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1. Summary 

This work reports anisotropic and isotropic elastic properties of dislocations and cracks in the 

α-phase of the energetic molecular crystal hexahydro-1,3,5-trinitro-s-triazine (αRDX). The 

properties determined in this work can be used to determine probable slip systems in αRDX and 

the structure of dislocations. The procedures given in this work for determination of the 

anisotropic dislocation line energy and crack tip dislocation nucleation load factors follow those 

outlined by Knap (1). This work contains a summary of the anisotropic elastic solutions for 

infinite straight dislocations given by Barnett and Swanger (2) and Barnett and Asaro (3) and the 

isotropic and anisotropic dislocation nucleation models of Rice (4) and Sun and Beltz (5). The 

appendix contains the Matlab implementation of the algorithms given in the text. 

2. Elastic Constants 

The orthotropic elastic constants used for αRDX are given in this section. The elastic constants 

are given in the material coordinates, Xi, which are aligned with the major axes of the material 

stiffness tensor. The linear elastic relationship between the stress and strain tensors, σ and e, are 

related by a fourth order tensor, Cijkl. Voigt form uses major and minor symmetry of the stress 

and strain tensors to write the fourth-order tensor, Cijkl, as a 6 × 6 matrix, cij. For an orthotropic 

material, the stress-strain relationship in Voigt form is given by 

      

 
 
 

 
 
   

   

   
   

   

    
 
 

 
 

 

 
 
 
 
 
 
   
   
   
 
 
 

   
   
   
 
 
 

   
   
   
 
 
 

 
 
 
   
 
 

 
 
 
 
   
 

 
 
 
 
 
    

 
 
 
 
 

 
 
 

 
 

   
   

   

    

    

     
 
 

 
 

 
(1) 

Previously reported (6, 7) molecular dynamics simulations under an applied strain were used to 

determine the components of cij. Each volumetric strain component, eii, results in a triaxial state 

of stress, σjj, due to Poisson’s effect and is used to determine the volumetric components of cij. 

Each shear strain results in a single linearly proportional shear stress, giving the shear 

components of cij. The compliance tensor, Sijkl, is given by the inverse of the stiffness tensor, 

Cijkl, but there is not a method available for taking the inverse of a fourth-order tensor and, due to 

material symmetries, the 81 components of Cijkl would produce a rank deficient 9 × 9 matrix. The 

Voigt form of the stiffness tensor, cij, includes the crystal symmetries and therefore is not rank 

deficient and an inverse exists. The Voigt form of the compliance tensor, sij, given by the inverse 

of cij, in terms of common orthotropic engineering terms is given by
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where Ei is the orthotropic Young’s modulus, ij is the orthotropic Poisson’s ratio and Gij is the 

orthotropic shear modulus. Values for cij, sij, Ei, ij, and Gij are given in table 1.  

 
Table 1. Orthotropic elastic and engineering constants 

for αRDX (6, 7). 

Stiffness 

Components 

(GPa) 

Compliance 

Components 

(GPa
-1

) 

Engineering 

Constants 

(GPa) 

c11 25.0 s11 0.0510 E1 19.6 

c22 23.8 s22 0.0561 E2 17.8 

c33 23.4 s33 0.0513 E3 19.5 

c44 3.1 s44 0.3226 G23 3.1 

c55 5.2 s55 0.1923 G31 5.2 

c66 7.7 s66 0.1299 G12 7.7 

c23 8.8 s23 –0.0148 21 0.34 

c31 7.6 s31 –0.0093 12 0.38 

c12 10.6 s12 –0.0193 31 0.18 

— — — — 13 0.18 

— — — — 32 0.29 

— — — — 23 0.26 

 

Voigt and Reuss averages are used to find the isotropic bulk and shear modulii. The Voigt 

average assumes a uniform strain field leading to an overestimate of the stress field calculated 

from anistropic elasticity. The Reuss average assumes uniform stress and results in an 

underestimate of the stress field from anisotropic elasticity. The Voigt average for the bulk 

modulus, Bv, and shear modulus, Gv, found from the stiffness tensor are given by  
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and are tabulated in table 2 for αRDX. Likewise, the Reuss average for the bulk modulus, BR, 

and shear modulus, GR, found from the compliance tensor are given by 
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(4) 

and are also tabulated in table 2 for αRDX. Table 2 also presents isotropic averages for the 

Young’s modulus and Poisson ratio found for either Voigt or Reuss averages of the bulk and 

shear modulus using the following relationships 

  
   

    
 

  
     

       
 

(5) 

 

Table 2. Isotropic averages of 

orthotropic elastic constants 

for αRDX. 

 Voigt  (GPa) Reuss (GPa) 

BV 14.0 BR 14.0 

GV 6.2 GR 5.5 

Ev 16.2 ER 14.5 

νv 0.31 νR 0.33 

 

The elastic constants presented in table 1 are given in the laboratory or material coordinates, Xi, 

which are the coordinates where the stiffness and compliance tensors from equations 1 and 2 are 

in their simplest forms, showing the symmetry of the crystal. The material coordinates, Xi, are 

normally not coincident with the crack coordinates xi as shown in figure 1. The crack coordinates 

shown in figure 1 are aligned so that the x2 direction is normal to the crack face and the x1 

direction is aligned with the crack front. The dislocation geometry is also described in terms of 

these coordinates where the dislocation line direction of the dislocation to be emitted from the 

crack tip will be in the x3 direction.  

The anisotropic elasticity equations in the following sections were derived by Barnett and 

Swanger (2) to yield expressions that utilize the material coordinates. The equations also utilize 

the fourth order tensor version of the stiffness tensor, Cijkl. An algorithm for creating a fourth 

order tensor from the 6 × 6 Voigt form is given in the appendix. 
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Figure 1. Coordinates used in elastic crack tip solution. Xi are the material 

coordinates aligning with the major axis of the material stiffness tensor, 

xi are the crack tip coordinates, where x1 is the direction of the crack 

front, x2 is normal to the crack face, and x3 is the plane dimension. KI are 

the applied load intensity factors describing the local modes of 

deformation at the crack tip.  

 

3. Anisotropic Elastic Dislocation Line Energy 

This section will give a brief description of how to determine the dislocation line energy using 

the methodology developed by Barnett and Swanger (2). This section is a reproduction of their 

work and will therefore use the same constants and terminology. In their work they refer to the 

coordinates in which the elastic constants are defined in as the laboratory or material coordinates, 

Xi. In equation 1 of Barnett and Swanger (2), the energy per unit length of a dislocation line is 

given by 

           
 

  
                       (6) 

where Kmg=Kgm is the energy prefactor that only depends on the elastic constants Cijkl and the 

orientation of the dislocation with respect to the laboratory Xi coordinates. The other parameters 

in equation 6 are as follows b is the burgers vector, ro is the radius of the dislocation core, R is a 

radial dimension on the same order as the specimen. In equation AI.1 of appendix I of Barnett 

and Asaro (3), a straightforward method for evaluating Kmg is given as 

    
 

   
                                           

    
 

 

 (7) 

where εpjw is the alternating or Levi-Cevita tensor, t is the dislocation line direction, z is any unit 

vector perpendicular to t, and ψ is an angular variable in the plane z•t=0 (see figure 2). Mir is the 

symmetric Christoffel stiffness matrix given by Mir = Cijrszjzs.    
   is the inverse of Mir.

KI

KII

KIII

x3

x1

x2

X1
X3

X2
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Figure 2. Spherical polar coordinates used to define the 

dislocation line direction, t, with respect to the 

crystal axes or laboratory axes, Xi. z is the unit 

normal vector to t and ψ is the angle of rotation 

integrated over in equation 7. 

In our work, the dislocation line direction, t, with respect to the laboratory axis, Xi, is known a 

priori and is fixed. Using the spherical polar coordinates shown in figure 2, t is given by  

    
        
        

    
  (8) 

With t fixed, any unit vector z normal to t and its derivative are given by 

                 
   
  

                
(9) 

where 

    
    
    
 

            
        
        
     

    (10) 

The integral in equation 7 is evaluated using trapezoidal numerical integration yielding a fourth 

order tensor that is evaluated with the remaining terms of equation 7 yielding Kmg. 

In table 3, values for the anisotropic prelogarithmic factor,        , are given for several slip 

systems reported on by Munday (7), Munday et al. (8), and Mathew et al. (9). Isotropic values 

are also given using the Voigt and Reuss averages. The dislocation line energy prefactor for an 

isotropic material is given by

X2, [010]

X1, [100]

X3, [001]

t t,z

ψ
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 (11) 

where G and ν are the Voight or Reuss isotropic averages for the shear modulus and Poisson’s 

ratio, respectively, and θ is the angle between the line direction, t, and Burger’s vector, b. Plots 

of the prelogarithmic energy factors as a function θ are shown in figure 3 for b = ½[100] 

dislocations on the (010) or (001) glide planes. Matlab algorithms for determining the line 

energies are given in the appendix. 

Table 3. Anisotropic and isotropic prelogarithmic energy factor (E = Kmgbmbg) for αRDX slip 

systems.  

 
 

 

 

Figure 3. Anisotropic and isotropic energy prelog factors as a function of dislocation type for dislocations 

with b = ½[1 0 0] on the (a) (010) and (b) (001) glide planes. 

Slip plane, 

n

Burgers

vector, b

Line 

direction, t

Dislocation 

type

E Aniso

(J m-1)e-9

E Voigt

(J m-1)e-9

E Reuss

(J m-1)e-9

(010) ½[100] [001] edge 0.37 0.32 0.28

(010) ½[100] [100] screw 0.22 0.22 0.19

(010) [001] [100] edge 0.62 0.76 0.69

(010) [001] [001] screw 0.34 0.53 0.47

(001) [010] [010] screw 0.5 0.64 0.56

(001) ½[100] [100] screw 0.22 0.22 0.19

(001) ½[100] [010] edge 0.33 0.32 0.28

(001) ½[010] [100] edge 0.19 0.23 0.21

(021) ½[01̅2] [01̅2] screw 0.64 0.69 0.61

(021) [01̅2] [01̅2] screw 2.56 2.75 2.42

(021) ½[100] [012] edge 0.36 0.32 0.29

(021) ½[100] [100] screw 0.22 0.22 0.19

(021) [100] [100] screw 0.9 0.88 0.78

(011) [100] [100] screw 0.9 0.88 0.78

(011) [100] [100] edge 1.37 1.27 1.16

(011) [01̅1] [01̅1] screw 1.28 1.17 1.03

a) b)
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4. Anisotropic Dislocation Nucleation 

A summary of the anisotropic version of Rice’s (4) dislocation nucleation continuum model 

developed by Sun and Beltz (5) will be presented followed by simplifications made for the 

systems under pure mode II or mode III loading. In this work, the dislocation line direction, t, 

given in equation 8 and shown in figure 2 coincides with the crack front, given as the  

x3-coordinate in figure 4. 

 

Figure 4. Crack tip geometry where the red plane is coincident with the crack 

plane, the crack front coincides with the x3-coordinate and the 

dislocation line direction, t, and the slip plane is shown in blue and 

is tilted by an angle θ relative to the crack plane. The slip direction 

is given by δ and angle ϕ.  

In equation 58 of Barnett and Asaro (3), the Griffith energy for a loaded crack tip in an 

anisotropic material is 

  
 

  
     

     (12) 

where Kmg is the anisotropic energy prefactor given by equation 7, and km = (K1,K2,K3) 

= (KII,KI,KIII) are the applied stress intensity factors as shown in figure 4. In fracture 

mechanics, equation 12 is normally given as  

          (13) 

where        
     . Kmg and Λmg are symmetric and can have off-diagonal elements. 

Sun and Beltz (5) give the modified dislocation nucleation criterion of Rice (4) for an anisotropic 

media as  

       
   

            (14) 

x3, t

θ

φ

δ

KI

KII

KIII
x1

x2
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where sm(ϕ) = [cos ϕ, 0, sin ϕ] is the orientation of the slip direction δ on the slip plane and γus is 

the unstable stacking fault energy found from the generalized stacking fault energy surface.   
   

 

is the effective stress intensity factor on the slip plane tilted at an angle of θ relative to the crack 

plane and is given by Rice (4) as  

  
   

          

 
 
 
 
    

 

 
         

 
     

 

 
   

 

 
 

      
 

 
   

 

 
    

 

 
 

      

  
 
 
 
 

   (15) 

Sun and Beltz (5) point out that the term     
   

 is the effective stress intensity factor due to the 

combination of KII and KIII loading along the sm direction of the slip plane.  

The function p(ϕ,θ) describes the effective material properties in the direction of slip and is given 

by  

              
   

   (16) 

where 8πKmg from equation 12 is used instead of Λmg.    
   

 is related to Kmg given in equation 7 

by the rotation from the laboratory coordinates, Xi, to the crack coordinates, xi, in figure 4, given 

by  

   
   

           (17) 

The rotation matrix, Rij, rotating Kmg to the crack coordinates, xi, by θ about the x3 axis is 

     
         
          

   
  (18) 

 

In this work, the crack tip geometry is simplified as shown in figure 5, where the slip plane is 

coincident with the crack plane, θ = 0. The rotation matrix given by equation 18 is equal to the 

identity and equation 17 simplifies to    
   

    . For the emission of a pure edge dislocation, 

the slip direction, δ, coincides with the x1 or KII direction, where ϕ = 0 and sm(0) = [100], and 

equation 16 simplifies to p(0,0) = 8πK11. The stress intensity factors for this configuration given 

by equation 14 are  

              (19) 

where the Kmg tensor with component K11 is found from equation 7 for t = [KII 0 0] and γus is the 

energy barrier to slip in the δ direction.
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Figure 5. Simplified crack tip geometry for the emission of a pure edge 

dislocation where the blue slip plane is coincident with the red 

crack plane (θ = 0) and the slip direction, δ, is aligned with the KII 

direction (ϕ = 0). 

Alternatively, for the emission of a pure screw dislocation shown in figure 6, the slip direction, δ, 

coincides with the x3 or KIII direction where ϕ = π/2, sm(π/2) = [001], and equation 16 simplifies 

to p(π/2,0) = 8πK33. The stress intensity factors for this configuration is given by equation 14 is  

               (20) 

where K33 component now to a Kmg tensor given by equation 7 for t = [0 0 KIII] and γus is the 

energy barrier to slip in the δ direction. Stress intensity factors for isotropic averaged material 

properties are given by substituting in equations 19 or 20 values for K determined from 

equation 11. 

 

 

Figure 6. Simplified crack tip geometry for the emission of a pure screw 

dislocation where the blue slip plane is coincident with the red 

crack plane (θ = 0) and the slip direction, δ, is aligned with the KIII 

direction (ϕ = π/2). 

δ
KI

KII

KIII

x3, t

x1

x2

KI

KII

KIII

x3, t, δ

x1

x2

φ=π/2
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Generalized stacking fault (GSF) energy surfaces for two αRDX slip systems are shown in 

figure 7 for the (010) slip plane (7, 8). These GSF surfaces provide energy barriers, γus, for a 

crack tip geometry with an x2 = [010] crack face and x3 = t=[001] or [100] crack front 

/dislocation line direction. Anisotropic and isotropic critical stress intensity factors for these 

crack tip geometries from equations 19 and 20 are given in table 4 along with values for Kmg 

from equation 7 and 11. Using anisotropic material properties, the lowest nucleation threshold 

for the (010) crack face is a screw type ½[100] dislocation emitted under KIII loading. This slip 

system also had the lowest dislocation line energy in table 3. 

 

Figure 7. GSF energy surfaces for dislocations on the (010) slip plane. 

Table 4. Anisotropic and isotorpic critical stress intensity factors for the (010) crack face in αRDX.  

 
 

The (010)[100] GSF surface in figure 7 has a local energy minimum indicating a stable stacking 

fault configuration for this slip system. In the case of dislocation nucleation, a stable stacking 

fault means a partial dislocation will be emitted from the crack tip. The shear stress at the crack 

front will cause the partial dislocation to move away from tip, leaving behind a stacking fault. 

The stacking fault material is at a higher energy pulling the partial dislocation back toward the 
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Slip Direction, ut=[100]

(010)[001]

(010)[100]

γus=351mJ/m2

γus=164mJ/m2

γsf=101mJ/m2

Kmg (MJ/m) Critical KII or KIII (Mpa m½)

Slip plane δ t, line dir 
Dislocation Type / 

Load
γus

(mJ/m-2)
Aniso Voigt Reuss Aniso Voigt Reuss

(010) [100] [001] edge / KII 164 826 714 647 0.058 0.054 0.052

(010) [001] [001] screw / KIII 351 320 495 436 0.053 0.045 0.042

(010) [100] [100] screw / KIII 164 576 495 436 0.049 0.066 0.062

(010) [001] [100] edge / KII 351 503 714 647 0.067 0.079 0.076
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crack tip. There is also an image force pulling the partial dislocation back toward the crack tip. A 

stable equilibrium position, rA, for the partial dislocation is found when the Peach Koehler forces 

due to the externally loaded crack tip are balanced out by the stacking fault and image forces, 

leading to equation 22 in Sun and Beltz (5) and reproduced here to include lattice frictional 

forces 

    

     
            

  
      

    
   (21) 

where kA is the applied stress intensity factor, bA is the Burgers vector of the partial dislocation 

being emitted, p(ϕA) is from equation 16, and σpbA is the friction force due to lattice resistance 

where σp is the Peierls stress.  For the edge-type partial dislocations described in table 4, ka = KII 

and ϕA = 0, leading to 

     

     
            

  
      

  
   (22) 

The equilibrium position, ra, is found using equation 24 in Sun and Beltz, reproduced here for 

the edge-type partial dislocations 

     

 
  
 

  
 

     

          
   

        
 
 

 
        

   
  

 
  
 

  
 

 

 (23) 

where KII is the load being applied, KIIAniso is the critical anisotropic load factor calculated for 

emission of the partial dislocation and KII >KIIAniso, meaning the partial has been nucleated. The 

isotropic version of equation 23 is given by equation 38 in Rice (4) and reproduced here for an 

edge dislocation with the addition of lattice friction 

     
 

   
       

 
 

 
   

 

   
 

              
   

      
 
 

 
        

   
  

  
(24) 

where KIIAniso is the isotropic load factor calculated for emission of the partial dislocation. 

Lattice friction is usually not included for most materials because the Peierls stress, σp, is usually 

on the order of 10
-4

 to 10
-2

G. The lattice friction cannot be ignored for aRDX because the 

Burger’s vectors are large and Mathew et al. (9) found σp to be approximately 3%–10% of G. 

The large lattice friction could be due to steric interactions. Values for rA and riso for the 

(010)½[100] slip system are given in table 5 for both with and without lattice friction. For cases 
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with lattice friction, alternative values for σp are presented. The “Iso Fit” and “Aniso Fit” σp 

values were found by fitting to r from the simulation data for KII = 0.07 MPa m
½
. The MD and 

GSF σp values were found by Mathew et al. (9) using molecular dynamics and the Peierls 

Nabarro model with the GSF data from Munday (8) and shown in figure 7. Including σp in 

equations 23 and 24 produces imaginary numbers for several values of KII. The values produced 

by the molecular dynamics simulations (10) of a crack tip given in the “Sim.” column of table 5 

do not match any of the σp values over the range of KII loads.  

Table 5. Location of the first (010)½[100] partial edge dislocation emitted from the crack tip for the anisotropic 

and isotropic models. Each row corresponds to the σp value given at the top of the table. The “Sim.” shows 

values from a molecular dynamics simulation (10).  

 
 

After the partial dislocation is nucleated the material at the crack tip is in the stacking fault 

configuration. The increased energy of the stacking fault configuration lowers the energy barrier 

for emission of the second partial dislocation. For the case where the partial dislocation’s 

Burgers vectors are in the same direction as the full dislocation, the first partial dislocation 

completely shields the crack tip from the kcrit load at which it was emitted. For the edge 

dislocation, the load for emission of the second partial dislocation is then reduced to 

                    (25) 

Values for critical KII loads for emission of the first and second partial dislocation are given in 

table 6 for several slip systems that were determined by Munday et al. (8) to produce partial 

dislocations in αRDX. 

σp (GPa)

ISOTROPIC MODEL ANISOTROPIC MODEL

Iso Fit Aniso Fit GSF MD

None 130 None 115 201 232

KII (Mpa m½) Sim. (Å) riso(Å) riso(Å) rA(Å) rA(Å) rA(Å) rA(Å)

0.054 135 NaN NaN NaN NaN NaN

0.058 175 25 156 NaN NaN NaN

0.060 189 31 170 NaN NaN NaN

0.065 235 47 215 44 NaN NaN

0.070 62 284 63 263 62 17 NaN

0.075 336 79 315 80 34 23

0.080 392 95 369 98 45 35

0.085 452 113 427 117 57 45

0.090 76 514 131 489 137 69 55
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Table 6. Anisotropic and isotropic critical stress intensity factors for the (010) crack face in αRDX. 

Unstable stacking fault energy, γus, given by Munday et al. (8). 

 
After the second partial dislocation is emitted, the two partial dislocations remain separated by 

the stacking fault. Even in the absence of a defect, it is energetically favorable for a full 

dislocation to dissosciate into two partials with a fractional Burgers vector separated by a 

stacking fault because the dislocation line energy given by equation 6 is proportional to |b|
2
. In 

the bulk crystal the partial dislocations are pushed apart by elastic forces due to both partial 

dislocations having similar Burger’s vectors. As the partial dislocations move away from one 

another they increase the size of the stacking fault resulting in an attractive force holding them 

together. An equilibrium configuration is reached where the two forces are balanced and are 

described in equations 10-14 and 13-150 of Hirth and Lothe (11). For the pure edge-type partial 

dislocations given in table 6, the equilibrium equation from Hirth and Lothe is simplified as 

   
        

   
 (26) 

Values for ra are given in table 7 for anisotropic and isotropic Kmg values. 

Table 7. Anisotropic and isotorpic partial dislocation separation distances for b = ½[100] edge-type 

dislocations.  

 

 

Slip 

plane, 

n

Burgers

vector, 

b

Line 

direction,

t

Type γus

(mJ m-2)

KII Aniso KII Voigt KII Reuss

1st 2nd 1st 2nd 1st 2nd

(010) ½[100] [001] edge 164 0.058 0.036 0.054 0.034 0.052 0.032

(001) ½[100] [010] edge 260 0.070 0.032 0.068 0.031 0.065 0.030

(011) ½[100] [011] edge 255 0.070 0.047 0.068 0.045 0.064 0.043

(021) ½[100] [012] edge 250 0.071 0.036 0.067 0.034 0.064 0.032

Slip 

plane, n

Burgers

vector, b

Line 

direction,

t

Dislocation 

type

γsf

(mJ m-2)

ra (Å)

Aniso Voigt Reuss

(010) ½[100] [001] edge 101 73 63 65

(001) ½[100] [010] edge 206 32 31 32

(011) ½[100] [011] edge 140 49 46 47

(021) ½[100] [012] edge 187 38 34 35
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5. Conclusion 

Several dislocation and crack tip properties were presented in this work that are useful for 

energetically ranking slip system activity and predicting the dislocation structure. Both isotropic 

and anisotropic results were provided and the isotropic results are shown to predict dislocation 

nucleation at smaller thresholds than the anisotropic model. The isotropic and anisotropic models 

provided the same energetic ranking based on dislocation line direction. For isotropic materials, 

the line energy of a screw dislocation is always lower than that of edge dislocations due to edge 

dislocations being scaled by (1-υ)
-1

 but for anisotropic materials this is not always the case, see 

for instance NiAl (12) and aFe (13). However, for the slip systems we studied in this work, the 

anisotropic line energy for screw dislocations was always lower than edge dislocations and was 

in general agreement with the isotropic model. 
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Appendix. Matlab Code for Dislocation Line Energies and Nucleation 

                                                 
 This appendix appears in its original form, without editorial change. 
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% Determine Anistropic and isotropic dislocation line energy and  

% dislocation nucleation form a crack tip. 

% 

% This script provides the data for the Anisotropic dislocation line energy 

% and crack tip dislocation nucleation ARL technical report. Equation 

% numbers given in this script correspond to equation numbers given in the 

% report. 

% 

% Anistropic dislocation orientation prefactor tensor determined from  

% equations given by Barnett & Swanger (PhysStat.Sol 1971) and Barnett &  

% Asaro (JMPS 1972).  

% 

% KII isotropic and anisotropic crack tip loading factors for dislocation  

% nucleation using in Rice's (JMPS 1994) isotropic dislocation nucleation  

% model or Sun & Beltz's (JMPS 1994) anisotropic dislocation nucleation  

% model. 

% 

% Lynn Munday, August 2012 

% 

close all hidden,clear all, clc 

format short 

       

%------MANUAL INPUT--------------------------------------------------------  

% 

% RDX stable and unstable stacking energy J/m^2=Pa*m 

% From Munday thesis (UMd 2011) and Munday et al. (Phil Mag 2012) 

y_us=164e-3;  % for (010)[100] 

y_sf=101e-3; 

 

% y_us=260e-3;  % for (001)[100]  

% y_sf=206e-3;  

%  

% y_us=255e-3;  % for (011)[100]   

% y_sf=140e-3;  

%  

% y_us=250e-3;  % for (021)[100] 

% y_sf=187e-3;  

 

%lattice vectors a,b,c or [100][010][001] 

latVec=[13.366      0      0;...  

           0   11.334      0;... 

           0        0 10.341]*1e-10;  

 

bvec_n=0.5*[1 0 0];    %unit burgers vector / slip direction 

line_dir=[0 0 1];      %disocation line direction 

bvec=latVec*bvec_n';   %burgers vector 

 

 

% RDX properties (MPa) Table 3.6, p79 of Munday thesis (UMd 2011) and 

% Munday et al. (JPCB 2010) 

% Voigt Stiffness Coefficients from Munday Dissertation 

C11=25e3; 

C22=23.8e3; 

C33=23.4e3; 

C44=3.1e3; 

C55=5.2e3; 

C66=7.7e3; 

C23=8.8e3; 

C13=7.6e3; 

C12=10.6e3;  



19 

%--------END MANUAL INPUT-------------------------------------------------- 

% Voight notation 

Cv=[C11 C12 C13   0   0   0;... 

    C12 C22 C23   0   0   0;... 

    C13 C23 C33   0   0   0;... 

      0   0   0 C44   0   0;... 

      0   0   0   0 C55   0;...     

      0   0   0   0   0 C66]; 

S=inv(Cv); 

% Find average isotropic material Properties 

% Voigt Average - uniform strain, over-estimate of stresses (Get from C) 

% bulk modulus 

Bv=0;   

for i=1:3 

  Bv=Bv+sum(Cv(i,1:3)); 

end 

Bv=Bv/9; 

% shear modulus 

Gv=(Cv(1,1)+Cv(2,2)+Cv(3,3))/15-

(Cv(1,2)+Cv(2,3)+Cv(1,3))/15+(Cv(4,4)+Cv(5,5)+Cv(6,6))/5; 

% Youngs Modulus & Poissons Ratio 

Ev=(9*Bv*Gv)/(3*Bv+Gv); 

nuv=(3*Bv-2*Gv)/2/(3*Bv+Gv); 

% Reuss Average - uniform stres, under-estimate of stressses (Get from S) 

Br=0; 

for i=1:3 

  Br=Br+sum(S(i,1:3)); 

end 

Br=1/Br; 

% Shear Modulus 

Gr=4/15*(S(1,1)+S(2,2)+S(3,3))-4/15*(S(1,2)+S(2,3)+S(1,3))+1/5*(S(4,4)+S(5,5)+S(6,6)); 

Gr=1/Gr; 

% Youngs Modulus & Poissons Ratio 

Er=(9*Br*Gr)/(3*Br+Gr); 

nur=(3*Br-2*Gr)/2/(3*Br+Gr); 

 

fprintf('\n\nISOTROPIC PROPERTIES:\n') 

fprintf(' Voigt Avg Properties: Ev=%6.2f, nuv=%6.2f, Gv=%6.2f , Bv=%6.2f 

\n',Ev,nuv,Gv,Bv) 

fprintf(' Reuss Avg Properties: Er=%6.2f, nur=%6.2f, Gr=%6.2f , Br=%6.2f 

\n',Er,nur,Gr,Br) 

 

%-------------------------------------------------------------------------- 

% get fourth order C     

C=zeros(3,3,3,3); 

for i=1:3 

  for j=1:3 

    for k=1:3 

      for l=1:3 

        m=0; 

        n=0; 

        if i==j  

          m=i; 

        elseif ((i==2 && j==3)||(i==3 && j==2)) 

          m=4;  

        elseif ((i==1 && j==3)||(i==3 && j==1)) 

          m=5;    

        elseif ((i==1 && j==2)||(i==2 && j==1)) 

          m=6;    

        end 

        if k==l  

          n=l;  

        elseif ((k==2 && l==3)||(k==3 && l==2)) 
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          n=4;  

        elseif ((k==1 && l==3)||(k==3 && l==1)) 

          n=5;    

        elseif ((k==1 && l==2)||(k==2 && l==1)) 

          n=6;    

        end 

        C(i,j,k,l)=Cv(m,n); 

      end 

    end 

  end 

end 

 

%----CALCULATE KK---------------------------------------------------------- 

%permutation or Levi-Cevita 3x3x3 tensor (using linear indexing of matrix) 

lc = zeros(3,3,3); 

lc([8 12 22]) = 1; 

lc([6 16 20]) = -1; 

 

%  Integral for equation 2.2 

t=line_dir/norm(line_dir); %disocation line direction -- eq 2.3 

r=norm(t); 

theta=atan2(t(2),t(1)); 

phi=acos(t(3)/r); 

a=[sin(theta) -cos(theta) 0]; %eq 2.5 

d=[cos(phi)*cos(theta) cos(phi)*sin(theta) -sin(phi)]; % eq 2.5 

 

%Integral Range: psi ranges 0 to pi 

psi_1=0; 

psi_2=pi;  

Ninc=200;  % # of midpoint summation intervals 

psi_inc=(psi_2-psi_1)/Ninc;  

intzM=zeros(3,3,3,3); 

intzMiso=zeros(3,3,3,3); 

LAM3=zeros(3,3); 

for inc=1:Ninc  %midpoint integration loop for intgral of christophel matrix 

  psi=psi_1+(inc-1)*psi_inc; 

  z(1:3) =a*cos(psi)+d*sin(psi);  %eq 2.4 

  dz(1:3)=-a*sin(psi)+d*cos(psi);  %eq 2.4 

 

  % Christoffel stiffness -- C_ijrs z_r z_s 

  M=zeros(3,3); 

  for i=1:3 

    for r=1:3 

      for j=1:3 

        for s=1:3 

          M(i,r)=M(i,r)+C(i,j,r,s)*z(j)*z(s); 

        end 

      end 

    end 

  end 

                   

  %midpoint integration of Christophel terms for eq 2.2 

  invM=inv(M); 

  for s=1:3 

    for n=1:3 

      for i=1:3 

        for r=1:3 

          intzM(s,n,i,r)=intzM(s,n,i,r) + (z(s)*dz(n)*invM(i,r))*psi_inc;   

        end 

      end 

    end 

  end 
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end 

 

% SOLVE FOR ANISOTROPIC DISLOCATION COMPLIANCE OR ORIENTATION PREFACTOR TENSORS 

% this is the inverse of LAMBDA given by Sun & Beltz (JMPS 1994) etc. 

KK_BA=zeros(3,3);  % Barnett & Asaro JMPS v.20 1972 

for m=1:3 

  for g=1:3 

    for p=1:3 

      for j=1:3 

        for w=1:3 

          for n=1:3 

            for i=1:3 

              for r=1:3 

                for s=1:3 

                  % -- Equation 2.2 

                  KK_BA(m,g)=KK_BA(m,g)+1/8/pi^2*lc(p,j,w)*t(j)... 

                           *(C(n,g,i,p)*C(w,m,r,s)+C(n,m,i,p)*C(w,g,r,s))... 

                           *intzM(s,n,i,r);    

                end 

              end 

            end 

          end 

        end 

      end 

    end 

  end 

end 

 

%%%%---OUTPUT RESULTS--- 

 

% 

% Dislocation energy 

Eaniso=bvec'*(KK_BA)*bvec * 1e6 * 1e9; % eq 2.1 

cos_theta=dot(bvec,line_dir/norm(line_dir))/norm(bvec); 

Eiso_v=1/4/pi*Gv*(1-nuv*cos_theta^2)/(1-nuv)*(norm(bvec))^2*1e6*1e9;%eq 2.6 

Eiso_r=1/4/pi*Gr*(1-nur*cos_theta^2)/(1-nur)*(norm(bvec))^2*1e6*1e9; 

fprintf('\n\nENERGY PRELOG FACTOR (Jm^-1*1e-9): \n\n') 

fprintf(' Anisotropic     = %-6g\n',Eaniso) 

fprintf(' Isotropic Voigt = %-6g\n',Eiso_v) 

fprintf(' Isotropic Reuss = %-6g\n',Eiso_r) 

 

% 

% splitting distance between two edge partials 

d_aniso=(4*pi*bvec'*(KK_BA)*bvec) /2/pi/(y_sf*1e-6)*1e10; %eq 3.17 

d_isov= (Gv/(1-nuv))/2/pi/(y_sf*1e-6)*(norm(bvec))^2*1e10; 

d_isor= (Gv/(1-nur))/2/pi/(y_sf*1e-6)*(norm(bvec))^2*1e10; 

fprintf('\n\nEDGE PARTIAL SPLITTING DISTANCE (A): \n\n') 

fprintf(' Anisotropic     = %-6g\n',d_aniso) 

fprintf(' Isotropic Voigt = %-6g\n',d_isov) 

fprintf(' Isotropic Reuss = %-6g\n',d_isor) 

%  

% NUCLEATION FOR KII LOADING FOR EMISSION OF EDGE DISLOCATION  

% equation 3.8 

fprintf('\n\n KII LOAD FACOTRS FOR FIRST PARTIALS (MPa sqrt(m)): \n\n') 

fprintf(' Isotropic Voigt = %-6g\n',sqrt(2*Gv/(1-nuv)*y_us*1e-6)) %eq  

fprintf(' Isotropic Reuss = %-6g\n',sqrt(2*Gr/(1-nur)*y_us*1e-6)) 

fprintf(' Anisotropic     = %-6g\n',sqrt(8*pi*KK_BA(1,1)*y_us*1e-6)) 

 

% equation 3.21 

fprintf('\n\n KII LOAD FACOTRS FOR SECOND PARTIAL: \n\n') 

fprintf(' Isotropic Voigt = %-6g\n',sqrt(2*Gv/(1-nuv)*(y_us-y_sf)*1e-6)) 

fprintf(' Isotropic Reuss = %-6g\n',sqrt(2*Gr/(1-nur)*(y_us-y_sf)*1e-6)) 

fprintf(' Anisotropic     = %-6g\n',sqrt(8*pi*KK_BA(1,1)*(y_us-y_sf)*1e-6)) 
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