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Abstract. A number of real-time ocean model forecasts
were carried out successfully at Naval Research Laboratory
(NRL) to provide modeling support and numerical guidance
to the CARTHE GLAD at-sea experiment during summer
2012. Two RELO ensembles and three single models
using NCOM and HYCOM with different resolutions were
carried out. A calibrated ensemble system with enhanced
spread and reliability was developed to better support this
experiment. The calibrated ensemble is found to outperform
the un-calibrated ensemble in forecasting accuracy, skill,
and reliability for all the variables and observation spaces
evaluated. The metrics used in this paper include RMS error,
anomaly correlation, PECA, Brier score, spread reliability,
and Talagrand rank histogram. It is also found that even the
un-calibrated ensemble outperforms the single forecast from
the model with the same resolution.

The advantages of the ensembles are further extended to
the Lagrangian framework. In contrast to a single model
forecast, the RELO ensemble provides not only the most
likely Lagrangian trajectory for a particle in the ocean,
but also an uncertainty estimate that directly reflects the
complicated ocean dynamics, which is valuable for decision
makers. The examples show that the calibrated ensemble
with more reliability can capture trajectories in different,
even opposite, directions, which would be missed by the un-
calibrated ensemble. The ensembles are applied to compute
the repelling and attracting Lagrangian coherent structures
(LCSs), and the uncertainties of the LCSs, which are hard
to obtain from a single model forecast, are estimated. It is
found that the spatial scales of the LCSs depend on the model
resolution. The model with the highest resolution produces
the finest, small-scale, LCS structures, while the model

with lowest resolution generates only large-scale LCSs. The
repelling and attracting LCSs are found to intersect at many
locations and create complex mesoscale eddies. The fluid
particles and drifters in the middle of these tangles are subject
to attraction and repulsion simultaneously from these two
kinds of LCSs. As a result, the movements of particles
near the Deepwater Horizon (DWH) location are severely
limited. This is also confirmed by the Lagrangian trajectories
predicted by the ensembles.

1 Introduction

The Grand Lagrangian Deployment (GLAD) was an at-sea
experiment that was conducted in the northern Gulf of Mex-
ico (GOM) from 17 July to 3 August 2012 by the Consortium
for Advanced Research on Transport of Hydrocarbon in the
Environment (CARTHE,http://www.carthe.org/). CARTHE
is one of the consortia supported by the Gulf of Mexico
Research Initiative (GoMRI,http://gulfresearchinitiative.
org/) and it comprises 26 principal investigators from 12
universities and research institutions, including the Naval
Research Laboratory (NRL) at Stennis Space Center, MS.
These universities and research institutions are distributed
across four Gulf of Mexico states and four other states.

As the modeling team for CARTHE at NRL, our focus
was on the numerical modeling, data assimilation (DA),
and forecasting to support and provide numerical guidance
to the GLAD experiment. To support this mission, we
have successfully run two RELO (Relocatable Circulation
Prediction System) ensembles, each with 32 members, and
three single-model deterministic forecasts using the Navy
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622 M. Wei et al.: RELO ensemble and its application to Lagrangian dynamics

Coastal Ocean Model (NCOM; Martin, 2000; Barron et al.,
2006) and the Hybrid Coordinate Ocean Model (HYCOM,
http://www.hycom.org, Bleck, 2002; Chassignet et al., 2003;
Halliwell, 2004) with different resolutions. All of these five
ocean forecast systems were run in real-time, assimilating
routine in situ and satellite observations processed at the
US Naval Oceanographic Office (NAVOCEANO), located
at Stennis Space Center, MS. To prepare for these
important numerical and in situ experiments, all the forecast
experiments started on 16 May 2012 to initialize the ocean
models and ensembles and test the support software needed
to distribute the real-time forecasts. The implementation and
operation of these forecast systems were conducted smoothly
without delays in delivery. These forecast products provided
real-time guidance to the GLAD drifter deployment.

It is known that the first generation of ensemble
prediction/forecast systems (EPS or EFS) was implemented
at the major meteorological centers about 20 yr ago, and
the details have been described in numerous publications,
e.g., Toth and Kalnay (1993), Houtekamer et al. (1996),
Molteni et al. (1996), Descamps and Talagrand (2007), and
Leutbecher and Palmer (2008). A number of improvements
have been made regularly over the past few years in areas
such as initial perturbation generation techniques, methods
for representing model-related uncertainties, and computing
efficiency. The performance of different ensemble methods
or systems has been studied and compared in the literature,
e.g., Hamill et al. (2000), Wei and Toth (2003), Buizza et
al. (2005), Bowler (2006), Wei et al. (2006), Descamps and
Talagrand (2007), and Magnusson et al. (2009). The basic
properties, advantages, and disadvantages of the different
ensemble methods are summarized in Tables 1 and 2 of Wei
et al. (2008). Some state of the art statistical post-processing
techniques (calibration) such as Bayesian model averaging
(BMA) can be found in Raftery et al. (2005).

At NRL, the RELO ensemble forecast system has been
developed to provide a capability for a rapidly relocatable
ocean ensemble forecast and data assimilation system for
use in operational forecast support for the U.S. Navy’s
missions (Rowley, 2008, 2010; Rowley et al., 2012; Wei et
al., 2013, hereafter referred to as W13). A schematic showing
the configuration of the RELO system with 32 ensemble
members as used in this paper is presented in Fig. 1 of
W13. The forecast component of the RELO ensemble system
is NCOM, (Martin, 2000; Barron et al., 2006). NCOM
is a primitive-equation ocean model developed at NRL
for local, regional, and global forecasting of temperature,
salinity, sound speed, and currents. The data-assimilation
component is the Navy Coupled Ocean Data Assimilation
System (NCODA; Cummings, 2005), which is based on a
3D-Var formulation. Both NCOM and NCODA are used
operationally at two US Navy operational centers, namely
the Fleet Numerical Meteorology and Oceanography Center
(FNMOC), located in Monterey, CA, and NAVOCEANO.

In the RELO ensemble, the analysis error estimated
from NCODA is used to generate the initial perturbations
by using the Ensemble Transform (ET) method. However,
it was found that the current method used in NCODA
underestimates the analysis error (W13). As a result, the
RELO ensemble is under dispersive and the spread is smaller
than the ensemble mean error. In theory, an ideal EPS
should have a spread that has amplitude comparable to the
ensemble mean error and grows at a similar rate (Hamill
et al., 2000; Buizza et al., 2005; Wei et al., 2006, 2008;
Descamps and Talagrand, 2007; Leutbecher and Palmer,
2008). Although estimating analysis error in a 3D-Var-
based DA system such as NCODA is challenging, the
Lanczos method, with proper calibration, can be used to
produce reasonably good analysis error variance with extra
computational cost (Wei et al., 2012). Another simpler, poor-
man’s method is to use multi-analysis data from different
DA systems or operational centers as demonstrated in Wei
et al. (2010). Work on improving the analysis error estimate
in NCODA is continuing at NRL.

Accounting for model-related uncertainties in the RELO
ensemble is another direction that can be taken to enhance
the ensemble spread. As an initial step to achieve this,
W13 proposed and examined three different schemes for
perturbing the horizontal and vertical mixing parameters.
The results show that a scheme perturbing both the horizontal
and vertical mixing parameters based on a Gaussian
distribution produces the largest spread increment. The
ensemble based on this scheme will be used in this paper.
However, the RELO ensemble is still under dispersive, even
with this parameter perturbation scheme. Similar cases have
been found in atmospheric ensemble systems, e.g., Reynolds
et al. (2011). To further improve the RELO ensemble in such
a short period of time for the CARTHE GLAD experiment,
we proposed a calibration to enhance the initial spread
inside the ET based on previous estimates of the ensemble
spread and forecast error. The superior performance of this
calibrated ensemble will be explored and demonstrated.
Some other efficient methods, such as stochastic forcing
(Lermusiaux, 2006), which can potentially enhance the
spread, will be pursued in the next step.

In this study, we will compare the two RELO ensembles
with three, single-model, deterministic forecasts with
different resolutions, which will showcase the advantages
of ensembles over single model forecasts. The impacts
and benefits of the proposed initial spread calibration
will be examined and demonstrated in terms of the most
commonly used verification metrics. These include RMS
error, anomaly correlation, PECA, Brier score, spread-
reliability, and Talagrand rank histogram. In addition, we
will extend the RELO ensembles to Lagrangian dynamics,
including particle trajectory prediction and the Lagrangian
coherent structure (LCS). The advantages of using the
ensemble, especially the calibrated, more reliable ensemble,
will be demonstrated in all of these cases. The details of the
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complicated tangles formed by the repelling and attracting
LCSs over the region near the location of DWH and their
impacts on the movements of particles are revealed and
compared with the trajectories predicted by the ensembles.
The DWH (which is located about 60 km off the Louisiana
coast at 88.39◦ W, 26.74◦ N) is the location of the largest oil
spill incident in US history, in which over 4.9 million barrels
of oil were released into the GOM between 20 April and
15 July 2010.

Another goal of this paper is to describe these numerical
forecast systems and their corresponding products, including
the RELO ensembles and, particularly, the calibrated
ensemble that was developed for this mission. We believe
that the material presented in this study will be valuable
for scientists both inside and outside the CARTHE project,
especially after the CARTHE GLAD data are released to the
public in the future.

Section 2 provides very brief descriptions of the ET
formulation for initial perturbations, the time-deformation
technique to generate surface forcing perturbations from
an atmospheric model for the RELO ensembles, the
methodology for perturbing the mixing parameters, the
configurations for the RELO ensembles, NCOM and
HYCOM, and the experimental set up. The major results
are presented in Sect. 3. Also shown in Sect. 3 are the
results from applications of the ensembles to Lagrangian
dynamics and particle trajectory prediction. A discussion and
conclusions are presented in Sect. 4.

2 Methodology, ocean ensembles and models, and
experimental setup

2.1 Initial and surface forcing perturbations

The NRL RELO ensemble prediction system uses the
ET method that transfers forecast perturbations from the
previous cycle into new perturbations using the estimated
initial analysis error variance. The same initial analysis error
variance will be used in the following rescaling process. The
method and its properties in general are described in Wei et
al. (2005, 2008) and McLay et al. (2007).

In the RELO ensemble, the analysis fields are generated
by the NCODA DA system and the estimate of the analysis
error variance is also derived from NCODA. The ET method
has the advantage that the ensemble perturbations span
a subspace that has a maximum number of degrees of
freedom. The orthogonality of the initial perturbations will
increase as the number of ensemble members increases.
If the number of ensemble members approaches infinity,
the transformed perturbations will be orthogonal under the
inverse of the analysis error variance norm. In addition to the
flow-dependent spatial structure, the covariance constructed
from the initial perturbations is approximately consistent
with the analysis covariance from the DA if the number of
ensemble members is large. More details about the initial

perturbations based on ET in the US Navy’s RELO ensemble
can be found in W13.

The surface forcing perturbations are produced from
real-time, meteorological, forecast fields obtained from
FNMOC, including wind stress, surface pressure, shortwave
and long-wave radiation, air temperature, and specific
humidity. FNMOC produces operational forecasts using the
Navy Operational Global Atmospheric Prediction System
(NOGAPS) for global and the Coupled Ocean Atmosphere
Mesoscale Prediction System (COAMPS) for regional
forecasts. Throughout our experiments with both the
RELO ensemble and single forecasts, we use COAMPS
atmospheric data fields, which are available at 3 h intervals
and are updated using a 12 h analysis-forecast cycle.

For the RELO ensemble, perturbed surface forcing fields
for different ensemble members are generated with a random
shifting technique from the single-model prepared forcing.
At every cycle, 32 completely independent random fields are
generated every 24 h with a specified de-correlation length.
For each ensemble member, forcing is prepared at the same
3 h interval by linear interpolation of the forcing, but with
the values computed at randomly shifted times. The time
shifts are defined using a set of independent random fields
generated every 24 h with a defined spatial de-correlation, so
that any interpolated field is not correlated with any other
interpolated field 24 h away, and the atmospheric forcing for
each ensemble member will be independent. More detailed
mathematical formulae are given in W13.

2.2 Parameter perturbations

Our previous studies showed that the technique used in the
NCODA DA system underestimates the initial analysis error.
Consequently, the initial perturbations generated by the ET
method in the RELO ensemble are relatively small. At the
same time, the initial perturbations do not grow fast enough
to describe the forecast errors due to the lack of model
uncertainty representations in the ensemble. As an initial
step to address this issue, the parameter perturbations were
introduced to the RELO ensemble in W13. The impacts on
the ensemble spread, reliability, accuracy, and forecasting
skill were investigated in that study. The two key parameters
that play critical roles in describing the horizontal and
vertical mixing in NCOM (Martin, 2000; Barron et al., 2006)
are perturbed, namely the scaling parameter (smag) for the
Smagorinsky horizontal mixing formulation (Smagorinsky,
1963), and the turbulent kinetic energy dissipation coefficient
(b1 myl2) for the Mellor–Yamada Level 2 (MYL2, Mellor
and Yamada, 1974; Mellor and Durbin, 1975) vertical mixing
scheme. Note that there are options for other horizontal
and vertical mixing schemes in NCOM. The advantages
and disadvantages of using the Smagorinsky and MYL2
schemes in comparison with the other choices are discussed
in Martin (2000). In both the RELO ensemble and NCOM
single-model runs, the default values are smag= 0.1 and
b1 myl2= 15.0.

www.nonlin-processes-geophys.net/20/621/2013/ Nonlin. Processes Geophys., 20, 621–641, 2013



624 M. Wei et al.: RELO ensemble and its application to Lagrangian dynamics

Three different parameter-perturbation schemes based on
different statistical distributions were tested and compared
in W13. In this study, we use the scheme that produced
the largest spread increment for the RELO ensemble, i.e.,
the scheme in which these two parameters in the horizontal
and vertical mixing turbulence parameterization, smag and
b1 myl2, are perturbed using a Gaussian distribution. The
mean and standard deviation of smag are chosen as 0.125
and 0.01875, while for b1myl2, the values are 17.5 and
0.625, respectively. Under these distributions, values of these
two randomly generated parameters are expected to fall
within reasonable ranges and allow NCOM to run smoothly.
The RELO ensemble based on this choice of parameter
perturbation is denoted by gom32r (or r in the figures).
Again, more details can be found in W13.

2.3 NCOM, HYCOM, RELO ensemble with calibration
and experimental design

The introduction of parameter perturbations in gom32r
to account for model uncertainties from the mixing
parameterizations improved the ensemble spread to a certain
extent. However, the ensemble spread in gom32r is still
smaller than the ensemble mean error as shown in W13. To
prepare for the GLAD at-sea experiment and provide the
best possible real-time ensemble forecasts and uncertainty
estimates for the scientists in this experiment, we needed
to address this issue efficiently and quickly. Any efforts
that needed a long period of development could not be
considered. Hence, we took an ad hoc approach to calibrate
the initial spread magnitude based on the difference between
the RMS error of the ensemble mean and the spread from
the data accumulated during past experiments. This kind of
ad hoc approach has proven to be effective in operational
ensemble systems at major NWP centers (Houtekamer et
al., 1996; Buizza et al., 2005; Bowler et al., 2009; Wei
et al., 2008). It is necessary to note that this is a simple
calibration for initial spread only, which is different from
more sophisticated calibration methods for postprocessing,
such as the BMA method (Raftery et al., 2005). Our initial
spread calibration is done before ensemble forecasts start,
while the BMA is applied to the ensemble products with
clever statistical techniques after the forecasts. Hence, in
this study, we ran another, real-time, RELO ensemble with
a calibrated ensemble spread, in which the magnitudes of
the initial perturbations generated in the ET in gom32r
were increased by 50 %. One of the advantages of this ad
hoc calibration is that the spatial structure of the initial
perturbations is not altered. This system is denoted as
gom32q in this study or q in the figures. In Sect. 3, we
will show the results from both gom32r and gom32q using
various verification metrics. The improved performance in
terms of forecast accuracy, skill, and reliability due to this
calibration process will be demonstrated in comparison with
gom32r.

W13 is mainly concerned about the impacts from various
parameter perturbation schemes with one model and one
resolution, no initial perturbation calibration is involved and
the experiments were carried for 15 April to 25 July 2010.
However, some common measures and techniques have been
used both in this study and W13, such as spread-reliability
diagram, Talagrand histogram, RMS error and anomaly
correlation. In addition to the two RELO ensembles (i.e.,
gom32r and gom32q), each with 32 ensemble members,
three single-model forecasts were also carried out using
NCOM at both 3-km and 1-km resolution, and HYCOM at
4-km resolution. For validation, we chose the forecast series
from 1 June to 17 September 2012, a total of 109 days,
although the real-time experiments started on 16 May 2012.
The forecast length for all the model runs was 72 h, with
output every 6 h.

Both ensembles r and q and the 3-km NCOM single
forecast have a horizontal domain covering the GOM from
98 to 79◦ W and 18 to 31◦ N with a grid spacing of 3km×
3 km. The grid dimensions are 640 and 481 in the longitude
and latitude directions, respectively. This single NCOM
forecast is denoted as ncom3km (or 3k in the figures). The
number of vertical levels is 49, with 34 bottom-following
sigma layers in the upper ocean andz levels from the bottom
of level 34 to the bottom of level 49 at a depth of 5500 m.
The advantages of this kind of hybridσ–z coordinate were
discussed in Martin (2000) and Barron et al. (2006).

Another single forecast with NCOM has a horizontal
resolution of 1km× 1 km (denoted by ncom1km, or 1k in
the figures) covering the GOM from 97.95 to 80.25◦ W and
18.05 to 30.79◦ N, with grid dimensions of 1800 and 1420
in the longitude and latitude directions, respectively. The
vertical coordinate and resolution are the same as ncom3km.
The only difference between ncom1km and ncom3km is in
the horizontal resolution. Tidal forcing (the barotropic tidal
height and transports at the open boundaries and the tidal
potential in the interior) is turned on for gom32r, gom32q,
ncom3km, and ncom1km.

The last single forecast is produced with the Gulf of
Mexico HYbrid Coordinate Ocean Model (HYCOM). This
model is on a Mercator projection covering the region
from 18 to 32◦ N, and from 98 to 76.4◦ W. The horizontal
grid resolution is 1/25◦, ∼ 4 km resolution (indicated by
hycom4km, or 4k in the figures). The model employs
20 hybrid vertical coordinate surfaces. Vertical coordinates
can be isopycnals (density tracking), often best in the
deep stratified ocean, levels of equal pressure (nearly fixed
depths), best used in the mixed layer and unstratified ocean,
and sigma levels (terrain following), often the best choice
in shallow water. HYCOM combines all three approaches
by choosing the optimal distribution at every time step.
The model makes a dynamically smooth transition between
coordinate types by using the layered continuity equation.
The model is nested in a climatology generated from a multi-
year, climatologically forced, 0.08◦ HYCOM Atlantic Ocean
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simulation. There is no tidal forcing turned on during this
run. All the ensembles and single forecast models together
with their configurations are summarized in Table 1.

3 Results from the RELO ensembles, NCOM
and HYCOM

3.1 Impact of the calibration on ensemble spread

The ensemble mean, which provides forecast, and the
ensemble spread, which provides the forecast uncertainties,
are the very basic attributes of an ensemble prediction
system. For a carefully designed, reliable ensemble, the
ensemble mean generally outperforms a single deterministic
forecast in terms of the root mean square (RMS) error and
the absolute error. The ensemble spread is closely related to
the range, reliability, and sharpness or resolution of the EPS
(Wei and Toth, 2003; Wei et al., 2006, 2008; W13). One of
the contributions of this project is to introduce a calibrated
ensemble q that, we hope, outperforms the original ensemble
r. Before the RELO ensemble is compared with the single
forecasts, we concentrate on the comparisons between the
ensemble r and the calibrated ensemble q in this section.

The GLAD at-sea experiment started on 17 July 2012 and
lasted until 3 August 2012. We choose to show a snapshot
of the horizontal spread distributions at 00:00 UTC on 20
July 2012 to depict the immediate enhancement of the initial
ensemble spread from the calibration in Fig. 1. The spreads
of the main model variablesT (temperature),S (salinity),
u (velocity component along longitudinal direction), and
v (velocity component along latitudinal direction) on the
surface are shown (from top to bottom) for ensembles r
(left panel) and q (right panel). As expected, the calibrated
ensemble spreads q (right panel) are larger than the spreads
from ensemble r (left panel) for all the variables. The largest
temperature spreads are located near the Yucatan Current, the
Florida Current, and the Loop Current (LC) eddy, reflecting
a larger ocean state variability near these regions. Relatively
high uncertainty is also found at the surface south of the
Mississippi River delta, which is near the DWH site. As
expected, there is a large uncertainty in the surface salinity
near the Mississippi and Atchafalaya river outflows. The low
salinity values near the coasts of Louisiana and Mississippi
are due to the large fresh water inputs. The largest surface
salinity variations are located in this area of mixing. For
the surface velocity, large variations occur within 200 km of
the Louisiana coast and in regions near the LC and Yucatan
Current.

The spread comparisons between ensembles r and q
shown in Fig. 1 are just snapshots of the two ensembles at
00:00 UTC 20 July 2012, from one particular vertical level.
In order to obtain more statistically meaningful comparisons,
we need to compute various verification metrics over a much
larger number of samples. To compute the values of metrics

related to accuracy and reliability, we have interpolated all
the ensemble forecasts to the observation locations. The
routine in situ and remote sensing observations from the
NAVOCEANO operational NCODA DA system are used as
truth to compare against. In this study, our evaluations are
carried out for different observation spaces, including the full
observation space, near the surface (upper 1 m), and in the
ocean interior over a range from 0–100 m. The numbers and
locations of observations vary each day, and the locations
are most likely not on model grids. On a particular day
during the experimental period, the numbers of temperature
observations are about 12750 (full space), 8098 (0–100 m)
and 6505 (surface). While for salinity, the observation
numbers are about 7200 (full space) and 2500 (0–100 m).
The reasons for evaluating the forecasts over different
observation spaces include the fact that these are dynamically
distinct domains. The surface is normally dominated by air–
sea interactions and highly variable wind-driven currents.
The interior is generally controlled by mesoscale dynamics
and internal mixing processes. Secondly, the density of
observations is different for the different domains. For
instance, the number of observations near the surface is much
larger than that in the interior. Therefore an average over
the entire observation space may be skewed toward the near-
surface.

Figure 2 shows the ensemble spreads at 00:00 UTC on
each day during our experimental period from 1 June to 17
September 2012. To have the best statistical meaning, all
the spread values are averaged over the layer from 0–100 m
where most of the observations are located. The average
values over the whole period are indicated in the figures.
It is clear that the spreads for the calibrated ensemble q
are consistently larger than those of ensemble r for both
temperature and salinity at 24, 48, and 72 h forecast lead
times. The results in this figure also indicate large spread
variability on different dates during this period for both
variables, particularly salinity. Spread values averaged over
the full observation space (not shown), are also consistent
with these results.

One may notice higher values of temperature spreads
for forecast lead times of 24, 48 and 72 h at 00 UTC
of 2 September 2012, 1 September 2012, and 31 August
2012. There are two reasons. Hurricane Isaac entered
the GOM from around 29 August 2012 with changing
intensities, and lasted until 3 September 2012 before moving
northeastward away from the Gulf coast. It had caused a
lot of flooding around the coast states including Louisiana
and Mississippi where NRL is located near the coast. The
larger spread reflects the larger variability of temperature
in the water during the period of Hurricane Isaac. The
long-lasting flooding also caused power outage and loss
of communication. There were very few observation data
from operational center around 3 September 2012 due
to the lost transmissions. Since all these verifications are

www.nonlin-processes-geophys.net/20/621/2013/ Nonlin. Processes Geophys., 20, 621–641, 2013
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Table 1.Experimental setup and model description.

gom32r gom32q ncom3km ncom1km hycom4km
(r) (q) (3k) (1km) (4km)

Model NCOM NCOM NCOM NCOM HYCOM
Resolution 3km 3km 3km 1km 4km

49 hybrid 49 hybrid 49 hybrid 49 hybrid 20 hybrid levels
σ − z levels σ − z levels σ − z levels σ − z levels

Tidal forcing on on on on off

Number of members 32 32 1 1 1

Perturbations Analysis: NCODA 3D-Var. Initial Perts: gom32r + N/A N/A N/A
ET, Surface forcing perturbs from COAMPS Initial pert
atmospheric fields based on time-deformation calibration
technique. Model error: perturbing
vertical and horizontal turbulence mixing
parameters with Gaussian distribution.

Fig. 1. Initial ensemble spread for r (left panel) and q (right panel) at
00:00 UTC 20 July 2012 on the surface for temperature (T ), salinity
(S), u, andv (from top to bottom).

carried out against observations in observation space, too few
observations can also lead to larger spread.

To compare the spread from another perspective, the
temperature spreads for ensembles are plotted as a function
of forecast lead time in Fig. 3. They are averaged over the
full observation space (a), and for the layer from 0–100 m
(b). It can be seen that the ensemble spreads from both
ensemble systems grow slightly over 72 h in both observation
spaces. In addition, the enhancement of the spread from the
calibrated ensemble q is evident.

3.2 Impact of the calibration on ensemble reliability

As demonstrated in the previous section, the ensemble spread
is clearly enhanced by the calibration we introduced. But,
does this enhancement increase the ensemble reliability,
forecast accuracy, or skill? We will show the reliability
comparison in this section. The comparison of forecast
accuracy and skill will be provided in the next section.
The spread of a reliable ensemble system should capture
the forecast errors as a function of the forecast lead time.
An ensemble with too small a spread will miss important
dynamic events, especially extreme ones, while an ensemble
with too large a spread will make the ensemble less sharp and
less reliable with lower resolution.

In this section, we compare the two ensemble spreads with
metrics that are especially designed for ensemble systems.
The first one is the perturbation versus error correlation
analysis (PECA) introduced by Wei and Toth (2003). PECA
is designed to reduce the influence of initial analysis error,
instead it evaluates the ensemble perturbations by measuring
their ability to explain the forecast error variance. Therefore,
PECA is a more appropriate, independent metric for the
comparison of ensembles generated using different analysis
schemes. A brief description and summary of PECA is
provided in Appendix A, and more details can be found in
Wei and Toth (2003).
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Fig. 2. Ensemble spreads for r (dotted) and q (dashed) as functions
of day during the experimental period from 1 June to 17 September
2012. The spreads ofT (left panel) andS (right panel) are shown
for forecast lead times of 24, 48 and 72 h from top to bottom panels.
The spread values are averaged over the observation space between
0 and 100 m.

Figure 4 shows PECA values from the optimally combined
perturbations as defined in Eq. (A2) for both ensembles
for temperature and salinity over full observation space,
surface and space of the layer 0–100 m. The results clearly
show that the calibration increases the optimal PECA. This
means that as forecast lead time increases, the dimension
of the subspace spanned by the ensemble perturbations
is increased compared with the original ensemble r. The
optimally combined perturbation in q can explain more
forecast errors. The increment of PECA value is larger in
the observation space with higher dimensions such as the
full observation space and the space between 0 and 100 m
in Fig. 4a, c, and d. The difference is smaller at the surface
(Fig. 4b).

Fig. 3. Ensemble spreads of temperature for r (dotted) and q
(dashed) as functions of forecast lead time. The spread values are
averaged over the 109 days from 1 June to 17 September 2012,
and over the full observation space(a), the layer between 0 and
100 m(b).

In order to test whether the differences between the two
ensembles are statistically significant, we plot error bars
(EBs) for both ensembles at forecast lead times of 24,
48, and 72 h. It is known that there are different ways of
defining statistical significance which is also dependent on
the user’s needs. In this paper, we use the standard error
(SE). Each vertical EB covers the range of mean value on
the curve minus and plus SE, thus, showing the confidence
interval (CI) around the mean. The values of lower and
upper limits for mean valuex on the curve with CI are
x − SE andx + SE respectively. With the CIs specified by
EBs, one can easily estimate whether the differences between
the values of ensembles r and q are statistically significant.
Since the sample sizes for both ensembles are the same,
we will consider the differences between ensembles q and
r as (not) statistically significant if the two EBs do not
(do) overlap. Here SE is estimated as the sample standard
deviation divided by the square root of the sample size
as in any standard text books. The mean and SE describe
bounds on a sample mean. The SE is an estimate of how
close the sample mean is likely to be in comparison to
the population mean, whereas the standard deviation is the
degree to which individuals within the sample differ from
the sample mean. More details about SE, CI and statistical
significance can be found in statistical books such as Wilks
(2006). The same definition and method will be used in some
other figures with EBs later. The EBs in Fig. 4 show that the
advantages of ensemble q over r are statistically significant
in all forecast lead times and spaces, except for the sea
surface temperature (SST). The differences for SST are not
statistically significant, perhaps due to the relatively small
verifying observation space.

The second metric is the spread-reliability diagram
(Talagrand et al., 1997; Leutbecher and Palmer, 2008) . It is
computed with 20 bins based on our 32-member ensembles,
using observations as the truth. The exact steps for our
RELO ensembles are outlined in Appendix A of W13.
As an example of a comparison using this metric, Fig. 5
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shows ensemble spread-reliability diagrams for temperature
using observations as the truth. To have maximum statistical
significance, all the values are averaged over a large number
of samples within the full observation spaces from 1 June to
19 September 2012. Since the ensemble spread is expected to
represent the forecast uncertainty, the spread-reliability curve
over such a large sample should be close to diagonal line,
which indicates perfect reliability.

The results in Fig. 5 show that the ensemble spread of
r is small or under dispersive for all the ranges for all the
forecast lead times. The calibrated ensemble q is also under
dispersive, especially for smaller variance, but it is closer
to the diagonal line for larger variances. For larger variance
at 24 h lead time, it is slightly over dispersive. It is evident
that the spread-reliability curve for the calibrated ensemble
q is closer to the diagonal line for all the forecast lead times
in the full observation space. This means that the reliability
of the ensemble is enhanced by the calibration. The spread-
reliability diagrams over the other observations spaces, such
as the surface and the space between 0 and 100 m, are also
computed (not shown) and yield similar conclusions. The
CI based on sample uncertainty can be calculated using
the bootstrapping technique as shown in Hamill (1999) and
Hamill et al. (2008).

The ensemble spread reliability and its consistency can
also be diagnosed by another popular metric called the rank
histogram or the Talagrand histogram, which is described in
Talagrand et al. (1997), Candille and Talagrand (2005), and
Wilks (2006). The procedures for computing rank histograms
and consistency indices for our RELO ensembles using
observations as truth are described in Appendix B of W13.
Our consistency index defined in Appendix B of W13 is just
a modified version from Talagrand et al. (1997), Candille and
Talagrand (2005). The advantage is that the modified index is
exactly the ratio of RMS distances. The rank histograms for
both temperature and salinity are computed at three forecast
lead times, namely 24, 48, and 72 h, and in three domains,
including the full observation space, the space between 0
and 100 m, and the surface (for temperature only). Shown
in Fig. 6 are salinity rank histograms for both ensembles.

A quantitative measure of flatness is given by the
consistency index of rank histogram. The value of
consistency index indicated in each of the histograms shows
that the index value of ensemble q is about half that of
ensemble r in each of the cases. Based on this index,
ensemble q is flatter than ensemble r at all 3 forecast lead
times over these two observation spaces. In addition, the
index values for ensemble q in the observation space of
0–100 m (right panel) are much closer to 1, which is the
value for an ideal ensemble system. However, one notices
the larger values near the middle ran for q. This indicates
that there are more observations falling near the center of
the ensemble q in comparison with r, and ensemble q is a
little over dispersive for salinity. This is also confirmed by
the spread-reliability diagram of salinity (not shown). For

Fig. 4. Optimal PECA as a function of forecast lead time for
ensembles r (dotted) and q (dashed) for temperature in full
observation space(a), surface temperature(b), salinity in full
observation space(c), and salinity in layer between 0 and 100 m
(d). Error bars based on the standard error indicate the confidence
interval.

temperature rank histogram, both ensembles q and r both
are U-shaped, indicating both ensembles are under dispersive
for temperature, which is confirmed by Fig. 5. However, the
consistency indices for q are much smaller than those for r
over all observation spaces (not shown). In general, the rank
histograms for ensemble q are much flatter than for ensemble
r in all cases. This is a clear indication that the calibrated
ensemble q is much more consistent than ensemble r.

3.3 Impact of the calibration on forecast accuracy
and skill

The RELO ensemble is expected to provide forecast
uncertainty with its spread and superior forecasts with its
ensemble mean, which is expected to be more accurate and
skillful than an individual forecast. In this study, we use the
RMS difference between the ensemble mean and subsequent
observations corresponding to the forecast time to measure
the forecast error. The RMS error is one of most commonly
used metrics to quantify forecast accuracy. It is the difference
between the model forecast and the truth represented by
unassimilated observations valid during the forecast interval;
thus it is a direct measure of forecast accuracy. Forecast
accuracy generally decreases as the forecast lead time
increases, and this change in accuracy is represented as a
growth in the RMS forecast error. An ideal ensemble is
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Fig. 5.Ensemble forecast spread-reliability diagrams for temperature (r: dotted, q: dashed) using observation as truth for lead times of 24, 48,
and 72 h (from left to right). Values are averaged over the 109 days period from 1 June to 17 September 2012, and over the full observation
space.

expected to have an ensemble spread that has a similar
magnitude and growth rate to the ensemble RMS error.

To investigate whether the calibration introduced will
enhance the forecast accuracy, we compute the RMS errors
of the ensemble means from both ensembles r and q for
temperature and salinity. In addition, the RMS errors of the
single deterministic forecasts based on ncom3km, which has
the same resolution as the ensembles, are also calculated for
the same period of time and against the same operational
observations as the ensembles. The results will provide a
direct, fair comparison between ensemble (r) and a single
model (ncom3km) that uses the same model and resolution,
and comparison between the original ensemble (r) and the
calibrated ensemble (q).

Figure 7 shows the RMS errors of the two ensemble
means and one single forecast from ncom3km for salinity
as a function of lead time. The RMS values are averaged
over the full observation space (a), and the layer between
0 and 100 m (b). In both observation spaces, the ensemble
with calibration (q) has lower RMS values than ensemble
r, which has lower RMS values than ncom3km for all the
forecast lead times. In other words, the calibrated ensemble
(q) is more accurate than the original ensemble (r), which is
more accurate than the single deterministic forecast with the
same model and configuration (ncom3km). One also notices
that the differences between ensemble r and ncom3km are
smaller for shorter lead times, and not statistically significant,
but the differences grow as the lead time increases, and
become statistically significant after lead time of 48 h over
both observation spaces. In contrast, the calibration makes
larger impacts on the RMS values of the ensemble mean,
even for shorter lead times although these differences fall just
short of statistical significance and do not change much as the
lead time increases.

We next turn to assess the forecast skill of these two
ensembles and compare them with the single forecast
generated by ncom3k. One of the most common metrics
to quantify forecast skill is the anomaly correlation (AC).
As for other metrics, we use observations as the truth. A

simple correlation coefficient (CC), which is defined as the
correlation between forecast and the observed values, is
also sometimes used in the literature. But AC is preferred,
since CC does not take forecast bias into account and it
is quite possible for a forecast with large error to have a
high CC value. It is a common practice to use climatology
as the reference to account for seasonal variations when
AC is computed (Wilks, 2006). For a forecast variablef

at a particular forecast lead time, withc as the climate
data andy as the observation field at the same verifying
locations as the forecast, AC is defined as the correlation
between the forecast and observation anomalies with respect
to climatology, i.e.,

AC =
(f − c)(y − c)√

(f − c)2
√

(y − c)2
, (1)

where the over-bar indicates the geographical mean over the
verifying space. Therefore, the AC quantifies similarities in
the pattern of departure (or anomalies) from the climatology
field; it is a pattern correlation and regarded as a skill score
relative to climatology. It is arguably the most commonly
used metric in NWP centers (Buizza et al., 2005). We have
used the climatological data obtained from NAVOCEANO.

In Fig. 8 the AC values of salinity averaged over the
full observation space, the space between 0 and 100 m for
both ensembles and the single forecasts from ncom3km are
shown. In both observation spaces, the calibrated ensemble
(q) has the highest skill score, while the AC values for
ensemble r are higher than those from ncom3km for all
the forecast lead times. The increment generated by the
calibration for the ensemble is even larger than the advantage
of ensemble r over the single forecast from ncom3km for
short lead times. However, similar to the RMS errors in
Fig. 7, the advantages of ensemble r over the single model
forecast from ncom3km become larger as the forecast lead
time increases, and the differences are becoming statistically
significant at about 72 h forecast lead time. The enhancement
generated by the calibration does not change much as the
forecast lead time increases, and these differences are not
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Fig. 6.Talagrand rank histograms for salinity (r: green, q: red) using
observation as truth for lead times of 24, 48, and 72 h (from top
to bottom). All the values are averaged over the 109 day period
from 1 June to 17 September 2012, and over the full observation
space (left panel), the layer between 0 and 100 m (right panel).
Consistency index is also indicated in each case for both ensembles.

statistically significant based on the SE over these two
spaces.

The most common measure of accuracy for a probabilistic
forecast is the Brier score (BS) (Candille and Talagrand,
2005; Wilks, 2006). The BS is essentially the mean
square error of the probabilistic forecasts considering if
the event occurs. It is analogous to the mean square error
of a deterministic forecast. It is the average of squared
differences between pairs of forecast probabilities (pi) and
the subsequent binary observations (oi), i.e.,

BS=
1

n

n∑
i=1

(pi − oi)
2, (2)

Fig. 7. The RMS errors of salinity for ensembles r (dotted), q
(dashed), and ncom3km (solid) as functions of lead time. All
the RMS values are averaged over the 109 days from 1 June to
17 September 2012, and averaged over the full observation space
(a), and the layer between 0 and 100 m(b). Error bars based on the
standard error indicate the confidence interval.

Fig. 8.The anomaly correlation of salinity for ensembles r (dotted),
q (dashed) and ncom3km (solid) as functions of lead time. All AC
values are averaged over the 109 days from 1 June to 17 September
2012, and averaged over the full observation space(a), and the layer
between 0 and 100 m(b). Error bars based on the standard error
indicate the confidence interval.

where the indexi denotes a numbering of then forecast-
event pairs,oi = 1 if the event occurs andoi = 0 if the
event does not occur. In this article, the dichotomous
events are defined according to the climatology. To increase
the statistical significance, we choose 10 climatologically
equally likely categories based on the climatology data for
temperature and salinity at each observation location. The
BSs will be averaged over these 10 event categories. This
is better than using a single dichotomous event (Buizza et
al., 2005). It is clear that the BS is negatively oriented,
with a perfect forecast being BS= 0. Less accurate forecasts
receive higher values of BS, with the worst score being
BS= 1.0. The BS can be decomposed into three terms
called reliability, resolution, and uncertainty by using binned
probabilities, i.e.,

BS= Reliability− Resolution+ Uncertainty. (3)
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The detailed algebraic derivation and discussion of these
three terms can be found in Wilks (2006).

Figure 9 shows the BS values of temperature and salinity
as a function of forecast lead time for ensembles averaged
over the full observation space and the space of 0–100 m.
All the BS values for ensemble q are smaller than those for
ensemble r, indicating q performs better as a probabilistic
forecast system over these two spaces. The enhancement
of the probabilistic accuracy generated by the calibration
is clearly evident for both temperature and salinity in both
observation spaces. The gap between the two ensembles
tends to grow as the lead time increases for salinity in
both observation spaces (bottom panel). The EBs in Fig. 9
show that the differences between the two ensembles are
statistically significant for all the forecast lead times and
over all spaces. In contrast, the differences of two ensembles
based on deterministic metrics such as RMS error and AC
are not statistically significant (Figs. 7 and 8). Thus, the
calibration of ensemble initial spread has larger impact on the
probabilistic forecasts than deterministic forecasts provided
with ensemble mean.

Both reliability and resolution are computed based on
Eq. (3) with 33 probability categories based on our 32-
member ensemble for the decomposition. The conclusion
that ensemble q performs better still holds. For example, the
resolution values of temperature over the two observation
spaces for ensembles (r, q) at forecast lead times of 24,
48, and 72 h are shown in Table 2. It is clear that the gaps
between the two ensembles are almost constant as forecast
lead time increases. However, for salinity over the two
observation spaces, the performance gap increases slightly as
a function of forecast lead time, which is shown in Table 3.
The Brier skill score (BSS) based on BS using climatology
as reference has also been computed, the results confirm the
about conclusions (not shown).

3.4 Impact of the calibration on Lagrangian trajectory
prediction

The results and findings discussed in all the previous
sections are based on the Eulerian formulation, i.e., the
ocean states are described at fixed grid points. In this
section, we turn our attention to the application of ensembles
to Lagrangian dynamics and prediction, including particle
trajectory prediction using ensembles.

Forecast velocity fields from numerical models have been
used to predict particle or drifter trajectories on the water
surface in the application of ocean models to Lagrangian
dynamics. Some of the earlier work on the prediction of
drifter trajectories in ocean simulations includesÖzg̈okmen
et al. (2000, 2001). The significance of the contribution
ocean models have made to disaster response, search,
rescue, and contaminant monitoring and mitigation has been
manifested in the aftermath of the DWH oil spill accident.
The value of trajectory predictions by ocean models has been

Fig. 9. Brier scores of temperature (top panel) and salinity (bottom
panel) for ensembles r (dotted) and q (dashed) as functions of lead
time. All BS values are averaged over the 109 days from 1 June to
17 September 2012, and averaged over the full observation space
(left panel), and the layer between 0 and 100 m (right panel). Error
bars based on the standard error indicate the confidence interval.

demonstrated particularly well after the 2010 DWH incident
by Maltrud et al. (2010), Huntley et al. (2011b), and Mariano
et al. (2011). A special collection of papers about using
ocean models to predict particle trajectories entirely devoted
to the 2010 DWH oil spill can be found in Liu et al. (2011).
Although most of these studies are based on single model
forecasts, a few of the studies used ensembles. However,
those ensemble results are actually composed of different
forecasts from different models or organizations. In this case,
it is not easy to estimate the uncertainties of the predicted
trajectories. In the following, we will apply RELO ensemble
forecasts to Lagrangian prediction. The advantage of using
an ensemble is that it provides not only the more accurate
ensemble mean to describe the ocean state, but also valuable
uncertainty information, which is not directly available from
traditional, single, deterministic forecasts. For the sake of
computational efficiency, we advect particles with the 2-D,
interpolated surface velocity using a fourth-order Runge–
Kutta integration. In this study, we do not attempt to account
for diffusive processes or subgrid-scale uncertainties.

In addition to demonstrating the extra information
provided only by the RELO ensemble, more attention will be
paid to the impact and value that is offered by the calibration
introduced in this study. We choose 7 particles to represent
drifters or surface oil patches from the DWH disaster, which
are indicated by A, B, C, D, E, F, and G on the surface of
the GOM. The trajectories of these particles can be predicted
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Table 2.Resolution for temperature.

24 h (r, q) 48 h (r, q) 72 h (r, q)

Full Observation Space (0.017, 0.018) (0.014, 0.015) (0.013, 0.014)
0–100 m (0.022, 0.023) (0.018, 0.019) (0.017, 0.018)

Table 3.Resolution for salinity.

24 h (r, q) 48 h (r, q) 72 h (r, q)

Full Observation Space (0.0300, 0.0305) (0.0264, 0.0276) (0.0248, 0.0263)
0–100 m (0.0291, 0.0294) (0.0266, 0.0274) (0.0252, 0.0263)

from the water currents generated from any of the ocean
prediction models and ensembles. To show the importance of
uncertainty information provided by the calibrated ensemble,
particles F and G are placed near the sensitive hyperbolic
locations based on our water-current forecasts. For each
of these particles, we integrate the velocity fields provided
by each ensemble member to obtain a particle trajectory.
Thus, there are 32 different possible trajectories from each
location from one ensemble forecast. The trajectories of
these particles from ensemble r for the period of 00:00 UTC
20 July to 00:00 UTC 23 July 2012 are shown in the top
panel of Fig. 10. The corresponding trajectories generated by
ensemble q are displayed in the bottom panel of Fig. 10. Also
plotted in both panels of Fig. 10 are the sea surface height
(SSH) in colored contours, and the surface current velocity
vectors. The correlation between the SSH and velocity is
clear. In addition, the particle trajectories tend to follow the
directions indicated by the velocity vectors, as expected.

The predicted trajectory for each particle based on the
ensemble mean is plotted in a thick red curve. When
ensemble spread distribution is close to Gaussian, ensemble
mean and mode will be close. This is shown to be the case
in our RELO from the plume distribution in W13. Thus, the
trajectory based on ensemble mean is almost the same as the
one based on mode with the highest probability, i.e., the most
likely scenario for the particle to follow. If a single model
such as ncom3km, ncom1km, or hycom4km is used, it will
generate just one trajectory (one possible outcome) for each
particle. Due to the highly nonlinear, chaotic nature of the
GOM, there are uncertainties in the initial conditions. Hence,
there should be a range of possibilities for the trajectory
that each particle might follow. Instead of a single trajectory
produced by a single model for a particle, ensemble r or
ensemble q provides 32 possible trajectories representing
different possibilities, together with the trajectory based on
ensemble mean. This extra information should help users and
decision makers make better and more scientifically sound
decisions.

The impact of the calibration on the particle trajectories
is evident by comparing the possible trajectories of each

A

B
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D
E

F

G

A
B

D

C
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G

Fig. 10.The trajectories of 7 particles (A, B, C, D, E, F, G) predicted
by ensemble members from r (top panel) and q (bottom panel). The
predicted trajectories by ensemble means are denoted by thick red
curves. Particle D is chosen to be at the location of DWH accident.
Superimposed are the SSH in color contour, and surface water
velocity indicated by arrows.

particle in these two panels. It is clear that the spread
of the ensemble trajectories for each particle predicted by
ensemble q (bottom panel) is larger. The spread of the
ensemble trajectories can be defined and computed as the
RMS distance between the trajectories predicted by the
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different ensemble members. Therefore, ensemble q can
capture a wider range of possibilities of future movement of
the particle than ensemble r (top panel). This can be seen
from the predicted trajectories for particles B, C, D, and E.
Particle D is located at the position of the DWH oil spill.
The trajectory spread from both ensembles shows that the
ocean dynamics near this location has large uncertainties.
The oil particles spilled in this area could meander in many
different directions; hence, it will make the trajectories more
unpredictable around this area.

In some other cases, when both ensembles are used to
predict a particle’s possible trajectories, ensemble q could
capture advection in some possible different directions that
might be missed by ensemble r. Prediction for particle F
is one example. All 32 members of ensemble r predict the
particle moving northward. But, among the 32 members
of ensemble q, there are two members predicting that
particle F will move southward, i.e., ensemble q predicts
a 2/32 probability for particle F to move southward; these
probabilities are missed by the less reliable ensemble r. For
particle G, most members of both ensembles predict that the
particle will follow the LC toward the Florida Strait. But,
ensemble q predicts a 2/32 probability for particle G to move
westward, while ensemble r predicts only a 1/32 probability
for advection in this direction. Therefore, there are some
uncertainties that are missed by the less reliable ensemble
r. We have also noticed other examples on other dates when
the calibrated ensemble q captures greater uncertainty than
ensemble r near those sensitive, hyperbolic locations during
our real-time ensembles runs for the GLAD experiment.

3.5 Ensembles in Lagrangian coherent structure

Another particularly interesting application of ensembles
to the Lagrangian framework is the Lagrangian coherent
structure (LCS). Not only can an ensemble provide the most
likely LCS, but also its associated uncertainties. The LCS
has been used in computational fluid dynamics (Haller and
Yuan, 2000; Shadden et al., 2005; Haller and Sapsis, 2011)
and it has been adopted in the ocean modeling community to
study tracer distribution and prediction (Lekien et al., 2005;
Coulliette et al., 2007; Olascoaga et al., 2008; Beron-Vera et
al., 2008; Shadden et al., 2009; Olascoaga, 2010; Huntley et
al., 2011a, b; Olascoaga and Haller, 2012). The LCSs are the
locally most strongly attracting or repelling material surfaces
in the flow. They move with the flow and provide coherent
surfaces organizing the advection of tracers. Perhaps the
most commonly used method to identify the LCS is to use
the finite-time Lyapunov exponent (FTLE); some slightly
varying definitions can be found in the literature. FTLE is
a measure of the finite-time averaged maximum separation
rate of two initially close fluid particles.

Shadden et al. (2005) provides a robust mathematical
definition, and defines LCSs as ridges of maxima of FTLE
fields. Equating LCSs with FTLE ridges of maxima offers

an attractive easy tool to locate the LCS structures in real
ocean models with a lot of data. The exact mathematical
definition involving the derivatives of FTLEs to compute the
ridges is also provided in Shadden et al. (2005). However,
a simple, efficient way to estimate the LCS without the
complicated computation of derivatives is to plot the FTLE
field on a two dimensional surface and then the maximum
values will be identified. With some caveats, the structure of
these maximum values of FTLE can be used as the detector
of LCS. This approach has been widely used in ocean
predictions. In this paper, we also use the high values of
FTLE to locate LCS. These maximum FTLE values, which
are typically well-defined curves indicating high stretching
between the fluid particles, appear as ridges in the graph of
the FTLE field and serve as the definition of LCS (Lekien
et al., 2005; Coulliette et al., 2007; Beron-Vera et al., 2008,
2010; Olascoaga et al., 2008; Beron-Vera and Olascoaga,
2009; Shadden et al., 2009; Olascoaga, 2010; Andrade-Canto
et al., 2013). The maximum FTLEs identified this way have
proven to be effective to identify LCSs. Following these
studies, we concentrate on the 2-D surface flow of the ocean.
The mathematical definition and computation of the FTLE
are provided in Appendix B.

The attracting LCS, which is a material surface that
attracts neighboring fluid particles at the locally highest rate
over a time interval, has been used in tracer prediction and
pollutant dispersal modeling in Olascoaga et al. (2008, 2012)
and Olascoaga (2010). Beron-Vera et al. (2008) computed
attracting LCSs to identify mesoscale eddies. Repelling
LCSs are material lines that act as moving barriers to
transport. They have important impacts on the movements
of particles and pollutants on the ocean surface. Lekien et
al. (2005) and Coulliette et al. (2007) have used repelling
LCSs for optimizing pollution management and release in
the coastal ocean in California and Florida. The repelling
LCS was also used by Shadden et al. (2009) to help optimize
drifter release in Monterey Bay. All of the above studies are
based on deterministic forecasts from single ocean models.
With the application of an ensemble, the uncertainties of
these LCSs can be identified more easily.

In the following, we use our real-time forecast data
generated for the GLAD drifter deployment to identify
the LCSs and their uncertainties. Since several models or
resolutions have been used in our experiments, the sensitivity
of the LCS to the model and its resolution can be studied.
The LCS from the ensemble mean velocity can be compared
with those from single ocean models. The time intervalt − t0
is 3 days, which is the forecast length of all our model
and ensemble forecasts for this experiment. In general, both
repelling and attracting LCSs depend on the time interval
chosen. However, the LCSs identified by using the FTLE
method are reasonably robust. More discussion of this can
be found in Shadden et al. (2005).

Figure 11 shows the repelling LCS on the ocean surface
at 00:00 UTC 23 July 2012, which was three days after
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deployment of the GLAD Large Scale Spiral (LSS) drifters.
The repelling LCSs are computed based on the 3-day
forecasts of the ensemble mean velocity of gom32q (a),
ncom3km (b), ncom1km (c), and hycom4km (d). Since there
is little difference between the LCSs from the ensemble
means of gom32r and gom32q in terms of magnitude and
scale, only the LCS from the ensemble mean of gom32q is
shown.

The LCS of each ensemble member is computed for
ensemble q. Each LCS from a different ensemble member
represents a possible realization of the structure within this
ensemble. The standard deviation (STD) of 32 LCSs based
on the 32 individual members is a good estimate of the
uncertainty of the LCSs described by the ensemble. The
procedure and formula can be expressed as the following. For
an ensemble withK members, the FTLE fieldσi for each
memberi can be computed based on Eqs. (B3) and (B4).
The STD of FTLE fields from all ensemble members can be
computed as

STD(x) =

√√√√ 1

K

K∑
i=1

(σi − σ0)
2 (4)

whereσ0 is the mean of the individualσi . We notice that
σi itself is not the LCS which can be estimated as the ridge
(maximum) ofσi . In fact, STD(x) provides the uncertainty
distribution of all the FTLE fieldsσi including σi with
maximum values. Thus, STD(x) should provide a good
estimate of the uncertainties of LCSs. This may not be the
best approach to estimating uncertainties of LCSs, but it is
a simple, efficient way of using an ensemble which is not
easily available from single model forecasts.

The results in the previous sections show that ensemble q
has a larger, more realistic spread and is more reliable than
ensemble r for all the variables over the various domains.
Thus, we choose the uncertainties of the LCSs identified by
ensemble q, which are plotted as shaded colors in each of the
four panels in Figs. 11–13.

The immediate difference one can notice among these
repelling LCSs from the different models and the ensemble
mean is the spatial scale due to the different resolutions
of the models being used. The LCS generated from
ncom3km shows smaller-scale structures outside the LC
than hycom4km, which has lower resolution. Surprisingly,
hycom4km displays smaller repelling LCS around the LC
than ncom1km, ncom3km, and gom32q. Although gom32q
uses NCOM with the same resolution as ncom3km, the LCS
from the ensemble mean shows larger spatial structures than
that from ncom3km. This is probably due to the filtering
effect of the ensemble mean, which removes some of the
smaller-scale features of the individual member forecasts. It
is an advantage to use the ensemble mean if one is more
interested in larger-scale features. As expected, the smallest
scale features of the repelling LCS are revealed by ncom1km
in Fig. 11c. Thus, ncom1km is an ideal model to study

the sub-mesoscale eddy structures in the GOM. The large-
scale repelling LCS around the LC is clearly identified by
gom32q, ncom3km and ncom1km, but not by hycom4km,
which instead shows a smaller, circular, repelling LCS near
the north of the LC. All the models demonstrate a long,
robust, large-scale repelling LCS starting from the Yucatan
Current, connecting the LC, Florida Current, and Gulf
Stream Current. To see the smaller-scale differences among
these LCSs from the different models in the region of the
GLAD experiment, an enlargement of the boxed region will
be shown in Fig. 12.

In general both repelling and attracting LCSs act as
transport barriers, if a drifter is on the ridge of the repelling
LCS, it could fall to either side of the LCS. Once the drifter
is on one side of the repelling LCS, it will be trapped on
that side, as it is almost impossible for a drifter to cross
the LCS barriers. Thus, the movement of a drifter depends
greatly on how repelling LCSs change with time, and the
drifter movement is generally constrained by the repelling
LCSs. Accurately identified repelling LCSs will provide
helpful guidance to drifter deployment and to forecasting the
trajectories of drifters (Lekien et al., 2005; Coulliette et al.,
2007; Shadden et al., 2009).

The uncertainty estimate associated with these LCSs is
provided by gom32q and is plotted as shaded color. It can
be seen that there are relatively larger uncertainties of the
LCS along the Yucatan Current, connecting the LC, Florida
and the Gulf Stream Currents where the large scale of
LCS structures exist. Other regions with larger uncertainties
are located around the DWH location, which is also the
focused region (boxed in Fig. 11) for the GLAD LSS drifter
deployment experiment. The repelling LCS at 00:00 UTC
23 July 2012 over the GLAD region for each model is shown
in Fig. 12. Again, the uncertainty estimates are displayed
as shaded color for each model. The DWH location is
indicated by a white square. Now much more detailed LCS
structures and their uncertainties can be seen clearly from
all four forecasts, particularly the one ncom1km (Fig. 12c),
which displays well-organized, small-scale repelling LCSs,
which cannot be seen from the other low-resolution models.
The ensemble mean shows similar LCS to ncom3km, but
with some of the smaller scales filtered out. The LCS
from hycom4km seems to have slightly different structures
due to the differences in resolution and model coordinate
and physics schemes. The uncertainty distribution is more
pronounced over the LCS ridges, for gom32q, ncom3km,
and hycom4km. But for the LCS from ncom1km, which has
much higher resolution than the other three models, there is
little correlation between the LCS and its uncertainty. This is
expected as the uncertainty is estimated by the ensemble with
3km× 3km resolution. To better estimate the uncertainty
of the LCS from ncom1km, we need to run an ensemble
based on NCOM with 1km×1km resolution. But this is too
expensive to run with our current computing resources.
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Fig. 11.The repelling LCSs (black contours) and their associated uncertainties of LCS (from gom32q, color shaded) on the ocean surface
over the GOM at 00:00 UTC, 23 July 2012, generated by ensemble mean of gom32q(a), ncom3km(b), ncom1km(c), and hycom4km(d).

Fig. 12.The same as Fig. 11, but for a smaller domain around the GLAD drifters area indicated by the white rectangle in Fig. 11. The DWH
location is indicated by the white rectangle.
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Fig. 13.The same as Fig. 12, but for attracting LCS.

Figure 13 is similar to Fig. 12, but shows the
corresponding attracting LCS for each model. Both repelling
and attracting LCSs are considered as material lines. If
fluid particles straddle the attracting (repelling) LCS, they
will converge (diverge) in forward time. The attracting LCS
from ensemble has similar spatial-scale structure to the
repelling LCS, while the spatial scales of attracting LCS
from hycom4km are similar to those from the ensemble.
Interestingly, the attracting LCS from ncom1km (Fig. 13c)
appears to have smaller spatial scales than the repelling LCS
from the same model (Fig. 12c). This might be an artifact
from the way the attracting LCS is computed. A potential
drawback with his method is that the grid of the smallest
exponent is plotted at the final trajectory locations, which
typically becomes deformed. To confirm this, future work
is needed to compare these with the attracting LCS based
on the conventional backward time FTLE method. To see
more details of both the repelling and attracting LCS from
ncom1km, we zoom to an even smaller region around the
DWH location which is shown in Fig. 14. It is also very
interesting to compare the repelling and attracting LCSs,
their relative locations, and how they are interwoven in the
region around the DWH location.

Mathur et al. (2007) used the LCS to uncover the
Lagrangian building blocks of turbulence. They used the
LCS to quantify the hyperbolicity of material lines in the
Lagrangian skeleton. The authors argued that the complex
tangle formed by the repelling and attracting LCSs is the

underlying cause of turbulent particle motion. The LCS was
also used by Beron-Vera et al. (2008) to unambiguously
identify mesoscale oceanic eddies using the surface ocean
currents. The authors noticed that the intersection of
repelling and attracting LCSs define “lobes” that enclose
and restrain fluid over time due to the material nature of
the LCSs. In Fig. 14, both repelling and attracting LCSs
from ncom1km are plotted together on 20–23 July 2012,
which is the same period as Fig. 10 showing the Lagrangian
trajectories predicted by the ensembles. The DWH location
is indicated by a little blue square. In unsteady flows like
the GOM, the repelling and attracting LCSs do not coincide,
they transversely intersect each other many times. It can be
seen that the repelling and attracting LCSs exist separately
over the majority of the areas in this domain around the
DWH location during this 4-day period. However, they do
intersect at many locations where mesoscale eddies may be
created. The movement of the particles at these locations,
such as the particles from the DWH oil spill and the GLAD
drifters, will be severely restricted by the complicated LCS
structures. Most of the GLAD drifters released were most
likely to be deployed in the troughs of LCSs; very few were
on the ridges of LCSs. Fluid particles or drifters in the middle
of these tangles are subject to attraction of the attracting
LCS and simultaneous repulsion of the repelling LCS. One
example is the trajectories of particle D from the DWH
location predicted by both ensembles in Fig. 10. This particle
moves a much shorter distance than the particles at the other
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Fig. 14. The repelling (black) and attracting (red) LCSs generated by ncom1km over a small domain near DWH location that is boxed in
Figs. 12c and 13c from 20 to 23 July 2012. The DWH location is indicated by the blue square.

locations over the three-day period we have predicted, such
as C, E, F, and G. The ensemble predicted trajectories from
D are restricted to a small area with many different directions
by the complicated repelling and attracting LCSs.

Our next step is to compare the predicted drifter
trajectories and the identified LCSs by the ensembles, and
their associated uncertainties against the observed drifter
trajectories from the GLAD data set. The full advantages of
the ensembles are expected to be exploited and demonstrated
with this valuable source of drifter data. We will report those
results in the future.

4 Discussion and conclusions

As the designated modeling team within CARTHE to
support and provide numerical guidance to the GLAD at-sea
experiment in the summer of 2012, we carried out several
real-time ocean model forecasts starting on 16 May 2012,
well before the GLAD drifter deployment. Two ensembles
(gom32r and gom32q), three single-model forecasts using
ncom3km, ncom1km, and hycom4km were run. The output
from all of these forecasts was archived and made available
on web servers for all the CARTHE scientists and students
involved in this project. The forecasts with different models
and resolutions provide various choices for the different

needs for CARTHE scientists during the GLAD drifter
experiment. In this paper, we offer brief descriptions of these
numerical forecast systems, with particular attention paid to
the RELO ensemble with calibration, which was proposed
to improve the ensemble performance. The advantages and
disadvantages of the different systems and models are
studied and summarized. Another goal of this study was
to use the ensembles for the prediction of Lagrangian
trajectories and Lagrangian coherent structures.

All our forecasts from both the ensembles and single
models are evaluated and verified against the Navy’s
operational observations used in NCODA from 00:00 UTC
1 June to 00:00 UTC 19 September 2012. The verifications
are based on the most commonly used verification metrics.
Since the calculations used in NCODA underestimates the
analysis error, the initial ensemble perturbations generated
through the ET cannot match the real analysis error variance.
Consequently, the ensemble spread is smaller than the
ensemble mean error, and the reliability of the ensemble is
compromised (W13). To overcome this difficulty efficiently
in a short period of time for the targeted GLAD experiment,
we tested the use of a calibrated ensemble (gom32q) with
an enhanced initial spread. Another separate effort has been
underway to improve the analysis error in NCODA, but this
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will take a longer time to develop and evaluate. In fact, the
mixing parameter perturbation scheme introduced in W13
is also part of these efforts to improve the RELO ensemble
spread and overall reliability. The proposed calibration has
been proven to be an efficient and effective method to further
improve the ensemble spread.

To understand how much the spread has been enhanced
by the calibration introduced, these two ensemble spreads
are compared directly from different perspectives. These
include direct comparisons of horizontal distributions, long-
time averages over the whole period of the experiment, and
averages over different observation spaces with different
dynamics. All the results show that the ensemble spread
is clearly enhanced by the calibration scheme. In addition,
it is found that this calibrated ensemble (gom32q) is
superior to the un-calibrated ensemble (gom32r) for all
the variables in all the observation spaces we have tested
in terms of quantitative forecasting accuracy, skill, and
reliability. The metrics we have evaluated include RMS error,
anomaly correlation, Brier score, PECA, spread-reliability,
and Talagrand rank histogram using observations as truth
and climatology as a reference to account for seasonal
variation. It is also demonstrated that even the un-calibrated
ensemble (gom32r) is more accurate and skillful than the
single model forecast with the same resolution (ncom3km)
based on the RMS error and anomaly correlation for
all the variables and all the different observation spaces.
Tests on statistical significance show that the differences
between the two ensembles based on probabilistic metric BS
are statistically significant, while the differences based on
deterministic metrics (RMS error and AC) using ensemble
means are not statistically significant. Thus, the initial spread
enhancement has larger impact on the probabilistic forecasts
than deterministic forecasts provided with ensemble mean.

The extra value of ensemble system in application to
Lagrangian trajectory prediction is also demonstrated in
this study. In contrast to a single ocean model forecast,
ensemble can generate important uncertainty estimates in
addition to predicting the most likely particle trajectory. In
addition, the trajectory spread generated by the ensemble
system directly reflects the complicated ocean dynamical
properties near the area of interest, which cannot be revealed
by single trajectory produced by a single model. All of this
information is important for decision makers during drifter
deployments and disaster relief efforts, such as the aftermath
of the DWH oil spill incident. Moreover, the importance
of ensemble reliability in predicting particle trajectories is
demonstrated by the direct comparison of the two ensembles.
The calibrated ensemble q, with more reliability, can pick up
completely different trajectory directions, which are missed
by the less reliable, uncalibrated ensemble r.

To reveal more details about the complex ocean dynamics
in the GOM and the regions around the DWH location, both
repelling and attracting LCSs are computed from ensembles
q and r, and compared with those generated from the single

models with different resolutions (ncom3km, ncom1km,
hycom4km). The LCSs based on the ensemble means of both
ensembles q and r are similar as expected. It is interesting
to note that the LCSs identified by the ensemble means
have larger spatial scales than those produced by ncom3km
due to the filtering effect of the ensemble mean, which
removes some small-scale features. This can be an advantage
in situations where only the larger scales of the transport
barriers are needed, such as for tracer prediction on longer
timescales.

Our results also show that both repelling and attracting
LCSs are sensitive to model resolution. The LCSs produced
by hycom4km have the largest scales, while ncom1km,
with the highest resolution in our experiments, is able
to produce the finest small-scale LCS structures that
cannot be generated by using lower-resolution models such
as ncom3km, hycom4km, or the ensemble means. One
advantage of the ensemble in this application is the capability
for estimating the uncertainties of these LCSs.

To take advantage of our highest resolution model
(ncom1km), we compared the repelling and attracting LCSs
directly over the same domain and followed their time
evolution. It was found that these two opposite LCSs do not
exist in the same locations most of the time, but they indeed
transversely intersect many times in the small region around
the DWH location. These complicated tangles formed by
the repelling and attracting LCSs are the underlying cause
of the turbulent particle motion, and they define various
“lobes” that restrain the movement of fluid particles, such
as those from oil spill. This is found to be consistent with the
Lagrangian trajectories predicted by the ensembles over the
region.

The application of ensemble approach in the Lagrangian
framework of ocean prediction is still largely unexplored. It
is planned that the application of ensembles to Lagrangian
trajectory and LCS prediction will be exploited further in
the near future. The benefits of the ensemble over a single
forecast have been widely recognized and accepted by the
public, not just by researchers. The work presented in this
study is just a first step in this direction. Some particularly
interesting areas include the impact of Lagrangian spread on
the trajectory prediction and LCS. How the repelling and
attracting LCSs interact with each other over a region with
complex turbulent particle motions. How the repelling and
attracting LCSs control particle movements. One immediate
task is to use the large amount of drifter data collected during
the GLAD experiment to verify the Lagrangian trajectories
predicted by the ensembles. With the observed drifter data,
we will be able to exam the controls imposed by the
repelling and attracting LCSs over the region around the
DWH location.
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Appendix A

PECA (Perturbation vs. Error Correlation Analysis)

It is known that ensemble performance depends on the
quality of the model and the DA system that generates the
analysis for the ensemble forecast (Buizza et al., 2005).
Thus, with conventional verification metrics, it is difficult
to distinguish the contributions from the improvements
to the model, the DA system or the ensemble system
design. In other words, it is difficult to assess the real
performance of the ensemble initial perturbations, which are
supposed to capture the initial analysis error variance. PECA
was designed to supplement other conventional verification
metrics as an ensemble verification tool that measures the
performance of an ensemble system. More discussion of
the PECA verification metric can be found in Wei and
Toth (2003). The main properties of this metric can be
summarized as (a) it is less sensitive to the performance
of and errors in the model and DA system; (b) it evaluates
the degree of independence of the ensemble members; (c) it
measures how much of the forecast error can be explained by
individual or optimally combined perturbations; (d) it reflects
more on the quality of the ensemble method; and (e) a higher
PECA score indicates a more skillful ensemble. Briefly,
ensemble perturbationszf

i are defined as the differences
between individual perturbed forecasts and the ensemble
mean. The forecast errors are normally defined as the
differences between the ensemble mean forecast and the best
available analysis or observations at verification time, i.e.
e = xf

− xa.
The correlation between each perturbation and the forecast

error can be computed. The mean correlation from all the
perturbations should measure how much forecast error can
be represented by the ensemble perturbations. Furthermore,
we can also optimally combine all the perturbations to have
one combined perturbation such that the final combined
perturbation will be as close to the forecast error as is
mathematically possible. This is achieved by solving a least
square problem:

Min||e −

K∑
i=1

αiz
f
i ||L2. (A1)

Having obtainedαi , the final optimally combined perturba-
tion is defined as

poptimal =

K∑
i=1

αiz
f
i . (A2)

PECA values contain the correlations between the forecast
errors and the optimally combined perturbations as well as
the individual perturbations.

Appendix B

LCS (Lagrangian coherent structure)

Suppose the ocean velocity field generated by NCOM
or HYCOM is v(x,y, t) = (u(x,y, t) ,v (x,y, t)). The
dynamical equation is given by

dx

dt
= v(x,y, t). (B1)

If we follow a particle at timet0 to a later timet , the
integration of the above equation will provide a flow map
F(t0, t) that maps the particle at the initial position to the
current position at timet , i.e.,x(t) = F(t0, t)x(t0). A matrix
can be formed using the gradients of the flow map as

C =

{
dF
dx

}T {
dF
dx

}
, (B2)

with the superscriptT indicating matrix transformation.
This symmetric matrix is called the right Cauchy–Green
deformation tensor, and is a function oft0, x0, t , x. The
largest FTLE associated with this trajectory over the time
interval[t0, t] is defined as

σrep(x0, t0,x, t) =
1

|t − t0|
log

√
λmax(C), (B3)

where λmax(C) denotes the largest eigenvalue ofC.
Therefore, the FTLE is the time-averaged, maximum,
exponential stretching about the trajectory from timet0 to
t . There are two types of LCSs. The first kind is the repelling
LCS, which is the material surface formed by the trajectories
of the dynamical system that repel other trajectories at locally
highest rate for the time intervalt − t0. The second one is
the attracting LCS, which is the material surface that attracts
nearby trajectories at locally highest rate for the time interval
t − t0.

A common way of computing the repelling LCS at time
t0 is to integrate a set of trajectories forward in time
starting from an array of initial conditions up to a timet .
Equation (B3) gives the largest FTLE, which can be used to
identify the repelling LCS at timet0. It is associated with
the stable manifold. The ridges of the largest FTLE indicate
the repelling LCSs. Another, separate, backward integration
from time t to t0 is needed to locate the attracting LCS at
time t , which is associated with the unstable manifold. More
details can be found in Shadden et al. (2005). However, in
this study we use the new development by Haller and Sapsis
(2011) to compute the attracting LCS. Instead of carrying
out a separate backward integration, the authors proved that
the attracting LCS at timet identified by the backward
time integration described above can be computed using the
minimal eigenvalue generated from the same forward time
integration from timet0 to t , i.e.

σatt(x, t) = −
1

|t − t0|
log

√
λmin(C), (B4)
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where λmin(C) denotes the smallest eigenvalue ofC.
Equation (B4) is used to identify the attracting LCS. As a
result, the computing cost is reduced by half.
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