looks more like 
what was seen by Voss and Fry. This effect will occur naturally if the particles are irregular. As a 
matter of fact, one of the models which most closely fits the experimental polarized ocean data is that 
of large fractal particles with a real index of 1.1  [11]   
 



CONCLUSION AND FUTURE WORK 
 
The key element to model and the real source of information on the nature of the scattering particles in 
water is the M(2,2) element of the Mueller matrix. It is the real tell tale and the lynchpin to 
understanding and robustly and reliably modeling polarization in water. This has serious implications 
both for remote sensing of polarization and for underwater imaging. It seems to imply that the particles 
need to be modeled as having a significant fractal component. In order to adapt the model to account 
for this we are developing a statistical approach where we determine the distributions of the pairs of 
surfaces for randomly oriented particles. This approach should allow us to constrain the problem 
sufficiently to obtain a reliable and accurate solution. New fast devices are now becoming available to 
measure the Mueller matrix [12] and more data equally reliable as that of Voss and Fry should become 
available in the future to help constrain the theoretical options even further. 
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