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Formulation of an RP-1 Pyrolysis Surrogate from Shock Tube Measurements of 
Fuel and Ethylene Time Histories 
 
Megan E. MacDonald, David F. Davidson, Ronald K. Hanson 
Stanford University, Stanford, CA, 94305  
William J. Pitz, Marcos Mehl, and Charles K. Westbrook 
Lawrence Livermore National Laboratory, Livermore, CA 94550 
 
RP-1 and ethylene time histories have been measured during RP-1 pyrolysis, allowing determination of ethylene 
yields and overall fuel decomposition rates for RP-1.  A decomposition surrogate for RP-1 was formulated using the 
components n-dodecane, methylcyclohexane, and iso-cetane by targeting three decomposition characteristics of the 
fuel: compound class, overall fuel decomposition rate, and ethylene yield.  Decomposition of this surrogate mixture 
was modeled using a newly developed detailed mechanism and the simulations are compared to the experimentally 
measured RP-1 and ethylene time histories.  Comparisons between modeled and measured ethylene yields and 
overall fuel decomposition rates are also reported. 

Nomenclature 
a, b, c = mole fractions of dodecane, MCH, and iso-cetane, respectively, in a multi-component surrogate 
I = laser intensity after passing through an absorbing medium 
Io = laser intensity before passing through an absorbing medium 
L = path length through the absorbing medium in m 
N = the number density (of fuel molecules) in the test mixture in mol/m3 
T = temperature in K 
t = time 
X = mole fraction 

 = absorbance ≡ -ln(I/Io) 
σ(T, ) = absorption cross section (function of temperature and wavelength) in m2/mol 

 

1.  Introduction 
Interest in the decomposition chemistry of kerosene fuels has increased greatly in recent years.  These fuels are often 
used for cooling rocket and high speed aircraft engines, and as the desire for greater engine efficiency and faster 
vehicles increases, the study of coke formation in the cooling system demands greater attention.  To understand this 
coke formation process with intentions to mitigate or eliminate coke, one must begin with the vital initial step, fuel 
decomposition.  It is important to know not only how quickly a fuel breaks apart, but also what products are formed 
during this process.  Once these kinetic parameters have been determined for a fuel, a suitable surrogate mixture can 
be formulated to mimic these parameters. 

Surrogates have long been a method for assisting in the study of a complex multi-component fuel by acting as a 
similar, but simpler, fuel.  In many instances, conclusions formed based on the study of a surrogate can be extended 
to the fuel itself.  They also provide modelers (in both kinetics and computational fluid dynamics) with a method of 
representing, during simulation, a fuel that may have hundreds of components.  Computing the conditions for a 
reacting flow or running a kinetic simulation for the oxidation or pyrolysis of every component of a distilled fuel is 
beyond the current state-of-the-art.  There is historical precedence for simulating the behavior of kerosene-type fuels 
with surrogates.  A great number of surrogates exist in the literature which target the oxidation characteristics of 
kerosenes such as JP-8 and Jet-A [Catalanotti 2011, Colket 2007, Cooke 2005, Dagaut 2002, Edwards 2001, 
Gokulakrishnan 2007, Heneghan 1993, Honnet 2009, Huang 2002, Humer 2007, Lenhert 2007, Lindstedt 2000, Liu 
2009, Mawid 2004, Mensch 2010, Natelson 2008, Saffaripour 2011, Schulz 1992, Vasu 2008, Violi 2002, Wood 
1989, Zhang 2011, Agosta 2004], however, few have been proposed to simulate the behavior of RP-1.  Those that 
exist are given in Tables 1-3. 

From 1995 to 1997, Farmer et al. studied RP-1 and proposed two different multi-component surrogates that 
targeted compound class.  These surrogates are given in Tables 1 and 2. 
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More recently, the National Institute of Standards and Technology (NIST) has developed thermophysical 

surrogates for both RP-1 and RP-2, targeting physical and thermodynamic properties.  These surrogates have been 
included in the NIST program REFPROP [Huber 2009a], which employs these surrogates to predict the 
thermophysical properties of RP-1 and RP-2.  The NIST surrogates are listed in Table 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Although very few surrogates were found for RP-fuels, it is clear that extensive work has been published on 
oxidation surrogates for kerosene jet fuels.  As with RP-1, however, the decomposition behavior of these kerosene 
fuels has not been as thoroughly studied as the oxidation behavior; very few decomposition surrogates were found 
for these fuels [Huang 2002, Liu 2009].  Despite all that it offers to both experimentalist and computationalist, a 
surrogate is quite limited in the number of real-fuel properties that it can match.  The user must be aware of the 
surrogate’s intended purpose in order to utilize it correctly.  Since a fuel surrogate is a simple representation of the 
actual fuel, it is not reasonable to expect that one surrogate can accurately simulate every aspect of the fuel.  The 
extensive list of kerosene oxidation surrogates which were selected based on varying targets indicates a surrogate’s 

Table 1  Multi-component surrogate proposed by 
[Farmer 1996] 

Formula Species Mol % 
C13H12 methylbiphenyl 17.4 
C12H24 n-heptylcyclopentane 45.4 
C12H28 n-tridecane 37.2 

Table 2  Multi-component surrogate proposed by [Farmer 1997] 

Species Type Formula Vol % Mole Fr 
n-Undecane Paraffin C11H24 4.70 0.05013 
Dodecane Paraffin C12H26 6.00 0.05948 
n-Tridecane Paraffin C13H28 18.80 0.17828 
n-Tetradecane Paraffin C14H30 12.50 0.10235 
n-Hexylcyclopentane Monocyclic Paraffin C11H22 2.70 0.02921 
n-Heptylcyclopentane Monocyclic Paraffin C12H24 3.60 0.03570 
n-Octylcyclopentane Monocyclic Paraffin C13H26 11.20 0.10437 
n-Nonylcyclopentane Monocyclic Paraffin C14H28 7.50 0.06547 
Bicycloparaffin1 Polycyclic Paraffin C11H20 11.30 0.13496 
Bicycloparaffin2 Polycyclic Paraffin C12H22 14.70 0.15453 
Pentamethylbenzene Mononuclear Aromatic C11H16 1.30 0.01509 
Hexamethylbenzene Mononuclear Aromatic C12H18 1.70 0.01758 
Dimethylnaphthalene Dinuclear Aromatic C12H12 4.00 0.05285 

Table 3  Multi-component surrogates for RP-1 and RP-2 from 
[Huber 2009a] 

 Composition, mole fraction 
Fluid RP-1 surrogate RP-2 surrogate 

-methyldecalin 0.354 0.354 
5-methylnonane 0.150 0.084 
2,4-dimethylnonane 0.000 0.071 
n-dodecane 0.183 0.158 
heptylcyclohexane 0.313 0.333 
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dependence on the targeted characteristics.  It is for this reason that the surrogate proposed here specifically targets 
the decomposition characteristics of RP-1. 

 

2.  Theory 
Time-histories and decomposition rates from shock tube/laser absorption experiments were obtained using Beer’s 

law, Eq. (1), and the assumption of pseudo-first-order reactions. This process is described in further detail in 
[MacDonald 2011a] and [MacDonald 2011b].   

 (I/Io)  = exp (- N L) (1) 

The absorption cross section, , of gaseous RP-1 was previously measured at 3.39μm using both a Nicolet 6700 
FTIR (for cross sections below 775 K) and a HeNe gas laser in a shock tube (for cross sections at temperatures 
above 800 K) [MacDonald 2011a]. 

In order to report ethylene yields, a knowledge of the cross section of ethylene is also necessary.  The ethylene 
diagnostic utilizes both the 10.532 μm and 10.675 μm wavelengths of the CO2 laser, and the ethylene cross sections 
for both wavelengths were reported in [MacDonald 2011b].  The two-wavelength interference correction method 
described in [MacDonald 2011b], together with the absorption cross sections for ethylene at these two wavelengths, 
can account for product species that may interfere with the measurement of ethylene. 
 As discussed in [MacDonald 2011b], a major product of iso-alkane decomposition is iso-butene.  Since a 
significant fraction of RP-1 is comprised of iso-alkanes (see Table 4), it would be reasonable to expect that iso-
butene appears in the product mixture during RP-1 pyrolysis.  [MacDonald 2011b] also points out that the 
absorption cross section of iso-butene differs between the two CO2 laser lines utilized for the ethylene diagnostic, 
prohibiting its direct subtraction out of the ethylene measurement.  However, the much larger difference in ethylene 
cross sections between the two lines, σC2H4,P14 – σC2H4,P28 ≈ 10 (σi-C4H8,P28 – σi-C4H8,P14), means that any significant 
amount of ethylene will render the absorption of iso-butene at those wavelengths negligible.  Modeling (see Section 
6) indicates that the respective amounts of ethylene and iso-butene, XC2H4 ≈ 10 Xi-C4H8, are such that this is the case 
for all experiments, except possibly for the lowest-temperature point.  For the 1051 K shock experiment, the 
absorbance time histories at the P14 and P28 wavelengths are nearly equivalent, indicating that ethylene no longer 
dominates the absorbance.  This low-temperature point was analyzed using the method developed for analysis of 
iso-cetane decomposition as described in [MacDonald 2011b], allowing for different cross sections of the interfering 
species at the two excitation wavelengths, while the ethylene mole fractions and ethylene yields for all other RP-1 
shock experiments were calculated using the two-line ethylene diagnostic method described for analysis of dodecane 
and MCH decomposition in [MacDonald 2011b]. 

The absorption cross sections at 3.39 m of all of the fuels considered here and their predominant products will 
be necessary for a comparison between the modeled and measured absorbance given in Section 6.  Those for the 
fuels are given in [MacDonald 2011a,b], while those for three primary product species have been measured in the 
current study and are shown in Fig. 1.   
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Fig. 1 Absorption cross sections of small alkenes at 3.39 μm (20 atm). 

3.  Experimental Setup 
The experimental setup employed in the current study is identical to that described in [MacDonald 2011b].  This 

setup is shown schematically in Fig. 2. 
Two lasers were employed for these experiments.   The Jodon HN-10GIR is a fixed-wavelength mid-infrared 

HeNe gas laser operating at 3.39 m (2947.909 cm-1), a wavelength that is strongly absorbed by all of the fuels 
studied.  The Access Laser Company water-cooled LASY-4G CO2 gas laser is operated at two different lines, P14 at 
10.532 μm and P28 at 10.675 μm, which provide the diagnostic for the measurement of ethylene. 

 
 
Fig. 2 Laser absorption experiment schematic. 

 
 Experiments were carried out in the heated High Pressure Shock Tube (HPST) facility at Stanford University.  
The high-pressure shock tube has a circular cross section, with an inner diameter of 5.0 cm and windows located 1.1 
cm from the endwall.  A detailed description of this shock tube can be found in [Petersen 1996, Petersen 1999].  The 
HPST is heated in order to study low-vapor-pressure fuels, but when heating the mixing tank and shock tube, care 
must be taken to ensure that all of the components of RP-1 completely evaporate in the mixing tank and are 
transferred into the shock tube.  This is confirmed with a simple experiment that is described in [MacDonald 2011a].  
Figure 3 shows that complete evaporation occurs up to about 1 mL of RP-1 injected into the mixing tank. 
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Fig. 3 HPST mixing tank complete evaporation check.  Tank temperature 112°C, tank volume 12.84 L.  Solid 
curve is a fit to the data.  The beginning of the roll-off is indicated by the dashed line, and occurs at about 1 
mL. 
 

The roll-off seen in Fig. 3 is an indication that as additional RP-1 is injected, it no longer completely evaporates.  
Therefore, the maximum RP-1 volume injected into the mixing tank was 1.0 mL.  Argon was then added up to the 
desired total pressure and the mixture was stirred in the tank.  The RP-1 vapor was then transferred through heated 
lines into the shock tube at 83°C.  The minimum detectable amount of fuel (with SNR of 1) at the conditions of this 
study is 50 ppm of RP-1.  The fuel mole fraction was measured in the shock tube just prior to the shock using 3.39 
μm laser absorption with the cross section calculated from the fits given in [MacDonald 2011a] and the measured 
temperature in region 1.  The mole fraction calculated from the fuel and total pressures in the mixing tank was 
always within 13% of the absorption-measured mole fraction. 

Because of the endothermic nature of pyrolysis, test gas mixture temperatures after the fuel decomposes will be 
slightly lower than the initial elevated temperatures immediately behind the reflected shock wave.  Absorption 
cross-sections based on this lower temperature were used in the Beer’s Law determination of C2H4 plateau yields 
from the absorption signals. 

The RP-1 (lot number SH2421LS05) was obtained from the Air Force Research Laboratory (Edwards Air Force 
Base) and was refrigerated prior to use to avoid evaporation of the light components.  RP-1 thermodynamic 
properties were determined from REFPROP [Huber 2009a,b] and were used to formulate a seven-coefficient NASA 
polynomial which is listed in [MacDonald 2011a].  This polynomial is a necessary input for the in-house code called 
FROSH that solves the normal shock jump equations and calculates the temperatures and pressures after both the 
incident and reflected shocks. 

4.  Results 
Presented in Fig. 4 are the fuel and ethylene time histories during a sample RP-1 decomposition experiment.  A 

more detailed explanation of how the fuel mole fraction was obtained from absorbance data is given in [MacDonald 
2011a].  Figure 4b shows the peak ethylene yields during RP-1 decomposition.  Ethylene yield is defined here as the 
plateau value of the ethylene mole fraction (or the peak value if the experiment is hot enough that once formed, the 
ethylene starts to decompose) divided by the initial fuel mole fraction.  In other words, it is the number of ethylene 
molecules formed per initial fuel molecule.    Assuming RP-1 values of MW of 170 and H/C ratio of 2.1, an ethylene 
yield of 2 is equivalent to a conversion of carbon in the form of RP-1 to the form of ethylene of 33%. 

It should be noted that the RP-1 mole fractions shown in Figs. 4 and 5 were determined by subtracting the long-
time product absorbance from the total measured fuel and product absorbance. In some cases at later times when the 
product absorbance is significantly larger than the absorbance from RP-1, this subtraction resulted in noise-
generated negative values for the RP-1 mole fraction. 
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Fig. 4 RP-1 decomposition, a) initial reflected shock conditions: 1262 K, 18.4 atm, 0.17% RP-1 in argon, b) 
measured peak ethylene yields as a function of temperature. 
  
 Figure 5 shows the fuel and ethylene time histories for RP-1 decomposition shock experiments at five different 
temperatures.  As expected, the higher the temperature, the faster RP-1 is removed.  The lowest-temperature 
experiment resulted in a product mixture that was not dominated by ethylene.  Therefore, the method described in 
[MacDonald 2011b] was utilized to obtain long-time yield values for ethylene, propene, and iso-butene, but no time 
history is reported for this point. 

  
 
Fig. 5 RP-1 decomposition.  Initial reflected shock conditions: 1051 - 1320 K, 18.4 – 20.4 atm, 0.14 – 0.17% 
fuel in argon. a) Normalized RP-1 mole fraction. b) Ethylene yields.  Uncertainty (as shown Fig. 4) is ±100 
ppm for RP-1 and ±500 ppm for ethylene. 
 

5.  Formulation of an RP-fuel Decomposition Surrogate 
As mentioned in Sec. 1, very few RP-fuel surrogates have been proposed to date and those that do currently exist 

target only compound class or thermophysical properties.  While a much more extensive list of jet-fuel (JP-8 and 
Jet-A) surrogates has been proposed [Catalanotti 2011, Colket 2007, Cooke 2005, Dagaut 2002, Edwards 2001, 
Gokulakrishnan 2007, Heneghan 1993, Honnet 2009, Huang 2002, Humer 2007, Lenhert 2007, Lindstedt 2000, Liu 
2009, Mawid 2004, Mensch 2010, Natelson 2008, Saffaripour 2011, Schulz 1992, Vasu 2008, Violi 2002, Wood 
1989, Zhang 2011], the variety of components utilized in the existing surrogates leads to the obvious conclusion that 
the selection of a surrogate depends greatly on the target.  As of yet, no studies have targeted decomposition in their 
formulations of multi-component surrogates for RP-fuels. 
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Three characteristic traits of decomposition are targeted in this study: compound class, overall fuel decomposition 
rate, and ethylene yield.  As checks to ensure that this surrogate represents RP-1 as closely as possible, the 
molecular weight and H/C ratio of the surrogate mixture will also be considered in the formulation process.  First, 
compound class will be considered.   

For the purpose of simplicity, many studies assume a single-component surrogate for chemical kinetic purposes, 
but in doing so, neglect the finite affects of various hydrocarbon compound classes on the kinetics of the real fuel.  
For example, while the decomposition of a branched alkane results in a product mixture containing mostly ethylene 
and other small straight-chain alkenes and alkanes [Herbinet 2007, Klingbeil 2008], [Holman 1966] states clearly 
that during the pyrolysis of iso-cetane, iso-butene constituted 50% of the product species, making it by far the most 
predominant product.  This is in accord with the LLNL – iso-cetane predictions for all temperatures studied here, in 
which the most prevalent iso-cetane decomposition product is iso-butene, followed by propene, methane, and 
ethane.  Since the decomposition of these compound classes result in quite different product mixtures, and since RP-
fuels contain both normal and branched alkanes, along with a large fraction of cycloalkanes, it will be necessary to 
formulate a multi-component surrogate if this surrogate is to be useful in modeling the decomposition behavior of 
RP-fuels.  A recent publication by Billingsley et al. clearly indicates the breakdown of compound classes in RP-1 
and RP-2 [Billingsley et al. 2010].  This is shown in Table 4. 

 
 

 
It is immediately apparent that a major fraction of RP-fuels are cycloparaffins (cycloalkanes).  The hydrocarbon 

methylcyclohexane (MCH) has commonly been used to represent cycloalkanes in many jet-fuel surrogates [Cooke 
2005, Heneghan 1993, Humer 2007, Schulz 1992, Vasu 2008, Violi 2002, Wood 1989] and previous studies of both 
its pyrolysis [Orme 2006, Zeppieri 1997, Taylor 1988, Brown 1989, Kralikova 1987, Lander 1971, Granata 2003] 
and oxidation [Vasu 2009, Hong 2011, McEnally 2005, Granata 2003, Pitz 2007, Agosta 2004] can be found in the 
literature.  Thus MCH was selected as the cycloalkane for the proposed surrogate.  Although it is important to 
capture the chemistry of each compound class contained in RP-fuels, including a two- or three-ringed cycloalkane 
would greatly increase the complexity of the surrogate.  For this reason, and because single-ringed cycloalkanes 
represent the majority of the cyclocalkanes in Table 4, multi-ring cycloalkanes will be grouped into an all-inclusive 
cycloalkane group that will be represented by MCH. 

Another notable aspect of Table 4 is the split between normal and branched alkanes.  Many historically reported 
compound class breakdowns neglect to distinguish between normal and branched alkanes.  This, and the difference 
in composition between RP-fuels and most jet fuels (which contain a larger percentage of n-alkanes [Violi 2002]), 
explains why most jet-fuel surrogates utilize primarily normal alkanes.  It is apparent from Table 4 that the majority 
of alkanes in RP-1 and RP-2 are actually branched.  [Albright et al. 1983, Frey 1933, Frey 1934] indicate that 
normal and branched alkanes containing an equivalent number of carbon atoms decompose at different rates.  Also, 
[Agosta 2004] emphasizes the importance of including both normal and branched alkanes in a JP-8 surrogate 

Table 4  Average RP-1/RP-2 Class 
Composition [Billingsley 2010]  

Hydrocarbon Type Mass % 
Paraffins  
    n- 5 
    iso- 39 
    Total 44 
Cylcoparaffins  
    Cycloparaffins 34 
    Dicycloparaffins 17 
    Tricycloparaffins 4 
    Total 55 
Aromatics  
    Alkylbenzenes 0.5 
    Indans+Tetralins <0.5 
    Naphthalene <0.5 
    Naphthalenes 0.5 
    Total 1 



8 
 

intended to match kinetic targets.  For these reasons, it will be important to include a both a normal and a branched 
alkane in the proposed surrogate. 

As the two readily-available branched alkanes are iso-octane and iso-cetane, these were considered as the options 
in selecting a suitable branched alkane.  N-dodecane will be utilized as the normal alkane due to the extensive 
decomposition work that already exists concerning this hydrocarbon [Tilicheev 1939, Greensfelder 1945, Voge 
1949, Zhou 1986, Zhou 1987, Yoon 1996a,b, Yu 1997, Klingbeil 2008, Watanabe 2001, Dahm 2004, Herbinet 
2007, Wang 2011, Jiang 2011, Liu 2008, Gascoin 2008, MacDonald 2011a,b], and also because it matches the H/C 
ratio of RP-1 quite closely. 

By matching compound class, the RP-1 decomposition surrogate components have been narrowed to MCH, n-
dodecane, and either iso-octane or iso-cetane.  Having noted this, the second target, overall fuel decomposition rate, 
will be considered.  Overall fuel decomposition rates for RP-1 were calculated from the measured RP-1 time history 
with the method described in [MacDonald 2011b].  Figure 6 shows the recently-measured high-temperature overall 
fuel decomposition rates for RP-1.  Also shown are similar rates for n-dodecane [MacDonald 2011a,b], iso-octane 
[Davidson et al. 2007], iso-cetane [MacDonald 2011b], and MCH [MacDonald 2011b]. 

 
 
Fig. 6 Decomposition rates of RP-1 and possible surrogate components 

 
It is apparent in Fig. 6 that n-dodecane decomposes more slowly than RP-1 and is thus not an ideal single-

component decomposition surrogate.  If the only target were decomposition rate, iso-octane would be the ideal 
surrogate.  However, a single-component surrogate would not match the compound classes of RP-1 and would 
therefore poorly predict the product distribution resulting from its decomposition.  Furthermore, iso-octane has a 
much lower molecular weight and a much higher H/C ratio than RP-1.  Thus it becomes necessary to utilize a 
branched alkane that is both heavier and decomposes faster than iso-octane in order to balance out the effects of the 
slowly-decomposing n-dodecane.  As seen in Fig. 6, iso-cetane decomposes faster than iso-octane, and it clearly has 
a higher molecular weight, making it the ideal third component in an RP-1 decomposition surrogate. 

The third consideration in selecting a suitable RP-1 decomposition surrogate is ethylene yield.  Ethylene is a 
primary product in the decomposition of dodecane, MCH, and RP-1 which makes it an ideal species to use as a 
target for the proposed RP-1 decomposition surrogate.  Measurements of ethylene yield for dodecane, MCH, and 
iso-cetane were reported in [MacDonald 2011b].  Measured ethylene yields for RP-1 are given in Fig. 4 and the 
comparison of all measured yields is shown in Fig. 7.  A cursory look at Figs. 6 and 7 shows that the decomposition 
rate of RP-1 can be matched with a combination of only MCH and iso-cetane.  However, dodecane must be included 
in the mixture in order to match the RP-1 ethylene yield.  This confirms the necessity of utilizing all three possible 
surrogate components studied in [MacDonald 2012] for a multi-component RP-1 decomposition surrogate. 
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Fig. 7 Ethylene yields during decomposition of RP-1 and three possible surrogate components.  Solid lines 
are best fits to the data.  Dodecane, iso-Cetane, and MCH data from [MacDonald 2012]. 

 
The compound class target has now been satisfied, and the overall fuel decomposition rate and ethylene yield 

targets have been useful in the process of identifying the necessary components.  These last two targets will now be 
completely satisfied through the selection of the mole fractions of each surrogate component. Throughout the 
discussion of the next two targets, it will be assumed that both decomposition rate and ethylene yield are linearly 
additive when mixtures of fuels are considered.  The accuracy of this assumption has been debated in the literature, 
as [Albright, Cyril, and Corcoran 1983] state that “In general, if two paraffins are cracked in admixture, they behave 
as if they were cracked separately.  Both rates and selectivities are unchanged.” [Agosta 2004], however, maintains 
that “the autoignition properties of the mixture cannot be simply reproduced by linear blending rules.”  Although the 
latter statement was directed at the oxidation process, it is a warning that for kinetic purposes, linear blending rules 
may not result in a mixture with the expected behavior.  However, as no other blending strategies have been 
proposed, linear blending rules will be utilized here to estimate an RP-1 pyrolysis surrogate.  With this assumption, 
these two remaining targets can be satisfied in a straightforward manner.  Listed in Table 5 are the best fit 
polynomials for the ethylene yields (Fig. 7) and overall fuel decomposition rates (Fig. 6) of all three surrogate 
components and for RP-1 itself. 

 
 
 

Letting x, y, z, and k represent the overall fuel decomposition rates of dodecane, MCH, iso-cetane, and RP-1, 
respectively, the overall fuel decomposition rate target can be satisfied with the equation ax+by+cz = k, where a, b, 
and c are the mole fractions of dodecane, MCH, and iso-cetane, respectively.  Similarly, letting p, q, r, and e be the 
ethylene yields for dodecane, MCH, iso-cetane, and RP-1, respectively, the ethylene yield target can be satisfied 
with the equation ap+bq+cr = e.  Noting that this mixture must have mole fractions summing to one, the third 
equation necessary to solve this linear system is clearly a+b+c = 1.  Apparent in Table 5 is the temperature 
dependence of each variable listed.  This temperature dependence of the target variables means that the ideal 
surrogate composition will also vary with temperature, and this is shown in Fig. 8. 
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Table 5  Best-fit polynomials for overall fuel decomposition rates and ethylene yields 

Fuel Decomposition Rate [1/s] Ethylene Yield 
n-dodecane x = 1.06e14 exp(-30200/T) p = -8.98e-6 T2 + 2.97e-2 T – 19.3 
MCH y = 5.73e11 exp(-24900/T) q = 2.15e-3 T – 2.00 
iso-cetane z = 1.05e15 exp(-29400/T) r = 0.15 
RP-1 k = 3.26e14 exp(-30600/T) e = 5.68e-3 T + 5.49 
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Fig. 8 Composition of an RP-1 decomposition surrogate as a function of temperature. 
 
The mixture selected for comparison with measured RP-1 data was an average composition over the 1000 – 1500 

K temperature range.  This mixture is 32% dodecane, 59% MCH, and 9% iso-cetane.  Its molecular weight is 133 
g/mol, which is about 22% lower than that of RP-1 (170 g/mol), but its H/C ratio is 2.06, quite close to that of RP-1, 
which is given as 2.1 [Edwards 2003].  Its comparison with the RP-1 overall fuel decomposition rate is shown in 
Fig. 9 and with the measured RP-1 ethylene yields is shown in Fig. 10. 

In Fig. 9, the best fits to the measured dodecane, MCH, and iso-cetane overall fuel decomposition rates are shown 
in order to provide a reference for how well the surrogate mixture matches the RP-1 data shown.  The maximum 
difference between the RP-1 overall fuel decomposition rate data and those calculated for the surrogate mixture is 
50%. 

 
 

Fig. 9 Comparison of measured RP-1 overall fuel decomposition rates with the linear combination of the 
measured overall fuel decomposition rates from the surrogate components.  Dodecane, iso-Cetane, and MCH 
data from [MacDonald 2012]. 
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Figure 10 shows a similar comparison for ethylene yield.  Here it is apparent that this temperature-averaged 
surrogate matches the temperature-dependent surrogate near 1150 K.  The slope of the ethylene yield curve for the 
surrogate is obviously dominated by its major component, MCH.  The maximum difference between the RP-1 
ethylene yield and those calculated for the surrogate mixture is 55% at the lowest temperature (difference in yield of 
0.3). 

 
 

Fig. 10 Comparison of measured RP-1 ethylene yields with the linear combination of the measured overall 
ethylene yields from the surrogate components.  Dodecane, iso-Cetane, and MCH data from [MacDonald 
2012]. 

 

6. Mechanism Predictions 
Since this new RP-1 pyrolysis surrogate utilizes three species, each from a different compound class, it was 

necessary to combine the existing mechanisms for each component into a new all-inclusive mechanism.  This was 
carried out with the LLNL – n-alkane, MCH, and iso-cetane mechanisms and the resulting mechanism will be 
referred to as LLNL – mix.  It has been utilized here along with the newly-proposed surrogate to simulate the 
decomposition behavior of RP-1.   

Figure 11 shows the absorbance time history for the 3.39 μm HeNe laser.  At early times, absorption at this 
wavelength is dominated by the fuel, while at later times, the absorbance plateau is due to absorption from the 
product species.  As measurement of the mole fractions of each of these product species would require more 
wavelengths than were utilized in this study, a comparison is made between the total measured absorbance at 3.39 
μm and the model-predicted absorbance at 3.39 μm.  This predicted absorbance time history was modeled using the 
LLNL – mix mole fractions for dodecane, MCH, iso-cetane, ethylene, propene, and iso-butene and the cross sections 
of each which are given in [MacDonald 2011a,b] and Section 2.  Based on the low-temperature and low-pressure 
cross section data from [PNNL] for iso-butene in the 3.4 μm region, the cross section of iso-butene at 3.39 μm and 
the conditions of interest was estimated to be 10 m2/mol.  Figure 11 shows the measured and modeled absorbance 
time histories for a sample shock experiment.  Although the absorption characteristics of the surrogate components 
were not considered in the selection of this mixture, the initial predicted absorbance is only about 10% lower than 
the initial measured absorbance.  Throughout the rest of the absorbance time history, the predicted absorbance 
matches the measured absorbance to within 30%.  For these RP-1 experiments, the maximum difference between the 
predicted absorbance and the measured absorbance was on average 35%. 
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Fig. 11 Measured and predicted absorbance for initial reflected shock conditions: 3.39 μm. 1262 K, 18.4 
atm, 0.17% RP-1 in argon. 

 
The predicted ethylene time history during decomposition is shown in Fig. 12a as compared to that measured during 
RP-1 decomposition at 1262 K and ethylene yields for each RP-1 experiment with their corresponding modeled 
yields are shown in Figure 12b. 

 
 

  
 
Fig. 12 Ethylene measurements during RP-1 decomposition. a) Comparison of measured and modeled 
ethylene time histories at initial reflected shock conditions: 1262 K, 18.4 atm, and 0.17% fuel in argon.  b) 
Comparison of measured RP-1 and LLNL-mix + Surrogate 1-predicted ethylene yields.  Modeled results 
utilized Surrogate 1 for RP-1. 
 

The LLNL – mix mechanism and Surrogate 1 combination actually predict the measured RP-1 ethylene yield 
relatively well.  It should be noted that both the mechanism and the surrogate were developed completely 
independently from the RP-1 measurements. 
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7. Conclusion 
An RP-1 decomposition surrogate was formulated based on three targets: compound class, overall fuel 

decomposition rate, and ethylene yield.  This surrogate contains 32% dodecane, 59% MCH, and 9% iso-cetane and 
captures the RP-1 overall fuel decomposition rate to within 50% and ethylene yield to within 55%.  Comparison 
with a newly-developed mechanism indicates that three predominant products of RP-1 decomposition are ethylene, 
propene, and iso-butene and that as temperature increases, the production of ethylene increases. 
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