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1. Introduction 

Assessment, delineation, and treatment of traumatic brain injury (TBI) are critically needed 

across civilian and military populations. The national cost of TBI is estimated to be $60 billion 

annually, with 3.2 million Americans living with disabilities due to TBI (1). Blast-related TBI is 

of particular interest due to its prevalence in recent military conflicts (2). Blast exposure results 

in a complex loading that presents many possible mechanisms of injury. Diffuse axonal injury is 

one particular injury mechanism that has been cited as a predominant signature injury of TBI 

neural damage (2, 3). This injury is characterized by widespread structural lesions in white- 

matter fiber tracts, the axons of neurons. These tracts connect brain regions into a structural 

network and allow neurons to communicate with one another (4, 5). Degraded structural 

connectivity has been linked to disease states (6, 7), and it may underlie the cognitive deficits 

characteristic of mild, moderate, and severe cases of TBI (8). This report presents a 

multidisciplinary modeling effort that aims to improve our understanding of how mechanical 

loading to the head is related to changes in the structural network of the brain. 

This modeling effort sits within a larger research program at the U.S. Army Research Laboratory 

(ARL) to understand brain structure-function couplings. The overall goal of this effort is to better 

understand how variability in structural connectivity due to traumatic insult or natural variability 

between healthy individuals relates to differences in the brain’s functional connectivity (9, 10) 

and, ultimately, to individual differences in human behavior. The modeling effort described here 

focuses on understanding the effects of traumatic brain insult. The use of a finite element (FE) 

simulation to degrade the structural brain network was first described in Kraft et al. (11). This 

report aims to make improvements to the structural network weighting and degradation methods. 

We examine if the graph metrics properties used to characterize the damaged structural network 

are scale-invariant to show damage consistently across different-sized networks. These 

improvements are needed to enable future research efforts that will couple the simulated 

structurally damaged network with a more coarse-grained electrophysiological model developed 

by David and Friston (12) and implemented at ARL (9, 13, 14). The electrophysiological model 

simulates functional electrical oscillations for a simulated brain region (node) in a defined 

structural network. The neural mass at each node represents a small patch of the brain containing 

several thousand interconnected neurons. Our research effort provides a unique capability to 

examine how functional ramifications (e.g., abnormal electrical oscillations between brain 

regions) are tied to parameters of blast-induced traumatic brain insults by using the damaged 

structural network from an FE simulation as input in the neurophysiological modeling. The  

long-term vision is to link how changes in these electrical oscillations interfere with functional 

connectivity patterns that are characteristic of successful performance on behavioral tasks 



 2 

(15–20). Thus, the integration of two modeling efforts with ongoing experimental efforts provide 

a technical framework to investigate the well-known but poorly understood cognitive 

impairments that often result from traumatic brain insults (9, 10). 

The modeling research described in this report makes use of concepts from structural FE 

analysis, structural neuroimaging methodologies, and graph theory analysis approaches from 

network science. In short, these tools are combined to improve the simulated mechanical 

response of brain tissue, estimate resulting damage to the structural connectivity in the brain, and 

develop graph-theoretic analysis approaches to quantify the resulting changes in the structural 

network. The methods described incorporate biological thresholds for brain tissue damage that 

are used to degrade the brain’s structural connections and compute a resulting damaged 

structural network. 

The FE method enables a physics-based computational simulation of a mechanical loading. The 

strength of this method is that it provides the full three-dimensional mechanical response of a 

material in time, thus providing insight into stress and strain that might not be possible to 

measure in vivo. Finite element simulations have been performed for both impact (21–29) and 

blast loading (30–32) to capture the mechanical response of the human head and brain. However, 

these investigations do not directly incorporate their results into plausible models of injury on a 

network level. The approach to link physics-based mechanical parameters and biological injury 

is an open research question. Our innovation is the combination of the FE method with 

neuroimaging to incorporate biological information into the model and improve mechanical 

response estimates and biological fidelity of cellular injury estimate. 

A structural neuroimaging method, known as diffusion-weighted imaging, allows in vivo 

imaging of white-matter fiber tracts that are widely implicated in long-distance communication 

in the brain. This technique uses a magnetic resonance imaging (MRI) scanner to image the 

diffusion of water in the brain. This directional movement reveals the local brain structure since 

water diffuses in the same direction as the local fiber tract. Postprocessing, reconstruction 

tractography algorithms then estimate an individual’s whole-brain fiber tract structure. These 

fiber tracts constitute the structural network of the brain. It is possible to then characterize this 

network using analytic approaches from network science. 

Graph theory analysis methods from network science quantify topological properties of 

networks, and they have been successfully adopted for characterization of brain connectivity 

(33). The brain is divided into smaller regions of interest (ROIs) to provide graph nodes, and the 

white-matter connections between the ROIs provide the graph edges. Standard measures of 

graph properties can then be computed to characterize the structural brain network. We focus on 

seven key measures in our analysis: degree, shortest path, efficiency, betweenness, clustering 

coefficient, modularity, and assortivity. The degree measure is computed for each node, which is 

the sum of edge weights connected to a node. A short path in the network is the number of edges 
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traversed or the sum of weights along the most direct route from one node to another. Efficiency 

can be calculated as a nodal measure referred to as local efficiency, or for the network as a whole 

as global efficiency. This value represents how well connected the network is compared with a 

perfectly connected network (34) and captures the networks capacity for communication along 

short paths (35). Betweenness is the number of times a node is part of the shortest path between 

two other nodes (34). A high measure of betweenness is an indication of a hub used to allow 

efficient long-distance communication of nodes (34). The clustering coefficient is a measure of 

how well a particular node and its neighbors are connected to each other (34). Modularity is a 

value that can indicate the presence of a community structure composed of localized clusters of 

nodes (36). The assortativity quantifies how similar nodes are to each other in terms of their 

degree (34). 

The graph theoretic framework has been applied to examine effects of lesions on network models 

of the brain. Several groups have investigated the effects of lesions on network models of the 

brain in both animal models (37, 38) and humans (7, 39). Young et al. (37) provide an early 

example of applying damage to a structure-function coupled network based on the 

thalamocortical system of a cat. They use anatomical data to create a weighted structural network 

and simulate the functional network. A lesion is simulated by removing a node from the network 

to show that there are functional effects that extend beyond the lesion site (37). Alstott et al. (39) 

extend this concept to the human brain by using diffusion-weighted imaging to create a whole 

brain structural network. They show that specific structural network measures, such as 

betweenness and efficiency, can characterize the network and quantify the effect of removing 

nodes. These research efforts establish the use of networks to describe the brain as a whole as 

well as with simulated lesions. Our work will complement these efforts by developing injury 

models that degrade the network to represent specific loading conditions. 

We present a combination of the FE method with neuroimaging and network modeling to 

incorporate biological information into the model and provide the capability to evaluate the 

global effect of specific blast loading conditions. The work presented in this report represents 

several accomplishments that expand on previous work (11). In this work we discuss the edge-

weighting method and how it is modified to make use of tractography fiber segments rather than 

whole fibers. This prevents the complete removal of edges from the structural network seen in 

previous work. Sensitivity of the network is then evaluated by comparing two simulations that 

represent a frontal blast loading and a blast loading from the side to show the ability to 

differentiate between these loading directions. Finally, the effect of scaling the number of ROIs 

in the structural network is investigated. An evaluation of network measures is performed to 

determine which are scale-invariant between networks of different sizes after damage is applied.
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2. Methods 

We briefly summarize some of our methods of this research and organize them as follows. 

Section 2.1 describes the procedure used to create the FE mesh from neuroimaging data. Section 

2.2 provides detail of the FE model, including the loading conditions, material properties, and 

results of the simulation. Section 2.3 shows how FE results are formatted for use with the 

structural network and brain atlas. In section 2.4, we introduce our new fiber segment network 

degradation method and discuss how it is different from Kraft et al. (11). 

2.1 Neuroimaging and FE Mesh Creation 

Methods to create the FE model and reconstruct data from diffusion-weighted imaging are 

described in detail in Kraft et al. (11, 40) and only summarized here. In short, geometry is 

created from MRI data by using the software Amira (41) to segment the head into white matter, 

gray matter, cerebrospinal fluid, skull, skin, and other soft tissue outside of the skull. In addition 

to the head, a torso from the Open 3D Project (42) is included to more accurately capture blast 

propagation to the brain. This geometry is used to generate a tetrahedral mesh for FE simulation. 

Tractography is reconstructed from a diffusion-weighted imaging technique called diffusion 

tensor imaging. This technique provides information of diffusion as a tensor value that can be 

used to reconstruct the fiber tractography (43). 

2.2 FE Simulation 

Here we briefly summarize some of the key features of the model; details of our material 

parameters and constitutive equations are described in detail in Kraft et al. (11, 40). 

Tractography from diffusion tensor imaging data is incorporated into the three-dimensional FE 

model using a transverse isotropic material model specifically developed for representing white-

matter tissue (44, 45) where each FE is assigned an orientation based on the superimposed 

tractography (40). Material constitutive descriptions and properties for all components are 

described in detail in Kraft et al. (11). These material descriptions include properties for the 

skull, cortex, brain stem, cerebrospinal fluid, and soft tissue, which is an homogenized mixture 

of muscle and skin. The volume of the body is also modeled as an homogenous soft tissue to 

more accurately capture pressure loading that is transmitted to the head. A nodal-based 

tetrahedral formulation is used to resolve locking issues that are related to standard tetrahedral 

elements to better represent soft tissues (46). 

The transient response of the blast loading to the head is simulated in Sierra (Sandia National 

Laboratories), an explicit FE method Lagrangian code. The blast-loading method combines the 

TNT air blast work of Kingery and Bulmash (47) and Randers-Pehrson and Bannister (48), with 

Sachs scaling to match the ConWep code (49). The code accounts for the angle of incidence by 
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transitioning from reflected to incident pressure by the relationship described in Gullerud et al. 

(46). For the comparison examined in this paper, two blast conditions are simulated. A frontal 

loading is simulated by a TNT spherical air-blast equivalent of 7.5 lb located 0.4 m above the 

ground and a 2-m standoff distance in the front. A side loading is simulated by a TNT spherical 

air-blast equivalent of 7.5 lb located 0.4 m above the ground and a 2-m standoff distance from 

the right of the body.  

The results of the two loading conditions are presented in figure 1 as time history plots of the 

pressure, axonal strain, and strain-rate for the frontal loading (panels A–C) and side loading 

(panels D–F). Pressure is positive in compression. Axonal strain is defined as the strain in the 

direction of the axon based on the tractography within an element. Strain rate is an effective 

measurement based on the strain-rate tensor. These parameters have been used to predict cellular 

injury within neuronal cellular cultures (50). The five regions of interest plotted include the 

frontal lobe (red), temporal lobe (green), occipital lobe (blue), parietal lobe (orange), and corpus 

callosum (black). In both loading conditions, the blast wave produces a rapid rise in pressure at 

around 2 ms, which is qualitatively similar for all of the five regions (panels A and D).  

 

 

Figure 1. Finite element results. Pressure, axonal strain, and effective strain rate measured at various 

locations of the brain in both blast loading scenarios. 
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What follows the onset of the initial pressure wave are a number of smaller-amplitude and lower-

frequency pressure waves that vary from region to region. Interestingly, the largest axonal strains 

(panels B and E) occur several milliseconds after the initial pressure wave. The large axonal 

strains are the result of the angular rotation of the head. This motion occurs more slowly than the 

pressure wave passing through the head, resulting in a delay before the axonal strain increases. 

The effective strain rate (panels C and F) shows high-frequency oscillations. Strain rate has been 

shown to contribute to cellular death in some brain regions (51) so it is important to consider this 

value along with the axonal strain. Emphasis should be placed on regions that show a high 

axonal strain and effective strain rate, such as the occipital and temporal lobes. These regions are 

more likely to show damage, and it will be shown that they have a higher network degradation. 

The primary purpose of this work is to describe a new method for degradation of the structural 

network and evaluate its use on a small network for future use as input into a functional 

electrophysiological model. While the model presented in this work is currently not validated for 

blast loading conditions, these simulations provide two possible scenarios to compare the 

network response. This allows for the investigation of structural network degradation that results 

from tissue deformation calculated from an FE simulation. Validation of blast loading and a 

more detailed description of the mechanics involved in the blast simulation will be discussed in 

future work. 

2.3 Mapping FE Data to Voxel Space 

To make use of neuroimaging data, FE results are mapped to the standardized voxel space in 

magnetic resonance data, where each voxel represents a 2- × 2- × 2-mm cube of brain tissue. 

This mapping ensures that the FE data has the same volume, resolution, and Cartesian 

coordinates as the diffusion tensor data. This also allows the analysis to link with standardized 

brain atlas data that contains coordinates and labels for common brain regions studied in the 

neuroscience field (52). There are two possible qualifications where an element variable is 

assigned to a voxel as illustrated in figure 2. In this image, the black grid is a representation of 

voxels and the yellow triangles represent elements. Panel A shows a case where an element is 

assigned to voxels where the center of the voxel is contained within the element (red dots). Panel 

B shows an an element that does not contain any voxel centers. In this case, the element is 

assigned to the voxel that contains the element’s centroid (blue dot). Multiple elements within a 

single voxel are averaged. 
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Figure 2. Element to voxel assignment.  

2.4 Network Construction and Degradation 

A damage parameter based on cellular death is then calculated for each voxel using an empirical 

formula for cellular death up to four days post-insult based on the assigned axonal strain and 

effective strain rate (11, 50). This single-damage parameter is then used as a means to degrade 

the structural network. A cell death threshold for electrophysiological injury is estimated based 

on the work of Bain and Meaney (53), who claimed that electrophysiological injury would 

initially occur between 13% and 28% strain in a guinea pig optic nerve, and suggested an 

optimal threshold of 18% strain at a strain rate between 30 to 60 s−1 (53). Applying these values 

to the equation for cellular death results in an average of 2.1% for injury initiation and 3.4% cell 

death for the optimal injury threshold for this range of strain rates. Using these cell death values 

is beneficial because it incorporates strain, strain rate, and time after injury into a single value 

that is used as a threshold for damage. This will help to account for the effects of high-rate 

loading and allow for a prediction of injury even at a lower strain if the strain rate is sufficient to 

allow the cell death to reach threshold values. 

The Connectome Mapper Toolkit is used to parcellate the brain into 83 regions of interest as in 

previous work (11) based on the Desikan-Killiany brain atlas (52). The network is then 

resampled to 12 cortical ROIs to investigate methods to maximize compatibility with different 

size networks. These are the frontal lobe, parietal lobe, occipital lobe, medial temporal lobe, 

lateral temporal lobe, and cingulate cortex in both the left and right hemisphere. These 12 ROIs 

become the nodes of the network. Figure 3 shows the original 83-node parcellation from a lateral 

view A and medial view B where colors are used to separate the regions. The smaller cortical 

regions in each lobe are combined to form the new 12 ROIs. These new regions are shown in C 

and D for the lateral and medial view, respectively. There is the potential for variation in the 

resulting network measures when down-sampling to a 12-node because network measures are 

dependent on the topology of the network. Networks with 68, 114, 216, 446, and 1002 nodes are 

also created by subdividing the original parcellation using the process described by Cammoun 

et al. (54). This is done to better understand how this change in topology will affect network 

degradation.
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Figure 3. An illustration of the surface parcellation. The original 83-node parcellation shown 

from a lateral view (A) and medial view (B) is used to create a 12-node cortical 

parcellation shown from a lateral view (C) and medial view (D).  

Fiber tractography from diffusion tensor imaging in combination with the ROIs created during 

the parcellation are used to create the initial network. Fibers that begin in one ROI and end in 

another represent a pathway for communication. This connection is represented by an edge 

between two nodes. Figure 4 illustrates a simplified picture where the grey represents ROIs and 

the black lines are tractography fibers that make up an edge between the two ROIs. The squares 

of the grid are a simplified two-dimensional illustration of voxels. Network edges are given 

weights to account for connection strength using a method that will be referred to as the fiber 

segment method. Each fiber is divided into segments based on the number of voxels that it 

passes through. The number in each voxel of figure 4 is the number of fiber segments contained 

within. The weight of an edge between two ROIs is equal to the total number of fiber segments 

in all tracts that connect these ROIs divided by the number of voxels on the edge. The example 

in figure 4A results in a weight of 2. This method is different from the weighting method in Kraft 

et al. (11), which weights edges based on the fiber as a whole. Panel B of figure 4 shows an 

example of a damaged connection. Voxels are weighted in red if they are above the minimum 

cellular death threshold. Numbers shown in red are the remaining fiber segments after damage is 

applied. The weighting of the edge is based on the number of fiber segments that remain after 

damage is applied. Dividing by the number of voxels in the edge accounts for long-distance 

connections that would be composed of a large number of fiber segments. Edge weights are 
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degraded by removing fiber segments from voxels that meet or exceed the cell death threshold. 

The percentage of fiber segments removed is 0% at or below the lower threshold of 2.1% cell 

death and increases linearly to 100% fiber segment removal at the upper threshold of 3.4% cell 

death. 

 

Figure 4. Fiber segment method edge degradation. An illustration of an example edge made up of two 

regions of interest connected by tractography fibers. (A) shows the edge before degradation and 

labels the number of fiber segments within each voxel. (B) shows an example of cell death data 

applied to degrade the edge.  

Weights are resampled to a Gaussian distribution N(.5.1
2
) into the range [0,1]. This is based on 

procedures developed by Honey et al. (55), who stated the assumption that interregional 

physiological efficacies would not span the large range that is seen in the data before resampling. 

This Gaussian weight degradation is defined as G = G0 [W/W0], where G is the damaged 

Gaussian weight, G0 is the undamaged Gaussian weight, W is the damaged weight, and W0 is the 

undamaged weight. 

The fiber segment method is beneficial because it avoids the complete removal of edges seen in 

previous work by Kraft et al. (11). This method results in a lower estimation of network loss 

compared to previous methods where the entire fiber is removed but the pattern of degradation 

remains the same. However, there are several potential limitations of this weighting method. 

First is the assumption that fibers that pass through a region with a high damage value retain 

some capacity for communications. While this would not be valid for a single axon, it is 

reasonable in the case of a fiber segment representing the volume of a voxel at a resolution of 

2 mm
3
. This segment of fiber will be composed of a large number of axons, some of which may 

be damaged while others survive and can propagate an electrophysiological signal. Next, due to 

limited experimental data, this method cannot represent smaller-scale injury mechanisms and 

cannot provide a realistic quantitative value of axonal death. The use of a threshold limits the 

range of damage prediction to this value. This is useful because it allows for greater sensitivity 
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for detecting minor injury, but reductions in edge weight do not necessarily correspond to the 

same reduction in biological signaling capacity of cells that connect the ROIs. Despite these 

issues, this method is useful because it offers an estimate of the scale of damage. It is used to 

determine where damage occurs and the relative severity of the damage seen in different regions 

of the brain. This will be helpful for differentiating possible injury based on different loading 

conditions. This model will be improved to produce a more biologically accurate prediction of 

structural network damage as relevant experimental data becomes available. 

 

3. Results and Discussion 

3.1 Network Degradation 

Figure 5 shows the fiber tractography for frontal loading in panels A–D and side loading in 

panels E–H for the 24-, 48-, 72-, and 96-h time points. The anterior direction is to the right and 

the posterior direction is to the left. Undamaged fibers are colored based on their direction, with 

green, blue, and red representing anterior-posterior, inferior-superior, and left-right, respectively. 

Fiber segments that are removed from the model are displayed in black. Relatively few fibers are 

removed in the frontal-loading condition until 72 h. At 96 h, the location of removed fibers is 

distributed throughout the volume of the brain. The side loading shows a high concentration of 

fiber segments that are removed in the occipital lobe starting at 48 h, which corresponds to the 

high strain and strain rate that is seen in the FE time-history plots in figure 6. The location of 

removed fibers continues to expand up to 96 h. This image format, developed by Alper et al. 

(56), displays the undamaged edge weight colored by edge strength overlapped with a smaller 

square that is colored by the damaged edge weight. Because this is an undirected network that 

produces a symmetrical matrix, the two halves are weighted to show different values. The blue-

weighted half shows the edge strength and the red-weighted half shows the normalized edge 

strength. The regions of interest are the medial temporal, lateral temporal, frontal, parietal, 

occipital, and cingulate cortices in the right hemisphere for regions 1–6 and left hemisphere for 

regions 7–12. 
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Figure 5. Evolution of fiber segment removal, using empirically based cellular death predictions 

obtained from in vitro models of neural tissues. Local strain and strain-rate values computed 

from FE simulations are used to specify injury.  

Basic measurements are calculated from the data represented in figure 6. The weight at each 

edge of the network is represented by a single element of the matrix that corresponds to a 

connection between two specific ROIs. This is the most localized measure to investigate damage 

between two regions. The degree is calculated as the sum of matrix elements along a single 

column or row for any one node. This nodal measure shows damage to any one node based on all 

of its connections. The inner square of each matrix element represents the value at the current 

time point for comparison to the outer square that represents the initial value. The regions of 

interest are medial temporal, lateral temporal, frontal, parietal, occipital, and cingulate cortices in 

the right hemisphere for regions 1–6 and left hemisphere for regions 7–12. The red-weighted half 

of the matrix shows the normalized edge strength, and the sum of all edge weights is calculated 

by the sum of all matrix elements in the blue-weighted half of the matrix. This value provides a 

global account of the network to show how it has changed as a whole.
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Figure 6. Undirected connectivity matrices.  

The frontal-loading condition is shown in figure 6, panel A. This figure shows that there is little 

damage applied to the network on a global level with 1.8% reduction in the total edge strength at 

96 h. Because of the subtle change in this global measure, it is important to consider localized 

measures of damage. Table 1 shows the percentage change in both degree and edge weight of the 

three most damaged regions or connections in either case.  

Table 1. Percent change in degree and edge weight for the most damaged regions in the frontal-

loading condition. 

Region 

(No.) 

Degree 

(%) 

Edge Connection Number 

(No.) 

Weight 

Reduction 

(%) 

Cingulate R (6) 3.4 Parietal R (4) Med. Temporal L (7) 11.3 

Parietal R (4) 2.6 Lat. Temporal R (2) Frontal L (9) 5.7 

Cingulate L (12) 2.3 Parietal R (4) Cingulate R (6) 5.5 

 

The side-loading condition is shown in figure 6 panel B. A larger global damage is seen in this 

case where the percent change in total edge strength is 10.3% at 96 h. Many connections show 

damage resulting in larger change in the degree and edge weight. These two measures are shown 

as a percentage change in table 2 for the most damaged regions or connections. While these 

results reconfirm that regions with high strain and strain rate seen in the FE results show higher 

network degradation, they also show damage to some additional ROIs. The right parietal lobe 

had low strain compared to other regions in the orange trace of figure 1, panel E. 
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However, the right parietal region is connected to other regions with high damage. As a result, 

the parietal lobe is at risk to be affected by damage to white-matter pathways from these distant 

brain regions. 

Table 2. Percent change in degree and edge weight for the most damaged regions in the 

side-loading condition. 

Region 

(No.) 

Degree 

(%) 

Edge Connection 

(No.) 

Weight 

Reduction 

(%) 

Occipital R (5) 20.1 Lat. Temporal R (2) Parietal R (4) 35.5 

Lat. Temporal R (2) 16.4 Occipital R (5) Parietal L (10) 28.4 

Parietal R (4) 15.5 Parietal R (4) Occipital L (11) 28.3 

 

The betweenness indicates the presence of a hub in the network. This measure is calculated for 

the initial network to gain a better understanding of which ROI would potentially create a more 

widespread effect on the network if damaged. Figure 7 shows the betweenness for all regions. 

The highest values are seen in the parietal region in both hemispheres followed by the frontal 

lobe of both hemispheres. The right parietal region is among the top three most affected regions 

for degree in tables 1 and 2. This indicates that short paths traversing the parietal region may be 

especially disrupted as a result of damage to the structural network. 

 

Figure 7. The betweenness value for each ROI. This plot shows that the parietal 

and frontal regions allow for the greatest number of multiedge 

connections along paths that minimize edge cost.
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3.2 Network Measure Scale Invariance 

An assessment of network measures is performed on 68-, 114-, 216-, 446-, and 1002-node 

cortical networks in addition to the 12-node network to better understand how the number of 

ROIs affects how damage is applied to the network. These additional networks are the result of 

subdividing the original parcellation (54). There is great variation in the value of network 

measures computed on the initial undamaged network at these different parcellation levels. This 

is shown for a selective representation of measures in figure 8, panels A–D. In panel A, the total 

edge strength of the network increases with the number of nodes because the networks composed 

of a larger number of nodes will have more edges. Both global efficiency and clustering 

coefficients (B and C) show significant change between 12 and 114 nodes. There is less 

variability in these values between 114 and 1002 nodes. The initial high values are the result of 

the 12-node network being the closest to a complete network where all regions are connected. 

The network topology is similar to a single cluster in the small networks rather than the 

collection of localized clusters that is seen in the larger networks. The efficiency and clustering 

coefficient are reduced as the network connections become more sparse after additional nodes 

are used to form the network. The increase in modularity in panel D at high parcellations 

indicates the formation of localized highly connected regions that are not present in the small 

networks. 

It is important to consider normalized network measures due to the large variability of measures 

applied to networks of different scales. The normalized network measure is defined as  

N = [M/M0] 100%, where N is the normalized measure, M is the damaged measure and M0 is  

the undamaged measure. By calculating this normalized measure, the amount of damage is more 

consistent across all parcellations. Panel E of figure 8 shows the normalized measure of total 

edge strength, global efficiency, clustering coefficient, average shortest path, assortativity, and 

modularity at 96 h. All networks shows similar normalized values of total edge strength, global 

efficiency, clustering coefficient, and average shortest path. Of these measures, the total edge 

strength in the side-loading condition has the greatest variation with at most 2.05% difference 

between networks with any number of nodes. However, modularity and assortativity show 

greater deviation at the 12-node network compared with other parcellations. 
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Figure 8. Effects of network scale.  

3.3 Network Measure Sensitivity 

In addition to being scale-invariant, a network measure should be sensitive to different loading 

conditions and be able to predict different magnitudes and locations of damage. Efficiency, 

clustering coefficient, and average shortest path maintain a consistent percentage of damage 

across all parcellations. These measures are chosen for a more detailed analysis of sensitivity. 

The efficiency is useful, as it can be calculated on a global and local scale. The ratio of average 
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clustering coefficient and average shortest path provides a measure that is comparable to the 

global efficiency (35). Figure 9 shows the relative total edge weight, efficiency, and ratio of 

average clustering coefficient and average shortest path through 96 h. The normalized values of 

these measures are 98.1%, 98.0%, and 96.1%, respectively, for the frontal loading and 89.7%, 

89.6%, and 88.0%, respectively, for the side loading. All three measures are reduced consistently 

from 0 to 96 h. For the 12-node network and this level of damage, the more complex network 

measurements such as efficiency do not provide additional information. 

 

Figure 9. Normalized network measures. For this 12-node network, all measures 

show a similar trend. Note that side loading resulted in a larger change 

in these values. 

An analysis of network measures is performed to compare the strength of connections between 

ROIs within the same hemisphere with connections that cross hemispheres to further 

differentiate between loading conditions. To do this, nodes are removed from one hemisphere to 

calculate the global efficiency of the remaining nodes. This results in a measure of global 

efficiency for the right hemisphere only and for the left hemisphere only. Figure 10 shows the 

normalized global efficiency for the right hemisphere, left hemisphere, and the whole brain for 

times up to 96 h. This shows that the normalized efficiency has a 9.0% difference in the right 



 17 

hemisphere compared with the left hemisphere for the side-loading condition at 96 h. Note that 

the global efficiency of the brain as a whole in the right side-loading condition is reduced at a 

level similar to the right hemisphere. This indicates that the damage to edges that connect regions 

across hemispheres is great enough to cause more widespread effects. The frontal loading 

produces a more consistent reduction in normalized global efficiency for both hemispheres with 

only a 1.3% difference between the left and right. These results are expected based on the 

location of fiber segments removed. This shows that network measures are useful to quantify the 

difference in damage to the two hemispheres of the brain based on the loading. 

 

Figure 10. Lateral comparison of efficiency.  

3.4 Discussion and Future Work 

There are two key goals described in this research. The first is to evaluate the possibility of using 

a network with a low number of nodes by investigating which network measures are scale-

invariant. Next is an assessment of the sensitivity of network measures for different loading 

conditions. The achievement of these two goals provides a better understanding of how the 

newly developed weighting methods produce damage in the structural network of the brain. 
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Results suggest that some graph measures are not scale-invariant. Topological information is 

distorted when down-sampling to a 12-node network. As a result, measures such as assortativity 

and modularity are not useful for this small-scale network. However, the normalized measure of 

damage is more consistent for the global efficiency, total edge weight, clustering coefficient, and 

average shortest path across networks with 12 to 1002 nodes. This shows that these network 

measures will be useful for comparing a network of any size.  

Our results indicate that the new weighting method produces different patterns of damage to the 

structural network corresponding to the different loading conditions presented here. Network 

measures such as global efficiency, total edge weight, clustering coefficient, and average shortest 

path are used to show the difference in damage applied to the network on a global level. 

However, all of these measures predict a similar magnitude of global damage. On a 12-node 

network for these loading conditions, there is no advantage in using more complex network 

measures. This shows that local measures are necessary to understand the how damage is applied 

to the network. Nodes on the side closest to the blast origin were more damaged in the side-

loading condition. However, there is only a small amount of variation in the degree in the front-

loading condition. For this loading condition, individual edge weights are the most effective 

indication of where damage takes place. While this is a very simple measure, it is the most 

reliable estimation of damage for a small network such as the 12-node network investigated in 

this research. In addition, individual edge weights show the greatest sensitivity to minor damage 

when relatively few fiber segments are removed from the model. Because of this sensitivity, 

changes in individual edge weights are suggested for use to determine changes in coupling 

strength in an electrophysiological model. 

In future work, the ability to make use of a functional brain network model based on a degraded 

structural network will allow for additional insight into the possible effects of blast loading to the 

brain. In the electrophysiological model, the simulated brain region nodes oscillate at particular 

intrinsic frequencies, and functional networks are formed by connections, or edges, between the 

nodes. The edge weighting in an electrophysiological model will be determined by the edge 

weights estimated in multiple degraded structural networks at different time points (e.g., 

undamaged and at 24, 48, 72, and 96 h). This will allow for the adjustment of coupling strength 

between simulated brain nodes to represent the functional aspect of the network, revealing how 

changes in edge weighting based on the loading condition manifests in changes in the functional 

brain network. Investigation of instability in the functional network due to simulated structural 

network damage predicated from an FE simulation can help improve not only our understanding 

of the physical damage to the brain but also the possibility of electrophysiological impairment. 

This provides a technical framework to use computational methods to understand how structural 

injury links to abnormal electrical oscillations that disrupt the functional connectivity patterns 

associated with successful task performance. In short, this framework links structural damage 

with disrupted functional connectivity that may underlie cognitive impairment.  
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4. Conclusions 

Our larger research program on brain structure-function couplings at ARL integrates modeling 

and experimentation to elucidate the links among structural connectivity, functional connectivity, 

and behavioral performance. The research described in this report details a technical approach to 

improve the understanding of neurotrauma through the combined use of the finite element 

method, structural neuroimaging methods, and graph theory approaches from network science. 

This report presents an expansion of our previous methods using a physics-based simulation to 

inform structural brain network degradation. Our new weighting method using fiber tract 

segments provides increased sensitivity to structural network damage based on graded levels of 

cellular tissue damage. Our results indicate that the new weighting method can differentiate 

between loading conditions in the simulated damage to the structural network model. The results 

also indicate that some graph measures are not scale-invariant and should be selected based on 

the size of the network. Evaluation of a 12-node network shows that the most reliable measure of 

degradation is a reduction in individual edge weights.  

Future work will use time-evolving estimates of degraded edge weights to inform the 

connections between simulated brain nodes in an electrophysiological model and examine how 

different blast-loading conditions change electrical activity in a functional brain network. By 

understanding which brain regions see diminished capacity for communication in the structural 

network, it may be possible understand instabilities in functional connectivity that may underlie 

the cognitive deficits characteristic of traumatic brain injuries. Substantial experimental work is 

needed to better understand how to relate the network degradation described in this work to 

biological injury. However, this method provides a preliminary pathway to construct more 

realistic models of mechanical tissue deformation using information about white-matter tracts 

from diffusion tensor imaging and to develop tools to understand how structural injury translates 

to functional network changes. 
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