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Abstract 

Bandit problems provide an interesting and widely-used setting for the study of 

sequential decision-making. In their most basic form, bandit problems require people to choose 

repeatedly between a small number of alternatives, each of which has an unknown rate of 

providing reward. We investigate restless bandit problems, where the distributions of reward 

rates for the alternatives change over time. This dynamic environment encourages the decision-

maker to cycle between states of exploration and exploitation. In one environment we consider, 

the changes occur at discrete, but hidden, time points. In a second environment, changes occur 

gradually across time. Decision data were collected from people in each environment. 

Individuals varied substantially in overall performance and the degree to which they switched 

between alternatives. We modeled human performance in the restless bandit tasks with two 

particle filter models, one that can approximate the optimal solution to a discrete restless bandit 

problem, and another simpler particle filter that is more psychologically plausible. It was found 

that the simple particle filter was able to account for most of the individual differences. 



  Particle Filtering And Restless Bandits 3 

Modeling Human Performance in Restless Bandits with Particle Filters 

Many real-world environments involve temporal changes that require decision-makers to 

adapt their strategies over time. For example, stock market analysts need to track temporal 

changes in the market carefully, and sport coaches need to track changes in the performance of a 

team. In some environments, a decision has to be made between different choices, each of which 

might be associated with uncertain outcomes that can change over time. For example, drivers 

have to choose between a number of routes each associated with some uncertainty about travel 

times. In addition, traffic changes can lead to changes in the desirability of routes requiring 

drivers to adapt their driving strategy continually. In this research, we study how people perform 

in sequential decision-making situations where each alternative is associated with an uncertain 

payoff and the underlying environment can change at any time, leading to different payoffs for 

each alternative. 

Bandit problems, as originally described by Robbins (1952), provide a classic task to 

study sequential decision making. In a standard, stationary bandit environment, people are given 

a limited number of sequential selections among a fixed set of alternatives, or arms. After each 

decision, an outcome is generated based on a hidden reward distribution specific to the 

alternative chosen; the task of the performer is to maximize the total outcomes after all selections 

have been made. In order to be successful, decision-makers in a bandit environment have to 

balance their selections between general exploration and exploitation behaviors. Exploration is 

characterized by the selection of different arms to learn about the hidden outcome distributions 

for each alternative. Exploitation is characterized by a focus on a single arm, in order to obtain 

rewards from an option that is believed to be sufficiently good as compared to the other 
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competing options. An expected behavior in a standard bandit problem may start with a period of 

exploration, followed by exploitation for the remaining choices. 

In a standard bandit problem (also called a ‘game’), the reward rate for each alternative is 

kept constant over all of the trials. The number of trials in each game may be known, creating a 

finite horizon problem, or unknown, creating an infinite horizon problem. Optimal solutions can 

be found for all cases in finite horizon environments using a dynamic programming approach, 

where optimal decisions are computed for all potential cases starting from the final trial and 

solving for each trial towards the first (Kaelbling et al., 1996). As the length of a game increases 

or the number of alternatives increases, the computation necessary to create a complete decision 

tree increases exponentially. For infinite horizon problems, certain cases may be solved using 

Gittins indices (Gittins, 1989). A Gittins index gives each alternative a utility that takes into 

account an alternative’s current estimated value and the information that can be gained from 

choosing the alternative; the optimal decision is the arm which has the largest index value. 

However, Gittins indices are only applicable to a limited number of bandit problems, and can be 

difficult to compute even in those cases (Berry & Fristedt, 1985). 

When optimal solutions are available, bandit problems provide an opportunity to examine 

whether or how people make the best possible decisions. For this reason, many previous 

empirical studies have been motivated by economic theories, with a focus on deviations from 

rationality in human decision-making (e.g., Banks, Olson, & Porter, 1997; Meyer & Shi, 1995). 

More recently, human performance on the bandit problem has been studied within cognitive 

neuroscience (e.g., Cohen, McClure, &Yu, 2007; Daw, O’Doherty, Dayan, Seymour, & Dolan, 

2006) and probabilistic models of human cognition (e.g., Steyvers, Lee, & Wagenmakers, in 

press). 
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 The environments in empirical studies  have ranged from simple, two-choice bandit 

problems with either one or two non-deterministic arms (Avineri & Prasher, 2006; Banks etal., 

1997; Ben-Elia et al. 2008; Meyer & Shi, 1995) to more complicated environments with more 

than two probabilistic arms (Steyvers et al., in press). While there is evidence of significant 

variation in how people make decisions, people are able to perform significantly better than 

chance performance, though few are able to match optimal levels of performance. 

Most bandit problem research has focused on stationary bandit problem environments, 

and there has been relatively little focus on the restless bandit problem, especially in empirical 

work. In the restless bandit problem, the reward rates for alternatives may change over time, 

rather than remaining stationary through each trial of a game (Whittle, 1988). The introduction of 

non-stationary outcome distributions adds a large element of complexity in computing optimal 

decision processes. But it also provides a strong tie to realistic applications, since most sequential 

decision-making environments found in real life require consideration of changes in the 

environment. People making decisions in a restless environment are faced with the additional 

task of change detection (Brown & Steyvers, 2005; Chinnis & Peterson, 1968, 1970; Massey & 

Wu, 2005), forcing a continuous switch between exploration and exploitation that is not present 

in the stationary case.  

Few empirical studies have looked at human performance in restless bandit tasks. Estes 

(1984) looked at human performance in repeated two-armed bandit problem games with one 

known arm and one fluctuating arm. The known arm provided payoffs at a constant probability, 

while the fluctuating arm provided payoffs with probabilities in a sine-wave pattern over the 

course of a block. It was found that subjects made choices in a mild wavelike pattern 

corresponding to the variation in the alternative reward probabilities. The restless bandit problem 
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has also been studied via brain imaging by Daw et al. (2006), where brain activity has been 

found to be correlated to obtained rewards and exploratory decision-making. Finally, there are a 

few animal learning studies that have measured the ability of animals to adapt to changes in 

reinforcement schedules. These experiments have shown there are substantial individual 

differences in the ability to track and respond to changes (Gallistel, 2001). 

Here, we use a particle filter approach to finding solutions to the restless bandit problem. 

Particle filtering is a sequential Monte Carlo method, where a set of particles is updated at each 

time point to estimate the current state of an environment (see Doucet, de Freitas, & Gordon, 

2001). Particles can be thought of as propositions about the environment’s current state; as 

information is gained, particles that describe the observed data well tend to be propagated, while 

those that do not will tend to be replaced. Over the set of all particles, the propositions form an 

estimate of the distribution of environment states. These estimates can then be used to make an 

informed decision on each step of a problem. Particle filters can be used in many situations 

where Markov Chain Monte Carlo (MCMC) methods become inefficient. For environments 

where a long history may need to be maintained, the MCMC method will require more 

computation time with increasing information. In contrast, particle filters, depending on how 

they are designed, will require less computation time because only a set of hypotheses about the 

current environmental state needs to be maintained.  

Particle filters also hold potential in use as descriptors of human performance (Brown & 

Steyvers, 2009; Daw & Courville, 2007; Sanborn, Griffiths, & Navarro, 2006). By relaxing or 

changing model parameters, we obtain behaviors that deviate from the optimal strategy in ways 

that may be useful in describing human performance on restless bandit problems. An early 

application of particle filters in cognitive science is provided by Sanborn, Griffiths and Navarro 
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(2006), who studied sequential effects in category learning. In their modeling, particles 

correspond to different mental hypotheses about category structures that the human learner might 

track. By manipulating the number of particles, their category learning model naturally spanned 

an interesting range of theoretical possibilities. In particular, when restricted to a single particle, 

their model reduced to Anderson’s (1991) classic ‘rational model’ of category learning, but for a 

sufficiently large number of particles their model mimicked optimal category learning behavior. 

In this way, finding the number of particles needed to model people’s behavior in sequential 

category learning tasks provided a natural theoretical mechanism for estimating the complexity 

of the hypotheses considered by people in learning, and the rationality of their performance.  

A second, very recent application of particle filter methods in cognitive science is 

provided by Brown and Steyvers (2009). These authors applied the particle filter as a descriptor 

of human performance on an inference and prediction task where the outcome generation 

distribution changed over time. Individual differences in human performance on the two tasks 

could be described through shifts in the particle filter’s behavior over changes in model 

parameters. As change detection is a key part of decision-making for the restless bandit, there is 

potential for application of particle filters to describe individual differences in human behavior 

for the restless bandit problems as well.  

In this paper, we present two different simple restless bandit environments for which 

particle filter solutions can be employed. We compare these models  to the performance of 

humans in these environments. 

Experiment 1 

The restless bandit problem used in the first experiment is an extension of sequential 

stationary infinite-horizon problems. The stationary infinite-horizon bandit problem is one in 
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which, after each decision trial, there is a set probability γ that the game will end. That is, the 

distribution of individual game lengths follows a Geometric distribution with parameter γ. While 

games do have an expected length, there is no way of knowing when a game will end. We can 

obtain the restless bandit environment by considering the scenario where these infinite-horizon 

games are played consecutively without breaks, such that the indication of the end of each 

individual game is removed. Without a clear delineation between the change in reward rates, the 

decision-maker must have a method for noticing these changes in order to maintain good 

performance. In the standard bandit problem, the shift between exploration behaviors and 

exploitation behaviors generally occurs only once in a single game. For the restless bandit, we 

expect a shift back and forth between exploration and exploitation, as periods of stable reward 

rates are split by changes that must be detected and accommodated in making decisions. 

We observe the behavior of human participants in these restless bandit environments, and 

compared their performance to two different particle filter methods of solutions. One of these 

solutions is optimal, while the other sub-optimal but has a more flexible in range of possible 

behaviors. We compare general behaviors in the sample of human task-performers to that of the 

models and make observations.  

Participants 

27 participants drawn from the University of California, Irvine Human Subjects Pool to 

perform the experimental task for course credit. No demographic information was recorded. 

Design 

Participants played a series of games (blocks) in restless bandit environments. On each 

trial t of each game, participants were asked to select one of N = 4 alternatives. Each selection Dt 
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generated an outcome yt of either a reward or no reward, based on a Bernoulli draw on the 

selected alternative’s reward rate for that trial tDt ,θ  with )(~ ,tDt t
Bernoulliy θ .  

Reward rates θθθθ on each alternative were drawn from a common generating distribution at 

the start of each game. On each successive trial, the outcome zt of a Bernoulli draw with 

parameter γ determined the alternatives’ reward rates: with probability 1 – γ, reward rates on all 

arms on trial t were maintained to be the same as on trial t-1, and with probability γ, reward rates 

on all arms were redrawn from the generating distribution. An example of the outcome 

generation procedure for a three-arm, 20-trial game can be observed in Figure 2. Arm reward 

rates are visible in the upper plot, changing at randomly distributed time points. Outcomes 

generated are visible in the lower plot; the only outcomes that are observed are from the arms 

that are chosen, denoted by the gray boxes. 

Each participant played through a total of G = 42 games, each with K = 50 trials on N = 4 

alternatives. In all games, the reward rates θθθθ    were drawn from a  Beta(1,1) distribution (i.e., the 

uniform distribution) and we set the change rate γ = 0.2. To facilitate the comparison between 

individual participants and models, a random seed was set such that all participants went through 

the same sequence of games, with the same potential rewards for each of the alternatives in each 

game. The first two blocks performed by each participant were excluded from the final analysis 

as practice blocks; results reflect the actions performed in only the last forty blocks of the 

experiment. 

Apparatus 

The task was performed electronically through a program coded in MATLAB. An 

example of the experiment interface can be seen in Figure 1. Buttons on the right side of the 

window represented the alternatives to be chosen, and each selection generated an outcome in 
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the plots to the immediate left of each button. Red bars indicated that no reward was gained, 

while green bars indicated that a reward was gained. A plot on the far right indicated the number 

of trials remaining in the current game, while text at the top of the window indicated the current 

trial, game, and total rewards accumulated. Participant selections and rewards were recorded, as 

were the hidden reward rates on each trial. Reaction time data were not recorded. 

Procedure 

Participants were introduced to the task without going into a detailed explanation  of the 

reward-generation process. Participants were simply told that reward rates were randomly 

generated without describing the precise generating distribution, and that reward rates would 

change occasionally over the course of each game. Participants were asked to select the 

alternatives that would maximize their total reward. To maintain focus on the reward 

maximization objective, a half-second time penalty before the next selection was given if a no 

reward outcome was generated. 

Results 

Participant performances over the final forty blocks of the experiment were evaluated 

with two different measures: the proportion of trials where a reward was obtained; and the 

proportion of trials where a switch was made. A switch was counted when the alternative chosen 

in a trial was not the same as that chosen in the previous trial. Figure 3 shows a plot where the 

performance of each individual participant is marked with a black triangle. It is immediately 

clear that there is large individual variation in task behavior and performance. A roughly inverted 

U-shape can be observed, where those with the best performances tend to have a moderate level 

of switching, while those who switch arms too often or too rarely experience lower performance. 

Optimal Particle Filter 
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An optimal decision-making procedure can be produced by decomposing the problem of 

solution into two major components. In the first step, based on decisions and outcomes of 

previous trials, the probability of a change in reward rates is estimated for each trial. In the 

second step, these change probability estimates can be translated into a distribution of stable 

periods where there are no changes in reward rate. An optimal decision can be found for each of 

these periods. By then aggregating over all possible periods and their posterior probabilities of 

being the true state, the best decision for the next trial of the game can be calculated. 

This general method of solution lends itself naturally to computation via Monte Carlo 

methods. Particle filtering comes as an especially useful way of looking at this restless bandit 

problem. Each particle contains a single prediction about which trials are associated with a 

change in reward rates. These predictions also include specify how many trials preceding the 

current trial are associated with the same reward rates. If we make a prediction of when the next 

change in reward rate will occur, then we obtain an interval with constant reward rates which 

turns the problem in a finite bandit problem for which an optimal solution can be obtained. In 

this particle filter, we can derive optimal solutions for all inferred stable intervals and pick the 

alternative that corresponds to the mode of the distribution of all optimal solutions. This 

approximates, in the limit of the number of particles, the optimal decision for a trial. 

Particles that better match the observed data have a higher chance of being propagated to 

future trials, and so over a sufficiently large pool of particles, an accurate estimate of the 

changepoint distribution can be obtained. With fewer particles, our estimates may be reduced, 

and the model’s performance will worsen. This may, however, be useful in describing human 

performance and sub-optimality on the task. In the current implementation of the optimal particle 

filter, we look not only at the optimal case with sufficiently large number of particles and 
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properly set expected change rate, but also the range of performance over varying numbers of 

particles and different expected change rates, and compare the optimal model’s performance to 

the range observed in human performance. Details of the optimal particle filter can be found in 

Appendix A. 

Reward Rate Particle Filter 

In the optimal particle filter, particles retain estimates of the trials at which changes in the 

reward rates may have occurred. Each particle can be used to specify a stable interval where no 

changes in reward rate occur; each interval has a calculable solution and optimal decision. Over 

multiple particles, the modal alternative that is chosen will be selected as the optimal decision for 

a trial. While this can provide an optimal solution, this model might not be psychologically 

plausible. The decision step relies on the ability to compute the optimal decision for finite bandit 

problems which might unlikely to be available to human performers. 

For these reasons, we also considered an alternative approach to solving the problem, 

which may be more useful in describing human decision-making behavior. In the reward rate 

particle filter, particles retain an estimate of the reward rate on each alternative. Over all particles, 

we obtain an estimate of the current reward rate for each alternative in the form of distributions. 

The decision step is greatly simplified, taking a greedy approach to selection. For each particle, 

the alternative with the highest reward rate is taken as the best option; the modal alternative 

chosen over particles is the model decision for the trial. The changes made to the particle filter 

model reduce the maximum potential performance, but also increase the range of behaviors 

observable in a fashion that may better account for individual differences observed in human 

participants. As with the optimal particle filter, we have two parameters we manipulate: number 
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of particles, and expected change rate. Details of the reward rate particle filter implementation 

can be found in Appendix B. 

Modeling Results 

Performance of both the optimal and reward rate particle filters were evaluated in terms 

of overall reward rate and inter-trial switch probability over the range of model parameters, 

played over the same forty blocks completed by participants. The range of performance under 

both particle filter models is marked in Figure 3 by the gray shaded areas. The optimal particle 

filter’s range is plotted in dark gray, and the reward rate particle filter is plotted in light gray. 

The optimal particle filter’s range of performance clearly does not describe the majority 

of participants well. The model’s reliance on optimal decision behavior in the final decision step 

brings the base reward rate of the model to that comparable to that of the best human performers, 

even when the model is limited to maintaining only a single particle at each trial. As the number 

of particles used is increased, performance also increases, and as the internal estimate of the 

change rate increases, so do the proportion of trials where a switch is made. For higher internal 

expectations of change rate, model behaviors are similar to a  “Win-Stay, Lose-Shift” strategy: 

When a reward is obtained on the most recent trial, the same arm is selected with probability p, 

with a random other arm chosen otherwise; when a reward is not obtained, a random other arm is 

chosen with probability p, staying on the same arm otherwise. Values of p approaching 1 

increase reward gains while reducing the proportion of switch trials. 

In comparison to the optimal particle filter, the reward rate particle filter has a much 

larger range of overall behaviors over the range of parameters. Increases in the number of 

particles dramatically raises the reward rate, though it asymptotes once the number of particles 

maintained exceeds 100 to 200. Performance of the reward rate particle filter is comparable to 
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that of the optimal at the upper limit; the ‘greedy’ strategy of selecting the arm with the highest 

expected reward rate does not differ significantly in overall reward rate from the strategy 

employed by the optimal model. 

The fact that both the optimal and reward rate particle filters seem to asymptote at such 

low numbers of particles is interesting. Despite the risk of degeneracy, performance does not 

suffer from a relatively coarsely-estimated distribution of change points (in the optimal) or 

current reward rates (in the non-optimal). It requires relatively little effort to obtain a strategy 

that performs well above random chance; a pure “Win-Stay, Lose-Shift” heuristic strategy 

performs nearly as well as the particle filter models at peak parameter settings, in terms of 

overall reward rate. In addition to a ‘greedy’ strategy creating little difference in terms of overall 

performance, the information that needs to be kept in order to make an informed decision does 

not have to be particularly large.  

Despite the fact that simple strategies can create good performance, the fact remains that 

our empirical results show human decision-makers follow a wide range of behaviors, and 

achieving  varying degrees of success. Heuristic strategies and optimal decision-making models 

are too narrow to account for these individual differences well. The sub-optimal particle filter 

model, however, perhaps has the flexibility to describe individual performances with intuitively 

interpretable parameters, while also maintaining the ability to perform at near optimal levels with 

proper parameter choices. 

Experiment 2 

In Experiment 1, we found that the performance of the reward rate particle filter was, 

over the range of parameter values, more adept at describing a larger variety of potential 

behaviors, including those of human subjects, than that of an optimally designed particle filter. In 
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addition, there was relatively little loss in maximum expected rewards when using the reward 

rate particle filter as compared to the optimal. The reward rate particle filter also carries the 

advantage that the decision step is much simpler and the information contained in individual 

particles does not require a memory of previous trials. These properties give the reward rate 

particle filter the potential for applicability in a wider array of environments than the one for 

which it was originally designed. 

For Experiment 2, we look at a different restless bandit environment where changes occur 

continuously over time, rather than at randomly spaced intervals. On each trial, the reward 

probability on each arm is re-sampled from a distribution centered about the reward probability 

from the previous trial. Thus, while there is expected to be little change in reward rate from trial 

to trial, over multiple trials, the reward rates may change drastically. In this environment, the 

best strategy to employ at each time point is to choose the alternative with the largest estimated 

reward rate. 

Once again, we observe the behavior of human decision-makers in this environment and 

compare them to particle filter models. Here, we employ two types of reward rate particle filters: 

one that has a propagation mechanism that matches the environment and a second identical to the 

one used in Experiment 1 that does not match the environment. Our goal is to observe how much 

loss the use of the inappropriate reward rate particle filter incurs, and how it compares to the 

optimal reward rate particle filter. 

Participants 

36 participants were drawn from the University of California, Irvine Human Subjects 

Pool to perform the experimental task, for course credit. No demographic information was 

recorded. 
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Design 

All aspects of the experimental design were maintained from Experiment 1 except for the 

reward rate generation mechanism, such that changes in reward rates occurred continuously over 

trials, rather than at discrete time points. On the first trial of each game, reward rates were drawn 

from a common generating distribution Beta(1,1), as in Experiment 1. On each subsequent trial, 

a new reward rate was drawn on each arm dependent on the previous reward rate, θi,t ~ 

Beta(1+c(θi,t-1),1+c(1- θi,t-1)), where c is a parameter that controls the variability in reward rate 

between trials. The mean of the distribution, 
c

c ti

+

+ −

2

)(1 1,θ
, is slightly biased toward the neutral 

value of 0.5. Increasing parameter c decreases the variance in the generating distribution and 

shifts the mean toward that of the previous trial’s reward rate. An example of a three-arm, 20-

trial game can be observed in Figure 4. As with Figure 2, arm rates are observable in the upper 

panel, while outcomes can be seen in the lower panel. 

As with Experiment 1, each participant played through the same sequence of G = 42 

games, each with K = 50 trials and N = 4 alternatives with c = 10. The first two blocks performed 

by each participant were excluded from the final analysis as practice blocks; results reflect the 

actions performed in only the last forty blocks of the experiment. 

Apparatus 

Aside from the reward rate generation method, no changes were made to the 

experimental program. 

Procedure 

The procedure was nearly identical to that of Experiment 1. Only a slight change to 

experimental instructions was made to reflect the changes in reward rate distribution; changes 

were stated to occur gradually throughout each game, rather than occasionally at random times. 
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Results 

Participant performance was again evaluated on the final forty blocks played,in terms of 

the proportion of trials where a reward was obtained, and the proportion of trials where a switch 

was made. Figure 5 shows participant performance on these measures, marked with black 

triangles. As with Experiment 1, there are large individual differences in participant behavior. 

The inverse U-pattern observed in the previous experiment is again visible, although it is not 

quite as clear. A large group of participants with switch proportions between approximately 0.3 

and 0.45 have overall behaviors that are in line with the “Win-Stay, Lose-Shift” strategy. 

Continual-change Reward Rate Particle Filter 

With the change in the reward-generation environment, changes in decision-making 

strategy must also be made to maintain good performance. A particle filter in which particles 

carry information regarding reward rates should have each particle, when propagated, adjust its 

reward rate estimates in the same way as the environment. Sampled particles’ estimated reward 

rates will first be re-sampled from distributions estimating the level of expected drift in trial-wise 

reward rate before being potentially propagated to the next trial. The decision step of the adjusted 

particle filter remains the same as before, taking the alternative with the highest estimated reward 

rate. This particle filter has two parameters that can be varied. The first, the number of particles, 

serves the same purpose as in the models for Experiment 1. The second parameter, representing 

the expected variability in reward rates between trials, serves a similar function to the expected 

change rate in the Experiment 1 models. Details of the second reward rate particle filter can be 

found in Appendix C. 

Modeling Results 
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Performance measures were obtained for the continual-change and discrete-change 

reward rate particle filter models across model parameters in terms of reward rate and switch rate. 

Figures 5 and 6 show the range of performance under both particle filter models, marked by the 

gray shaded areas. Figure 5 includes both the discrete-change (dark gray) and continual-change 

(light gray) particle filters, while Figure 6 includes the discrete-change particle filter alone. 

The continual-change reward rate particle filter model shows a wide range of overall 

behaviors across its parameters. Performance changes in an expected pattern: increases in the 

number of particles result in an increase in the overall reward rate; increases in the expected 

variability of the environment reward rates results in an increase in switching between 

alternatives. The discrete-change particle filter shows the same pattern as in Experiment 1, 

though flattened both due to the difficulty of the continuous-change environment as well as the 

mismatch between propagation method and environment generation. Comparing the performance 

of the discrete-change particle filter to that of the continual-change particle filter, we find that at 

the highest particle counts, the continual-change particle filter does markedly better than the 

discrete-change model. As a result, there are participants with lower switch rates and high reward 

rates who are not well-described by the discrete-change particle filter, but fall under the range 

covered by the continual-change model. 

We also compare the continual-change model to the discrete-change model in the 

environment of Experiment 1. Figure 7 plots the discrete-change (dark gray) and continual-

change (light gray) particle filter together in the discrete change-point environment across the 

range of model parameters. While in Experiment 2, the discrete-change particle filter lost 

performance due to environment change, there is remarkably little difference between the two 

models’ overall performance range in the Experiment 1 environment. 
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Discussion 

Bandit problems have been utilized extensively in sequential decision-making research, 

but relatively little empirical research has been done with restless environments, where reward 

rates may change over time. Here, we have observed the performance of people in two restless 

bandit environments with different reward rate change dynamics. In the first, reward rates 

changed at discrete, but random time points, for all arms simultaneously; in the second, reward 

rates changed continuously such that there were small short-term changes and large long-term 

changes. We found that people were able to perform the task in both environments but we also 

found substantial individual differences in behavior. Generally, participants who performed best 

were those who switched options at an appropriate rate, while those who switched too much or 

too little performed comparatively worse. This range of behaviors was well described by particle 

filter models. Each the particle filter that we considered had easily-interpretable parameters. One 

parameter is the number of particles that modulates the overall performance. The number of 

particles can be likened to the amount of cognitive resources applied to solving a problem. As 

the number of particles increases, performance increases with diminishing returns for large 

numbers of particles. The other parameter related to the perceived variability in the environment 

and modulated the amount of switching between alternatives. We found that varying these 

parameters explained most of the observed individual differences.  

A natural application of the particle filter approach would be to assess the best-fitting 

parameters for individual participants. This would allow a natural explanation of their behavior 

in terms of interpretable parameters. However, the probabilistic nature of the particle filter model 

creates a lot of variability in overall performance, making it difficult to obtain a precise estimate 

of the average behavior for a specific parameter pair. Thus, it is hard to give a precise 
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characterization of a person’s performance in terms of a best-fitting particle filter model. While 

there is a clear relationship between parameter values and behavior, and parameters do have 

easily interpretable meanings, there is quite a bit of variability in what can be expected from the 

model’s performance. 

Overall, particle filters provide a promising modeling framework not only to approximate 

the optimal solution in restless bandit environments but also to model individual differences.     
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Appendix A 

Details of Optimal Particle Filter for Experiment 1 

The optimal particle filter solution to the given restless bandit environment follows two 

major phases. In the first phase, we propagate particles from the previous trial to the current trial, 

after taking into account the most recently observed outcome. The current implementation of the 

particle filter uses a direct simulation method, using the following steps: 

For t = 1, initialize particles k = 1,…,P, )(~1 γBernoullikz  for each arm, where γ is the 

expected probability of a change in reward rates. 

For t = 2,…,K, 

 Initialize counter p = 0. 

 While p < P, 

  Take sample k ~ U[1,...,P]. 

  Generate proposal )}(~,{ˆ
1 γBernoullizt

k

t−= zz on each arm. 

  Sample u ~ U[0,1]. 

  If uyP t >)ˆ|( z , p = p + 1; zz ˆ=p

t . 

In the second phase, each particle is used to describe an interval where no changes in 

reward rates occur that includes the current trial. The trial of the most recent change point forms 

the start of the interval, while a draw from a Geometric(γ) specifies how many trials remain 

before the end of the period. These intervals describe finite-horizon bandit problems, whose 

solutions can be obtained by dynamic programming (Kaebling et al. 1996). Each interval has an 

optimal selection for the current trial; the mode selection over all particles is the optimal choice 



  Particle Filtering And Restless Bandits 26 

for the model. Two parameters can be manipulated, the number of particles P that are maintained 

on each trial, and the expected change rate γ. 
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Appendix B 

Details of the Discrete-Change Reward Rate Particle Filter 

As with the optimal particle filter, each trial’s decision is based on a two-step solution of 

propagating particles, then selecting an alternative based on the mode response over particles. 

The first step is very similar to that of the optimal particle filter, propagating particles through a 

direct simulation method, except that particles carry reward rate information at the most recent 

trial, rather than change point information over the game played so far: 

For t = 1, initialize particles k = 1,…,P, 1 ~ (1,1)k
Betaθ  for each arm 

For t = 2,…,K, 

 Initialize counter p = 0. 

 While p < P, 

  Take sample k ~ U[1,...,P]. 

  Generate proposal θ̂ on each arm: 

If Bernoulli(γ) = 1, ˆ ~ (1,1)Betaθ for each arm, 

Otherwise k

t 1
ˆ

−= θθ . 

  Sample u ~ U[0,1]. 

  If uyP t >)ˆ|( θ , p = p + 1; θθ ˆ=p

t . 

The decision step is considerably simpler than in the optimal model. Each particle gives a 

predicted reward rate on each arm; the best decision implied by each particle is the alternative 

with the largest reward rate. The mode alternative over all particles is the choice made by the 

model for the next presented trial. As with the optimal particle filter, we can manipulate two 
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parameters, the number of particles P that are maintained on each trial, and the expected change 

rate γ.  
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Appendix C 

Details of Continual-Change Rate Particle Filter 

The continual-change rate particle filter operates similarly to the discrete change particle 

filter, with an identical decision method. What differs is the particle propagation method - after a 

particle is sampled, the proposal particle reward rates are sampled from a distribution centered 

around the reward rates of the sampled particle: 

For t = 1, initialize particles k = 1,…,P, 1 ~ (1,1)k
Betaθ   

For t = 2,…,K, 

 Initialize counter p = 0. 

 While p < P, 

  Take sample k ~ U[1,...,P]. 

  Generate proposal θ̂ on each arm: 

   ˆ ˆ ˆ~ (1 ,1 (1 ))
i i i

Beta c cθ θ θ+ + −  for i = 1,…,N. 

  Sample u ~ U[0,1]. 

  If uyP t >)ˆ|( θ , p = p + 1; θθ ˆ=p

t . 

As with the discrete-change reward rate particle filter, the alternative chosen at the 

decision step is the mode decision over all particles, where each particle implies the best decision 

to be on the arm with the largest reward rate. There are two parameters that we can manipulate, 

the number of particles P that are maintained on each trial, and the estimate of variability in 

reward rates between trials c. 
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Figure Captions 

Figure 1. Sample task interface for Experiment 1 and 2. 

Figure 2. Sample of outcome generation for Experiment 1. Hidden reward rates change at 

discrete time points and are redrawn from the generating distribution at each change. Outcomes 

from each arm are generated based on reward rates; only outcomes from selected arms are made 

visible. 

Figure 3. Subject performances in Experiment 1 (black triangles), against the range of the 

optimal particle filter (dark gray) and reward rate particle filter (light gray). 

Figure 4. Sample of outcome generation for Experiment 2. Hidden reward rates change 

after each trial, based on the reward rate on the previous trial. Outcomes from each arm are 

generated based on reward rates; only outcomes from selected arms are made visible. 

Figure 5. Subject performances in Experiment 2 (black triangles) against the range of the 

continual-change reward rate particle filter (dark gray) and discrete-change reward rate particle 

filter (light gray). 

Figure 6. Subject performances in Experiment 2 (black triangles) against the range of the 

discrete-change reward rate particle filter (light gray). 

Figure 7. Subject performances in Experiment 1 (black triangles) against the range of the 

discrete-change reward rate particle filter (light gray) and continual-change reward rate particle 

filter (dark gray). 
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