Scalability of Classical Terramechanics Models for Lightweight Vehicle Applications Incorporating Stochastic Modeling and Uncertainty Propagation

Paramsothy Jayakumar*
Daniel Melanz
Jamie MacLennan
David Gorsich
U.S. Army TARDEC
Warren, MI, USA

Carmine Senatore
Karl Iagnemma
Massachusetts Institute of Technology
Cambridge, MA, USA

*Corresponding Author: Paramsothy.Jayakumar.civ@mail.mil
Scalability of Classical Terramechanics Models for Lightweight Vehicle Applications Incorporating Stochastic Modeling and Uncertainty Propagation

This paper investigates the validity of commonly used terramechanics models for light-weight vehicle applications while accounting for experimental variability. This is accomplished by means of cascading uncertainty up to the terminal point of operations measurement. Vehicle-terrain interaction is extremely complex, and thus models and simulation methods for vehicle mobility prediction are largely based on empirical test data. Analytical methods are compared to experimental measurements of key operational parameters such as drawbar force, torque, and sinkage. Models of these operational parameters ultimately depend on a small set of empirically determined soil parameters, each with an inherent uncertainty due to test variability. The soil parameters associated with normal loads are determined by fitting the dimensionless form of Bekker’s equation to the data given by the pressure-sinkage test. In a similar approach, the soil parameters associated with shear loads are determined by fitting Janosi and Hanamoto’s equation to the data given by the direct shear test. An uncertainty model is used to propagate the soil parameter variability through to the wheel performance based on Wong and Reece. The commonly used analytical model is shown to be inaccurate as the envelope of model uncertainty does not lie within the experimental measures, suggesting that model improvements are required to accurately predict the performance of light-weight vehicles on deformable terrain.
<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public Release</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Scalability of Classical Terramechanics Models for Lightweight Vehicle Applications Incorporating Stochastic Modeling and Uncertainty Propagation

1 Abstract... 2
2 Keywords... 2
3 Background... 2
4 Methodology ... 3
 4.1 Soil Parameter Variability ... 3
 4.1.1 Experimental Equipment ... 3
 4.1.2 Parameter Estimation ... 4
 4.2 Wheel Performance Uncertainty Propagation and Verification .. 9
 4.2.1 Experimental Methodology ... 9
 4.2.2 Mathematical Model of Rigid Wheel on Soft Soil .. 10
 4.2.3 Uncertainty Propagation ... 12
4 Results ... 14
 5.1 Soil Parameter Variability ... 14
 5.1.1 Pressure-Sinkage Test ... 14
 5.1.2 Direct Shear Test ... 18
 5.2 Wheel Performance Uncertainty ... 20
5 Summary ... 22
 6.1 Soil Parameter Variability ... 22
 6.2 Wheel Performance Uncertainty .. 22
6 Appendix A: Matlab Code for WheelSoil Class .. 23
7 Appendix B: Matlab Code for Example Program .. 28
8 References ... 31
1 ABSTRACT

This paper investigates the validity of commonly used terramechanics models for light-weight vehicle applications while accounting for experimental variability. This is accomplished by means of cascading uncertainty up to the terminal point of operations measurement. Vehicle-terrain interaction is extremely complex, and thus models and simulation methods for vehicle mobility prediction are largely based on empirical test data. Analytical methods are compared to experimental measurements of key operational parameters such as drawbar force, torque, and sinkage. Models of these operational parameters ultimately depend on a small set of empirically determined soil parameters, each with an inherent uncertainty due to test variability. The soil parameters associated with normal loads are determined by fitting the dimensionless form of Bekker’s equation to the data given by the pressure-sinkage test. In a similar approach, the soil parameters associated with shear loads are determined by fitting Janosi and Hanamoto’s equation to the data given by the direct shear test. An uncertainty model is used to propagate the soil parameter variability through to the wheel performance based on Wong and Reece. The commonly used analytical model is shown to be inaccurate as the envelope of model uncertainty does not lie within the experimental measures, suggesting that model improvements are required to accurately predict the performance of light-weight vehicles on deformable terrain.

2 KEYWORDS

Terramechanics; Robotic vehicles; Bekker and Wong models; Soil test bed; Uncertainty propagation; Stochastic modeling

3 BACKGROUND

The study of the interaction of wheeled and tracked vehicles with natural terrain is dominated by the discipline of terramechanics. Terramechanics research over the past 50 years has primarily focused on large, heavy military vehicles. A substantial body of terramechanics research has been performed at the U.S. Army Tank Automotive Research, Development, and Engineering Center (TARDEC) and the U.S. Army Engineer Research and Development Center (ERDC) that led to the development of various mobility prediction methodologies including the NATO Reference Mobility Model (NRMM). These methodologies are numerical algorithms for predicting cross-country vehicle movement at length scales of several meters to several kilometers. They are based on empirical results drawn from years of resource-intensive experimental testing and have been used widely by the military community. However, as a consequence of their empirical nature, while the methods are useful for prediction of large, heavy vehicle mobility, it remains an open question whether they can be reliably used for the prediction of small, lightweight vehicle mobility.

Recently the Department of Defense (DoD) has devoted substantial resources toward the development of small, lightweight ground vehicles. These vehicles are often less than 36 inches in length and weigh less than 100 lb. They are equipped with wheels, tracks, or bio-inspired limb-like appendages. Due to the lack of mobility models for these vehicles, there is a lack of simulation methods for this class of vehicles. Also, since these vehicles have only recently been adopted by the DoD, there is a lack of systematic empirical test data. As a result, these vehicles have primarily been developed based on ad hoc design rules, limited empirical testing, and application of classical Bekker theory. Thus, there is a lack of methods (based on simulation or analysis) to reliably predict the mobility and performance of these systems.

This paper will describe two experimental methods used to characterize mechanical soil behavior for lightweight vehicles. A pressure-sinkage test and a standard direct shear test as outlined by Bekker in [1] were performed on a cohesion-less soil [2]. This paper investigates identification of soil parameters from the experimental data and assesses the data variability, which is inherent in both tests. The variability in the soil parameters is propagated to determine the overall wheel performance uncertainty. Probabilistic, rather than strictly deterministic, soil behavior is
considered in this paper because it is an increasingly important consideration for accurate modeling of lightweight robotic vehicle performance.

4 METHODOLOGY

Semi-empirical methods for modeling wheel performance, like the one used in this paper by Wong and Reece [3], rely on the relationship between soil sinkage and resistance force to infer the normal stress under a wheel. To predict the tractive force, the shearing strength of the soil is analyzed based on Coulomb’s formula [4]. Methods of this class are ultimately based on experimentally determined soil parameters, whose inherent variability causes uncertainty in the determination of wheel performance. Section 4.1 describes the equipment and methods used to determine the variability in soil parameters; Section 4.2 describes the wheel model in which these parameters are used and the techniques used to compare prediction to experimental data.

4.1 SOIL PARAMETER VARIABILITY

Mojave Martian Simulant (MMS) [2] was employed as a test medium for the experiments in this paper. MMS is a mixture of finely crushed and sorted granular basalt intended to mimic, both at a chemical and mechanical level, Mars soil characteristics. No direct application to Mars rovers is provided in this paper, the simulant is a frictional soil found in dry, sandy terrain. The particle size distribution of MMS spans from the micron to millimeter level with 80% of particles above the 10 micron threshold.

4.1.1 Experimental Equipment

4.1.1.1 Pressure-Sinkage Test

The sinkage characteristics of the MMS were measured using the pressure-sinkage test shown in Figure 1. The pressure-sinkage test used a plate to penetrate the soil under controlled test conditions, while pressure and sinkage of the plate were directly measured. A series of tests and various plate sizes allowed an investigation of both the influence of the pressure-sinkage parameters as described in Wong’s methodology [5] and test-to-test variability.

The test unit was designed to systematically penetrate the soil with a downward velocity of 10 mm/s. Penetration tests were performed with three different-sized rectangular plates (3x15, 5x15, and 7x15 cm²). The tests were repeated 15 times for each plate. A load cell and draw-wire encoder recorded the force and corresponding sinkage during each test. Between tests, the soil was loosened with a stick and then leveled to return the MMS to a nominal density of 1.7 g/cm³. Figure 2 shows a picture of a penetration plate about to enter the soil.

Figure 1: CAD drawing of the pressure-sinkage test rig. A load cell and draw wire encoder recorded the force and sinkage of a plate that was pressed into the soil at 10 mm/s.

Figure 2: Penetration plate and soil (side view).
4.1.1.2 Direct Shear Test

The direct shear test, shown in Figure 3, is used to measure the shear strength properties of the MMS, specifically the cohesion, angle of friction, and shear modulus. A sample of the soil is contained in between two rigid discs that are held in place by a shear box. The shear box is aligned under a load cell that applies a normal force to the soil.

![Figure 3: Experimental device for performing the direct shear test.](image)

The load cell is attached to a vertical translational joint that uses a linear variable differential transformer to measure displacement of the soil. The top of the shear box is clamped so that the lower half can be moved. The horizontal force required to displace the soil horizontally is measured by a dynamometer. The applied vertical force and measured horizontal force can be transformed into the normal and shear stress, respectively. The horizontal and vertical soil displacement is also output.

4.1.2 Parameter Estimation

4.1.2.1 Pressure-Sinkage Parameter Estimation

To describe the pressure-sinkage relationship of a soil’s deformation under a rectangular plate, Bekker suggested Equation (1) based on the soil mechanics work originally performed by Terzaghi [6]:

\[
\sigma = \left(\frac{k_c}{b} + k_c \right) z^n,
\]

(1)

where \(\sigma \) is pressure, \(b \) is plate width, \(z \) is soil sinkage, and \(n \), \(k_c \), and \(k_c \), are soil parameters. The three parameters are empirical and have no intrinsic physical meaning. The parameters may be estimated from experimental pressure-sinkage data if at least two different plate sizes are tested.

The process of determining the soil parameters from experimental data was originally performed by Wong using a weighted least squares method [7], which is the primary estimation technique used in this paper. From Equation (1), taking the logarithms of both sides gives:

\[
\ln \sigma = \ln \left(\frac{k_c}{b} + k_c \right) + n \ln z.
\]

(2)

An error function is defined as:
\[F = w_i \left(\ln \sigma - \ln \left(\frac{k}{b} + k_r \right) - n \ln z \right)^2, \]

(3)

where \(w_i \) is a weighting factor. Standard least squares minimization of equation (3) would set \(w_i \) equal to 1. However, as Wong explains, error would be biased toward low pressures since the actual measured values are \(\sigma \) and \(z \), not \(\ln \sigma \) and \(\ln z \). To account for minimization in the log-log domain and give equal weight to all data points, Wong sets the weighting factor \(w_i = \sigma^2 \).

Since \(k_r, b, \) and \(k_r \) are constant values for a given test, they can be replaced by a single constant:

\[k_{eq} = \frac{k}{b} + k_r. \]

(4)

Wong provides the following cost function over \(N \) data points that is minimized to find optimal \(n \) and \(k_{eq} \) in Equation (5):

\[F = \sum_{i=1}^{N} \sigma_i^2 \left[\ln \sigma_i - \ln \left(k_{eq} \right) - n \ln z_i \right]^2. \]

(5)

The optimality condition leads to the following two equations:

\[\frac{\partial F}{\partial n} = -2 \left[\sum \sigma_i^2 \ln \sigma \ln z - \ln k_{eq} \sum \sigma_i^2 \ln z - n \sum \sigma_i^2 (\ln z)^2 \right] = 0 \]

(6)

\[\frac{\partial F}{\partial k_{eq}} = -2 \sigma_{eq} \left[\sum \sigma_i^2 \ln \sigma + 2 \ln k_{eq} \sum \sigma_i^2 + 2n \sum \sigma_i^2 \ln z \right] = 0. \]

(7)

Solving equations (6) and (7) for \(n \) and \(k_{eq} \), yields:

\[n = \frac{\sum \sigma_i^2 \ln \sigma \ln z - \sum \sigma_i^2 \ln \sigma \sum \sigma_i^2 \ln z}{\sum \sigma_i^2 \ln z \left(\ln \sigma \right)^2 - \left(\sum \sigma_i^2 \ln z \right)^2} \]

(8)

\[k_{eq} = \exp \left(\frac{\sum \sigma_i^2 \ln \sigma - n \sum \sigma^2 \ln z}{\sum \sigma_i^2} \right). \]

(9)

If the above analysis is performed for two sets of data corresponding to two different plate sizes \((b_1, b_2) \), the average \(n \) and two corresponding values of \(k_{eq} \) can be found:

\[n_{av} = \frac{(n)_{b=b1} + (n)_{b=b2}}{2} \]

(10)
Using the two values of \(k_{eq}, k_c \) and \(k_\phi \) can be derived:

\[
k_c = \frac{b_2}{b_2 - b_1} \left((k_{eq})_{b_1} - (k_{eq})_{b_2} \right)
\]

\[
k_\phi = (k_{eq})_{b_1} - \frac{b_2}{b_2 - b_1} \left((k_{eq})_{b_1} - (k_{eq})_{b_2} \right).
\]

Wong’s methodology is a clear and succinct way to obtain the three pressure-sinkage soil parameters \((n, k_c, k_\phi)\) from a set of experimental data.

To avoid difficulties resulting from covariance between soil parameters (shown by example in Section 5.1.1.1), Reece’s revision of Bekker’s equation [3] was implemented by the authors of this paper. Reece’s equation is:

\[
\sigma = (k_i + bk) \left(\frac{z}{b} \right)^n.
\]

where \(k_i \) and \(k_2 \) are empirical soil parameters. In simplified terms, Equation (15) reduces to:

\[
\sigma = k_{eq} \left(\frac{z}{b} \right)^n,
\]

where the \(k \) coefficient is denoted as \(k_{eq} \) to distinguish from the \(k_{eq} \) of Bekker’s equation. To provide a more thorough analysis of pressure-sinkage parameter estimation methods, four additional, modified approaches were also considered. The resulting parameters of all five methods are compared. Because Wong’s pressure-sinkage relation and Reece’s modification have the same format for any single plate, the results of the following methods apply equally to both.

Method 1 is performed using Wong’s equations (8)-(14) previously given for individual experimental tests.

Method 2 is a modified version of the technique presented by Wong. The weighting factor \(w_i \) in equation (3) is changed from \(\sigma^2 \) to 1. The resulting equations for \(n \) and \(k_{eq} \) are derived analytically using a similar approach as Wong:

\[
n = \frac{\sum \ln \sigma \ln z - \left(\frac{\sum \ln \sigma \sum \ln z}{N} \right)}{\sum (\ln z)^2 - \left(\frac{\sum \ln z}{N} \right)^2},
\]

\[
\sum (\ln z)^2 - \left(\frac{\sum \ln z}{N} \right)^2,
\]

\[
\sum (\ln z)^2 - \left(\frac{\sum \ln z}{N} \right)^2,
\]

\[
\sum (\ln z)^2 - \left(\frac{\sum \ln z}{N} \right)^2,
\]

\[
\sum (\ln z)^2 - \left(\frac{\sum \ln z}{N} \right)^2,
\]

\[
\sum (\ln z)^2 - \left(\frac{\sum \ln z}{N} \right)^2,
\]

\[
\sum (\ln z)^2 - \left(\frac{\sum \ln z}{N} \right)^2,
\]
\[k_{eq} = \exp \left(\frac{\sum \ln \sigma - n \sum \ln z}{N} \right). \]

From equation (17), \(k_x \) and \(k_y \) can be derived in the same manner as equations (13) and (14).

For the final three methods, Levenberg-Marquardt numerical optimization (from the \texttt{lsqnonlin()} function in MATLAB’s optimization suite [8]) is used to find \(n, k_{eq} \) pairs that minimize the respective error functions.

Method 3 minimizes error in the ordinary \(z - \sigma \) domain. No weighting was considered because error and actual measurements are in the same domains. The minimization function is:

\[F = \sum \left[\sigma - k_{eq} z^n \right]^2. \]

Method 4 has an identical error function to that of method 2: both are in the log-log domain and have \(w_r \) set to 1. The only difference is that method 4 is numerically minimized, whereas method 2 is analytically derived. The minimization function is:

\[F = \sum \left[\ln \sigma - \ln k_{eq} - n \ln z \right]^2. \]

Method 5 is the numerical version of Wong’s method, method 1. The minimization function is:

\[F = \sum \sigma^2 \left[\ln \sigma - \ln k_{eq} - n \ln z \right]^2. \]

Methods 1-5 are summarized in Table 1.

<table>
<thead>
<tr>
<th>Method</th>
<th>Type</th>
<th>Domain</th>
<th>Weighting factor, (w_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wong’s</td>
<td>Analytical</td>
<td>log-log</td>
<td>(\sigma^2)</td>
</tr>
<tr>
<td>2. Wong’s (modified)</td>
<td>Analytical</td>
<td>log-log</td>
<td>(1)</td>
</tr>
<tr>
<td>3. Least-square-curve-fit</td>
<td>Numerical</td>
<td>(z - \sigma)</td>
<td>N/A ((z - \sigma) domain)</td>
</tr>
<tr>
<td>4. Least-square-curve-fit</td>
<td>Numerical</td>
<td>log-log</td>
<td>(1)</td>
</tr>
<tr>
<td>5. Least-square-curve-fit</td>
<td>Numerical</td>
<td>log-log</td>
<td>(\sigma^2)</td>
</tr>
</tbody>
</table>

Individual parameter estimation of the 45 pressure-sinkage tests was performed using each of the five methods. The error of a fit for all methods is calculated using Wong’s suggestion:

\[\varepsilon = \sqrt{\frac{\sum (\sigma_m - \sigma_j)^2}{N - 2}} \left(\frac{\sum \sigma_m}{N} \right), \]

\(\sum \)
\(\sum \)
\(\sum \)
\(\sum \)
\(N \)
where σ_m is measured pressure, σ_c is estimated pressure, and N is the number of data points.

4.1.2.2 Direct Shear Parameter Estimation

Several soil parameters can be determined using the direct shear test. Specifically, the residual shear stress, τ_{res}, and shear modulus, K, can be determined by fitting the Janosi and Hanamoto equation to each data set, and the cohesion, c, angle of internal friction, ϕ, can be found using the Mohr-Coulomb failure criteria.

4.1.2.2.1 Janosi-Hanamoto Equation for Shear Stress

The shear-displacement expression suggested by Janosi and Hanamoto [9] assumed the form of Equation (23) for loose soils:

$$\tau = \tau_{res} \left(1 - e^{-\frac{j}{K}}\right),$$

where τ represents the shear stress and j is the displacement due to shearing. The parameters τ_{res} and K are determined by minimizing the sum of the differences between the experimental value of τ and the estimate at the i^{th} data point in Equation (24) using the Levenberg-Marquardt algorithm:

$$F(K, \tau_{res}) = \sum_{i=1}^{N} \left(\tau_i - \tau_{res} \left(1 - e^{-\frac{j}{K}}\right)\right)^2,$$

The optimality condition leads to the following two equations:

$$\frac{\partial F}{\partial K} = 0$$

$$\frac{\partial F}{\partial \tau_{res}} = 0$$

where the partial derivatives are determined using a numerical central differences approach.

4.1.2.2.2 Mohr-Coulomb Failure Criteria

For a given normal load, the soil is said to fail when it reaches its residual shear stress. According to the Mohr-Coulomb failure criteria [10], a line of best fit can be determined by plotting the residual shear stress, τ_{res}, as a function of normal stress, σ, as follows:

$$\tau_{res} = c + \sigma \tan \phi,$$

where the intercept is equal to the cohesion and the slope is related to the angle of internal friction. The line of best fit is determined using the closed-form equation for linear fitting over N data points (Equation (28)). The closed-form equation will be useful for propagating the uncertainty in Section 4.2.3:
4.2 WHEEL PERFORMANCE UNCERTAINTY PROPAGATION AND VERIFICATION

This section details the experimental method used to obtain the wheel performance measurements, explains the theory behind the prediction of wheel performance, and describes the derivation behind the method of uncertainty propagation. Since the techniques used in this paper rely on estimates of the stress distribution to determine wheel performance, the ability to measure these quantities allow for a direct comparison of prediction to reality. The uncertainty propagation gives an envelope of system performance that the experimental data can be compared against.

4.2.1 Experimental Methodology

A complete investigation into the performance of the wheel requires insight into several different measures of the wheel-soil interaction. In this paper, physical measurements of contact stresses, force, torque, and sinkage were used to compare to the theoretical model. A single-wheel test rig, shown in Figure 4, was used to empirically investigate the wheel motion under controlled wheel slip and normal loading conditions on the cohesion-less soil [11]. This test rig enables the control of velocities and application of loads through interchangeable running gear within a confined soil bin of dimensions 1.5 m long, 0.7 m wide, and 0.4 m deep. The drawbar pull, wheel torque, and sinkage were measured for a lug-less rigid wheel with a radius of 0.13 m and a width of 0.16 m at slip ratios varying from zero to unity. Tests were run for two different cases: normal loads of 70 N and 135 N.

![Figure 4: A single wheel test bed was used to measure the drawbar pull, torque, and sinkage at varying slips and normal loads.](image)
Figure 5: A wheel with a custom force sensor array was used to measure the stress distribution at the contact patch.

To measure the stress distribution at the contact patch of the wheel, an identical wheel with a custom force sensor array located at the wheel surface was used [12]. The force sensors are strain gauge-based flexural elements with interchangeable interface surfaces that are designed for integration with wheels or other running gear. The normal and shear stresses are estimated based on 5 sensors, shown in Figure 6, that are located at discrete points from the center to the edge of the wheel-soil interface.

Figure 6: A top view of the wheel shows the layout of the strain gauge-based sensors. Note that the sensors are arranged with Sensor I at the center of the wheel and Sensor V at the outer edge.

Each sensor, shown in Figure 7, is a solid-state L-shaped aluminum flexure instrumented with two full bridge strain gages. The sensor is mounted rigidly to the running gear, and its interface element is exposed to the soil. The interface element is generally subjected to normal, N, and shear, T, loading. These forces cause the flexure elements to deflect in a linear elastic manner. From measured deflection, and given prior calibration data, the applied forces can be uniquely computed, with axial strain intrinsically rejected by the full bridge configuration. Stress can then be inferred assuming uniform pressure distribution over the known sensors’ head area.

Figure 7: Working scheme of the custom force sensor for interfacial stress measurement.

4.2.2 Mathematical Model of Rigid Wheel on Soft Soil

The rigid wheel free-body diagram based on the work of Wong and Reece [3], shown in Figure 8, is used in this paper to model the interaction between the wheel and the soil. Using this model, the drawbar pull D, torque T, and sinkage z, can be estimated for a wheel of weight W, radius r, and wheel width b, travelling at a linear velocity v.
The sinkage of the wheel is commonly converted into polar coordinates using the wheel hub as the origin. Once the limits of the contact patch, θ_1 and θ_2, between the wheel and the soil are determined, the drawbar pull and torque can be calculated by integrating the radial and tangential stresses over the wheel.

At a specified slip, i, it is possible to determine the sinkage, forces, and torques that act on a wheel given the soil parameters and wheel properties [3]. A force balance in the vertical direction yields an equation for the weight, W, of the tire:

$$W = rb \int_{-\theta_2}^{\theta_1} (\sigma \cos \theta + \tau \sin \theta) d\theta,$$

where the normal stress, σ, is determined by Equation (16) and the shear stress, τ, is computed as:

$$\tau = (c + \sigma \tan \varphi)(1 - e^{-\beta \rho})$$

where the shear deformation, j, is based on the velocity of the slip:

$$j = r\left[(\theta_1 - \theta) - (1 - i)(\sin \theta_1 - \sin \theta)\right]$$

Based on geometry, the sinkage, z, can be converted to polar coordinates using:

$$z = \left(\cos \theta - \cos \theta_1\right) r \quad \theta_m \leq \theta \leq \theta_1$$

However, it is important to note that Equation (32) can only be used when the normal stress on the wheel is increasing, which occurs from the front contact angle, θ_1, to a maximum radial stress, θ_m. At θ_m the stress will begin to decrease in a similar fashion until reaching zero at the rear contact angle, θ_2. The symmetry between the front and rear regions is employed to derive a relationship for sinkage when the normal stress is decreasing:

$$z = \left(\cos \theta_1 - \left(\frac{\theta_1 + \theta_2}{\theta_m + \theta_2}\right) \left(\theta_1 - \theta_m\right)\right) - \cos \theta_1 \right) r \quad -\theta_2 \leq \theta \leq \theta_m$$
where θ_{α} can be approximated as a function of θ_i, i, and two coefficients that give an estimation of the maximum stress, c_1 and c_2 [3]:

$$\theta_{\alpha} = (c_1 + c_2 i)\theta_i$$ \hspace{1cm} (34)

With the assumption that $\theta_0 = 0$ (which is true when rut recovery is small), the only unknown in Equation (29) becomes θ_i. The integral in Equation (29) cannot be solved analytically and is solved numerically via an iterative technique. After the front contact angle is determined, the forces (thrust H, motion resistance R, and drawbar pull D) and the input torque, T, can be determined by integrating the stresses over the wheel contact area:

$$H = rb \int_{-\theta_i}^{\theta_i} \tau \cos \theta d\theta$$ \hspace{1cm} (35)

$$R = rb \int_{-\theta_i}^{\theta_i} \sigma \sin \theta d\theta$$ \hspace{1cm} (36)

$$D = H - R$$ \hspace{1cm} (37)

$$T = r^2 b \int_{-\theta_i}^{\theta_i} \tau d\theta$$ \hspace{1cm} (38)

Finally, the maximum wheel sinkage, z_0, can be determined using Equation (32) at $\theta = 0$:

$$z_0 = (1 - \cos \theta_i)r$$ \hspace{1cm} (39)

4.2.3 Uncertainty Propagation

The objective of any uncertainty analysis is to obtain an estimate of the overall uncertainty, i.e. uncertainty envelope, of an output given the individual uncertainties of the inputs. Previous work, including Virginia Tech’s Center for Vehicle Systems and Safety [13] and the Massachusetts Institute of Technology’s Robotic Mobility Group [14], used Polynomial Chaos Theory to quantify the uncertainty associated with terramechanics systems. The method for propagating the uncertainty in this paper is described in [15], and summarized as follows:

Given an arbitrary function, r, that depends on the measured variables x_1, x_2, \ldots whose distributions are normal:

$$r = f(x_1, x_2, \ldots),$$ \hspace{1cm} (40)

the variance of r, σ^2_r, can be determined statistically based on discrete values of the function, r_i, and the mean of the function, r', using:

$$\sigma^2_r = \lim_{N \to \infty} \left[\frac{1}{N} \sum_{i=0}^{N} \left(r_i - r' \right)^2 \right].$$ \hspace{1cm} (41)
The difference, \(\delta r_i \), between a particular value, \(r_i \), and its mean value, \(r' \), can be determined from a Taylor series expansion, where higher order terms are assumed to be negligible:

\[
\delta r_i = (r_i - r') \approx (x_{i_0} - x_i) \left(\frac{\partial r}{\partial x_i} \right) + (x_{i_2} - x_i) \left(\frac{\partial r}{\partial x_2} \right) + \ldots
\]

(42)

If the equation for \(\delta r \) is substituted into Equation (41), we obtain:

\[
\sigma_i^2 \approx \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left[(x_{i_0} - x_i)^2 \left(\frac{\partial r}{\partial x_i} \right)^2 + (x_{i_2} - x_i)^2 \left(\frac{\partial r}{\partial x_2} \right)^2 \right]
\]

(43)

which can be rearranged to yield:

\[
\sigma_i^2 \approx \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left[(x_{i_0} - x_i)^2 \left(\frac{\partial r}{\partial x_i} \right)^2 + (x_{i_2} - x_i)^2 \left(\frac{\partial r}{\partial x_2} \right)^2 \right] + 2(x_{i_0} - x_i)(x_{i_2} - x_i) \left(\frac{\partial r}{\partial x_i} \right) \left(\frac{\partial r}{\partial x_2} \right) + \ldots
\]

(44)

Note that the variances for \(x_i \) and \(x_2 \) can be computed as:

\[
\sigma_{x_i}^2 = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} (x_{i_0} - x_i)^2
\]

(45)

where Equation (45) can be used to simplify Equation (44), resulting in Equation (46):

\[
\sigma_i^2 \approx \sigma_{x_i}^2 \left(\frac{\partial r}{\partial x_i} \right)^2 + \sigma_{x_2}^2 \left(\frac{\partial r}{\partial x_2} \right)^2 + 2\sigma_{x_1x_2} \left(\frac{\partial r}{\partial x_i} \right) \left(\frac{\partial r}{\partial x_2} \right) + \ldots
\]

(46)

Note that the covariance term, \(\sigma_{x_1x_2} \), is typically neglected because it is assumed that the variables \(x_i \) and \(x_2 \) are statistically independent of one another. The above equation gives the standard deviation of the independent variable given the standard deviation of the variables that it depends on. A similar statement can be made for the uncertainty, to get the response uncertainty:

\[
u_i^2 \approx \nu_{x_i}^2 \left(\frac{\partial r}{\partial x_i} \right)^2 + \nu_{x_2}^2 \left(\frac{\partial r}{\partial x_2} \right)^2 + 2\nu_{x_1x_2} \left(\frac{\partial r}{\partial x_i} \right) \left(\frac{\partial r}{\partial x_2} \right) + \ldots
\]

(47)

Equation (47), hence, defines how the uncertainties of underlying variables propagates into the overall response. The specific parameters that contribute to the uncertainty of the wheel performance are listed in Table 5 and Table 6.
5 RESULTS

5.1 SOIL PARAMETER VARIABILITY

5.1.1 Pressure-Sinkage Test

A total of 45 pressure-sinkage tests were performed to analyze the bearing characteristics of the soil. The tests were repeated 15 times for three rectangular plates with different widths, \(b \) (3, 5, and 7 cm). Parameters were determined using the five different methods outlined previously in Section 4.1.2.1.

Figure 9 shows the fits produced by the first three methods for a single test. Methods 1 and 3 yield similar curves, though varying slightly. The curve produced by method 2 appears very different and is strongly biased towards fitting the initial data points of each test. Methods 1 and 2 produced results identical to methods 5 and 4, respectively. The same trends of each different method fit are seen in all of the other pressure-sinkage tests.

![Figure 9: Sample estimation for 5-cm plate.](image)

It is important to recognize that no exponential function will closely fit the actual shape of the data curves. This is a direct consequence of the fact that Bekker’s exponential relationship in equation (1) is an empirical estimation, not a physical law, and it does not account well for deviance in the early behavior (when sinkage is less than about 15 mm).

Average values of \(n \), \(k_{eq} \), and least-squares error for each fitting method and plate size are shown in Table 2.

<table>
<thead>
<tr>
<th>Plate Width, (b) (cm)</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method #</td>
<td>n</td>
<td>(k_{eq,3})</td>
<td>error</td>
</tr>
<tr>
<td>1, 5</td>
<td>1.01</td>
<td>2.48</td>
<td>0.040</td>
</tr>
<tr>
<td>2, 4</td>
<td>1.39</td>
<td>9.89</td>
<td>0.196</td>
</tr>
<tr>
<td>3</td>
<td>1.03</td>
<td>2.66</td>
<td>0.039</td>
</tr>
</tbody>
</table>
Methods 1, 3 and 5 have relatively small fit errors. The parameters found by methods 2 and 4 are substantially different than those of the other methods; the sinkage exponent n is much higher and the coefficient k_{eq} is much larger. As noted previously, these methods fit low-sinkage data points well but poorly match the rest of the data.

Several important conclusions may be drawn from these results. First, Wong’s method (method 1) has proven to be very reliable as compared to a similar numerical method (method 3). Secondly, it gives a very good approximation to the best fit in the $z-\sigma$ domain. Nevertheless, estimation in the log domain and in the $z-\sigma$ domain will yield different parameters. A third observation is that the weighting factor σ^2 is necessary for best results in the log-log domain.

The error found by methods 1 and 3 is comparable. The (n, k_{eq}) parameter pairs found by methods 1 and 3 also produce a similar pressure-sinkage curve, so it is concluded that either method may be used for comparable predictions. It is interesting to note, however, that the individual parameters yielded from methods 1 and 3 can be significantly different despite both yielding a good fit.

5.1.1.1 Parameter Covariance

The covariance demonstrated by n and k_{eq} requires attention before proceeding to a statistical analysis. Figure 10 illustrates the apparent correlation of Bekker’s parameters from Section 4.1.2.1. Theoretically, every test should yield a similar n, but each plate size should yield a different k_{eq}.

In this case, n and k_{eq} show positive correspondence. This correspondence may be explained by noting that modifying the units of k_{eq} has a significant effect. The relationship between n and k_{eq} estimations exist because different combinations may yield a similar pressure prediction, and because the unit of k_{eq} is dependent on n itself:

$$[k_{units}] = \left(\frac{[pressureunits]}{[sinkageunits]}\right)^n$$ \hspace{2cm} (48)

To mitigate this difficulty, Reece’s revision of Bekker’s equation (Equation (16)) was implemented so that the unit of k_{eq} is always in pressure units and does not depend on n. Applying Equation (16) (instead of Equation (15)) to solve for the parameters resulted in very little n-k_{eq} correlation for our data, as shown in Figure 11. For each plate size, k_{eq} demonstrated no visible trend with n.

Figure 10: Relationship between n and k_{eq}, Bekker’s equation.
For each experimental run, Equation (16) was fit to a plot of the pressure as a function of sinkage. The equivalent pressure-sinkage constant, \(k_{eq}' \), and exponent of sinkage to plate width, \(n \), found in Reece’s equation were determined by minimizing an error function based on the least-squares method (analogous to method 3, described in Section 4.1.2.1). The mean and standard deviation were calculated to quantify the experimental variability of each soil parameter. The parameters for each data set are recorded in Table 3.

Table 3: Pressure-sinkage parameters and the mean and standard deviation for each plate size, Reece’s equation. Values from experimental runs are italicized.

<table>
<thead>
<tr>
<th>Plate Width, b (cm)</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test #</td>
<td>(n) (k_{eq,3}') [MPa]</td>
<td>(n) (k_{eq,5}') [MPa]</td>
<td>(n) (k_{eq,7}') [MPa]</td>
</tr>
<tr>
<td>1</td>
<td>0.938 0.070</td>
<td>1.208 0.140</td>
<td>1.082 0.231</td>
</tr>
<tr>
<td>2</td>
<td>0.876 0.067</td>
<td>0.784 0.134</td>
<td>1.114 0.266</td>
</tr>
<tr>
<td>3</td>
<td>1.289 0.059</td>
<td>0.774 0.149</td>
<td>0.976 0.252</td>
</tr>
<tr>
<td>4</td>
<td>1.017 0.065</td>
<td>0.839 0.133</td>
<td>0.996 0.250</td>
</tr>
<tr>
<td>5</td>
<td>1.162 0.066</td>
<td>0.773 0.136</td>
<td>1.053 0.210</td>
</tr>
<tr>
<td>6</td>
<td>0.928 0.068</td>
<td>0.983 0.160</td>
<td>0.960 0.217</td>
</tr>
<tr>
<td>7</td>
<td>0.980 0.066</td>
<td>0.775 0.132</td>
<td>1.154 0.236</td>
</tr>
<tr>
<td>8</td>
<td>0.958 0.070</td>
<td>0.848 0.125</td>
<td>1.028 0.222</td>
</tr>
<tr>
<td>9</td>
<td>1.434 0.048</td>
<td>0.716 0.139</td>
<td>1.066 0.270</td>
</tr>
<tr>
<td>10</td>
<td>0.930 0.073</td>
<td>1.053 0.137</td>
<td>1.224 0.327</td>
</tr>
<tr>
<td>11</td>
<td>0.979 0.061</td>
<td>0.874 0.157</td>
<td>1.085 0.288</td>
</tr>
<tr>
<td>12</td>
<td>1.002 0.067</td>
<td>0.938 0.162</td>
<td>1.102 0.245</td>
</tr>
<tr>
<td>13</td>
<td>0.926 0.070</td>
<td>1.130 0.119</td>
<td>1.107 0.254</td>
</tr>
<tr>
<td>14</td>
<td>1.079 0.057</td>
<td>0.797 0.147</td>
<td>1.252 0.262</td>
</tr>
<tr>
<td>15</td>
<td>1.061 0.057</td>
<td>0.851 0.851</td>
<td>1.440 1.440</td>
</tr>
<tr>
<td>Mean</td>
<td>1.037 0.064</td>
<td>0.889 0.141</td>
<td>1.109 0.255</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.152 0.007</td>
<td>0.145 0.013</td>
<td>0.123 0.032</td>
</tr>
</tbody>
</table>
The standard deviation of the Reece parameters were propagated to uncertainty in pressure by applying the statistical techniques described previously Section 4.2.3. The uncertainty of Reece’s model for the pressure, σ, at a given sinkage, z, can be obtained as:

$$u_\sigma^2 = u_{k_{eq}}^2 \left(\frac{\partial \sigma}{\partial k_{eq}} \right)^2 + u_n^2 \left(\frac{\partial \sigma}{\partial n} \right)^2$$ \hspace{1cm} (49)$$

where

$$\frac{\partial \sigma}{\partial k_{eq}} = \left(\frac{z}{b} \right)^n$$

$$\frac{\partial \sigma}{\partial n} = k' \left(\frac{z}{b} \right)^n \ln \left(\frac{z}{b} \right)$$ \hspace{1cm} (50)$$

and the uncertainties of the independent parameters $u_{k_{eq}}$ and u_n are made equivalent to the standard deviation of the pressure-sinkage parameters in Table 3.

Figure 12 - Figure 14 show the uncertainty estimation of the pressure-sinkage model for plate widths of 3, 5, and 7 cm, respectively, overlaid with the mean and standard deviation of the experimental pressure data.

As can be seen in Figure 12 - Figure 14, although Reece’s model does not precisely capture the pressure-sinkage behavior, the model uncertainty provides a close estimate of the experimental standard deviation.

In contrast, if the uncertainty were to be determined by the standard deviations of Bekker’s parameters, the bounds would be much wider than the experimental deviations, as illustrated in Figure 15 - Figure 17.
The mean values of Reece’s model parameters for the 5 cm plate \((k_{eq,s} = 0.141, n = 0.889)\) were used to estimate the mean pressure-sinkage curve for the wheel performance analyses in this study. This plate size was selected because its contact patch area most closely resembles that of the single wheel used in this study.

5.1.2 Direct Shear Test

A total of 12 direct shear tests were performed to analyze the shear characteristics of the dry soil. The tests were repeated three times for four different normal stresses each \((2.08, 2.86, 5.33, \text{ and } 17.83 \text{ kPa})\). For each experimental run that was carried out for the direct shear test, Equation (23) was fit to a plot of the shear stress as a function of shear displacement. The residual shear stress, \(\tau_{res}\), and shear modulus, \(K\), found in Equation (23) were determined by minimizing an error function based on the least squares method. The parameters for each data set are recorded in Table 4. The mean and standard deviation are calculated to quantify the variability of each soil parameter.

Table 4: Soil parameters based on shear-displacement curve fits along with the mean and standard deviation for each parameter. Values for experimental runs are italicized.

<table>
<thead>
<tr>
<th>Normal Stress [kPa]</th>
<th>2.08</th>
<th>2.86</th>
<th>5.33</th>
<th>17.83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density [g/cm³]</td>
<td>1.5 (Loose)</td>
<td>1.7 (Dense)</td>
<td>1.7 (Dense)</td>
<td>1.7 (Dense)</td>
</tr>
<tr>
<td>(\tau_{max}) [Pa]</td>
<td>2431.590</td>
<td>2763.430</td>
<td>4252.342</td>
<td>11364.000</td>
</tr>
<tr>
<td>(K) [m]</td>
<td>5.010E-04</td>
<td>1.021E-04</td>
<td>2.073E-04</td>
<td>1.436E-04</td>
</tr>
<tr>
<td>(\tau_{max}) [Pa]</td>
<td>2468.297</td>
<td>3189.900</td>
<td>3425.338</td>
<td>13453.684</td>
</tr>
<tr>
<td>(K) [m]</td>
<td>6.126E-04</td>
<td>1.303E-04</td>
<td>2.096E-04</td>
<td>1.297E-04</td>
</tr>
<tr>
<td>(\tau_{max}) [Pa]</td>
<td>2541.600</td>
<td>1952.265</td>
<td>3634.842</td>
<td>12595.687</td>
</tr>
<tr>
<td>(K) [m]</td>
<td>6.300E-04</td>
<td>2.260E-04</td>
<td>2.528E-04</td>
<td>1.100E-04</td>
</tr>
<tr>
<td>Mean</td>
<td>2480.496</td>
<td>2635.198</td>
<td>3770.841</td>
<td>12471.124</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>56.010</td>
<td>628.703</td>
<td>429.948</td>
<td>1050.396</td>
</tr>
</tbody>
</table>

The results of the analysis in Table 4 were used to determine the cohesion and angle of friction of the soil. The maximum shear stress and applied normal stress are related using Equation (27), and are shown in Figure 18.
Figure 18: The cohesion and angle of friction of the soil are determined using the Mohr-Coulomb failure criteria. The cohesion is the intercept of the plot and the angle of friction is the slope.

Based on this linear curve fit and Equation (27), the cohesion of the material is equal to 714.971 Pa and the angle of internal friction is equal to 33.083 degrees. Using the techniques described in Section 4.2.3 and Equation (28), the uncertainty is 415.491 Pa and 2.875 degrees for cohesion and internal friction angle, respectively.

To demonstrate the propagation of the variability of the experimental parameters to the uncertainty of Janosi and Hanamoto’s model, the techniques in Section 4.2.3 were applied using the data in Table 4. Figure 19 - Figure 22 compare the uncertainty estimation of the direct shear tests for varying normal stresses to the mean and standard deviation of the experimental data. Although Janosi and Hanamoto’s model does not precisely capture the shear-displacement behavior for dense soil, the cohesion and angle of friction have been shown to be independent of density when using the residual shear stress [10]. It is important to note that the shear modulus is dependent on density. Janosi and Hanamoto’s model was used to obtain the mean value of the shear-displacement estimation. The uncertainty of Equation (23) for the shear stress, \(\tau \), at a given shear displacement, \(j \), is approximated as:

\[
 u_\tau^2 \approx u_{\tau,\text{res}}^2 \left(\frac{\partial \tau}{\partial \tau_{\text{res}}} \right)^2 + u_K^2 \left(\frac{\partial \tau}{\partial K} \right)^2
\]

(51)

where

\[
 \frac{\partial \tau}{\partial \tau_{\text{res}}} = 1 - e^{-j/K}
\]

\[
 \frac{\partial \tau}{\partial K} = \tau_{\text{res}} e^{-j/K} \left(\frac{-j}{K^2} \right).
\]

(52)

and the uncertainties, \(u_{\tau,\text{res}} \) and \(u_K \), of the independent parameters are determined by the standard deviation of the parameters determined by the direct shear tests in Table 4.
Figure 19: Model uncertainty estimation and experimental standard deviation for a normal stress of 2.08 kPa on loose soil.

Figure 20: Model uncertainty estimation and experimental standard deviation for a normal stress of 2.86 kPa on dense soil.

Figure 21: Model uncertainty estimation and experimental standard deviation for a normal stress of 5.33 kPa on dense soil.

Figure 22: Model uncertainty estimation and experimental standard deviation for a normal stress of 17.83 kPa on dense soil.

5.2 Wheel Performance Uncertainty

Force sensors at five locations across the width of the wheel (Figure 6) measured the normal and tangential stress distributions (Figure 23 - Figure 28). Similarly, the drawbar pull, torque, and wheel sinkage at five different slip ratios ranging from -70% to 70%, and two different normal loads of 70 N and 135 N, shown in Figure 29 and Figure 30, were measured using the single-wheel test bed in Figure 4.

The uncertainty estimation method described in Section 4.2.3 is used along with the soil parameters in Table 5 and wheel properties in Table 6 to compare the wheel performance model to the experimental values of wheel performance. The normal and tangential stresses at the wheel-soil interface were calculated from Equations (16) and (30), respectively, and plotted in Figure 23 - Figure 28. The drawbar pull, torque, and wheel sinkage at three different slip ratios ranging from 10% to 70%, and two different normal loads of 70 N and 135 N, shown in Figure 29 and Figure 30, were calculated using Equations (37), (38), and (39).

Table 5: Soil parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Uncertainty</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure-sinkage constant, (k_e)</td>
<td>1.41x10^5</td>
<td>1.30x10^4</td>
<td>Pa</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td>Uncertainty</td>
<td>Units</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Normal force, F_z</td>
<td>70, 135</td>
<td>5%</td>
<td>N</td>
</tr>
<tr>
<td>Wheel radius, r</td>
<td>0.13</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>Wheel width, b</td>
<td>0.16</td>
<td>0</td>
<td>m</td>
</tr>
</tbody>
</table>

Table 6: Wheel properties.

The uncertainty in the wheel performance can be calculated using the techniques described in Section 4.2.3. The model uncertainties of the normal and tangential stresses for $W = 100N$ are plotted against the experimental data in Figure 23 - Figure 28. The uncertainty bars are determined numerically [16] using a finite differencing technique to obtain the sensitivity of the wheel performance with respect to each variable. Note that the model uncertainty envelope does not sufficiently capture the experimental data.

Finally, the uncertainty of the soil parameters is propagated to the drawbar pull, torque, and sinkage of the wheel, as shown in Figure 29 and Figure 30. The uncertainty bars are determined numerically [16] using a finite differencing technique to obtain the sensitivity of the wheel performance with respect to each variable and are plotted along with
the measurements based off the individual experimental runs. Note that the model uncertainty envelope does not sufficiently capture the experimental data, particularly in torque and sinkage.

![Figure 29: The uncertainty of the drawbar pull, torque, and sinkage of the wheel for a plate size of 5 cm x 16 cm and vertical force of 70N.](image)

![Figure 30: The uncertainty of the drawbar pull, torque, and sinkage of the wheel for a plate size of 5 cm x 16 cm and vertical force of 135N.](image)

6 SUMMARY

6.1 SOIL PARAMETER VARIABILITY

The first objective of this paper was to characterize the variability of measured soil parameters given experimental data. To determine the soil parameters associated with normal loads, the pressure and sinkage were measured with a plate that penetrated the soil under controlled test conditions. To determine the soil parameters associated with shearing loads, a standard direct shear test was performed under various normal loads. The individual soil parameters were obtained from the pressure-sinkage tests by fitting the dimensionless form of Reece’s equation to each experimental data set. Similarly, Janosi and Hanamoto’s equation for shearing was fit to the direct shear test to determine the soil parameters for each experimental data set. The mean and standard deviation were calculated to quantify the variability of each soil parameter. This experimental variability was used to calculate the uncertainty of the soil stress. Based on Figure 12 - Figure 14 and Figure 19 - Figure 22, the model uncertainties show good agreement with the actual standard deviations of the experimental measurements. Since the model parameters were estimated from the same experimental data, this uncertainty correlation validates the uncertainty propagation theory employed in this paper.

6.2 WHEEL PERFORMANCE UNCERTAINTY

The second objective of this contribution was to quantify the uncertainty in wheel performance. Such an investigation requires that the wheel can be accurately modeled. The sinkage of the rigid wheel model, based on the work of Wong and Reece, was determined by relating the weight of the wheel and the stresses acting on it in the vertical direction. Given the uncertainties of the individual soil parameters, it was possible to determine the overall uncertainty of the wheel performance (drawbar pull, torque, and sinkage) using the uncertainty propagation technique described in Section 4.2.3. The uncertainties of the normal and tangential stresses were plotted against the
experimental data for a single wheel traversing over the soil in Figure 23 - Figure 28. Additionally, the uncertainty of the soil parameters was propagated to the drawbar pull, torque, and sinkage of the wheel, as shown in Figure 29 and Figure 30. The wheel performance model fails to capture much of the experimental stress data and has little overlap with the drawbar pull, torque, and sinkage. It is evident from the results that the classical terramechanics model used in this paper is not suitable for the analysis of lightweight vehicles that exhibit relatively low ground pressures (i.e. 15-35 kPa).

Several modifications could be made to improve the accuracy of this model for lightweight vehicles. For example, the flat plate assumption of pressure-sinkage models has been shown to be inaccurate for lightweight vehicles and would likely benefit from revisions according to the recent results for diameter-dependent models reported in [17]. Further, the shear characteristics of the soil, shown in Figure 19 - Figure 22, are not adequately captured and could be more accurately estimated from making a modification to Equation (23) such as in [18] to account for the nonlinear “hump” that occurs in dense soil. Lastly, based on the size of the vehicle and the nature of the terrain, alternate methods could be employed to capture the behavior of each individual soil particle [19].

7 APPENDIX A: MATLAB CODE FOR WHEELSOIL CLASS

The WheelSoil class encapsulates the Bekker-Wong Theory for vehicle-soil interaction. A WheelSoil object contains the necessary variables and functions to compute wheel stress and performance, given the parameters of the soil and wheel.
classdef WheelSoil < handle
 % Encapsulates Bekker-Wong Theory for Vehicle-Wheel Interaction
 % Input: Soil parameters, Output: Wheel performance
 properties
 % properties with temporary values
 phi_degree = 19.735; % angle of internal shearing resistance
 phi = 0;
 c = 298.123; % cohesion, Pa
 K = 0.00068509; % shear deformation modulus, m
 k_1 = 0.141e6; % pressure sinkage modulus 1
 k_2 = 0; % pressure sinkage modulus 2
 n = 0.89; % exponent of sinkage to width ratio
 gamma = 0.0575; % density, N/m^3

 % Wheel properties
 r = .13; % radius, m
 b = .16; % width, m
 W = 135; % vertical axle load, N

 % Coefficients for the relative position of max. radial stress
 c_1 = 0.5; % 0.43;
 c_2 = 0.5; % 0.32;

 slip = 0.7; % slip

 % Important angles along the wheel
 theta_1 = 0.1;
 theta_2 = 0; % assume no t
 theta_m = 0;

 z_0 = 0; % maximum sinkage, m
end
methods
 % Constructor for the WheelSoil class (contains the variables)
 function TS = WheelSoil(i,keq,n,c,phi,K,c1,c2,Fz,r,b,theta2)
 TS.phi_degree = phi; % angle of internal shearing resistance
 TS.phi = 0;
 TS.c = c;
 TS.K = K; % shear deformation modulus, m
 TS.k_1 = keq;
 TS.k_2 = 0; % pressure sinkage modulus 2
 TS.n = n;
 TS.gamma = 0.048; % density, N/m^3 (doesn't matter)
 TS.omega = 0; % Wheel properties
 TS.r = r; % radius, m
 TS.b = b; % width, m
 TS.W = Fz; % vertical axle load, N
 TS.c_1 = c1;
 TS.c_2 = c2;
 TS.slip = i; % slip
 TS.theta_1 = 0.1;
 TS.theta_2 = theta2*pi/180; % assume no t
 TS.theta_m = 0;
 TS.z_0 = 0;
 TS.slip = i;
 TS.phi = TS.phi_degree*pi/180;
 end

 % Get the normal stress along the front of the wheel for a given angle
 function sigma_1 = getSigma1(TS,theta)
 z = (cos(theta)-cos(TS.theta_1))*TS.r;
 b_plate = 0.05;
 sigma_1 = TS.k_1.*(z/b_plate).*TS.n; % k_1 is k_eq here
 end

 % Get the normal stress along the back of the wheel for a given angle
 function sigma_2 = getSigma2(TS,theta)
 z = (cos(TS.theta_1)-((theta-TS.theta_2)/...
 (TS.theta_m-TS.theta_2))*(TS.theta_1-TS.theta_m)...-
 cos(TS.theta_1))*TS.r;
 b_plate = 0.05;
 sigma_2 = TS.k_1.*(z/b_plate).*TS.n; % k_1 is k_eq here
 end
% Get the normal stress at any angle on the wheel
function sigma = getSigma(TS,theta)
 sigma = zeros(length(theta),1);
 for i=1:length(theta)
 if(theta(i)>=-TS.theta_m && theta(i)<=-TS.theta_1)
 sigma(i) = getSigma(TS,theta(i));
 elseif(theta(i)>=-TS.theta_2 && theta(i)<=TS.theta_m)
 sigma(i) = getSigma2(TS,theta(i));
 else
 sigma(i) = 0;
 end
 end
 sigma = sigma';
end

% Get the shear stress at any angle on the wheel
function tau = getTau(TS,theta)
 tau = zeros(length(theta),1);
 for i=1:length(theta)
 if(theta(i)>=-TS.theta_2 && theta(i)<=-TS.theta_1)
 j = ((TS.theta_1-theta(i))-(1-TS.slip)*(sin(TS.theta_1)-
 -sin(theta(i))))*TS.r;
 tau(i) = (TS.c+sigma*tan(TS.phi))*(1-exp(-j/TS.K));
 else
 tau(i) = 0;
 end
 end
 tau = tau';
end

% Error function, including derivative (used for optimization)
function [error,dererrdthetac] = errorFunction(TS,theta_c)
 error = TS.getError(theta_c);
 if (nargout > 1)
 % use complex differentiation
 dererrdthetac = imag(TS.getError(theta_c+sqrt(-1)*1e-10))/1e-10;
 end
end

% Calculate the normalized error in weight (used for optimization)
function error = getError(TS,theta_c)
 W_prime = TS.getWeight(theta_c);
 error = (W_prime-TS.W);
end
% Get the weight for a given entrance angle

function Wcheck = getWeight(TS,theta_c)
 radius = TS.r;
 width = TS.b;
 TS.theta_1 = theta_c;
 TS.theta_m = (TS.c_1+TS.c_2*TS.slip)*theta_c;
 Wcheck = integral(@(theta)(TS.getSigma(theta).*cos(theta)),
 TS.theta_2,TS.theta_1);
 Wcheck = Wcheck + integral(@(theta)(TS.getTau(theta).*
 sin(theta)),TS.theta_2,TS.theta_1);
 Wcheck = Wcheck.*radius.*width;
end

% Calculate the wheel performance for a given set of soil
% parameters

function [H,R,D,T,z] = calculateWheelPerformance(TS,slip,keq,n,c,phi,K,c1,c2,Fz,r,b,theta2,guess)
 TS.slip = slip;
 TS.k_l = keq;
 TS.n = n;
 TS.c = c;
 TS.phi = phi;
 TS.K = K;
 TS.c_1 = c1;
 TS.c_2 = c2;
 TS.W = Fz;
 TS.r = r;
 TS.b = b;
 TS.theta_2 = theta2;
 radius = r;
 width = b;

% Calculate the entrance angle (assuming an exit angle)
options = optimset('Jacobian','on','Display','off');
theta_c = fsolve(@(theta)TS.errorFunction(guess),theta_c,options);
TS.theta_1 = theta_c;
TS.theta_m = (TS.c_1+TS.c_2*TS.slip)*TS.theta_1;
TS.z_0 = (1-cos(TS.theta_1))*TS.r;

% Calculate the total thrust
H = integral(@(theta)(TS.getTau(theta).*cos(theta)),
 TS.theta_2,TS.theta_1);
H = H.*radius.*width;

% Calculate the total motion resistance
R = integral(@(theta)(TS.getSigma(theta).*sin(theta)),
 TS.theta_2,TS.theta_1);
R = R.*radius.*width;
8 **APPENDIX B: MATLAB CODE FOR EXAMPLE PROGRAM**

The following example program uses the `WheelSoil` class to calculate the wheel performance and uncertainty for the soil and wheel described in this paper. Given the wheel slip and wheel weight, the program will return the values and uncertainty for drawbar pull, torque, and sinkage.

```matlab
function [D,T,z,D_unc,T_unc,z_unc] = WheelSoilExampleDriver(slip,weight)
% Example code for using the WheelSoil class
% Input: wheel slip
% weight of the wheel
% Output: drawbar pull, D
% torque, T
% maximum sinkage, z
% drawbar pull uncertainty, D_unc
% torque uncertainty, T_unc
% sinkage uncertainty, z_unc

% Wheel/Soil Parameters
phi = 19.735; % angle of friction, degrees
C = 298.123; % cohesion
k = 0.00068509; % shear modulus
k_eq = 0.141e6; % pressure-sinkage modulus
n = 0.89; % exponent of sinkage to width
theta_2 = -5; % exit angle (assumed)
r = .13; % wheel radius
b = .16; % wheel width
W = weight; % wheel weight

% Coefficients for determining the relative position of max. radial stress
C_1 = 0.5;
c_2 = 0.5;

%slip = 0.7;
guess = 0.1;
```

% Calculate the total drawbar pull
D = H-R;

% Calculate the total torque
T = integral(@(theta)(TS.getTau(theta)),TS.theta_2,TS.theta_1);
T = T.*(radius^2*width);

%Calculate the maximum sinkage
z = (1-cos(TS.theta_1)).*radius;
end
end
```
% soil parameter variability
phi_unc = 0.02229;
c_unc = 239.7;
K_unc = 0.0001858;
k_eq_unc = 13000;
n_unc = 0.14;
theta_2_unc = 0.03;
W_unc = 2.43;
c_1_unc = 0.2;
c_2_unc = 0.2;

% Create the WheelSoil object
test = WheelSoil(slip,k_eq,n,c,phi,K,c_1,c_2,W,r,b,theta_2);

% Calculate the uncertainty!
% Need the partial derivatives w.r.t. soil parameters

% Calculate the partial derivatives w.r.t. pressure sinkage modulus
[H,R,D,T,z] = test.calculateWheelPerformance(slip,k_eq+sqrt(-1)*1e-10,...
    n,c,phi*pi/180,K,c_1,c_2,W,r,b,theta_2*pi/180,guess);
dDdk_eq = imag(D)/1e-10;
dRdk_eq = imag(T)/1e-10;
dzk_eq = imag(z)/1e-10;

% Calculate the partial derivatives w.r.t. exponent of sinkage to width
[H,R,D,T,z] = test.calculateWheelPerformance(slip,k_eq,...
    n+sqrt(-1)*1e-10,c,phi*pi/180,K,c_1,c_2,W,r,b,theta_2*pi/180,guess);
dDdn = imag(D)/1e-10;
dRdn = imag(T)/1e-10;
dzdn = imag(z)/1e-10;

% Calculate the partial derivatives w.r.t. cohesion
[H,R,D,T,z] = test.calculateWheelPerformance(slip,k_eq,n,...
    c+sqrt(-1)*1e-10,phi*pi/180,K,c_1,c_2,W,r,b,theta_2*pi/180,guess);
dDdc = imag(D)/1e-10;
dRdc = imag(T)/1e-10;
dzdc = imag(z)/1e-10;

% Calculate the partial derivatives w.r.t. angle of friction
[H,R,D,T,z] = test.calculateWheelPerformance(slip,k_eq,n,c,...
    phi*pi/180+sqrt(-1)*1e-10,K,c_1,c_2,W,r,b,theta_2*pi/180,guess);
dDdphi = imag(D)/1e-10;
dRdphi = imag(T)/1e-10;
dzdphi = imag(z)/1e-10;
% Calculate the partial derivatives w.r.t. shear modulus
[H,R,D,T,z] = test.calculateWheelPerformance{slip,k_eq,n,c,...
   phi*pi/180,X+sqrt(-1)*1e-10,c_1,c_2,W,r,b,theta_2*pi/180,guess};
dDdK = imag(D)/1e-10;
dTdK = imag(T)/1e-10;
dzdK = imag(z)/1e-10;

% Calculate the partial derivatives w.r.t. constant 1
[H,R,D,T,z] = test.calculateWheelPerformance{slip,k_eq,n,c,...
   phi*pi/180,X,c_1+sqrt(-1)*1e-10,c_2,W,r,b,theta_2*pi/180,guess};
dDdc_1 = imag(D)/1e-10;
dRdc_1 = imag(T)/1e-10;
dzdc_1 = imag(z)/1e-10;

% Calculate the partial derivatives w.r.t. constant 2
[H,R,D,T,z] = test.calculateWheelPerformance{slip,k_eq,n,c,...
   phi*pi/180,X,c_1,c_2+W+sqrt(-1)*1e-10,W,r,b,theta_2*pi/180,guess};
dDdc_2 = imag(D)/1e-10;
dRdc_2 = imag(T)/1e-10;
dzdc_2 = imag(z)/1e-10;

% Calculate the partial derivatives w.r.t. wheel weight
[H,R,D,T,z] = test.calculateWheelPerformance{slip,k_eq,n,c,...
   phi*pi/180,X,c_1,c_2,W+sqrt(-1)*1e-10,r,b,theta_2*pi/180,guess};
dDdw = imag(D)/1e-10;
dRdw = imag(T)/1e-10;
dzdw = imag(z)/1e-10;

% Calculate the partial derivatives w.r.t. exit angle
[H,R,D,T,z] = test.calculateWheelPerformance{slip,k_eq,n,c,...
   phi*pi/180,X,c_1,c_2,W,r,b,theta_2*pi/180+sqrt(-1)*1e-10,guess};
dDdtheta_2 = imag(D)/1e-10;
dRdtheta_2 = imag(T)/1e-10;
dztheta_2 = imag(z)/1e-10;

% Calculate the total uncertainty in wheel performance
D_unc = sqrt(dDdK^2*k_eq_unc^2+dDdc_1^2*c_1_unc^2+dDdc_2^2*c_2_unc^2+...
   dDphi^2*phi_unc^2+dDdK^2*phi_unc^2+dDdc_1^2*c_1_unc^2+...)
   dDdc_2^2*c_2_unc^2+dDdw^2*w_unc^2)+dDdtheta_2^2*theta_2_unc^2); 
T_unc = sqrt(dTdK^2*k_eq_unc^2+dTdc_1^2*c_1_unc^2+dTdc_2^2*c_2_unc^2+...
   dTdphi^2*phi_unc^2+dTdK^2*phi_unc^2+dTd theta_2^2*theta_2_unc^2); 
Z_unc = sqrt(dzdw^2*w_unc^2)+dztheta_2^2*theta_2_unc^2); 

% Calculate the wheel performance
[H,R,D,T,z] = test.calculateWheelPerformance{slip,k_eq,n,c,...
   phi*pi/180,X,c_1,c_2,W,r,b,theta_2*pi/180,guess};
end
9 REFERENCES


Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.