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Abstract

A popular approach to high dimensional control problems in robotics
uses a library of candidate “maneuvers” or “trajectories”[13, 28]. The li-
brary is either evaluated on a fixed number of candidate choices at runtime
(e.g. path set selection for planning) or by iterating through a sequence of
feasible choices until success is achieved (e.g. grasp selection). The perfor-
mance of the library relies heavily on the content and order of the sequence
of candidates. We propose a provably efficient method to optimize such li-
braries leveraging recent advances in optimizing sub-modular functions of
sequences [29]. This approach is demonstrated on two important problems:
mobile robot navigation and manipulator grasp set selection. In the first case,
performance can be improved by choosing a subset of candidates which op-
timizes the metric under consideration (cost of traversal). In the second case,
performance can be optimized by minimizing the depth the list is searched
before a successful candidate is found. Our method can be used in both on-
line and batch settings with provable performance guarantees, and can be
run in an anytime manner to handle real-time constraints.

1 Introduction
Many approaches to high dimensional robotics control problems such as
grasp selection for manipulation [4, 15] and trajectory set generation for au-
tonomous mobile robot navigation [16] use a library of candidate “maneu-
vers” or “trajectories”. Such libraries effectively discretize a large control
space and enable tasks to be completed with reasonable performance while
still respecting computational constraints. The library is used by evaluat-
ing a fixed number of candidate maneuvers at runtime or iterating through
a sequence of choices until success is achieved. Performance of the library
depends heavily on the content and order of the sequence of candidates.

This class of problems can be framed as list optimization problems where
the ordering of the list heavily influences both performance and computation
time [27]. In such settings queries arrive sequentially and decisions have to
be taken at each time step either by searching a list until success is achieved
(grasp selection, novelty detection) or generating a subset of the list to be
evaluated (trajectory set generation). For problems such as grasp selection
where the system is searching for the first successful grasp in a list of candi-
date grasps, performance is dependent on the depth in the list that has to be
searched before a successful answer can be found. For problems where the
system must generate a subset of a bigger list to be evaluated, performance
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is dependent on the subset maximizing a metric. For the case of trajectory
set generation this corresponds to coming up with a set of trajectories such
that the computed cost of traversal of the robot is minimized.

As we show below, maneuver library optimization problems exhibit the
property of monotone sequence submodularity [14, 29]: the value of adding
each addition element to the list yields diminishing returns over earlier addi-
tions. For example, in the case of grasp selection, adding a candidate grasp
to a pre-existing large list of grasps does not increase the chance of select-
ing a successful grasp as much as adding the candidate grasp to a smaller
subsequence of that list would.

In this paper we take advantage of recent advances in submodular se-
quence function optimization [29] to propose an approach to high-dimensional
robotics control problems that leverages the online and submodular nature
of list optimization. The results of Streeter et al. [29] establish algorithms
that are near-optimal (within known NP-hard approximation bounds) in both
a fixed design and no-regret sense. Such results may be somewhat unsatis-
factory for the control problem we address as we are concerned about per-
formance on future data and thus we consider two such batch settings: static
optimality where we consider a distribution over training examples that are
independently and identically distributed (i.i.d) (grasp selection) and a form
of dynamic optimality where the distribution of examples is influenced by
the execution of the control libraries. We show that online-to-batch conver-
sions [6] combined with the advances in online submodular function maxi-
mization enable us to effectively optimize these control libraries.

For the trajectory sequence selection problem, we show that our ap-
proach exceeds the performance of the current state of the art by achiev-
ing lower cost of traversal in a real-world path planning scenario [16]. For
grasp selection (related to the MIN-SUM SUBMODULAR COVER problem)
we show that we can adaptively reorganize a list of grasps such that the
depth traversed in the list until a successful grasp is found is minimized.
Our approach outperforms approaches such as random grasp orderings or
orderings that rank grasps by average rate of success. We emphasize that
although our approach in both cases is online in nature, it can operate in
an offline mode where the system is trained using prior collected data to
learn to optimize a list of candidate grasps or trajectories. During runtime
the learned static list (or distribution over lists) can then be utilized for all
queries without incorporating additional performance feedback.

In Section 2 we briefly review the use of control libraries for various
robotics problems. In Section 3 we review the concept of sequence submod-
ularity and outline the approach for online monotone sequence submodular
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function optimization we use in the two application domains. Section 4 and
Section 5 explains the versions of the approach specifically applied to the
two domains, experimental set-up and performance results compared with
the state-of-the-art in the domains of path planning and grasp selection. We
conclude in Section 6 with future work in this area.

2 Control Libraries
Control libraries approximate a large (possibly infinite) set of feasible con-
trollers by sampling and storing a (relatively) small number of controllers.
At runtime, the goal becomes to find the “best” element of the library to ex-
ecute from that library. If the library was chosen well, an approximation to
the optimal control can be found in the library while maintaining a limit on
computation.

Stolle et al [28] have used trajectory libraries from expert demonstration
to find suitable control policies in high dimensional spaces for a walking
robot in an anytime manner. Frazzoli et al [13] recorded expert human pi-
lots aggressively flying small unmanned vehicles and created a library of
trajectory primitives. Given a planning task, a feasible trajectory could then
be quickly generated using a concatenation of these stored trajectories. The
advantage of such a library was that each of the stored trajectory primitives is
guaranteed to be dynamically feasible and hence a new trajectory generated
by a concatenation of such primitives is also dynamically feasible, subject
to certain transition constraints.

Grasp sequence ranking is usually accomplished by evaluating the force
closure and stability criterion for all grasps within a library, then executing
the one with the highest score[4, 26, 7, 8]. Goldfeder et al.[15] store a library
of precomputed grasps for a wide variety of objects. Given a novel object
they find the closest object in the library and use the grasps associated with
that object to suggest a grasp for the new scenario.

In path planning for mobile robot navigation, one of the most power-
ful methods leverages a “local planner” [17] that evaluates a sequence of
trajectories[16] to identify the best trajectory amongst these and then ad-
vances a portion of this trajectory. This is executed in a receding-horizon
fashion. Various methods have been proposed for generating suitable se-
quences of trajectories offline [16, 5, 10], but because in many cases this
entire set of stored trajectories maybe evaluated for each situation, the size
of this library is strictly limited by available online computation.

A fundamental question remaining is how such control libraries should
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be constructed and organized in order to maximize the performance on the
task at hand while minimizing search time. We provide a data-driven ap-
proach to the problem of constructing and optimizing control libraries.

3 Review of Submodularity and Maximiza-
tion of Submodular functions
A function f : S → [0,1] is monotone submodular for any sequence S ∈S
where S is the set of all sequences if it satisfies the following two properties:

• (Monoticity) for any sequence S1,S2 ∈ S , f (S1) ≤ f (S1 ∪ S2) and
f (S2)≤ f (S1∪S2)

• (Submodularity) for any sequence S1,S2 ∈ S , f (S1) and any action
a ∈ V ×R>0, f (S1∪S2∪〈a〉)− f (S1∪S2)≤ f (S1∪〈a〉)− f (S1)

where ∪ means order dependent concatenation of lists.
In the online setting α-regret is defined as the difference in the perfor-

mance of an algorithm and α times the performance of the best expert in
retrospect. Streeter et al. [29] provide algorithms for maximization of sub-
modular functions whose α-regret (regret with respect to proven NP-hard
bounds) approaches zero as a function of time.

We review here the relevant parts of the online submodular function
maximization approach as detailed by [29]. Assume we have a list of fea-
sible control actions A , a sequence of tasks f1...T , and a list of actions of
length N that we maintain and present for each task. One of the key compo-
nents of this approach makes use of the idea of an expert algorithm. In this
approach, the order of the selected list for each task is chosen by N expert
algorithms, each of whom gives out a piece of advice for its assigned slot
in the list. The algorithm runs N distinct copies of this expert algorithm:
E1,E2, . . . ,EN , where each expert algorithm Ei maintains a distribution over
the set of possible experts (in this case action choices). Just after task ft ar-
rives and before the correct sequence of actions to take for this task is shown,
each expert algorithm Ei selects a control action at

i . The list order used on
task ft is then St = {at

1,a
t
2, . . . ,a

t
N}. At the end of step t, the value of the

reward xt
i for each expert i is made public and is used to update each expert

accordingly.
When it is possible to evaluate the marginal reward for each expert

(action/control primitive) for every slot the randomized weighted majority
(WMR) [22] may serve as the experts algorithm subroutine as it needs full
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information feedback. In the trajectory selection case one would have to
evaluate all the feasible trajectories for the robot. This is an option in the
offline case when time is not a constraint but is not feasible online. It is
hence desirable to use an experts algorithm subroutine which requires the
marginal rewards of only those actions which are chosen to populate the
sequence (EXP3 [2]).

4 Application: Mobile robot navigation
Traditionally, path planning for mobile robot navigation is done in a hierar-
chical manner with a global planner at the top level driving the robot in the
general direction of the goal while a local planner makes sure that the robot
avoids obstacles while making progress towards the goal. The local planner
runs at a high frequency and at every time step evaluates a set of feasible
control trajectories on the immediate perceived environment to find the tra-
jectory yielding the least cost of traversal. The robot then moves along the
trajectory, which has the least sum of cost of traversal and cost to go to the
goal from the end of the trajectory for one time step. This process is then
repeated at each time step.

This set of feasible trajectories is usually computed offline by sampling
from a much larger (possibly infinite) set of feasible trajectories. Such
library-based model predictive approaches are widely used in state-of-the-
art systems leveraged by most DARPA Urban Challenge, Grand Challenge
(including the two highest placing teams for both)[32, 23, 31, 30] as well as
on sophisticated outdoor vehicles (LAGR[18], UPI[3], Perceptor[19]) devel-
oped in the last decade. A particularly effective method for generating such
a library is to generate the set of trajectories greedily such that the area be-
tween the trajectories is maximized [16]. As this method runs offline, it does
not adapt to changing conditions in the environment nor is it data-driven to
perform well on the environments encountered in practice.

Let cost(ai) be the cost of traversing along trajectory ai sampled from the
possible set of trajectories. Let N be the budgeted number of trajectories that
can be evaluated during real-time operation. For a given set of trajectories
{a1,a2, ...,aN} sampled from the set of all feasible trajectories, we define
the monotone, submodular function that we maximize using the lowest-cost
path from the set of possible trajectories as f : S → [0,1]:

f ≡ No−min(cost(a1),cost(a2), . . . ,cost(aN))

No
(1)
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where No is a constant normalizer which is the highest cost trajectory that
can be expected for a given cost map.

We present the general algorithm for online selection of action sequences
in Algorithm.1. The inputs to the algorithm are the number of action prim-
itives N which can be evaluated at runtime within the computational con-
straints and N copies of experts algorithms, E1,E2, ...,EN , one for each posi-
tion of the sequence of actions desired. The experts algorithm subroutine
can be either Randomized Weighted Majority (WMR)[22] (Algorithm.3)
or EXP3 [2](Algorithm.2). T represents the number of planning steps the
robot is expected to carry out. In lines.1-5 a sequence of trajectories is
sampled from the current distribution of weights over trajectories main-
tained by each copy of the expert algorithm using the function. Function
sampleActionExperts(Ei) samples the distribution of weights over experts
(trajectories) maintained by experts algorithm copy Ei to fill in slot i (Si

t) of
the sequence without repeating trajectories selected for slots before the ith

slot.
The sequence of trajectories St is evaluated on the current environment

around the robot in line.6 to find the trajectory a∗ which has the least sum of
cost of traversal and cost to go to the goal from the end of the trajectory. This
trajectory is then traversed for the time4t until the next planning cycle.

As a consequence of traveling the best trajectory a∗ the robot encounters
the next environment ENV (line.7). In lines.8-13 each of the experts algo-
rithms weights over all feasible trajectories are increased if the monotone
submodular function ft is increased by adding trajectory ai

j at the ith slot.
The function sampleActionExperts in the case of EXP3 corresponds to

executing lines.1-2 of Algorithm.2. For WMR this corresponds to executing
line.1 of Algorithm.3. Similarly the function updateWeight corresponds to
executing lines.3-6 of Algorithm.2 or lines.3-4 of Algorithm.3.

The learning rate ε for WMR is set to be 1√
T

where T is the number
of planning cycles, possibly infinite. For infinite or unknown planning time
this can be set to 1√

t where t is the current time step. Similarly the mixing

parameter γ for EXP3 is set as min
{

1,
√
|A | ln |A |
(e−1)T

}
.

Note that actions are generic and in the case of mobile robot naviga-
tion are trajectory primitives from the control library. Later on in Section.5
actions are grasps that the manipulator can execute.

T can be possibly infinite as a ground robot can be run for abitrary
amounts of time with new goals or waypoints presented to the robot ev-
ery time the current goal is achieved. Since the choice of T influences the
learning rate of the approach it is necessary to account for the possibility of
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T being infinite.
As mentioned in Section.3 WMR may be too computationally costly for

online applications as it requires the evaluation of every trajectory at every
point in the list whether executed or not. EXP3, by contrast, learns more
slowly but requires as feedback only the cost of the sequence of trajecto-
ries actually executed, and hence add negligible overhead on the trajectory
library approach. For EXP3 line.9 would loop over only the experts chosen
at the current time step instead of |A |.

We refer to this sequence optimization algorithm in the rest of the paper
as SEQOPT.

Algorithm 1 Algorithm for trajectory sequence selection
Require: number of trajectories N, experts algorithms subroutine copies (Algo-

rithms.2 and 3) E1,E2, . . . ,EN
1: for t = 1 to T do
2: for i = 1 to N do
3: ai = sampleActionExperts(Ei)
4: Si

t ← ai
5: end for
6: a∗ = evaluateActionSequence(ENV,St)
7: ENV = getNextEnvironment(a∗,4t)
8: for i = 1 to N do
9: for j = 1 to |A | do

10: rewardi
j = ft(S

〈i−1〉
t ∪ai

j)− ft(S
〈i−1〉
t )

11: wi
j← updateWeight(rewardi

j,w
i
j)

12: end for
13: end for
14: end for

SEQOPT: the approach detailed here and inherited from [29] is an on-
line algorithm which produces a sequence which converges to the greedy
sequence as the time horizon grows. The greedy sequence is guaranteed
to achieve at least 1− 1/e of the value of the optimal list [11]. Therefore
SEQOPT is a 0 α-regret (for α = 1− 1/e here) algorithm. This implies
that its α-regret goes to 0 at a rate of O(1/

√
T ) for T interactions with the

environment.
We are also interested in its performance with respect to future data and

hence consider notions of near-optimality with respect to distributions of
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Algorithm 2 Experts Algorithm: Exponential-weight algorithm for Exploration
and Exploitation (EXP3) [2]

Require: γ ∈ (0,1], initialization w j = 1 for j = 1, . . . , |A |
1: Set p j = (1− γ)

w j

∑
|A |
j=1 w j

+ γ

|A | j = 1, . . . , |A |

2: Randomly sample i according to the probabilities p1, . . . , p|A |
3: Receive reward j ∈ [0,1]
4: for j = 1 to |A | do
5:

x̂t =

{ xt
p j

if t = i
0 otherwise

6: wt ← wtexp( γ x̂t
|A |)

7: end for

Algorithm 3 Experts Algorithm: Randomized Weighted Majority (WMR) [22]

Require: Initialization w j = 1 for j = 1, . . . , |A |
1: Randomly sample j according to the distribution of weights w1, . . . ,w|A |
2: Receive rewards for all experts reward1, . . . ,reward|A |
3: for j = 1 to |A | do
4:

w j =

{
w j(1+ ε)reward j if reward j ≥ 0
w j(1− ε)−reward j if reward j < 0

5: end for
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Figure 1: The cost of traversal of the robot on the cost map of Fort Hood, TX using
trajectory sequences generated by different methods for 30 trajectories per time
step over 1055788 planning cycles in 4396 runs. Constant curvature trajectories
result in the highest cost of traversal followed by Green-Kelly path sets. Our
sequence optimization approach (SEQOPT) using EXP3 as the experts algorithm
subroutine results in the lowest cost of traversal (8% lower than Green-Kelly) with
negligible overhead.

environments. We define a statically optimal sequence of trajectories Sso ∈
S as:

Sso = argmax
S

Ed(ENV)[ f (ENV,S)] (2)

where d(ENV) is a distribution of environments that are randomly sam-
pled. The trajectory sequence S is evaluated at each location. A statically
near-optimal trajectory sequence Sso thus approximately maximizes the ex-
pectation of the Equation 23 (Ed(ENV)[ f (ENV,S)]) over the distribution of
environments ENV, effectively optimizing the one-step cost of traversal at
the locations sampled from the distribution of the environments.

Knepper et al. [20] note that sequences of trajectories are generally de-
signed for this kind of static planning paradigm but are used in a dynamic
planning paradigm where the library choice influences the examples seen
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(a) Constant Curvature (b) Constant Curvature
Density

(c) Green-Kelly (d) Green-Kelly Den-
sity

(e) SEQOPT (EXP3)
Dynamic

(f) SEQOPT (EXP3)
Dynamic Density

(g) SEQOPT (EXP3)
Static

(h) SEQOPT (EXP3)
Static Density

Figure 2: The density of distribution of trajectories learned by our approach
(SEQOPT using EXP3) for the dynamic planning paradigm in Figure.2e shows that
most of the trajectories are distributed in the front whereas for the static paradigm
they are more spread out to the side. This shows that for the dynamic case more
trajectories should be put in the front of the robot as obstacles are more likely to
occur to the side as pointed out by Knepper et al [20]
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(a) Cost map of Fort Hood, Texas (b) Robot simulated driving over cost
map towards goal

Figure 3: We used a real-world cost map of Fort Hood, Texas(3a) and simulated a
robot driving over the map to random goal locations from random start locations
(3b) using trajectory sequences generated by different methods for comparision.
The trajectory in green is evaluated to be the least cost for the pictured planning
cycle.

and that there is little correlation in performance between good static and
good dynamic performance for a sequence. Our approach bridges this gap
by allowing offline batch training on a fixed distribution, or allowing sam-
ples to be generated by running the currently sampled library.

We then define a weakly dynamically optimal trajectory sequence Swdo ∈
S as:

Swdo = argmax
S

[ f (ENV,S)] (3)

where d(ENV|π) is defined as the distribution of environments that are in-
duced by the robot following the policy π . The policy π corresponds to the
robot following the least cost trajectory within Swdo at each situation encoun-
tered. Hence a weakly dynamically optimal trajectory sequence minimizes
the cost of traversal of the robot at all the locations which the robot encoun-
ters as a consequence of executing the policy π . We define this as weakly
dynamically optimal as there can be other trajectory sequences S ∈S that
can minimize the cost of traversal with respect to the distribution of environ-
ments induced by following the policy π .

Knepper et al [20] further note the surprising fact that for a vehicle fol-
lowing a reasonable policy, averaged over time-steps the distribution of ob-
stacles encountered ends up heavily weighted to the sides. Good earlier pol-
icy choices imply that the space to the immediate front of the robot is mostly
devoid of obstacles. It is effectively a chicken-egg problem to find such a
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Figure 4: As the number of trajectories evaluated per planning cycle are increased
the cost of traversal for trajectory sequences generated by Green-Kelly and our
method drops and at 80-100 trajectories achieve almost the same cost of traversal.
It is to be noted that our approach decreases the cost of traversal much faster than
Green-Kelly trajectory sequences.

policy with respect to its own induced distribution of examples, which we
address here as weakly dynamically optimality.

We briefly note the following propositions about the statistical perfor-
mance of Algorithm 1. We elide full proofs to the appendix, but note that
they follow from recent results of online-to-batch learning, [25] combined
with the regret guarantees of [29] on the objective functions we present.
Proposition 1. (Approximate Static Optimality) If getNextEnvironment
returns independent examples from a distribution over environments (i.e.,
the chosen control does not affect the next sample), then for a list S chosen
randomly from those generated throughout the T iterations of the Algorithm
1, it holds that Ed(ENV)[(1−1/e) f (S∗)− f (S)]≤O( ln(1/δ )√

(T )
) with probability

greater then 1−δ .
Proposition 2. (Approximate Weak Dynamic Optimality) If getNextEn-
vironment returns examples by forward simulating beginning with a random
environment and randomly choosing a new environment on reaching a goal,
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then consider the policy πmixture that begins each new trial by choosing a list
randomly from those generated throughout the T iterations of the Algorithm
1. By the no-regret property, such a mixture policy will be α approximately
dynamically optimal in expectation up to an additive term O( ln(1/δ )√

T
) with

probability greater then 1− δ . Further, in the (experimentally typical) case
where the distribution over library sequences converges, the resulting single
list is (up to approximation factor α) weakly dynamically optimal.

4.1 Experimental setup
We simulated a robot driving over a real-world cost map generated for Fort
Hood, Texas (Figure.3) with trajectory sequences generated by using the
method devised by Green et al. [16] for both constant curvature arcs (Fig-
ures.2a, 2b) and trajectories comprised of concatenation of arcs of different
curvatures (Figures.2c, 2d). The cost map and parameters for the local plan-
ner (number of trajectories to evaluate per time step, length of the trajecto-
ries, fraction of trajectory traversed per time step) were taken to most closely
match that given in Bagnell et al. [3].

4.2 Results
4.2.1 Dynamic Simulation

Figure.1 shows the cost of traversal of the robot with different trajectory sets
as a function of number of runs. Each run constitutes the robot starting from
a random starting location and ending at the specified goal on the map. 100
goal locations and 50 start locations for every goal location were chosen at
random. The set of weights for the N copies of experts algorithm EXP3 were
carried over through consecutive runs.

The cost of traversal of constant curvature trajectory sequences grows at
the highest rate followed by using the Green-Kelly path set. The lowest cost
of traversal is achieved by running Algorithm.1 with EXP3 as the experts
algorithm subroutine. At the end of 4396 runs there is a 8% reduction in cost
of traversal between Green-Kelly and our approach (SEQOPT using EXP3).
It is to be emphasized that improvement in path planning is obtained with
negligible overhead. Though the complexity of our approach scales linearly
in the number of motion primitives and depth of the library, each operation
is simply a multiplicative update and a sampling step. In practice it was
not possible to evaluate even a single extra motion primitive in the time
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overhead that our approach requires. In 1 millisecond 100000 update steps
can be performed using Exp3 as the experts algorithm subroutine.

4.2.2 Static Simulation

In addition to the dynamic simulations we also performed a static simula-
tion where for 100 goal locations the robot was placed at 500 random poses
in the cost map and the cost of traversal of the selected trajectory a∗ over
the next planning cycle was recorded. SEQOPT with EXP3 and Green-Kelly
sequences obtained 0.5% and 0.25% lower cost of traversal than constant
curvature sequences respectively. The performance for all three methods
was essentially at par. This can be explained by the fact that Green-Kelly
trajectory sequences are essentially designed to handle the static case of
planning where trajectories must provide adequate density of coverage in
all directions as the distribution of obstacles is entirely unpredictable in this
case.

In the dynamic planning case on the other hand, the situations the robot
encounters are highly correlated and because the robot is likely to be guided
by a global trajectory, a local planner that tracks that trajectory well will
likely benefit from a higher density of trajectories toward the front as most
of the obstacles will be to the sides of the path. This is evident by the den-
sities of generated trajectory sequences for each case as shown in Figure.2.
Our approach naturally deals with this divide between the static and dy-
namic planning paradigms by adapting the chosen trajectory sequence at all
times. A video demonstration of the algorithm can be found at the following
link:[1]

5 Application: Grasp selection for manipu-
lation
Most of the past work on grasp set generation and selection have focused on
automatically producing a successful and stable grasp for a novel object, and
the computational time is of secondary concern. As a result very few grasp
selection algorithms have attempted to optimize the order of consideration
in grasp databases. Berenson et al. [4] dynamically ranked pre-computed
grasps by calculating a grasp-score based on force closure, robot position,
and environmental clearance. Ratliff et al. [24] employed imitation learn-
ing on demonstrated example grasps to select a grasp in a discretized grasp
space. In both of these cases the entire library of grasps is evaluated for

14



each new environment or object at run time, and the order of the entries and
their effect on computation are not considered. In this section we describe
our grasp ranking procedure, which uses trajectory generation success to
reorder a list of database grasps, so that for a majority of situation encoun-
tered in a new environment, only a subset of grasp entries near the front of
the control library need to be evaluated.

For a sequence of grasps S ∈ S we define the submodular monotone
grasp selection function f : S → [0,1] as f ≡ P(S) where P(S) is the prob-
ability of successfully grasping an object in a given scenario using the se-
quence of grasps provided.

For a given sequence of grasps S ∈S we want to minimize the cost of
evaluating the sequence i.e. minimize the depth in the list that has to be
searched until a successful grasp is found. Thus the cost of a sequence of
grasps can be defined as c = ∑

N
i=0 1− f (S〈i〉) where f (S〈i〉) is defined as the

value of the submodular function f on executing sequence S ∈S up to 〈i〉
slots in the sequence. Minimizing c corresponds to minimizing the depth i
in the sequence of grasps that must be evaluated for a successful grasp to be
found. (We assume that every grasp takes equal time to evaluate)

The same algorithm for trajectory sequence generation (Algorithm.1) is
used here grasp sequence generation. Here the set of experts for each ex-
perts algorithm are the set of grasps in the grasp library. Here each experts
algorithm Ei maintains a set of weights for each grasp (expert) in the library.
A sequence of grasps is constructed by sampling without repetition the dis-
tribution of weights for each grasp Ei for each position i in the sequence
(lines:1-5). This sequence is evaluated on the current environment until a
successful grasp a∗ is found (line:6). Not that the next environment is then
presented to the robot from a distribution of environments and is not ob-
tained by evaluating the successful grasp unlike the path planning case. If
the sucessful grasp was found at position i in the sequence then in experts
algorithm Ei the weight corresponding to the successful grasp id is updated
using SEQOPT with EXP3’s update rule. For WMR all the grasps in the se-
quence are evaluated and the weights for every expert are updated according
to lines.9-12.

5.1 Experimental setup
We performed experiments using environments containing a trigger-style
flashlight as the target object. We used the OpenRAVE[9] simulation frame-
work to generate a multitude of different grasps and environments for each
object. The manipulator used in this experiment is a Barret WAM arm and
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Figure 5: Example grasps from the grasp library sequence. Each grasp has a
different approach direction and finger joint configuration recorded with respect
to the object’s frame of reference. Our algorithm attempts to re-order the grasp
sequence to quickly cover the space possible scenarios with fewer grasps at the
front of the sequence.

hand with a fixed base, and a 3D joystick is used to control the simulated
robot in grasp sequence generation. Since the grasps are generated by a hu-
man operator, we assume they are stable grasps and hence the main failure
mode is in trajectory planning and obstacle collision. During both training
and testing, bidirectional RRT [21] is used to generate the trajectory from
the manipulator’s current position to the target grasp position.

The grasp library consisted of 60 grasps and the library was evaluated
on 50 different environments for training, and 50 environments for testing.
For a particular environment/grasp pair the grasp success is evaluated by the
success of Bi-RRT trajectory generation, and the grasp sequence ordering is
updated at each timestep of training. For testing and during run-time, the
learned list was evaluated without further feedback.

We compared the performance of SEQOPT with EXP3 as well as WMR
as expert subroutines to two methods of grasp library ordering: a random
grasp ordering, and an ordering of the grasps by decreasing success rate
across all examples in training (which we will call “frequency”). At each
time step of the training process, a random environment was selected from
the training set and each of the four grasp sequence orderings were evalu-
ated. The search depth for each test case was tracked to compute overall
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Figure 6: Executing a particular grasp in both simulation and real hardware. The
grasp library ordering is trained in simulation only, and the resulting grasp se-
quence can be executed in hardware without modifications.

performance. The performance of the two naive ordering methods does not
improve over time because the frequency method is a single static sequence
and the random method has a uniform distribution over all possible rankings.

5.2 Results
The performance of each sequence after training is shown in Figure 7. We
can clearly see a dramatic improvement in the performance of SEQOPT run
with both WMR and EXP3 update rules over the random and frequency
methods. While random and frequencymethods produce a grasp sequence
ordering that requires an average of about 7 evaluations before a successful
grasp is found, SEQOPT with WMR and EXP3 produce a more optimized
ordering that require only about 5 evaluations which is 29% improvement.
Since evaluating a grasp entails planning to the goal and executing the actual
grasp this improvement is significant speedup in finding a successful grasp.
Again this improvement comes at negligible cost and in practice it wasnt
possible to evaluate a single extra grasp in the extra time overhead for our
approach.

It is interesting to note that a random ordering of the grasps has sim-
ilar performance to the frequency method. This is because similar grasps
tend to be correlated in their success and failure, so the grasps in the front
of the frequency ordering tend to be similar. When the first grasp fails, the
next few are likely to fail as well, increasing the average search depth. The
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SEQOPT algorithm solves this correlation problem by ordering the grasp se-
quence such that the grasps near the front of the library cover the space of
possible configurations as quickly as possible. A video demonstration of the
algorithm can be found at the following link:[1]

Figure 7: Average depth till successful grasp for flashlight object with 50 test
environments. The training data shows the average search depth achieved at the
end of the training session over 50 training environments. Algorithm.1 (SEQOPT)
when run with EXP3 as the experts algorithm subroutine achieves 20% reduction
over grasp sequences arranged by average rate of success (Freq.) or a random
ordering of the grasp list (Rand.)

6 Conclusion
We have shown an efficient method for optimizing performance of control
libraries and have attempted to answer the question of how to contruct and
order such libraries.
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The grasp sequence generation method presented here does not incorpo-
rate the context in which the object is placed in the current environment. We
aim to modify the current approach to close the loop with perception and
take account of features in the environment for grasp sequence generation.

As robots employ increasingly large control libraries to deal with the di-
versity and complexity of environments that they may encounter, approaches
such as the ones presented here will become crucial to maintaining robust
real-time operation.
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A Proof of monotone submodularity
A sequence function f which maps subsequences A ⊆ V of a finite se-
quence V to the real numbers. f is called submodular if, for all A ⊆B⊆V
and S ∈ V \B it holds that

f (A ⊕S )− f (A )≥ f (B⊕S )− f (B) (21)

where ⊕ is the concatenation operator. Such a function is monotone if it
holds that for any sequences S1,S2 ∈ V , we have

f (S1)≤ f (S1⊕S2) (22)

f (S2)≤ f (S1⊕S2)

For the trajectory selection case we want to prove that f (in equation 1 re-
stated here) is monotone, submodular.

f ≡ No−minai∈A(cost(ai))

No
(23)

where A is the set of all feasible actions or control sequences. This can
be proved if minai∈A(cost(ai)) is monotone,supermodular. A function f is
supermodular if it holds that

f (A ⊕S )− f (A )≤ f (B⊕S )− f (B) (24)

Theorem 1. The function minai∈A(cost(ai)) is monotone, supermodular where
ai are trajectories sampled from the set of all feasible trajectories.

Proof. Submodularity
Assume that we are given sequences A ⊆ B ⊆ V , S ∈ V \B. We

want to prove the inequality in equation.24. Let R = B \A , the set of
elements that are in B but not in A . Since A ⊕R =B we can now rewrite
equation.24 as

f (A ⊕S )− f (A )≤ f (A ⊕R⊕S )− f (A ⊕R) (25)

We refer to the left and right sides of equation.25 as LHS and RHS respec-
tively. Define a∗ as the trajectory which has the least cost when evaluated
on a given environment. Hence there can be three cases:

• Case 1: a∗ ∈A In this case LHS = RHS = 0

• Case 2: a∗ ∈R In this case RHS≥ LHS
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• Case 3: a∗ ∈S In this case RHS≥ LHS

Since in all possible cases it can be seen that RHS is greater than or
equal to LHS it is proved that minai∈A(cost(ai)) is supermodular. Note that if
there are multiple trajectories which have the same minimum cost as a∗ then
similar arguments still hold and in the worst case when they are distributed
across S ,R,A Case 1 holds.

Monotonicity Consider two sequences S∞ and S∈. Define a∗ as the
trajectory which has the least cost when evaluated on a given environment.
We want to prove that minai∈A(cost(ai)) is monotone decreasing, ie.

f (S1)≥ f (S1⊕S2) (26)

f (S2)≥ f (S1⊕S2)

Hence there can be three cases:

• Case 1: a∗ ∈S1 =⇒ f (S1) = f (S1⊕S2) and f (S2)≥ f (S1⊕S2)

• Case 2: a∗ ∈S2 =⇒ f (S1)≥ f (S1⊕S2) and f (S2) = f (S1⊕S2)

• Case 3: a∗ ∈ S1 ⊕S2 =⇒ f (S1) = f (S1 ⊕S2) and f (S2) =
f (S1⊕S2)

Since in all possible cases the conditions in equation.26 are satisfied minai∈A(cost(ai))
is monotone decreasing.

Corollary 1. The function f in equation.23 in the paper is monotone, sub-
modular due to minai∈A(cost(ai)) being monotone, supermodular by Theo-
rem.1.

B Background
Following a similar analysis to Ross et al. [25] We define the loss function
as the difference between the maximization of fENV that is achieved by ex-
ecuting the sequence S and that achieved by executing the greedy sequence
(1−1/e) fENV(S∗)

l(ENV,S) = [(1−1/e) fENV(S∗)− fENV(S)] (27)

Here S∗ is the best sequence that maximizes fENV. The (1− 1/e) term is
due to the fact that we are competing with respect to the greedy sequence
and not the best sequence. This is because finding the best sequence has
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been proven to be NP-hard but the greedy sequence has the property that it
achieves performance that is at least (1− 1/e) ( 63%) of the best sequence
by Feige et al. [12].

A no-regret algorithm produces a sequence of policies π1, π2, . . . , πT

such that the regret with respect to the best policy in hindsight goes to 0 as T
goes to ∞. In the case of SEQOPT the policy at a time step corresponds to
the sequence of trajectories which are evaluated and the minimum cost tra-
jectory executed till the next time step. SEQOPT is a no α-regret algorithm
which converges to the greedy list and hence α = (1− 1/e) for SEQOPT.
This can be formalized as:

1
T

T

∑
i=1

li(Si)−min
s∈S

1
T ∑ li(S)≤ γT (28)

for limT→∞γT = 0 We choose the loss functions to be the expected loss un-
der the distribution of environments, li(S) = Ed(ENV)[l(ENVi,S)] We also
define l∗T = mins∈S

1
T ∑

T
i=1 Ed(ENV)[l(ENV,S)] as the loss of the best policy

in hindsight after T iterations.

C Proof of Proposition 1
Proposition 1. (Approximate Static Optimality) If getNextEnvironment
returns independent examples from a distribution over environments (i.e.,
the chosen control does not affect the next sample), then for a list S chosen
randomly from those generated throughout the T iterations of the Algorithm

1, it holds that Ed(ENV)[(1− 1/e) fENV(S∗)− fENV(S)] ≤ O(

√
ln(1/δ )

T ) with
probability greater then 1−δ .

Proof. If we can evaluate the expectation over the distribution of environ-
ments exactly (infinite number of samples) then we have the following the-
orem:

Theorem 2. For SEQOPT, for the case when environments are indepen-
dently sampled from a distribution of environments there exists a sequence
S ∈ S1:T s.t. Ed(ENV)[l(ENV,S)] ≤ l∗T + γT when the expectation over the
distribution of environments can be exactly evaluated.
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Proof.

min
S∈S1:T

Ed(ENV)[l(ENV,S)] (29)

≤ 1
T

T

∑
i=1

Ed(ENV)[l(ENV,S)]

≤ γT +min
S∈S

1
T

T

∑
i=1

li(S) (no regret)

≤ γT + l∗T

The previous results hold if the online learning algorithm observes the
infinite sample loss, i.e. the loss on the true distribution of environments.
In practice however the algorithm would only observe its loss on a small
sample of environments. We wish to bound the true loss under the distri-
bution of environments as a function of the regret on the finite sample of
environments.

If we assume that SEQOPT samples m environments in every one of
the T iterations then and then observes the loss li(S) = Ed(ENV)[l(ENV,S)]
for Di, the dataset of these m environments. We restate the regret definition
using this finite dataset as 1

T ∑
T
i=1 EDi(ENV)[l(ENV,Si)]−mins∈S

1
T ∑

T
i=1 ≤

γT EDi(ENV)[l(ENV,S)] ≤ γT . Let l̂∗T = mins∈S
1
T ∑

T
i=1 EDi(ENV)[l(ENV,S)]

be the training loss of the best policy in hindsight. Then we have for the
finite sample case the following theorem:

Theorem 3. For SEQOPT, with probability at least 1− δ , there exists a

policy S ∈ S1:T s.t. Ed(ENV[l(ENV,S)]≤ l̂∗T + γT + lmax

√
2ln( 1

δ
)

mT for the case
when environments are independently sampled from a distribution of envi-
ronments, when the distribution of environments is sampled m times.

Proof. Let Yi j be the difference between the expected per step loss of Si

under the environment distribution d(ENV) and the average per step loss
of Si under the jth sampled environment at iteration i. The random vari-
ables Yi j over all i ∈ {1 . . .T} and j ∈ 1,2, . . . ,m are all zero mean and
bounded in [−lmax, lmin] (here lmax = 1 as each f is bounded between 0−1)
and form a martingale in the order Y11,Y12, . . . ,Y1m,Y21, . . . ,YT m. By Azuma-

Heoffding’s inequality 1
mT ∑

T
i=1 ∑

m
j=1Yi j≤ lmax

√
2ln( 1

δ
)

mT =

√
2ln( 1

δ
)

mT with prob-
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ability at least 1−δ . Hence we obtain with probability at least 1−δ :

min
S∈S1:T

Ed(ENV)[l(ENV,S)] (30)

≤ 1
T

T

∑
i=1

Ed(ENV)[l(ENV,S)]

=
1
T

T

∑
i=1

EDi(ENV)[l(ENV,S)]+
1

mT

T

∑
i=1

m

∑
j=1

Yi j

≤ 1
T

T

∑
i=1

EDi(ENV)[l(ENV,S)]+

√
2ln( 1

δ
)

mT

≤ γT + l̂∗T +

√
2ln( 1

δ
)

mT

D Proof of Proposition 2
Proposition 2. (Approximate Weak Dynamic Optimality) If getNextEn-
vironment returns examples by forward simulating beginning with a random
environment and randomly choosing a new environment on reaching a goal,
then consider the policy πmixture that begins each new trial by choosing a list
randomly from those generated throughout the T iterations of the Algorithm
1. By the no-regret property, such a mixture policy will be α approximately

dynamically optimal in expectation up to an additive term O(

√
ln(1/δ )

T ) with
probability greater then 1− δ . Further, in the (experimentally typical) case
where the distribution over library sequences converges, the resulting single
list is (up to approximation factor α) weakly dynamically optimal.

Proof. Consider πmixture, the policy that begins each new trial of Algorithm
1 by choosing a list randomly from those generated throughout the T itera-
tions. Let dπmixture(ENV) be the distribution of environments encountered as
a consequence of following policy πmixture. Let Si be the randomly sampled
list at the ith iteration. Let Yi j be the difference between the expected per
step loss of Si under the distribution of dπi(ENV) and the average per step
loss of Si under the jth sample trajectory of horizon H. Note that here each
sample j is a sequence of environments encountered as a consequence of the
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robot following the mixture policy πmixture whereas in Proposition 1 each jth

sample is an environment sampled from a distribution of environments. Fol-
lowing the mixture policy πmixture corresponds to randomly sampling one of
the lists generated by Algorithm 1 during T iterations. The random variables
Yi j over all i ∈ {1 . . .T} and j ∈ 1,2, . . . ,m are all zero mean and bounded
in [−lmax, lmin] (here lmax = 1 as each f is bounded between 0− 1) and
form a martingale (considering the order Y11,Y12, . . . ,Y1m,Y21, . . . ,YT m). By

Azuma-Heoffding’s inequality 1
mT ∑

T
i=1 ∑

m
j=1Yi j ≤ lmax

√
2ln( 1

δ
)

mT =

√
2ln( 1

δ
)

mT
with probability at least 1− δ . Hence we obtain with probability at least
1−δ :

Eπi∼πmixtureEdπi (ENV)[l(ENV,πi)] (31)

=
1
T

T

∑
i=1

Edπi (ENV)[l(ENV,Si)]

=
1
T

T

∑
i=1

EDπi (ENV)[l(ENV,Si)]+
1

mT

T

∑
i=1

m

∑
j=1

Yi j

≤ 1
T

T

∑
i=1

EDπi (ENV)[l(ENV,Si)]+

√
2ln( 1

δ
)

mT

≤ γT + l̂∗T +

√
2ln( 1

δ
)

mT
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